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Introduction

In 1996, the Nobel Prize for Chemistry was awarded to Curl, Kroto and Smalley for their
discovery of Buckminsterfullerene. Buckminsterfullerenes, denoted C60, or simply “buckyballs”
are molecules consisting of 60 carbon atoms arranged in a highly symmetrical structure, similar
to that of a soccer ball. In more technical terms, the carbon atoms are located at the vertices
of a truncated icosahedron. The molecules are named after architect Buckminster Fuller known
for his geodesic domes. Buckyballs are made when gaseous carbon mixed with helium gas is
sent into a vacuum and the mixture is exposed to a high energy, high temperature carbon arc.

From a mathematical point of view, buckyballs are interesting because of their high symme-
try (their symmetry group is Ih ∼= A5×C2). A well-known application of group theory in physics
is the study of small vibrations of molecules. These vibrations can be studied experimentally
by means of spectroscopy. Group theory yields a classification of the eigenfrequencies and the
corresponding eigenmodes. Furthermore, it is a powerful tool for the explicit calculation of
these frequencies and modes. Especially if the symmetry of the molecules is high (which is the
case for C60) the techniques from group theory appear to full advantage.

In this thesis, we will explicitly calculate the eigenfrequencies for harmonic approximations
of the potential energy of C60 in the neighbourhood of an equilibrium configuration. Group
theory in combination with computer algebra will be used to postpone numerical calculations
as much as possible, i.e. we try to get as far as possible with exact, analytical computations.
Only in the final stage we have to resort to numerical techniques for diagonalizing matrices of
size 8× 8 at most (without the use of group theory, one would need to diagonalize a 180× 180
matrix). In this way, after a change of the parameters in the potential energy model it is not
necessary to do the whole calculation all over again. This makes fitting of the model parameters
against the experimental data a more efficient process and is an improvement over what has
been done before by e.g. Weeks and Harter [4].

In the first chapter, the necessary techniques from group theory will be discussed and ex-
plained. The reader is assumed to have elementary knowledge of group and representation
theory. The emphasis is on down-to-earth explicit formulations that can be used directly on a
computer algebra system, in contrast to more abstract and elegant basis-independent formula-
tions.

The second chapter gives a treatment of the general theory of small oscillations of classical
conservative many-particle systems. A basic knowledge of classical mechanics is helpful in
reading this chapter. Further, a discussion of the group-theoretical classification of vibration
modes of molecules is presented and the selection rules for spectroscopy are mentioned.

The third and last chapter concerns the application to Buckminsterfullerene. The symmetry
group is analyzed, models for the potential energy are proposed and the parameters of these
models are fit against the experimental data for the optically active modes. The results are
discussed and compared with literature.
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Chapter 1

Elements of Group Theory

The techniques described in this chapter are not new, see e.g. [Mil] and [Cor]. In contrast to the
references however, the formulation presented here makes no assumptions about unitarity of the
matrix representations. This will turn out to be an advantage later on because normalization
of high-dimensional vectors—which would lead to rather complicated expressions involving lots
of square roots, drastically slowing down the symbolic computations—will be superfluous.

1.1 Projection operators

For completeness we state two theorems that should already be known to the reader. For proofs,
see e.g. [Mil, pp. 69–70].

Theorem 1.1.1. Let T : G → GL(V ), S : G → GL(W ) be irreducible representations of a
finite group G on finite-dimensional vector spaces V,W , respectively and let A be an intertwiner
for T and S, i.e. a linear transformation V →W such that

S(g)A = AT (g) for all g ∈ G.

Then either A is zero or A is invertible, in which case T and S are equivalent representations.

Theorem 1.1.2 (Schur’s Lemma). Let T : G → GL(V ) be a representation of the group
G on the finite-dimensional complex vector space V . Then T is irreducible if and only if the
only intertwiners for T with itself are of the form A = λ1V with λ ∈ C and 1V the identity
transformation on V .

A useful consequence of these theorems is:

Theorem 1.1.3 (Orthogonality relations for matrix representations). Let T be an ir-
reducible dT -dimensional complex-valued matrix representation of a finite group G of order
#(G). Then:

1
#(G)

∑
g∈G

Tkl(g)Tmn(g−1) =
1
dT
δlmδkn (1.1)

for 1 ≤ k, l,m, n ≤ dT . If S is another irreducible dS-dimensional matrix representation of G
which is inequivalent to T , then:

1
#(G)

∑
g∈G

Tkl(g)Smn(g−1) = 0 (1.2)

for 1 ≤ k, l ≤ dT and 1 ≤ m,n ≤ dS.
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Proof. Let S, T be two irreducible matrix representations of G. Take 1 ≤ l ≤ dT and 1 ≤ m ≤
dS . Let elm be the dT × dS matrix defined by (elm)ij := δilδjm. Then the matrix

Alm :=
1

#(G)

∑
g∈G

T (g)elmS(g−1)

is an intertwiner for T and S, i.e. T (h)Alm = AlmS(h) for all h ∈ G. Indeed:

T (h)Alm =
1

#(G)

∑
g∈G

T (h)T (g)elmS(g−1) =
1

#(G)

∑
g∈G

T (hg)elmS
(
(hg)−1

)
S(h) = AlmS(h).

Now assuming that T � S, Theorem 1.1.1 implies that Alm = 0, hence

1
#(G)

∑
g∈G

Tkl(g)Smn(g−1) = 0

for all 1 ≤ k ≤ dT , 1 ≤ n ≤ dS .
Alternatively, taking S = T and applying Schur’s lemma 1.1.2 implies that Alm = λ1dT for

some λ ∈ C. Hence for all 1 ≤ k ≤ dT , 1 ≤ n ≤ dS :

1
#(G)

∑
g∈G

Tkl(g)Tmn(g−1) = λδkn.

