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1. INTRODUCTION

The classical Euler B-integral

(1.1) B(x, y) :=

∫ 1

0

tx−1(1 − t)y−1dt =
Γ(x)Γ(y)

Γ(x + y)
(Re(x) > 0, Re(y) > 0)

can be rewritten (by the substitution t = a
a+1 ) as

(1.2) B(x, y) =

∫ ∞

0

ax−1(1 + a)−x−yda.

A multivariable generalization of (1.1) due to Selberg [S] says that for

Re(x) > 0, Re(y) > 0, Re(z) > −min
{

1
n
, Re(x)

n−1
, Re(y)

n−1

}

we have

Bn(x, y, z) : =

∫ 1

0

. . .

∫ 1

0

(t1 . . . tn)x−1 {(1 − t1) . . . (1 − tn)}y−1 |∆(t)|2zdt1 . . . dtn

=
n∏

j=1

Γ(1 + jz)Γ(x + (j − 1)z)Γ(y + (j − 1)z)

Γ(1 + z)Γ(x + y + (n + j − 2)z)
,(1.3)

where ∆(t) denotes the discriminant

∆(t) = ∆(t1, . . . , tn) =
∏

i<j

(ti − tj).

The same substitution ti = ai

ai+1
carries Selberg’s integral over into the formula

Bn(x, y, z) =

∫ ∞

0

. . .

∫ ∞

0

(a1 . . . an)x−1. {(1 + a1) . . . (1 + an)}−x−y−2z(n−1)(1.4)

. |∆(a)|2zda1 . . . dan.

Suppose a is a Euclidean space with inner product (.,.). The dual space a
∗ =

Hom(a, R) inherits a natural inner product from a, which we again denote by (.,.).

Let R ⊂ a
∗ be an irreducible reduced root system [B]. The coroot lattice Q∨ ⊂ a is

the lattice generated by the dual root system R∨ = {α∨ := 2(α,·)
(α,α) ∈ a; α ∈ R}, and

the weight lattice P = {λ ∈ a
∗; (λ, α∨) ∈ Z ∀α ∈ R} is the lattice in a

∗ dual to Q∨.

The Weyl denominator is by definition

(1.5) ∆ :=
∏

α∈R+

(e
1
2
α − e−

1
2
α) ∈ Z[P ],
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where R+ ⊂ R is a set of positive roots.

Let T be the compact torus with (abelian) Lie algebra t :=
√
−1a and unit lattice

2π
√
−1Q∨, so that ∆(t) for t ∈ T can be considered as a Fourier polynomial on T

with integral coefficients. If 2 = d1 ≤ d2 ≤ . . . ≤ dn = h denote the degrees of R (h

being the Coxeter number), and dt the normalized Haar measure on T then

(1.6)

∫

T

|∆(t)|2kdt =
n∏

j=1

(
kdj

k

)
for k > −h−1.

This formula was conjectured by Macdonald [M2]. In fact Macdonald conjectured

a more general formula (allowing the root system to be possibly non-reduced, and

different labels for roots of different lengths), which for the root system of type BCn

was equivalent with Selberg’s integral (1.3). For the root system of type An formula

(1.6) was conjectured by Dyson [D], and proved by Gunson [G] and Wilson [Wi] (and

unpublished by Selberg [S, p.212]).

A uniform proof of (1.6) for all root systems was given by Opdam as an application

of the calculus of multivariable hypergeometric shift operators [O3]. The original proof

of the existence of these hypergeometric shift operators depended on transcendental

arguments [O2], but now this can also be understood by elementary means [H2].

Let A be the connected simply connected Lie group with Lie algebra a (the Lie

bracket on a being trivial), so that exp : a → A is a diffeomorphism. Normalize the

Haar measure da on A, such that
∫

A/ exp(2πQ∨)
da = 1. This is the canonical measure

on A obtained from the normalized Haar measure dt on T by analytic continuation.

The Weyl denominator ∆(a) for a ∈ A can be considered as an exponential polynomial

on A.

