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Summary

Recently the classification of unipotent representations of a simple p-adic

group was obtained by Lusztig based on his ideas of character sheaves. An

alternative strategy had been proposed by Reeder based on a comparison of

formal degrees. We show how the formal degrees can be computed from a

residue calculation and thereby turn the approach of Reeder into an efficient

route.

1. The affine Hecke algebra

Suppose V is a real vector space of dimension n equipped with a positive

definite scalar product (·, ·). Let R ⊂ V be a reduced irreducible root system,

and write R∨ = {α∨;α ∈ R} for the dual root system. Here

α∨ =
2α

(α,α)

is the coroot of a root α ∈ R. A root α ∈ R will be considered as a linear

function on V by α(ξ) = (ξ, α) for ξ ∈ V . Let δ denote the constant function

1 on V . The set R′ of affine linear functions on V defined by

(1.1) R′ = {α+mδ;α ∈ R,m ∈ Z}

is called the affine root system associated with R.

For each affine root a ∈ R′ let Ha denote the affine hyperplane in V on which

a vanishes, and let sa denote the orthogonal reflection in Ha. Explicitly

sα+mδ(ξ) = ξ − ((ξ, α) +m)α∨

for a = α+mδ ∈ R′ and ξ ∈ V . The affine Weyl group W ′ associated with R is

the group of euclidean motions of V generated by these reflections. It contains

the finite Weyl group W0 of R (and of R∨) as the subgroup generated by the
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reflections sα for α ∈ R. For each α ∈ R the product sαsα+δ maps ξ ∈ V to

ξ + α∨, and therefore

t(α∨) = sαsα+δ

is translation of V over α∨. It follows that W ′ contains the subgroup of trans-

lations over elements of the coroot lattice Q∨ = ZR∨ of R. In fact we have a

semidirect product decomposition

(1.2) W ′ = W0 ⋉ t(Q∨).

For our purpose it will be more convenient to work with the extended affine

Weyl group

(1.3) W = W0 ⋉ t(P∨)

with P∨ = {λ ∈ V ; (λ, α) ∈ Z ∀α ∈ R} the coweight lattice of R. It is easy

to check that W contains W ′ as normal subgroup. The quotient W/W ′ is

isomorphic to the finite abelian group P∨/Q∨.

Fix a Weyl chamber V+ for R. Let R+ be the set of positive roots relative

to V+, and let α1, . . . , αn ∈ R+ be the set of simple roots. Let θ ∈ R+ be the

highest root. The affine roots

(1.4) a0 = −θ + δ, ai = αi (1 ≤ i ≤ n)

form a set of simple roots for R′, and the affine Weyl group W ′ is generated

by the reflections si = sai
(0 ≤ i ≤ n). The alcove

(1.5) C = {ξ ∈ V ; ai(ξ) > 0 (0 ≤ i ≤ n)}

is the unique connected component of V \ ∪ Ha (union over a ∈ R′) which

contains the origin in its closure and is contained in V+. The affine Weyl group

W ′ permutes the connected components of V \∪Ha in a simply transitive way,

and therefore yields a tessellation of V by congruent simplices. Likewise the

extended affine Weyl group W permutes the connected components of V \∪Ha

in a transitive way, and therefore we get a semidirect product decomposition

(1.6) W = Ω ⋉W ′

with

(1.7) Ω = {w ∈W ;w(C) = C} ∼= P∨/Q∨.

For w ∈ W the length l(w) ∈ N is defined as the number of hyperplanes Ha

(a ∈ R′
+) separating the two alcoves C and wC. Here R′

+ = {a ∈ R′; a(ξ) > 0

∀ξ ∈ C} is the set of positive affine roots. It is easy to check that

(1.8) R′
+ = R+ ∪ {R + (N + 1)δ}.



HARMONIC ANALYSIS FOR AFFINE HECKE ALGEBRAS 3

We write

(1.9) ρ =
1

2

∑

α∈R+

α

and denote

(1.10) P∨
+ = {λ ∈ P∨; (λ, α) ∈ N ∀α ∈ R+}

for the cone of dominant coweights. Then it is easy to show that

(1.11) l(t(λ)) = 2(λ, ρ) for λ ∈ P∨
+ .

Let q ∈ C× be a nonzero complex parameter. The extended affine Hecke

algebra H = H(W, q) is the associative algebra over C with a vector space basis

Tw indexed by w ∈W , and multiplication given by

(1.12) (Ti + 1)(Ti − q) = 0 for 0 ≤ i ≤ n,

(1.13) TvTw = Tvw if l(v) + l(w) = l(vw).

Here we abbreviate Tsi
by Ti. The subspace of H with basis Tw (w ∈ W ′) is

a subalgebra called the affine Hecke algebra and denoted H′ = H(W ′, q). The

subspace of H with basis Tω (ω ∈ Ω) is a subalgebra naturally isomorphic to

C[Ω]. The semidirect product (1.6) gives rise to the isomorphism

(1.14) H ∼= C[Ω]⊗H′

with TvTω = TωTw if ωw = vω (v,w ∈ W ′, ω ∈ Ω). The subspace of H with

basis Tw (w ∈W0) is a subalgebra denoted H0 = H(W0, q). This is the Hecke

algebra of the finite Weyl group W0.

From (1.11) and (1.13) it is clear that

(1.15) Tt(λ)Tt(µ) = Tt(λ+µ) for λ, µ ∈ P∨
+ .