To evaluate λ, take k = n and sum over k to obtain:

dTλ =
dT∑
k=1

1
#(G)

∑
g∈G

T (g)klT (g−1)mk =
1

#(G)

∑
g∈G

T (e)ml = δml

hence λ = δmld
−1
T .

In the rest of this chapter, G will be a finite group. T will be a fixed representation (not
necessarily unitary) of G on a finite-dimensional complex vector space V . We will choose a set
I(G) of representatives for the similarity classes of irreducible representations of G. Further we
will suppose all representations to be on complex vector spaces.

Definition 1.1.4. Let π be a matrix representation of G of dimension dπ. For m,n = 1, . . . , dπ,
define the following linear operators on V :

Pπm,n :=
dπ

#(G)

∑
g∈G

πn,m(g−1)T (g). (1.3)

These operators have the following properties:

Theorem 1.1.5. Let π and ρ be matrix representations of G of dimensions dπ and dρ, respec-
tively. Then:

1. For 1 ≤ m,n ≤ dπ and all g ∈ G:

T (g)Pπm,n =
dπ∑
j=1

πj,m(g)Pπj,n, (1.4)

i.e. for each n, the operators Pπ1,n, . . .Pπdπ ,n transform under T as if they were basis vectors
for the representation π.
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2. If π and ρ are both irreducible and furthermore π ∼= ρ =⇒ π = ρ, then for 1 ≤ m,n ≤ dπ
and 1 ≤ k, l ≤ dρ:

Pπk,lPρm,n = δπρδlmPρk,n. (1.5)

3. Suppose that π and ρ are both irreducible and furthermore that π ∼= ρ =⇒ π = ρ. Suppose
that w1, . . . , wdρ ∈ V transform under T as basis vectors for ρ, i.e.

T (g)wk =
dρ∑
l=1

ρlk(g)wl for all g ∈ G and k = 1, . . . , dρ.

Then, for all 1 ≤ m,n ≤ dπ and all 1 ≤ k ≤ dρ:

Pπm,nwk = δπρδnkwm

Proof. 1. This is trivial:

T (g)Pπm,n =
dπ

#(G)

∑
h∈G

πn,m(h−1)T (gh) =
dπ

#(G)

∑
h∈G

dπ∑
j=1

πn,j(h−1g−1)πj,m(g)T (gh)

=
dπ∑
j=1

πj,m(g)
dπ

#(G)

∑
h∈G

πn,j
(
(gh)−1

)
T (gh) =

dπ∑
j=1

πj,m(g)Pπj,n.

2. Using 1. and the orthogonality relations (Theorem 1.1.3):

Pπk,lPρm,n =
dπ

#(G)

∑
g∈G

πl,k(g−1)T (g)Pρm,n =
dπ

#(G)

∑
g∈G

πl,k(g−1)
dρ∑
j=1

ρj,m(g)Pρj,n

=
dρ∑
j=1

δπ,ρδl,mδk,jPρj,n = δπ,ρδl,mPρk,n.

3. This is a direct consequence of the orthogonality relations:

Pπm,nwk =
dπ

#(G)

∑
g∈G

πn,m(g−1)T (g)wk =
dπ

#(G)

∑
g∈G

πn,m(g−1)
dρ∑
l=1

ρlk(g)wl

= δρπ

dρ∑
l=1

δmlδnkwl = δρπδnkwm

for all 1 ≤ m,n ≤ dπ and all 1 ≤ k ≤ dρ.

In particular,
(
Pπn,n

)2 = Pπn,n for all irreducible matrix representations π of G and all
1 ≤ n ≤ dπ, which explains why these operators are called projection operators.

The projection operators depend on a chosen basis. We can also define character projection
operators that are basis independent:

Definition 1.1.6. Let π be a dπ-dimensional matrix representation of G with character χπ.
Define:

Pπ :=
dπ

#(G)

∑
g∈G

χπ(g−1)T (g). (1.6)
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The character projection operators have the following properties:

Theorem 1.1.7. Let π, ρ be matrix representations of G.

1. Pπ =
∑dπ

n=1 Pπnn.

2. T (g)Pπ = PπT (g) for all g ∈ G.

3. If π and ρ are both irreducible and furthermore π ∼= ρ =⇒ π = ρ, then PπPρ = δρπPρ.

4.
∑

π∈I(G) Pπ = 1V .

Proof. 1. Trivial.
2. Because χπ is constant on conjugacy classes, we have for g ∈ G:

T (g)Pπ = T (g)
dπ

#(G)

∑
h∈G

χπ(h−1)T (h) =
dπ

#(G)

∑
h∈G

χπ(gh−1g−1)T (ghg−1)T (g) = PπT (g).

3. This follows immediately from Theorem 1.1.5.2.
4. Write P :=

∑
π∈I(G) Pπ. From 3. it follows that P is a projection operator. Hence we have

to show that kerP := {0}. Suppose on the contrary that dim kerP ≥ 1. The subspace kerP
of V is invariant under T ; indeed, if v ∈ kerP then also T (g)v ∈ kerP for all g ∈ G because
P and T (g) commute, which immediately follows from 2. Choose an irreducible subspace W of
kerP. Then T restricted to W is equivalent to some π ∈ I(G). But Theorem 1.1.5.3 implies
that W ⊆ ImPπ ⊆ ImP, hence W = {0}. Contradiction.