THEOREM 1.1. For −h−1 < Re(k) < 0 we have

(1.7)

∫

A

|∆(a)|2kda =

n∏

j=1

1

2 sin(πk(1 − dj))
·

n∏

j=1

(
kdj

k

)

In fact we will prove a more general formula for R possibly non-reduced and different

labels for roots of different lengths. For R of type BCn this formula is equivalent

with Selberg’s integral (1.4) as will be shown in Section 3. In Section 4 we will show

how the compact imaginary and non-compact real integrations can be related with

the help of Stokes theorem. However for this we have to replace the integrals with

measures by the corresponding integrals with differential forms. In Section 5 we finish
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the proof of (1.7) by connecting the integrals for measures and differential forms using

the Poincaré series for both the finite and the affine Weyl group.

2. CONDITIONS FOR INTEGRABILITY

Let a be a Euclidean space of dimension n, and R ⊂ a
∗ a possibly non-reduced root

system with Weyl group W . Let R+ ⊂ R be a set of positive roots, and a+ ⊂ a the

corresponding positive chamber. Write ac = C
⊗

R
a for the complexification of a, and

a
reg
c = {X ∈ ac; α(X) 6= 0 ∀α ∈ R} for the regular points in ac. Suppose we have

given kα ∈ C for α ∈ R, such that kwα = kα ∀w ∈ W, ∀α ∈ R.

Consider the functions on a
reg
c defined by

(2.1) δ(k, X) =
∏

α∈R+

(e
1
2
α(X) − e−

1
2
α(X))2kα

(2.2) µ(k, X) =
∏

α∈R+

|e 1
2
α(X) − e−

1
2
α(X)|2kα

Here δ(k, ·) is the multi-valued analytic continuation of the single-valued analytic

function on ac,+ = a+

⊕√
−1a for which δ(k, X) = µ(k, X) for X ∈ a+. Note that

µ(k, X) = |δ(k, X)| if kα ∈ R ∀α ∈ R.

For X ∈ ac we put

(2.3) RX =
{
α ∈ R; α(X) ∈ 2π

√
−1Z

}
,

whence RX ⊂ R is a root subsystem.

PROPOSITION 2.1. Write ρ(k) := 1
2

∑
α∈R+

kαα =
∑n

j=1 ℓjαj with {α1, . . . , αn} ⊂ R+

the set of simple roots.

a) If Re(
∑

α∈RX
kα) + rk(RX) > 0 ∀X ∈ a with RX 6= ∅ then µ(k, ·) ∈ L1

loc(a, dX).

b) If in addition Re(ℓj) < 0 ∀j then µ(k, ·) ∈ L1(a, dX).

c) If Re(
∑

α∈RX
kα) + rk(RX) > 0 ∀X ∈

√
−1a with RX 6= ∅ then µ(k, ·) ∈

L1
loc(

√
−1a, dX).

Here dX denotes Lebesgue measure on a and
√
−1a respectively.

Proof: The proof is easy and left to the reader. QED.
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COROLLARY 2.2. Suppose R = R1∪ . . .∪Rm is the decomposition of R into W -orbits.

Put hi := #(Ri)/rk(Ri) and ki = kα for α ∈ Ri. Under the conditions

(2.4) Re(ki) < 0 ∀i,
m∑

1

Re(ki)hi + 1 > 0

all conditions of the previous proposition are satisfied.

Proof: The Ri are of type A, D, E or a direct sum of type A1. Note RX,i := RX ∩ Ri

and hX,i := #(RX,i)/rk(RX,i). Then it is easy to verify that hX,i ≤ hi. Since

rk(RX) ≥ rk(RX,i) we get (using Re(ki) < 0 ∀i):

m∑

1

Re(ki)hi + 1 > 0 =⇒
m∑

1

Re(ki)hX,i + 1 > 0 =⇒

m∑

1

Re(ki) · #(RX,i) + rk(RX) > 0 =⇒
∑

α∈RX

Re(kα) + rk(RX) > 0.

Hence the conditions under a) and c) are implied by 2.4. Since ρ(k) =
∑m

1 kiρi with

ρi = 1
2

∑
α∈Ri,+

α ∈ cl(a+) we have Re(ρ(k)) ∈ −a+ for Re(ki) < 0. Hence condition

b) is implied by (2.4) as well. QED.