If now λ is any element of P∨ then we can write λ = µ − ν with µ, ν ∈ P∨
+ ,

and we define

(1.16) θλ = q−(λ,ρ)Tt(µ)T
−1
t(ν).

Using (1.15) it is easy to see that this definition is unambiguous, and in addition

(1.17) θλθµ = θλ+µ for all λ, µ ∈ P∨.

Hence the subspace of H with basis θλ (λ ∈ P∨) is a subalgebra naturally

isomorphic to C[P∨]. Next one can show that multiplication in H defines a

vector space isomorphism

(1.18) H ∼= H0 ⊗ C[P∨].
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Moreover the algebra structure on H can be recovered from the algebra struc-

tures on H0 and C[P∨] together with the push relation

(1.19) θλTi − Tiθsi(λ) = (q − 1)
θλ − θsi(λ)

1− θ−α∨

i

for λ ∈ P∨ and 1 ≤ i ≤ n. Note that the division on the right hand side

is possible inside C[P∨]. This formula is due to Lusztig [Lu3, Mac1] but on

the level of braid groups it was obtained before by van der Lek and Looijenga

[Le1,2]. Using (1.19) it is easy to see that the center Z of H is equal to

(1.20) Z = C[P∨]W0

with C[P∨]W0 the subalgebra of C[P∨] of invariants for W0. Here W0 acts on

C[P∨] by w(θλ) = θw(λ) for w ∈W0 and λ ∈ P∨.

Let PW0
(q) =

∑
w∈W0

ql(w) be the Poincaré polynomial of W0. Assume from

now on that PW0
(q) 6= 0, and let

(1.21) T+
0 = PW0

(q)−1




∑

w∈W0

Tw


 ∈ H0

be the central idempotent corresponding to the trivial representation triv :

H0 → C, triv(Tw) = ql(w). The Satake isomorphism expresses that multiplica-

tion by T+
0 defines an isomorphism of commutative algebras

(1.22) Z = C[P∨]W0
∼=
−→T+

0 HT+
0 , ϕ 7→ T+

0 ϕ.

The spherical subalgebra T+
0 HT+

0 of H has the vector space basis T+
0 θλT

+
0

with λ ∈ P∨
+ . An explicit inversion for the Satake isomorphism was obtained

by Macdonald [Mac2] in the form

(1.23) T+
0 θλT

+
0 = PW0

(q−1)−1T+
0




∑

w∈W0

w(c(·, q)θλ)




for λ ∈ P∨
+ , and with the c-function given by

(1.24) c(·, q) =
∏

α∈R+

1− q−1θ−α∨

1− θ−α∨

.

Note that although c(·, q) is no longer an element of C[P∨] the averaging over

W0 in the right hand side of (1.23) makes the outcome lie in C[P∨]W0 .

The irreducible representations of C[P∨] are parametrized by the complex

torus T = Hom(P∨,C×) with character lattice P∨. For s ∈ T the induced

representation

(1.25) IndH

C[P∨](s)
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is called the principal series representation of H with spectral parameter s.

As a module for H0 it is just the left regular action of H0 by (1.18). For

regular s ∈ T it is as a module for C[P∨] the direct sum of the one dimensional

modules ws (w ∈W0). The principal series (1.25) is irreducible if and only if

(1.26) numerator(c(s, q)c(s−1, q)) 6= 0.

Each irreducible representation of H is equivalent to a quotient of some prin-

cipal series representation.

2. The spherical Plancherel formula

In this section we take q > 0 a positive real parameter. The extended

affine Hecke algebra H = H(W, q) becomes an involutive algebra with respect

to

(2.1) (
∑

w

cwTw)∗ =
∑

w

cw−1Tw.

The adjoint is an antilinear antiinvolution of H. The canonical trace τ : H→ C
is defined by

(2.2) τ(
∑

w

cwTw) = ce,

and it gives rise to the canonical hermitian inner product

(2.3) (ϕ,ψ) = τ(ϕψ∗) =
∑

w

cwdwq
l(w)

with ϕ =
∑
cwTw, ψ =

∑
dwTw ∈ H. Denote by H∧ the set of equivalence

classes of irreducible unitary representations of H. The abstract Plancherel

theorem [Di] for H gives the existence of a unique nonnegative measure νP (·) =

νP (·, q) on H∧ such that

(2.4) τ(ϕ) =

∫

π∈H∧

Tr(π(ϕ))dνP (π, q) ∀ϕ ∈ H.

The measure νP on H∧ is called the canonical Plancherel measure for H.

Let C = C(W, q) be the formal completion of H with respect to the basis

Tw (w ∈ W ). Hence ϕ ∈ C means that ϕ =
∑
cwTw is a formal infinite sum

with complex coefficients. Clearly for ϕ ∈ C and ψ ∈ H the product ϕψ ∈ C

and the hermitian pairing (ϕ,ψ) ∈ C are well defined. The subspace T+
0 CT+

0

is the space of all spherical functions in C. Now suppose in relation (2.4) that

ϕ ∈ T+
0 HT+

0 . Clearly Tr(π(ϕ)) = 0 in the right hand side of (2.4) unless

π ∈ H∧
sph with

(2.5) H∧
sph = {π ∈ H∧; [π|H0

: triv] = 1}.
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For π ∈ H∧
sph the elementary spherical function ϕπ ∈ T+

0 CT+
0 is uniquely

characterized by

(2.6) (ϕπ, ϕ
∗) = Tr(π(ϕ)) ∀ϕ ∈ T+

0 HT+
0 .

It is easy to check that

(2.7) ϕϕπ = (ϕπ, ϕ
∗)ϕπ ∀ϕ ∈ T+

0 HT+
0 .

The scalar (2.6) is called the spherical Fourier transform of ϕ (evaluated at π),

and is also denotes ϕ̂(π). The spherical Plancherel formula states that for all

ϕ,ψ ∈ T+
0 HT+

0

(2.8) (ϕ,ψ) =

∫

π∈H
∧

sph

ϕ̂(π)(ϕπ , ψ)dν+
P (π, q)

with ν+
P the restriction of the Plancherel measure νP to H∧

sph.