1.2 Explicit decomposition of a representation

The projection operators enable us to explicitly perform a decomposition of the representation
space V of the representation T in irreducible subspaces. The procedure is as follows (see also
Fig. 1.1).

For each π ∈ I(G), apply the projection operator Pπ11 to V and let W π
1 := ImPπ11 be the

range of this operator. Choose a basis {fπk1 | 1 ≤ k ≤ mπ} of W π
1 where mπ := dimW π

1 is called
the multiplicity of π in T . For each j = 2, . . . , dπ, define the mπ vectors fπkj := Pπj1fπk1 (for
k = 1, . . . ,mπ) and let W π

j := Pπj1W π
1 . It is not difficult to see that W π

j = ImPπjj (consider the
isomorphism Pπ1j with inverse Pπj1). Hence

⊕
jW

π
j = ImPπ.

Define for each k the subspace V π
k := span {fπkj | 1 ≤ j ≤ dπ} ⊆ V . The spaces V π

k are
invariant under T and the restriction of T to V π

k is equivalent to π, in fact for each 1 ≤ k ≤ mπ:

T (g)fπkj =
dπ∑
i=1

πij(g)fπki for all 1 ≤ j ≤ dπ

as easily follows from Theorem 1.1.5.1. Furthermore,

V =
⊕

π∈I(G)

mπ⊕
k=1

V π
k =

⊕
π∈I(G)

V π, (1.7)

where V π := ImPπ. This follows from Theorem 1.1.7.3 in combination with the fact that⊕
jW

π
j =

⊕
k V

π
k = V π. The spaces V π are called isotypical components for G.

Since the decomposition of V into the subspaces V π
k depends on the choice of basis vectors

{fπk1} and matrix representations π, it is not unique. Only if all multiplicities mπ are ≤ 1, this
decomposition is unique.
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Figure 1.1: Various subspaces of ImPπ with their bases. The rows are invariant under T , the
columns are invariant under F .

1.3 Symmetry reduction

Let F : V → V be a linear transformation. The problem we want to solve is calculating the
eigenvalues and eigenvectors of F . Suppose that G is a symmetry of F , more specifically that
F is an intertwiner for the representation T : G → GL(V ), i.e. FT (g) = T (g)F for all g ∈ G.
This simplifies the calculation of the eigenvalues and eigenvectors.

First note that F commutes with each operator Pπmn. Hence the spaces W π
j are invariant

under F . Furthermore, if v ∈W π
1 is an eigenvector of F with eigenvalue λ, then also Pπj1v ∈W π

j

is an eigenvector of F with the same eigenvalue:

F (Pπj1v) = Pπj1Fv = Pπj1λv = λ(Pπj1v)

and this holds for each j = 1, . . . , dπ. Hence, the multiplicity of each eigenvalue of an eigenvector
in V π is a non-negative integral multiple of dπ. This also implies that once we have diagonalized
F on W π

1 , this immediately yields a diagonalization of F on the other spaces W π
j with j =

2, . . . , dπ. Hence the original problem of diagonalizing a (dimV )× (dimV ) matrix simplifies to
diagonalizing #I(G) matrices of dimensions mπ ×mπ (for all π ∈ I(G)). We can regard W π

1

as the “tensor quotient” of V π with respect to the representation space of π: we have “divided
out” the symmetry of G. We call the restriction F|Wπ

1
the reduction of F at the irrep π.

In conclusion, the eigenvalue spectrum of F is equal to the union of the spectra of the
reductions of F at the irreps π ∈ I(G), each reduced spectrum counted with multiplicity dπ. If
the spectra of the reduced operators F|Wπ

1
are multiplicity free and disjoint for all π ∈ I(G),

then F is said to have natural degeneracy with respect to the representation T of the group
G. It means that all degeneracy (i.e. collapse of eigenvalues) in the spectrum of F is accounted
for by the symmetry group G. In most situations encountered in physics, it is reasonable to
assume natural degeneracy. If F is not naturally degenerate, this can be an indication that
the symmetry group is not the full symmetry group of the problem. Only if F is not naturally
degenerate with respect to its full symmetry group, F is said to have accidental degeneracy. In
that case we can get natural degeneracy by adding a small perturbation to F that commutes
with T .

One final remark has to be made. If one only knows the characters χπ of all irreducible
representations π ∈ I(G) instead of all the matrix components, the only simplification of the
original problem is that the matrix of F with respect to a basis that is compatible with the
decomposition into isotypical components is block-diagonal with blocks of size (mπdπ)×(mπdπ).
Hence knowledge of all the matrix components is a great advantage above merely knowing the
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characters (which is the only information usually given in literature).
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Chapter 2

Small oscillations

This chapter is based upon Chapter VII of [Hec] but occassionally goes into more detail.

2.1 Classical theory

We will first treat the general (classical) theory of small oscillations of conservative classical
mechanical particle systems. Since we have an application to molecules in mind, we will talk
about a “molecule” instead of a “system” and about “atoms” instead of “particles”.