COROLLARY 2.3. On the domain (2.4) in Cm the functions

(2.5) k 7−→
∫

a

µ(k, X)dX

and

(2.6) k 7−→
∫
√
−1a/2π

√
−1Q∨

µ(k, X)dX

are holomorphic.

3. THE CASE R OF TYPE BCn.

Whenever the integral converges we write

(3.1)

Ln(α, β, γ) =

∫ ∞

−∞
. . .

∫ ∞

−∞

n∏

i=1

(sinh2ti)
α ·

n∏

i=1

(cosh2ti)
β .

∏

i<j

(sinh2(ti − tj). sinh2(ti + tj))
γdt1 . . . dtn
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PROPOSITION 3.1. We have

Ln(α, β, γ) =

n∏

j=1

(jγ)!(2α + 2(j−1)γ)!(−β−(j−1)γ)!(−α−β−(n + j−2)γ−1)!

(γ)!(α + (j−1)γ)!(−2β−2(j−1)γ)!

Proof: The proof is analogous to the computation in [M2, p.992-993]: Substitute ai :=

sinh2ti in Selberg’s integral (1.4), and put x = α + 1
2 , y = −α−β − 2γ(n− 1), z = γ.

QED.

REMARK 3.2. This proposition enables one to prove Theorem 1.1 for R of type Bn, Cn

and Dn. However these seem to be the only cases where the non-compact integral (1.7)

can be reduced to the compact integral (1.6) by a simple change of variables.

4. FROM COMPACT IMAGINARY TO NON-COMPACT REAL.

Choose an orthonormal basis for a and write x = (x1, . . . , xn) ∈ Rn (or Cn) for the

coordinates of a vector X ∈ a (respectively ac). Let τ > 0 be a positive real number.

Consider the differential n-form

(4.1) ω = ω(k, τ) =
∏

α∈R+

(e
1
2
α(X)+τ − e−

1
2
α(X)−τ )2kαdx1 ∧ . . . ∧ dxn

defined on the real Weyl chamber a+. This form has a single-valued analytic con-

tinuation as a closed differential form of type (n, 0) to an open neighborhood of

cl(ac,+) = cl(a+)
⊕√

−1a (choose the branch as for the function (2.1)). If P∨ :=

{λ ∈ a; α(λ) ∈ Z ∀α ∈ R} denotes the coweight lattice in a then the continuation is

quasi periodic with respect to 2π
√
−1P∨, i.e. for every X ∈ ac,+ and λ ∈ P∨ we have

(4.2) ω(X + 2π
√
−1λ) =

∏

α∈R+

q2α(λ)
α . ω(X)

where

(4.3) qα = eπ
√
−1kα .

Let {λ1, . . . , λn} ⊂ a be the fundamental coweights defined by αi(λj) = δij and

consider the parallelepiped Ω = [0, 2π]λ1 + . . .+ [0, 2π]λn spanned by 2πλ1, . . . , 2πλn.

PROPOSITION 4.1. If Re(kα) < 0 for all α ∈ R then

(4.4)

∫
√
−1Ω

ω(k, τ) =

n∏

j=1

(1 −
∏

α∈R+

q2α(λj)
α ).

∫

a+

ω(k, τ)
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Proof: Let M be a positive real number and define parallelepipeds

a+,j := [0, M ]λ1 + . . . + [0, M ]λj

Ωj := [0, 2π]λj+1 + . . . + [0, 2π]λn

with the convention a+,0 = Ωn = {0} and Ω0 = Ω. Then (4.4) will clearly follow from

a repeated application of the formula (0 ≤ j ≤ n − 1)

(4.5)

∫

a+,j+
√
−1Ωj

ω = (1 −
∏

α∈R+

q2α(λj+1)
α ).

∫

a+,j+1+
√
−1Ωj+1

ω + O(e−cM )

where O(e−cM ) are terms vanishing exponentially as M tends to infinity.

Formula (4.5) is proved as follows. Observe that if an n dimensional parallelepiped

σ ⊂ cl(ac,+) is spanned by n vectors two of which span a complex line then ω|σ = 0.