For s ∈ T = Hom(P∨,C×) let πs be the unique spherical subquotient

of the principal series representation (1.25) with spectral parameter s. An

immediate consequence of (1.23) is the explicit formula of Macdonald [Mac2,

Theorem 4.1.2]

(2.9) (ϕs, θ
∗
λ) = PW0

(q−1)−1
∑

w∈W0

c(ws, q)ws(θλ)

for λ ∈ P∨
+ , s ∈ T regular for W0, and ϕs short for ϕπs . In case q > 1

the spherical Plancherel measure ν+
P has also been determined by Macdonald

[Mac2, Theorem 5.1.2] in the form

(2.10) dν+
P (s, q) =

q−Nds

|W0|c(s, q)c(s−1, q)

with N = #R+ and ds the normalized Haar measure on the compact form Tc

of T . The difference by a factor PW0
(q) between [Mac2, Theorem 5.1.2] and

(2.10) comes from a different normalization of Haar measure. Substituting

ψ = θ∗λ in (2.8) and using (2.9) and (2.10) yields (still for q > 1)

(ϕ, θ∗λ) =

∫

Tc

ϕ̂(s)(ϕs, θ
∗
λ)dν+

P (s, q)

= PW0
(q)−1

∫

Tc

ϕ̂(s)s(θλ)
ds

c(s−1, q)

for λ ∈ P∨
+ and ϕ̂(s) = ϕ̂(πs). The integrand is meromorphic on T with

simple poles along submanifolds of the form {t ∈ T ; t(θα∨) = q} for α ∈ R+.

Therefore the contour of integration Tc can be shifted in the direction of the

negative chamber

(2.11) (ϕ, θ∗λ) = PW0
(q)−1

∫

s0Tc

ϕ̂(s)s(θλ)
ds

c(s−1, q)
,
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or more precisely as long as s0 ∈ Tv = {t ∈ T ; t(θλ) > 0 ∀λ ∈ P∨} satisfies

(2.12) s0(θα∨) < q for all α ∈ R+.

Since both sides of (2.11) are analytic in q formula (2.11) therefore remains

valid for all q > 0 as long as s0 satisfies (2.12). In order to give (2.11) an

L2-interpretation for 0 < q < 1 the contour s0Tc should be shifted back at the

cost of picking up residues. Grouping residues together according to orbits of

W0 enables one to compare the residue contributions in (2.11) with the ones

obtained by a contour shift in the integral

(2.13)

∫

s0Tc

ϕ̂(s)(ϕs, θ
∗
λ)dν+

P (s, q).

The term ϕ̂(s)(ϕs, θ
∗
λ) is holomorphic as function of s on all of T , and therefore

the residues all come from the poles in the spherical Plancherel measure (2.10).

A connected algebraic subgroup of T is called a subtorus, and we will use

the phrase “affine subtorus” (by analogy with the concept affine subspace of a

vector space) for any subvariety S of T for which s−1S (s ∈ S) is a subtorus

of T .

definition 2.1. If for S ⊂ T an affine subtorus we write

z(S) = #{α ∈ R; s(θα∨) = 1 ∀s ∈ S}(2.14)

p(S) = #{α ∈ R; s(θα∨) = q ∀s ∈ S}(2.15)

for the number of zeros and poles along S in the analytic continuation of the

spherical Plancherel measure (2.10 ) then S is called residual if

(2.16) p(S) ≥ z(S) + codim(S).

theorem 2.2. For S a residual affine subtorus of T one always has the

equality

(2.17) p(S) = z(S) + codim(S).

The proof of this theorem reduces immediately to the case that the affine

subtorus S is just a point of T . Moreover one can classify the finite list of

residual points of T for each root system case by case, and thereby verify

(2.17) by inspection of the list. However the deeper reason for (2.17) is that it

explains why under the contour shift in (2.13) measures are picked up rather

than just distributions (as should in accordance with the abstract Plancherel

theorem).

theorem 2.3. For S ⊂ T a residual affine subtorus let

(2.18) Sc = {s ∈ S; distance from s to Tc is minimal}.
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Here the distance is taken with respect to a translation invariant metric on T ,

which is also invariant under W0. Then Sc is a compact real form of S, and

let µS denote the normalized invariant measure on Sc. For 0 < q < 1 the

spherical Plancherel measure dν+
P (s, q) is the measure on T given by

(2.19) dν+
P (s, q) =

∑

S

cSq
−N Π′|1− s(θα∨)|

Π′|1− q−1s(θα∨)|
dµS(s)

with the sum over all residual affine subtori S of T . Here cS is a nonnegative

rational number with cwS = cS for w ∈ W0, and Π′ denotes the product over

all nonzero factors.

Remark 2.4. Note that R>0 acts on T = TvTc by homotheties in Tv.