Consider a molecule consisting of N atoms numbered 1, . . . , N . We will assume that the
potential energy V : R3N → R only depends on x = (x1, . . . ,xN ) = (x1, . . . , x3N ) where
xi = (x3i−2, x3i−1, x3i) ∈ R3 is the position of atom i (for i = 1, . . . , N). Suppose that at
position r = (r1, . . . rN ) ∈ R3N , the molecule is in equilibrium, i.e. the force on each atom i,
given by:

Fi := − ∂V
∂xi

:= −
(

∂V
∂x3i−2

,
∂V

∂x3i−1
,
∂V
∂x3i

)
,

vanishes. We will investigate small displacements q about the equilibrium position, defining
the new coordinates q ∈ R3N by x = r + q. We can then make a Taylor series expansion of the
potential energy V about the equilibrium position r:

V(r + q) = V(r) +
3N∑
n=1

∂V
∂xn

∣∣∣∣
x=r

qn +
1
2

3N∑
n,m=1

∂2V
∂xm∂xn

∣∣∣∣
x=r

qmqn + · · · ≈ 1
2
〈q, Fq〉, (2.1)

where 〈·, ·〉 is the standard inner product on R3N . Here we exploited the freedom of choice in
the zero of V to make V(r) = 0. Further, the linear part vanishes because we assumed the
molecule to be in equilibrium at r. The linear transformation F : R3N → R

3N defined by its
matrix coefficients

Fmn :=
∂2V

∂xm∂xn

∣∣∣∣
x=r

is called the force constant matrix or Hessian of V and is obviously symmetric (i.e. 〈Fx,y〉 =
〈x, Fy〉 for all x,y ∈ R3N ). Apparently under these assumptions the potential energy is a
quadratic polynomial in q. Higher order terms are being neglected in this approximation.

The kinetic energy K of the molecule is given by:

K =
1
2

N∑
j=1

mj〈q̇j , q̇j〉

where q̇j := d
dtqj(t) = d

dtxj(t) is the velocity of atom j at time t, mj is its mass and 〈·, ·〉 is the
standard inner product on R3.
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Define the linear transformation S : R3N → R
3N by

Se3(i−1)+α :=
√
mie3(i−1)+α for all i = 1, . . . , N and α = 1, 2, 3.

We can then write the equations of motion as:

S2q̈ + Fq = 0,

or equivalently
Sq̈ + F̃Sq = 0

where F̃ := S−1FS−1. Since F and S−1 are symmetric, F̃ is symmetric as well and hence it
can be diagonalized. Let f1, . . . , f3N be an orthonormal basis of R3N with respect to which F̃

is diagonal with eigenvalues k1, . . . , k3N . Writing Sq =
(∑3N

j=1 zjfj
)

, the equations of motion
decouple:

z̈j + kjzj = 0 for j = 1 . . . 3N.

The coordinates zj are called normal coordinates. Formulated in normal coordinates, the system
is seen to be equivalent to 3N uncoupled harmonic oscillators (assuming the kj to be positive).

In the next section we will see that under certain rather natural assumptions, 6 of the
eigenvalues kj (namely those corresponding to translations and rotations of the molecule as
a whole) vanish. Assuming that the equilibrium position q = 0 is stable, the other 3N − 6
eigenvalues kj are positive. If the molecule does not rotate and does not have an overall speed,
the general solution of the equations of motion is then a superposition of 3N − 6 harmonic
normal modes with frequencies νj :=

√
kj (for those j with kj > 0).

2.2 Translational and rotational invariance

We will now make extra assumptions regarding the nature of the potential energy V. We
assume that the mass is characteristic of the chemical properties of the atoms, i.e. atoms with
the same mass are chemically indistinguishable. Further we assume the potential energy to be
invariant under translations and orthogonal transformations of the molecule as a whole. These
assumptions can be expressed as follows: V(xσ(1), . . . ,xσ(N)) = V(x1, . . . ,xN ) for all σ ∈ SN with ∀i∈{1,...,N}[mi = mσ(i)]
V(x1 + a, . . . ,xN + a) = V(x1, . . . ,xN ) for all a ∈ R3

V(Ax1, . . . , AxN ) = V(x1, . . . ,xN ) for all A ∈ O(R3)
(2.2)

for all x ∈ R3N .
The translation invariance of V implies that the forces − ∂V

∂xi
are also translation invariant;

indeed for all a ∈ R3:

∂V
∂xm

(r1 + a, . . . , rN + a) =
∂V
∂xm

(r1, . . . , rN ) for all m = 1, . . . , 3N .

Setting a = λw for λ ∈ R and w ∈ R3, defining W := (w, . . . ,w) ∈ R3N , differentiating with
respect to λ and setting λ = 0 yields:

3N∑
n=1

∂2V
∂xn∂xm

∣∣∣∣
x=r

Wn = 0 for all m = 1, . . . , 3N,
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or equivalently FW = 0. Thus the translation invariance of V implies that F = 0 on the
subspace WT of R3N defined by

WT := {(w, . . . ,w) ∈ R3N |w ∈ R3}.

In the same way, the invariance of V under orthogonal transformations implies that the
forces − ∂V

∂xi
are invariant under O(R3). In particular, for a rotation Dw,φ ∈ O(R3) around the

axis Rw over an angle φ (with w ∈ R3, φ ∈ R):

∂V
∂xm

(Dw,φr1, . . . , Dw,φrN ) =
∂V
∂xm

(r1, . . . , rN ) for all m = 1, . . . , 3N .

Using the identity

Dw,φ(v) := cosφ · v + sinφ ·w ∧ v + (1− cosφ)〈v,w〉 ·w for all v,w ∈ R3, φ ∈ R,

with ∧ the outer product on R3, this time defining W := (w ∧ r1, . . . ,w ∧ rN ), differentiating
with respect to φ and setting φ = 0 yields:

3N∑
n=1

∂2V
∂xn∂xm

∣∣∣∣
x=r

Wn = 0 for all m = 1, . . . , 3N,

or equivalently FW = 0. Thus1 the rotation invariance of V implies that F = 0 on the subspace
WR of R3N defined by

WR := {(w ∧ r1, . . . ,w ∧ rN ) ∈ R3N |w ∈ R3}.