Just note that σ is contained in a complex hyperplane. Now modulo parallelepipeds

spanned by n vectors two of which are Mλj+1 and 2π
√
−1λj+1 we have

∂(a+,j+1 +
√
−1Ωj) ≡ (−1)j+1

(
(a+,j +

√
−1Ωj

)
− (Mλj+1 + a+,j +

√
−1Ωj))

+ (−1)j+2
(
(a+,j+1 +

√
−1Ωj+1

)
− (2π

√
−1λj+1 + a+,j+1 +

√
−1Ωj+1))

Hence equation (4.5) follows from Stokes theorem, the quasi periodicity relation (4.2)

and an elementary estimate. QED.

COROLLARY 4.2. Suppose the numbers kα ∈ C with kwα = kα ∀w ∈ W, ∀α ∈ R

satisfy the conditions (2.4). Then equation (4.4) holds for τ = 0.

Proof: By Corollary 2.2 both sides of equation (4.4) converge for τ = 0. Now apply

the Lebesgue dominated convergence theorem. QED.

5. EVALUATION OF THE NON-COMPACT INTEGRAL.

From now on we assume that R ⊂ a
∗ is a reduced irreducible root system. For α ∈ R

and n ∈ Z let α + n be the affine linear function X 7→ α(X) + n on a. The set

R̃ = {α + n; α ∈ R, n ∈ Z} is the affine root system associated with R, and elements

of R̃ are called affine roots. For each a ∈ R̃ let ra denote the orthogonal (affine)

reflection in the hyperplane La = {X ∈ a; a(X) = 0}. The affine Weyl group W̃ is

the group generated by the reflections ra with a ∈ R̃. The group W̃ acts on R̃ by the

dual action: if w ∈ W̃ and a ∈ R̃ then wa is the function X 7→ a(w−1X) on a.

7



Fix R+ ⊂ R a set of positive roots, and let R̃+ := R+ ∪ R + {1, 2, 3, . . .} ⊂ R̃

be the corresponding set of positive affine roots. Let {α1, . . . , αn} ⊂ R+ be the set

of simple roots and S = {r1, . . . , rn} the Coxeter generators for W . If θ ∈ R+ is

the highest root then a0 = −θ + 1 ∈ R̃+ is positive, and we write r0 ∈ W̃ for the

corresponding reflection. Then W̃ is a Coxeter group with generators S̃ = {r0, . . . , rn}.
Let a+ = {X ∈ a; α(X) > 0 ∀α ∈ R+} be the Weyl chamber corresponding to R+,

and C = {X ∈ a; a(X) > 0 ∀a ∈ R̃+} the fundamental alcove corresponding to R̃+.

On W̃ we have the usual length function ℓ(w) as well as the i-length function

ℓ(w) = (ℓi(w))i=1,...,m where m ∈ {1, 2, 3} is the number of W̃ -orbits in R̃ (see [B],

[M1]). These functions behave nicely for the restriction from W̃ to W .

LEMMA 5.1. Suppose w ∈ W̃ , w 6= 1 such that w(C) ⊂ a+. Then there exists ri ∈ S̃

with ℓ(wri) < ℓ(w) and wri(C) ⊂ a+. Moreover if one crosses the separating wall

between wri(C) and w(C) going from wri(C) to w(C) one goes in the direction of a

positive root in R+.

Proof: Choose X ∈ C a generic point. The straight line from w(X) to X intersects

the boundary of w(C) in the wall La for some a ∈ R̃. Now clearly La separates w(C)

and C. Hence ℓ(raw) = ℓ(w) − 1. Since La is a wall of w(C) we also have raw = wri

for some i. This proves the first statement. The second statement is obvious from this

construction. QED.

LEMMA 5.2. For w ∈ W̃ we have ℓ(w) = ℓ(v) + ℓ(v−1w) where v ∈ W is the element

with w(C) ⊂ v(a+).

Proof: Choose X ∈ C a generic point but close to the origin. The straight line from

X to w(X) first meets the reflecting hyperplanes separating C and v(C) and then the

ones separating v(C) and w(C). QED.

In view of Corollary 2.3 it is no restriction to assume kα ∈ R ∀α ∈ R which we

will do from now on.

LEMMA 5.3. Suppose w ∈ W satisfies w(2π
√
−1C) ⊂ 2π

√
−1a+. Then we have for

X ∈ 2π
√
−1C

(5.1)
δ(k, w(X))

µ(k, w(X))
=


 ∏

α∈R+

qα


 · q2ℓ(w)

with qα = eπ
√
−1kα and q2ℓ(w) =

∏m
i=1 q

2ℓi(w)
i and q0 = qθ (θ ∈ R+ the highest root)

and qi = qα if ri = rα for i = 1, . . . , n.