The dependence of a residual affine subtorus S of T on q is simply a scale

factor. The rationality of cS therefore implies that cS is independent of q ∈
(0, 1). All complications of the residue calculation are captured in the rational

constants cS . The actual computation of cS can be difficult with complexity

being exponential in z(S). For z(S) = 0 it is easy and for z(S) = 2 it is

manageable. By our method it is equally hard to decide whether cS > 0

or cS = 0, and therefore to conclude whether Sc really lies in the tempered

spherical spectrum or not. However in the next section we will show using the

work of Kazhdan and Lusztig [KL] that in fact

(2.20) cS > 0

for each residual affine subtorus S of T .

Remark 2.5. For reasons of minimizing technicalities we have restricted

ourselves to Hecke algebras H(W, q) with a single parameter q. However one

can relax the quadratic relation (1.12) by requiring

(2.21) (Ti + 1)(Ti − q
ki) = 0

instead. Here ki are natural numbers satisfying ki = kj if si and sj are con-

jugated inside W . These multilabel Hecke algebras H(W, qk) are important

for the representation theory of reductive groups over a p-adic field. Virtually

without change the results of this section go through for these Hecke algebras

H(W, qk). However in case of multilabel Hecke algebras it may happen in

contrast with (2.20) that for 0 < q < 1 and some k = (ki)

(2.22) cS = 0

for some residual affine subtori S of T [HO1, Proposition 4.16 or Table 4.18].

Remark 2.6. It is quite likely that the method discussed in this section

can be extended (by working with arbitrary matrix coefficients rather than just

spherical ones) to recover the full Plancherel formula in more explicit terms.
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An additional complication in comparison with the spherical case is that the

residue contributions need no longer be single irreducible representations but

finite collections (called packets) of these. All members of the same tempered

packet should differ in Plancherel measure only by numbers independent of q.

Remark 2.7. The idea of picking up discrete spectrum from a residue cal-

culation in the analytic continuation of the spectral measure of the continuous

spectrum is familiar, and can be traced back to H. Weyl [We] in his treat-

ment of the spectral problem for the hypergeometric function. It has been

used by Selberg [Se] to find residual discrete spectrum in the meromorphic

continuation of Eisenstein series. In several variables this method was used by

Macdonald [Mac2, Section 5.2] and Matsumoto [Mat] in particular cases, and

in full generality by Langlands [La] in the context of automorphic forms. A

detailed exposition of this work of Langlands has been given by Moeglin and

Waldspurger [MW].

3. The classification of Kazhdan and Lusztig

The classification of the irreducible representations of the unilabel ex-

tended affine Hecke algebras H(W, q) is quite well understood from the work

of Kazhdan and Lusztig [KL]. The complex torus

(3.1) T = Hom(P∨,C×)

parametrizing principal series representations (1.25) of H can be viewed as

a maximal torus in the connected simply connected almost simple complex

group G with root system R∨. The group G is the dual group in the sense of

Langlands whose geometry of conjugacy classes ties up with the representation

theory of the Hecke algebra H.

The set H⊓ of equivalence classes of irreducible representations of H is

partitioned into finite packets Π(s, u) indexed by conjugacy classes of pairs

(s, u) with s ∈ G semisimple, u ∈ G unipotent and satisfying the relation

(3.2) sus−1 = uq.

All members of the packet Π(s, u) have the same central character s, and

therefore are all subquotients of the principal series with spectral parameter s.

Let

A(s, u) = Z(s, u)/Z(s, u)0

be the component group of the simultaneous centralizer of s and u in G, and

let B(s, u) be the variety of Borel subgroups of G containing both s and u.

Now the members of the packet Π(s, u) are parametrized by the irreducible
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representations ρ ∈ A(s, u)∧ which occur in the homology of the variety B(s, u).

The set of these ρ ∈ A(s, u)∧ will be denoted by A(s, u)∧geom. Denote by

(3.3) π(s, u, ρ) ∈ Π(s, u)

the irreducible representation of H corresponding to ρ ∈ A(s, u)∧geom. It can

happen that A(s, u)∧geom is strictly smaller than A(s, u)∧.However A(s, u)∧geom
is never empty since the trivial representation ρ = 1 always does occur in

A(s, u)∧geom. This is the classification of H⊓ as obtained by Kazhdan and

Lusztig [KL]. The parametrization of the packets by pairs (s, u) as above is

a special case of more general conjectures by Deligne and Langlands. The

parametrization of the packet Π(s, u) by A(s, u)∧geom resembles the Springer

classification of Weyl group representations [Sp].

Let T (s, u) be a maximal torus of the reductive group Z(s, u), and choose

the maximal torus T of G such that both s and T (s, u) lie in T . It follows

from the classification of unipotent classes by Bala and Carter [Ca, Ch 5] that

(3.4) S = sT (s, u)

is a residual affine subtorus of T in the sense of Definition 2.1. Moreover the

map

(3.5) (s, u) 7→ (s, S)

is a bijection between pairs (s, u) with s, u ∈ G semisimple and unipotent

respectively satisfying (3.2) upto conjugation and pairs (s, S) with s ∈ S and

S ⊂ T a residual affine subtorus upto action of W0. Therefore we can write

Π(s, S), A(s, S), . . . instead of Π(s, u), A(s, u), . . . . The following result is due

to Kazhdan and Lusztig [KL, Theorem 8.3] and (for the last statement to)

Lusztig [Lu5, Proposition 9.1].

theorem 3.1. Suppose q > 1. The representation π(s, S, ρ) ∈ Π(s, S)

for ρ ∈ A(s, S)∧geom is square integrable if and only if all members of Π(s, S)

are square integrable, and this happens precisely in case S = {s} is a residual

point. Moreover in this case the representation

(3.6) π(s, S = {s}, ρ = 1)

is the unique antispherical representation of H with central character s.