If r1, . . . , rN do not lie on one line in R3 then one can show that dimWR = 3 and WT ∩WR = {0}
hence dim(WT +WR) = 6.

2.3 Group theoretical analysis

If the equilibrium position r of the molecule has a sufficiently rich point group symmetry, we can
apply group theory to draw some remarkable qualitative conclusions, for which no additional
detailed knowledge of the potential energy V is required. In addition, given the potential
energy V, the symmetry group can be used to simplify the calculation of the frequencies of the
eigenmodes and to classify the eigenfrequencies according to the corresponding representations,
as we will see.

Take the centre of mass
∑N

k=1mkrk/
∑N

k=1mk of the molecule to be the origin of R3.

Definition 2.3.1. The symmetry group G of the molecule in equilibrium position r ∈ R3N is
defined as:

G := {g ∈ O(R3) | ∀i∈{1,...,N}∃j∈{1,...,N}[mi = mj and gri = rj ]}.

As a subgroup of O(R3), G has a standard representation ρ : G 7→ GL(C3) with character
χρ. Every element g ∈ G defines a permutation σg ∈ SN by σg(i) = j if gri = rj . We define
the natural representation (also called displacement representation) T of G on V := C

3N by2

T (g)(q1, . . . ,qN ) :=
(
ρ(g)qσ−1

g (1), . . . , ρ(g)qσ−1
g (N)

)
(2.3)

for g ∈ G and q = (q1, . . . ,qN ) ∈ V . Note that the displacement representation is unitary. We
have the following obvious theorem due to Wigner:

1The derivation of this property of the force constant matrix presented in [Cor, Ch. 7 Thm. IV] is misleading
and strictly spoken incorrect.

2Because we need complex representation spaces, we will complexify everything in this section, sometimes
implicitly. In particular, we will not make a difference in notation for linear operators defined on R3N and their
complexifications defined on V .
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Theorem 2.3.2 (Wigner’s rule). The character χT of the displacement representation T :
G→ GL(C3N ) is given by:

χT (g) = #
{
i ∈ {1, . . . , N} |σg(i) = i

}
· χρ(g) for g ∈ G.

Define the translational subspace VT of V by:

VT :=
{(√

m1w, . . . ,
√
mNw

)
∈ V

∣∣w ∈ C3
}
.

It is invariant under T : for g ∈ G and w ∈ C3:

T (g)
(√
m1w, . . . ,

√
mNw

)
=
(√

mσ−1
g (1)ρ(g)w, . . . ,√mσ−1

g (N)ρ(g)w
)

=
(√
m1ρ(g)w, . . . ,

√
mNρ(g)w

)
∈ VT

since σ only permutes atoms with the same mass. We also see from the formula above that the
subrepresentation TVT is equivalent with ρ and therefore has character χρ.

Define the rotational subspace VR of V by:

VR :=
{(√

m1w ∧ r1, . . . ,
√
mNw ∧ rN

)
∈ V

∣∣w ∈ C3
}

where ∧ is the obvious generalization of the outer product on R3 to C3. The rotational subspace
is also invariant under T : for g ∈ G and w ∈ C3:

T (g)
(√
m1w ∧ r1, . . . ,

√
mNw ∧ rN

)
=
(√

mσ−1
g (1)ρ(g)

(
w ∧ rσ−1

g (1)

)
, . . . ,

√
mσ−1

g (N)ρ(g)
(
w ∧ rσ−1

g (N)

))
= det

(
ρ(g)

) (√
m1

(
ρ(g)w

)
∧ r1, . . . ,

√
mN

(
ρ(g)w

)
∧ rN

)
∈ VR

because the identity

g(u ∧ v) = det(g)(gu ∧ gv) for g ∈ O(R3) and u,v ∈ R3

is also valid in the above slightly more general case (where w ∈ C3). Further we see that the
subrepresentation TVR is equivalent with det⊗ρ (where det is the one-dimensional representation
of O(R3) that assigns to an orthogonal transformation its determinant) and hence has character
det ·χρ.

Since we have taken the centre of mass at the origin, VT and VR are orthogonal subspaces,
as one readily verifies. We define the vibrational subspace to be the orthogonal complement
VV := (VT ⊕VR)⊥. Thus we get a decomposition (called the Eckart decomposition) into mutually
orthogonal G-invariant subspaces:

V = VV ⊕ VT ⊕ VR.

Since F = 0 on WT ⊕WR, it follows that F̃ = 0 on VT ⊕VR. Because of the assumptions made
at the end of section 2.1, the vibration subspace VV is spanned by the basis vectors fj with
kj > 0. The character of the subrepresentation TVV is given by

χV := χT − χρ − det ·χρ.

The assumptions (2.2) about the potential energy V imply that V is invariant under the
action T of the symmetry group G, i.e.

V
(
r + T (g)q

)
= V(r + q) for all q ∈ R3N and all g ∈ G.
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Hence also its harmonic approximation (2.1) is invariant under T , which implies that

T (g)F = FT (g) for all g ∈ G.

Because each T (g) also commutes with S−1 we get

T (g)F̃ = F̃ T (g) for all g ∈ G. (2.4)

Thus the eigenspaces Vk := {v ∈ V | F̃v = kv} are invariant under T and the vibration subspace
VV decomposes as follows:

VV =
⊕
k>0

Vk.

Because of (2.4), we can apply the symmetry reduction procedure described in section 1.3 to
explicitly perform this decomposition.