Proof: With induction on ℓ(w). If ℓ(w) = 0 then (5.1) is clear: Moving X from

2πC to 2π
√
−1C one picks up a factor

∏
α>0(

√
−1)2kα =

∏
α>0 qα. If ℓ(w) ≥ 1 then

choose ri ∈ S̃ with ℓ(wri) < ℓ(w) and wri(C) ⊂ a+ as in Lemma 5.1. Going from
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wri(2π
√
−1C) to w(2π

√
−1C) one picks up one extra factor q2

i in δ relative to µ. This

proves the lemma. QED.

Consider the Poincaré series W (t) =
∑

w∈W tℓ(w) and W̃ (t) =
∑

w∈W̃
tℓ(w) (see

[M1]).

LEMMA 5.4. We have

(5.2) W̃ (t) = W (t) ·





∑

w∈W̃ ,w(C)⊂a+

tℓ(w)





and

(5.3)
∑

w∈W̃ ,w(2πC)⊂Ω

tℓ(w) =

n∏

j=1


1 −

∏

α∈R+

tα(λj)
α


 ·





∑

w∈W̃ ,w(C)⊂a+

tℓ(w)





in the notation of the previous section.

Proof: The first statement is clear from Lemma 5.2. As observed in (4.2) the function

δ is quasi periodic for the lattice 2π
√
−1P∨. Together with Lemma 5.3 we get (with

t = q2)

∑

q∈W̃ ,w(C)⊂a+

tℓ(w) =
∑

w∈W̃ ,w(2πC)⊂Ω

tℓ(w) ·
∑

λ∈Z+λ1+...+Zλn

∏

α∈R+

tα(λ)
α

and (5.3) follows by summing the geometric series. QED.

THEOREM 5.5. Suppose the Lebesgue measure dX on a is normalized such that∫
a/2πQ∨ dX = 1 (this normalization is obtained from the normalized Haar measure dt

on T :=
√
−1a/2π

√
−1Q∨ by analytic continuation). If the parameter k satisfies the

conditions (2.4) then

(5.4)

∫
a
µ(k, X)dX∫
T

µ(k, t)dt
=

(
√
−1)n · ∏α∈R+

qα · W̃ (q2)

W (q2)

Proof: Normalize the inner product on a such that the Lebesgue measure dX on a is

the density associated with the differential form dx1 ∧ . . . ∧ dxn, and denote by dY

the corresponding Lebesgue measure on
√
−1a. Assume that a is oriented such that∫

Ω
dx1 ∧ . . . ∧ dxn = vol(Ω). Then we have

∫

T

µ(k, t)dt =

∫
√
−1a/2π

√
−1Q∨

µ(k, Y )dY = |W |
∫

2π
√
−1C

µ(k, Y )dY
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=
|W |∏

α>0 qα · ∑
w∈W̃ ,w(2π

√
−1C)⊂

√
−1Ω

q2ℓ(w)
·
∫
√
−1Ω

δ(k, Y )dY by (5.1)

=
|W |

(
√
−1)n · ∏α>0 qα · ∑

w∈W̃ ,w(2πC)⊂Ω
q2ℓ(w)

· lim
τ↓0

∫
√
−1Ω

ω(k, τ)

=
|W | · ∏n

j=1(1 − ∏
α>0 q

2α(λj)
α )

(
√
−1)n · ∏α>0 qα · ∑

w∈W̃ ,w(2πC)⊂Ω
q2ℓ(w)

·
∫

a+

ω(k, 0) by Corollary 4.2

=
|W |

(
√
−1)n · ∏α>0 qα · ∑

w∈W̃ ,w(C)⊂a+

q2ℓ(w)
·
∫

a+

µ(k, X)dX by (5.3)

=
W (q2)

(
√
−1)n · ∏α>0 qα · W̃ (q2)

·
∫

a

µ(k, X)dX by (5.2)

which proves the theorem. QED.