Here π ∈ H⊓ is called antispherical if [π|H0
: sign] = 1 with sign : H0 → C,

sign(Tw) = (−1)l(w). The next conjecture is in accordance with the general

Langlands philosophy about formation of L-packets, and goes back in this

precise form to Reeder [Re1, Conjecture 7.2].

Conjecture 3.2. Suppose q > 1, and let S = {s} be a residual point

of T . The formal degree (or Plancherel measure) of the square integrable
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representation π(s, s, ρ) ∈ Π(s, s) is given by

(3.7) f deg(π(s, s, ρ)) = dim(ρ)f deg(π(s, s, 1)).

In particular all members of a square integrable packet differ in formal

degree only by absolute (i.e. independent of q) constants. Of course this

supports the hope expressed in Remark 2.6.

The map Ti 7→ −q
−1Ti extends to a unique isomorphism

(3.8) H(W, q)
∼=
−→H(W, q−1)

preserving the adjoint and the canonical trace τ . On the level of representations

this gives a bijection

(3.9) H(W, q)∧antisph ←→H(W, q−1)∧sph

preserving canonical Plancherel measures. If ν−P denotes the restriction of the

Plancherel measure νP on H(W, q)∧ to the antispherical unitary dual H(W,

q)∧antisph then we get

(3.10) dν−P (s, q) = dν+
P (s, q−1).

Using (2.19) we can compute (3.10) for q > 1 upto absolute constants, and

thereby get an explicit formula for the right hand side of (3.7) upto absolute

constants.

Remark 3.3. The classification of Kazhdan and Lusztig breaks down for

multilabel extended affine Hecke algebras, whereas the method of Section 2

essentially should go through as mentioned in Remarks 2.5 and 2.6. It suggests

that packets ought to be parametrized by pairs (s, S) upto action of W0 with

s ∈ S and S a residual affine subtorus of T (once this notion is properly defined

in the multilabel context [HO1,2]). However the actual parametrization of a

packet in geometric terms remains unclear in the multilabel context.

4. Affine Hecke algebras as intertwining algebras

In this section we will explain the role of affine Hecke algebras for the

representation theory of reductive groups over a p-adic field. These results are

due to Lusztig [Lu6] and Morris [Mo] generalizing earlier work of Iwahori and

Matsumoto [IM] and Howlett and Lehrer [HL].

Let G be a tame separable locally compact unimodular group with Haar

measure µG . Let G∧ denote the unitary dual of G, and let L(G) be the vector

space of continuous complex valued functions on G with compact support. For
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ρ ∈ G∧ with representation space Vρ the Fourier transform ρ(ϕ) of ϕ ∈ L(G)

is defined by

(4.1) ρ(ϕ) =

∫

G

ϕ(x)ρ(x)dµG(x).

It turns out that ρ(ϕ) is of trace class, and the Plancherel formula [Di] gives

the existence of a unique nonnegative measure µP on G∧ such that

(4.2) ϕ(e) =

∫

G∧

TrVρ(ρ(ϕ))dµP (ρ) ∀ϕ ∈ L(G).

Suppose K < G is a compact open subgroup and let σ ∈ K∧ with representa-

tion Hilbert space Vσ.

definition 4.1. The Hecke algebra H(σ) = H(G,K, σ) is the space

H(σ) = {ϕ ∈ L(G)⊗End(Vσ);ϕ(k1xk2) = σ(k1)ϕ(x)σ(k2)∀x ∈ G,∀k1, k2 ∈ K}

viewed as an associative algebra under convolution by

(4.3) ϕ ∗ ψ(x) =

∫

G

ϕ(xy−1)ψ(y)dµG(y) for ϕ,ψ ∈ H(σ).

We suppress the notation ∗ for convolution and simply write ϕψ = ϕ ∗ψ. The

adjoint of ϕ ∈ H(σ) is defined by ϕ∗(x) = ϕ(x−1)∗ with the second ∗ the usual

adjoint on End(Vσ). The hermitian inner product on H(σ) is defined by

(4.4) (ϕ,ψ) = TrVσ(ϕψ∗(e)) for ϕ,ψ ∈H(σ).

Note that the unit element Te of H(σ) is given by

(4.5) Te(x) =

{
vol(K)−1σ(x) if x ∈ K

0 if x ∈ G\K.

The induced representation IndG
K(σ) is defined on the vector space

(4.6) {ψ ∈ L(G) ⊗ Vσ;ψ(kx) = σ(k)ψ(x)∀x ∈ G,∀k ∈ K}.

Clearly H(σ) acts on (4.6) by left multiplication and G acts by right mul-

tiplication. Moreover these two actions commute and in fact are mutually

centralizing. In turn this yields on the algebraic level a bijection

(4.7) G(σ)⊓ ∋ ρ←→ π ∈ H(σ)⊓

between

(4.8)
G(σ)⊓ = {equivalence classes of admissible

irreducible representations ρ of G with [ρ|K : σ] ≥ 1}
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and

(4.9)
H(σ)⊓ = {equivalence classes of finite

dimensional irreducible representations of H(σ)}.

On the analytic level the bijection (4.7) restricts after completion to a

bijection

(4.10) G(σ)∧temp ∋ ρ←→ π ∈ H(σ)∧temp

for the corresponding tempered (or restricted) unitary duals.