Concluding, the vibration spectrum of the molecule is
{√

k
∣∣ k > 0, Vk 6= {0}

}
which is

the square root of the positive part of the eigenvalue spectrum of F̃ . Each eigenfrequency
ν =
√
k corresponds with one or more irreducible representations of G, namely the irreducible

components of TVV occurring in the eigenspace Vk. In case we have natural degeneration, each
eigenfrequency corresponds with exactly one irreducible representation of G. In this way, the
symmetry group yields a classification of the eigenmodes. Also, the number of frequencies in
the vibration spectrum cannot be larger than the number of irreducible components of the
representation TVV , which can be significantly smaller than 3N − 6.

2.4 Quantum mechanical theory

Once the classical mechanical problem has been solved, the corresponding quantum mechanical
problem presents no further difficulties. Indeed, as is easily seen when formulated in normal
coordinates, the quantum mechanical system is equivalent to 3N − 6 uncoupled (quantum)
harmonic oscillators with force constants kj . The solutions of such a system are well-known.

Because of the nature of the quantum mechanical interactions between the molecule and in-
cident photons not all frequencies in the vibration spectrum can be observed using spectroscopy.
Which frequencies can be observed is described by selection rules that depend on the particular
form of spectroscopy.

In particular, the selection rule for IR spectroscopy (in which the infrared absorption spec-
trum is measured) states that only those frequencies ν =

√
k are observed for which the cor-

responding irreducible representation TVk occurs in the standard representation. Assuming
natural degeneracy, this requirement can be formulated using character theory as 〈χk, χρ〉 ≥ 1,
where χk is the character of TVk .

Another form of spectroscopy is Raman spectroscopy, discovered by Raman in 1928. The
selection rule for Raman spectroscopy states that only those frequencies ν =

√
k are observed

for which the irreducible representation TVk occurs in the second symmetrical tensor power
S2(ρ) of the standard representation ρ. Again assuming natural degeneracy, this can be shown
to be equivalent to 〈χk, χ2

ρ − det ·χρ〉 ≥ 1 with χk the character of TVk .
The reader is referred to [Ste] and [Wil] for a more detailed discussion of the selection rules.

There are other experimental techniques to measure the vibration spectrum of molecules, e.g.
inelastic neutron scattering [6]. However, the resolution of such techniques is low. Further,
the selection rules are not always strictly valid: under certain circumstances3 it is possible to
measure (using IR or Raman spectroscopy) other frequencies than those satisfying the selection

3For the case of C60, see e.g. [10]

15



rules. However, the intensities of these “optically inactive modes” are relatively low and hence
these modes are difficult to detect.

The classification of the eigenfrequencies can be obtained by using character theory alone.
In the next chapter we will go beyond this and explicitly calculate the eigenfrequencies for the
case of Buckminsterfullerene by diagonalizing F̃ , making use of its symmetry by the procedure
of symmetry reduction.
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Chapter 3

Application: Buckminsterfullerene

The Buckminsterfullerene C60 molecule (or simply buckyball), illustrated in Fig. 3.1, consists
of 60 carbon atoms located at the vertices of a truncated (regular) icosahedron. Its structure
is similar to that of the well-known soccer ball. It has twenty hexagonal faces and twelve
pentagonal faces; on the soccer ball, these are usually coloured white and black respectively.
There are two types of bonds: bonds separating a hexagon from a pentagon (“single” bonds)
and bonds separating two hexagons (the “double” bonds). Hence each carbon atom has a total
number of four bonds, in accordance with the Lewis octet rule.

3.1 Icosahedral symmetry

A regular icosahedron, illustrated in Fig. 3.2, has 12 vertices, 30 edges and 20 regular triangular
faces. In Fig. 3.3 a buckyball is shown together with the corresponding icosahedron. Each of
the 30 edges of the icosahedron is divided into three parts by two vertices of the buckyball. The
relative lengths of those parts are l : (1 − 2l) : l where 0 ≤ l ≤ 1/2 is a truncation parameter.
The regular buckyball (which has regular hexagonal faces) has truncation parameter l = 1/3.1

The symmetry group of the buckyball is clearly the same as that of the icosahedron.
1Measurements give a value of l = 0.3289 for Buckminsterfullerene (see [12]).

Figure 3.1: Stereoscopic view of the buckyball. The double bonds are accentuated. To see the
three-dimensional structure, look with your left eye at the left part and at the same time with
your right eye at the right part of the image.
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Figure 3.2: Stereoscopic view of an icosahedron.

Definition 3.1.1. Choose a fixed icosahedron centered at the origin. The rotations under which
the icosahedron is transformed into itself form a subgroup of SO(3), called the icosahedral
rotation group I.

This group has generators a, b, c such that a2 = b3 = c5 = e and cba = e and it consists of
60 elements. Note that c = ab2 so I can also be presented as the group with two generators a
and b and relations a2 = b3 = (ab2)5 = e.

The icosahedral rotation group is isomorphic to A5, the alternating group of five elements
(namely the 5 orthogonal triplets of lines through the midpoints of opposite edges), with as
isomorphism e.g. the one defined by a 7→ (12)(34), b 7→ (135).