REMARK 5.6. In case kα = k ∀α ∈ R Theorem 1.1 is easily obtained from Theorem

5.5. Indeed in this case the Poincaré series for W and W̃ are given by

W (t) =
n∏

j=1

(1 − tmj+1)

(1 − t)

and

W̃ (t) =
n∏

j=1

(1 − tmj+1)

(1 − t)(1 − tmj )

as originally computed by Bott (see [M1], p.164 and p.173). Here mj = dj − 1 are the

exponents of R. Hence the right hand side of (5.4) becomes (using #(R+) =
∑

mj)

(
√
−1)n · q#R+ · W̃ (q2)

W (q2)
=

(
√
−1)n · q

∑
j

mj

∏
j(1 − q2mj )

=
n∏

j=1

−1

2 sin(πkmj)

and Theorem 1.1 follows from (1.6) and (5.4).

6. FINAL REMARKS.

Consider the differential operator on A

L(k) =

n∑

j=1

∂2

∂x2
j

+
∑

α∈R+

kα
e

1
2
α + e−

1
2
α

e
1
2
α − e−

1
2
α
· ∂

∂α
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as studied in [H0, H1, 2, O1, 2]. Then there exists a commutative family D(k) of

differential operators on A, depending polynomially on the parameter k and containing

L(k), which is isomorphic to a polynomial algebra in n variables. More precisely there

exists an algebra isomorphism

γ(k) : D(k) −→ Sa
W
c

which can be considered as a deformation in k of the Harish-Chandra isomorphism for

the invariant differential operators on a Riemannian symmetric space G/K. In fact

we have γ(k)(L(k))(λ) = (λ, λ) − (ρ(k), ρ(k)).

Suppose ε > 0 small and kα > −ε ∀α ∈ R. Then it is easy to see that the

real subspace of D(k) corresponding to R[
√
−1a

∗]W under γ(k) consists of symmetric

operators for the measure µ(k, a)da on A. A problem of considerable interest would be

to obtain the (presumably existing) simultaneous spectral resolution of this commuting

family of differential operators in explicit form. It is known that there exists a unique

solution F = F (λ, k; a) for each λ ∈ a
∗
c to the system of differential equations

DF = γ(k)(D)(λ) · F ∀D ∈ D(k),

which is analytic and W -invariant on A and normalized by the condition F (λ, k; e) = 1.

Moreover on A+ this function has an asymptotic expansion

F (λ, k; a) ∼
∑

w∈W

c(wλ, k)awλ−ρ(k)

with c(λ, k) the c-function given by the Gindikin-Karpelevic product formula (see

[O4]). In case the parameters kα are half the root multiplicities of the restricted root

system of G/K then this spectral resolution is given by Harish-Chandra’s Plancherel

formula for G/K. It says that for f ∈ C∞
c (A)W we have (with da and dλ regularly

normalized)

(6.1) f(·) =

∫

a
∗

{∫

A

f(a)F (−
√
−1λ, k; a)µ(k, a)da

}
F (

√
−1λ, k; ·) dλ

|c(
√
−1λ, k)|2 .

In case of rank one this formule boils down to the example of the Weyl-Titchmarsch

spectral theory for the Gaussian hypergeometric function. One might expect formula

(6.1) to remain valid under the assumption kα ≥ 0 ∀ ∈ R. However the set of

eigenfunctions F (
√
−1λ, k; a) with λ ∈ a

∗ fails to be complete if kα becomes negative

and small. Indeed, discrete spectrum occurs for the eigenfunction F (ρ(k), k; a) ≡ 1

and what we have computed in this paper is the L2-norm of this function.

Note that for R of type BCn (with three root multiplicities kℓ, km, ks for the long,

medium and short roots) more discrete spectrum will occur when kℓ ≪ 0 and kℓ +

11



ks, km > −ε. The eigenfunctions are analytic continuations of the multivariable Jacobi

polynomials associated with R, and their L2-norms can be computed by using either

the contiguity relations as in [H1, Section 8] or the hypergeometric shift operators

from [O1, 2, H2]. The fact that a finite number of discrete eigenfunctions arise this

way was already observed in the rank one case in [We, p.235].
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[We] H. Weyl, Über gewöhnliche lineare Differentialgleichungen mit singulären Stellen
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