Moreover the Plancherel measures are preserved by this correspondence in the

sense that

(4.11) dµP (ρ) = dµP (π).

Here by abuse of notation µP also denotes the Plancherel measure for H(σ).

It is the unique nonnegative measure on H(σ)∧ such that

(4.12) TrVσ(ϕ(e)) =

∫

H(σ)∧
TrVπ (π(ϕ))dµP (π) ∀ϕ ∈ H(σ).

Now the strategy of understanding the restriction of the Plancherel mea-

sure for G to G(σ)∧ from the Plancherel measure for H(σ) instead is only

successful if the Hecke algebra H(σ) allows an alternative description in more

elementary terms. The following situation illustrates in a nice way the power

of such an approach.

Let F be a nonarchimedean local field with finite residue field Fq. Let G
be the group of F -rational points of a simple algebraic group defined over F .

Suppose P is a parahoric subgroup of G with prounipotent radical U . Then

the quotient M of P by U is the group of Fq-rational points of a reductive

algebraic group defined over Fq. Suppose σ is the inflation from M to P of a

cuspidal unipotent representation of M . The following result is due to Lusztig

[Lu6] and Morris [Mo].

theorem 4.2. With the above notations we have an isomorphism of as-

sociative algebras

(4.13) H(G, P, σ) ∼= H(W, qk)

with H(W, qk) the (possibly multilabel, possible extended) affine Hecke algebra

associated with a root system R.

The rank n of the root system R is equal to the difference of the split

ranks of G and M . The group W is called the relative extended affine Weyl

group of the pair (G, P ). For the explicit determination of the relative root

system R and the labels k = (ki) from the pair (G, P ) we refer to [Mo] and

[Lu4].
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Remark 4.3. Taking adjoints is preserved under the isomorphism (4.13).

However the hermitian inner products (4.4) of H(G, P, σ) and (2.3) on H(W, qk)

need not coincide. Indeed from (4.5) we get

(Te, Te) = vol(P )−1 dim(σ) = f deg(σ)

in H(G, P, σ) while

(Te, Te) = 1

for the canonical hermitian inner product on H(W, qk). In turn this implies

(4.14) µP = f deg(σ)νP

with µP the Plancherel measure for H(G, P, σ) and νP the canonical Plancherel

measure for H(W, qk).

5. Formation of L-packets of square integrable

unipotent representations

Let G be the group of F -rational points of a simple algebraic group defined

over the nonarchimedean local field F . LetK be a good maximal compact open

subgroup of G, and we normalize the Haar measure µG on G by vol(K) = 1.

The following definition is due to Lusztig [Lu1].

definition 5.1. An irreducible admissible representation ρ of G is called

unipotent if there is a parahoric subgroup P of G and a unipotent cuspidal

representation σ of P (or more precisely the inflation from M to P of such

a representation with M the reductive quotient of P over Fq) such that [ρ|P :

σ] ≥ 1.

In particular the unipotent unitary dual G∧unip of G is given by

(5.1) G∧unip =
⋃

(P,σ)

G(σ)∧

with P a parahoric subgroup of G, σ a unipotent cuspidal representation of

P and the union taken over pairs (P, σ) upto conjugation. Restriction to the

discrete series representations yields

(5.2) G∧unip,ds =
⋃

(P,σ)

G(σ)∧ds

The next corollary is immediate from (4.14) keeping in mind the normalization

of Haar measure on G.

corollary 5.2. Combination of (4.10 ) and (4.13 ) yields a bijection

(5.3) G(σ)∧ds ∋ ρ←→ π ∈ H(W, qk)∧ds
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and the relation between the formal degrees becomes

(5.4) f deg(ρ) = PWK
(q)PWP

(q)−1 dim(σ)f deg(π)

with PWK
and PWP

the Poincaré polynomials of the Weyl groups associated

with K and P respectively. Moreover f deg(π) is the canonical formal degree

of π as introduced in Section 2.

It follows from Theorem 3.1 that for q > 1 the collection

(5.5) H(W, q)∧antisph,ds

is parametrized by the set of residual points in T upto action of W0. Moreover

it follows from (2.19) and (3.10) how to compute their canonical formal degrees

(at least upto absolute constants).

Conjecture 5.3. For multilabel extended affine Hecke algebras H(W, qk)

the collection

(5.6) H(W, qk)∧ds

is partitioned into nonempty packets Π(s, s) which are parametrized by residual

points s ∈ T upto the action of W0. The parameter s is the common central

character of all representations in Π(s, s). Moreover all members of the packet

Π(s, s) have canonical formal degrees which only differ by absolute constants

and which are given by (the analogous expression for multilabel Hecke algebras

of) the term on the right hand side of (2.19) for S = {s} the residual point of

T .

This conjecture essentially sums up what was said before in Remarks 2.5 and

2.6. As stated there the technique of Section 2 of a contour shift and a residue

computation should suffice for the proof.

Assuming the validity of this conjecture we can now discuss the formation

of L-packets of square integrable unipotent representations of G. Two square

integrable unipotent representations of G should lie in the same L-packet if

their formal degrees only differ by absolute constants. This is the strategy as

proposed by Reeder [Re1]. We have checked that this formation of square

integrable unipotent L-packets for all exceptional groups coincides with the

classification of unipotent representations of G as obtained by Lusztig [Lu4].

In the next section we will discuss the example that G is of type E8.