The icosahedral rotation group can also be seen as a subgroup of S12, the permutation group
of 12 elements (namely the vertices of the icosahedron). A particular embedding of I in S12 is
given by {

a 7→ (1, 4)(2, 3)(5, 7)(6, 8)(9, 12)(10, 11)
b 7→ (1, 4, 12)(2, 10, 3)(5, 6, 11)(7, 8, 9),

Figure 3.3: Stereoscopic view of a buckyball inside its surrounding icosahedron.
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e a b c c2 s sa sb sc sc2

E C2 C3 C5 C2
5 i σ S6 S3

10 S10

1 15 20 12 12 1 15 20 12 12
π1+ = Ag 1 1 1 1 1 1 1 1 1 1
π2+ = T1g 3 −1 0 τ τ ′ 3 −1 0 τ τ ′

π3+ = T2g 3 −1 0 τ ′ τ 3 −1 0 τ ′ τ
π4+ = Gg 4 0 1 −1 −1 4 0 1 −1 −1
π5+ = Hg 5 1 −1 0 0 5 1 −1 0 0
π1− = Au 1 1 1 1 1 −1 −1 −1 −1 −1
π2− = T1u 3 −1 0 τ τ ′ −3 1 0 −τ −τ ′
π3− = T2u 3 −1 0 τ ′ τ −3 1 0 −τ ′ −τ
π4− = Gu 4 0 1 −1 −1 −4 0 −1 1 1
π5− = Hu 5 1 −1 0 0 −5 −1 1 0 0

Table 3.1: Character table of the icosahedral symmetry group Ih. Here τ = 1
2(1 +

√
5) and

τ ′ = 1
2(1−

√
5). The first two rows contain representatives of the conjugation classes, the first

row using the notation employed in this work and the second row using a notation that is more
conventional in theoretical chemistry.

where the numbers of the vertices correspond with the labeling in Fig. 3.2, in coordinates:

1 : (1, τ, 0) 5 : (τ, 0,−1) 9 : (0, 1,−τ)
2 : (1,−τ, 0) 6 : (−τ, 0,−1) 10 : (0,−1,−τ)
3 : (−1,−τ, 0) 7 : (−τ, 0, 1) 11 : (0,−1, τ)
4 : (−1, τ, 0) 8 : (τ, 0, 1) 12 : (0, 1, τ)

Here τ := 1
2(1 +

√
5) is the Golden Ratio. Define τ ′ := 1

2(1 −
√

5), the Galois conjugate of τ .
These numbers satisfy the relations τ2 = τ + 1, τ ′2 = τ ′ + 1 and τ−1 = τ ′ = τ − 1.

The central inversion of R3 is the transformation s : R3 → R
3 : x 7→ −x. The full symmetry

group of the icosahedron, i.e. the elements of O(R3) that transform the icosahedron into itself,
is the direct product Ih := I ∪ Is ∼= A5×C2. Since the buckyball has the same symmetry as the
icosahedron and all the constituting carbon atoms have identical mass, the symmetry group of
the buckyball is G := Ih.

Table 3.1 contains the character table of Ih, which is easily found from the character table
of I ∼= A5. The notation of the representations (Ag, T1g, etc.), called the Mulliken notation
is conventional in spectroscopy.2 The representation T1u is the standard representation of
Ih < O(R3). A simple calculation using Wigner’s rule and the character table yields that the
T1u modes satisfy the IR selection rule and the Ag and Hg modes satisfy the Raman selection
rule. The other modes are optically inactive. With the characters we can also easily calculate
the multiplicities of the irreps in the displacement representation; there are 2 Ag, 4 T1g, 4 T2g,
6 Gg, 8 Hg, 1 Au, 5 T1u, 5 T2u, 6 Gu and 7 Hu modes. Subtracting the translational (1 T1u) and
rotational (1 T1g) modes, this yields a total of 46 = 48− 2 eigenmodes.

To perform the symmetry reduction, we need the full matrix representations of Ih. These
are given in Table 3.2. We have tried to choose the bases in such a way that the matrix
coefficients are as simple as possible, since this will significantly speed up the computations to
be performed by the computer algebra system. The standard representation T1u was found
by explicit calculation using the embedding of I into S12 and the explicit coordinates of the

2Although different versions have been observed in literature, e.g. “F” is used instead of “T” in [1]. Also the
use of “F” instead of “G” has been observed.

19



a b s

π1+ = Ag

(
1
) (

1
) (

1
)

π2+ = T1g

−1 0 0
0 1 0
0 0 −1

 1
2

−1 τ ′ τ
−τ ′ τ 1
−τ 1 τ ′

 1 0 0
0 1 0
0 0 1


π3+ = T2g

1
2

−τ 1 τ ′

1 −τ ′ −τ
τ ′ −τ −1

 0 0 1
1 0 0
0 1 0

 1 0 0
0 1 0
0 0 1



π4+ = Gg


−1 −1 −1 −1
0 0 1 0
0 1 0 0
0 0 0 1




1 0 0 0
−1 −1 −1 −1
0 0 1 0
0 1 0 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



π5+ = Hg


1 0 0 0 0
0 0 ω 0 0
0 ω2 0 0 0
0 0 0 0 ω2

0 0 0 ω 0




0 0 ω 0 0
0 ω2 0 0 0
0 0 0 0 ω2

0 0 0 ω 0
1 0 0 0 0




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


π1− = Au

(
1
) (

1
) (

−1
)

π2− = T1u

−1 0 0
0 1 0
0 0 −1

 1
2

−1 τ ′ τ
−τ ′ τ 1
−τ 1 τ ′

 −1 0 0
0 −1 0
0 0 −1


π3− = T2u

1
2

−τ 1 τ ′

1 −τ ′ −τ
τ ′ −τ −1

 0 0 1
1 0 0
0 1 0

 −1 0 0
0 −1 0
0 0 −1



π4− = Gu


−1 −1 −1 −1
0 0 1 0
0 1 0 0
0 0 0 1




1 0 0 0
−1 −1 −1 −1
0 0 1 0
0 1 0 0



−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



π5− = Hu


1 0 0 0 0
0 0 ω 0 0
0 ω2 0 0 0
0 0 0 0 ω2

0 0 0 ω 0




0 0 ω 0 0
0 ω2 0 0 0
0 0 0 0 ω2

0 0 0 ω 0
1 0 0 0 0



−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1


Table 3.2: Convenient choices of generators for the irreducible matrix representations of Ih.
Here ω = e2πi/3, τ = 1