Remark 5.4. Let U be the prounipotent radical of the good maximal

compact open subgroup K of G. One might expect that everything said so far

for unipotent representations of G can be generalized for U -spherical represen-

tations of G as well. Indeed in this more general context the results of Morris

[Mo] remain valid, and therefore the computation of formal degrees of square
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integrable U -spherical representation of G can be transferred to corresponding

questions about representation theory of affine Hecke algebras.

6. The example E8

In this final section we discuss the example that the group G is split

of type E8. There are upto conjugation 5 parahoric subgroups P of G for

which the associated reductive quotient M over Fq has a unipotent cuspidal

representation σ. The pairs (P, σ) are given in Table 6.1. The unipotent

cuspidal representations were classified by Lusztig [Lu2]. Throughout this

section we will use his notation and results as presented in [Ca].

The packets Π(s, u) of square integrable representations of the Hecke al-

gebra H(W (Ẽ8), q) are parametrized by residual points s ∈ T upto action of

W0. Write s in polar decomposition

s = svsc

with sv ∈ Tv and sc ∈ Tc. Now s is residual if an only if

R(sc) = {α ∈ R; sc(θα∨) = 1} ⊂ R(E8)

is a root subsystem of rank 8, and sv is residual with respect to R(sc). The

possible sv upto action of W0(sc) = {w ∈W0;w(sc) = sc} are in bijection with

the distinguished unipotent classes in the group Z(sc) = {g ∈ G; gsc = scg}. In

Table 6.2 we have listed the 31 possibilities by the pairs (R(sc),m) with m an

index for the distinguished unipotent class in Z(sc) (ordered such that z(s) in

(2.14) increases with m, cf [Ca, p.174-177]). In this table we have also given the

formal degrees of the corresponding representations. The multiplication of the

canonical formal degree by PW (E8)(q) is in accordance with (5.4). The actual

calculations were performed using maple. These square integrable packets are

sometimes called generalized special. The Steinberg representation is one of

them and corresponds to (E8, 1).

On the other extreme unipotent cuspidal representations of the group

G(E8,Fq) lifted to K and induced upto G yield irreducible supercuspidal rep-

resentations of G. Their formal degree equals the dimension of the original

unipotent cuspidal representation σ that one starts with. Comparison of [Ca,

p.488] with Table 6.2 forces to which of the 31 generalized special packets

these supercuspidal representations should be attached. Likewise for the in-

termediate cases with (P, σ) of type D4, E6 or E7 the matching of formal

degrees based on (5.4) forces how the various packets should be linked. The

outcome has been tabulated in Table 6.3. The L-packets of unipotent square

integrable representations of G are obtained by grouping packets in horizontal

lines together.
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The fact that a generalized special packet Π(s, u) does not fill up its L-

packet is connected with the fact that

A(s, u)∧geom $ A(s, u)∧.

For example for (Ẽ8, E8, 11) we have A(s, u) ∼= S5 and A(s, u)∧\A(s, u)∧geom =

{sign}. The additional supercuspidal representation accounts for the mis-

sing sign representation. It is expected that the full L-packet should be

parametrized by A(s, u)∧.

Table 6.1. Relative root systems

WP σ relative affine root system with labels

E8[ζ
i], E8[θ

j], E8[−θ
j],

E8[±i], E8[−1], EI
8 [1], EII

8 [1]

E7[±ξ]

E6[θ
j]

D4

triv

E8

E7

E6

D4

∅

∅

• •
q q15∞

q q q9

• • •>

q q q q4 q4

• • • • •>

q q q q q q q q

q

• • • • • • • •

•
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Table 6.2. Formal degrees (up to rational constants) for H(W (Ẽ8), q)

s PW (E8)(q)f deg(πs)

A8 q8 Φ8
1Φ

8
2Φ

4
4Φ

2
5Φ7Φ

2
8Φ

2
9Φ

2
10Φ14Φ18Φ20Φ27

E8, 1 Φ8
1Φ7Φ11Φ13Φ17Φ19Φ23Φ29

E8, 2 q Φ8
1Φ

2
7Φ9Φ11Φ13Φ14Φ17Φ19Φ23Φ30

E8, 3 q2 Φ8
1Φ

2
7Φ

2
8Φ

2
11Φ13Φ14Φ17Φ19Φ24Φ30

E8, 4 q3 Φ8
1Φ

4
4Φ7Φ

2
8Φ9Φ11Φ12Φ

2
13Φ17Φ20Φ24Φ30

E8, 5 q4 Φ8
1Φ

4
7Φ

2
9Φ

2
11Φ13Φ14Φ18Φ20Φ24Φ30

E8, 6 q5 Φ8
1Φ

5
5Φ7Φ

2
8Φ

2
10Φ11Φ13Φ15Φ18Φ20Φ24Φ30

E8, 7 q6 Φ8
1Φ

5
5Φ

2
7Φ9Φ

2
10Φ11Φ14Φ15Φ18Φ20Φ24Φ30

E8, 8 q7 Φ8
1Φ

4
4Φ

4
7Φ

2
8Φ11Φ12Φ14Φ15Φ18Φ20Φ24Φ30

E8, 9 q8 Φ8
1Φ

9
3Φ

4
6Φ7Φ

2
9Φ

2
12Φ14Φ15Φ18Φ20Φ24Φ30

E8, 10 q10 Φ8
1Φ

5
5Φ

2
7Φ

2
10Φ

2
12Φ14Φ15Φ18Φ20Φ24Φ30

E8, 11 q16 Φ8
1Φ7Φ

2
8Φ9Φ

2
10Φ

2
12Φ14Φ15Φ18Φ20Φ24Φ30

A1E7, 1 q3 Φ8
1Φ

2
3Φ

2
5Φ7Φ

2
8Φ9Φ11Φ13Φ15Φ16Φ17Φ24Φ26

A1E7, 2 q5 Φ8
1Φ

2
3Φ

4
4Φ

3
5Φ7Φ9Φ

2
10Φ11Φ12Φ13Φ15Φ

2
20Φ30

A1E7, 3 q7 Φ8
1Φ

2
3Φ

2
5Φ

3
7Φ

2
8Φ9Φ11Φ

2
14Φ15Φ16Φ24Φ30

A1E7, 4 q9 Φ8
1Φ

2
3Φ

3
5Φ

3
7Φ

2
8Φ9Φ

2
10Φ14Φ15Φ20Φ24Φ30

A1E7, 5 q13 Φ8
1Φ

2
3Φ

4
5Φ7Φ

2
8Φ9Φ

2
10Φ15Φ18Φ20Φ24Φ30

A1E7, 6 q16 Φ8
1Φ

2
3Φ

4
4Φ

2
5Φ7Φ9Φ12Φ14Φ15Φ18Φ20Φ24Φ30

A2E6, 1 q7 Φ8
1Φ

6
2Φ

4
4Φ

2
5Φ

2
7Φ

2
8Φ

2
10Φ11Φ12Φ14Φ20Φ21Φ24

A2E6, 2 q10 Φ8
1Φ

6
2Φ

4
4Φ

3
5Φ

2
7Φ

2
8Φ

2
10Φ14Φ

2
15Φ20Φ30

A2E6, 3 q16 Φ8
1Φ

6
2Φ

4
4Φ

2
5Φ7Φ

2
8Φ9Φ

2
10Φ14Φ20Φ24Φ30

A3D5, 1 q12 Φ8
1Φ

4
3Φ

4
4Φ

2
5Φ

2
7Φ

2
8Φ9Φ

2
12Φ14Φ15Φ20Φ24

A3D5, 2 q16 Φ8
1Φ

8
2Φ

4
3Φ

2
5Φ

4
6Φ7Φ9Φ

2
10Φ14Φ15Φ18Φ30

A4A4 q16 Φ8
1Φ

8
2Φ

4
3Φ

4
4Φ

4
6Φ7Φ

2
8Φ9Φ

2
12Φ14Φ18Φ24

A1A2A5 q16 Φ8
1Φ

6
2Φ

2
3Φ

4
4Φ

2
5Φ7Φ

2
8Φ9Φ

2
10Φ12Φ14Φ15Φ20

A1A7 q11 Φ8
1Φ

4
3Φ

5
4Φ

2
5Φ7Φ

3
8Φ9Φ

2
12Φ15Φ16Φ20Φ24

D8, 1 q4 Φ8
1Φ

4
3Φ

2
5Φ

2
7Φ

2
9Φ11Φ13Φ14Φ15Φ18Φ22Φ28

D8, 2 q6 Φ8
1Φ

4
3Φ

3
5Φ

2
7Φ

2
9Φ

2
10Φ11Φ14Φ15Φ

2
20Φ30

D8, 3 q8 Φ8
1Φ

7
3Φ

2
5Φ

4
6Φ

2
7Φ

2
9Φ

3
12Φ15Φ18Φ24Φ30

D8, 4 q10 Φ8
1Φ

4
3Φ

4
5Φ

2
7Φ9Φ

3
10Φ14Φ15Φ20Φ24Φ30

D8, 5 q16 Φ8
1Φ

4
3Φ

2
5Φ7Φ

2
8Φ9Φ14Φ15Φ18Φ20Φ24Φ30
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Table 6.3. Formation of L-packets

WP = ∅ WP = W (D4) WP = W (E6) WP = W (E7) WP = W (E8)

(Ẽ8, A8) (G̃2, A2)

(Ẽ8, E8, 1)

2
...

10

11 (∅, EII
8 [1])

(Ẽ8, A1E7, 1) (F̃4, F4, 1)

2 2
...

...

5 5

6 6 (∅, E8[−1])

(Ẽ8, A2E6, 1) (G̃2, G2, 1)

2 2

3 3 (∅, E8[θ
j])

(Ẽ8, A3D5, 1) (F̃4, A1B3, 1) (Ã1, A1)

2 2 (∅, E8[±i])

(Ẽ8, A4A4) (∅, E8[ζ
i])

(Ẽ8, A1A2A5) (F̃4, A2A2) (G̃2, A1A1) (∅, E8[−θ
j])

(Ẽ8, A1A7) (F̃4, A1A3) (Ã1, A1)

(Ẽ8,D8, 1) (F̃4, B4, 1)

2 2

3 3

4 4

5 5 (∅, EI
8 [1])
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[Mo] L. Morris, Tamely ramified intertwining algebras, Invent. Math. 114 (1993), 1-54.
[Re1] M. Reeder, On the Iwahori spherical discrete series for p-adic Chevalley groups,

formal degrees and L-packets, Ann. scient. ENS 27 (1994), 463-491.
[Se] A. Selberg, Discontinuous groups and harmonic analysis, Proc. ICM Stockholm

(1962), 177-189.
[Sp] T.A. Springer, A construction of representations of Weyl groups, Invent. Math. 44

(1978), 279-293.
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und ihre Eigenfunktionen (2. Note), Göttinger Nachrichten (1910), 442-467.