2(1 +
√

5) and τ ′ = 1
2(1−

√
5).
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vertices of the icosahedron as given above. The representation T2u can be obtained from T1u

by replacing
√

5 by −
√

5, which amounts to exchanging τ and τ ′ (this operation is called
Galois conjugation in the ring Q(τ)). The four-dimensional representation Gu was obtained by
restricting the five-dimensional representation of A5 as permutation matrices to the subspace
{(x1, x2, x3, x4, x5) ∈ C5 |

∑
k xk = 0}. As a basis of this subspace we took (1,−1, 0, 0, 0),

(1, 0,−1, 0, 0), (1, 0, 0,−1, 0), (1, 0, 0, 0,−1). Finally, the five-dimensional representation Hu

was obtained by inducing a one-dimensional non-trivial representation of A4/V4
∼= C3 to A5,

taking the powers of (12345) as representatives of the left cosets. The five other “gerade”
representations are obtained by omitting the minus signs from the matrices representing the
central inversion s.

3.2 Potential energy models

Our models of the buckyball will be mass-spring models consisting of 60 masses (the carbon
atoms) connected by a multitude of springs.

3.2.1 Parallel springs

The potential energy of a spring of length L with force constant k at displacement x is given
by V(x) = 1

2k(L − x)2. Expanding the potential energy for a spring connecting two atoms at
positions r1 + q1 and r2 + q2 as a Taylor series in q1 and q2 yields, up to second order terms:

V(q1,q2) = 1
2k
(
‖r2 + q2 − r1 − q1‖ − ‖r2 − r1‖

)2 ≈ 1
2k
〈q2 − q1, r2 − r1〉2

‖r2 − r1‖2
= 1

2k(q2 − q1)2
‖,

the notation v‖ (for v ∈ R3) meaning the part of v that is parallel to the vector r2 − r1.
The total potential energy (approximated up to second order) for the general mass-spring

model of the buckyball can hence be written as:

V(q) =
1
2

60∑
i=1

60∑
j=1
j>i

kij(qi − qj)2
‖ =

1
2

60∑
i=1

60∑
j=1
j>i

kij
〈qi − qj , ri − rj〉2

‖ri − rj‖2

with kij the force constant of the string connecting atom i and j. Written out in a form
convenient for reading off the matrix coefficients of the Hessian of V :

V =
1
2

60∑
i=1

60∑
j=1

3∑
µ=1

3∑
ν=1

qiµqjν

(
δij

60∑
m=1

kim
(rmµ − riµ)(rmν − riν)

‖rm − ri‖2
− kij

(rjµ − riµ)(rjν − riν)
‖rj − ri‖2

)
.

3.2.2 Transversal springs

In [7] a potential energy is used (called by the authors the Born potential) that has also
“transversal springs”, i.e. components perpendicular to the difference vector of the equilib-
rium positions. Since it will turn out that this model gives good results we will extend our
parallel model above as follows:

V(q) =
1
2

60∑
i=1

60∑
j=1
j>i

(
k
‖
ij(qi − qj)2

‖ + k⊥ij(qi − qj)2
⊥

)

=
1
2

60∑
i=1

60∑
j=1
j>i

(
(k‖ij − k

⊥
ij)(qi − qj)2

‖ + k⊥ij(qi − qj)2
)
.

(3.1)
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where v⊥ (for v ∈ R3) means the part of v that is perpendicular to the equilibrium difference
vector rj − ri. Writing this out yields:

V(q) =
1
2

60∑
i=1

60∑
j=1

3∑
µ=1

3∑
ν=1

qiµqjν

(
δij

60∑
m=1

(k‖im − k
⊥
im)

(rmµ − riµ)(rmν − riν)
‖rm − ri‖2

−(k‖ij − k
⊥
ij)

(rjµ − riµ)(rjν − riν)
‖rj − ri‖2

+ δµν

(
δij

60∑
m=1

k⊥im − k⊥ij

))
. (3.2)

We will choose the parallel force constants k‖i,j (i, j = 1, . . . , 60) as follows:

k
‖
i,j :=



k
‖
5 if i,j are nearest neighbours within a pentagon
k
‖
5n if i,j are next-nearest neighbours within a pentagon
k
‖
6 if i,j are nearest neighbours separating two hexagons
k
‖
6n if i,j are next-nearest neighbours within a hexagon

0 otherwise.

(3.3)

where k‖5, k‖5n, k‖6 and k
‖
6n are adjustable parameters that can be chosen in such a way as to

give optimal agreement with the experimental data. The orthogonal force constants k⊥i,j will be
taken as:

k⊥i,j :=



k⊥5 if i,j are nearest neighbours within a pentagon
k⊥5n if i,j are next-nearest neighbours within a pentagon
k⊥6 if i,j are nearest neighbours separating two hexagons
k⊥6n if i,j are next-nearest neighbours within a hexagon
0 otherwise.

(3.4)

with k⊥5 , k⊥5n, k⊥6 and k⊥6n additional adjustable parameters.

3.2.3 Bending springs

We can also consider “bending springs”, springs attached to bonds modeling the contribution
to the potential energy arising from the angle between two bonds. Consider three particles at
positions x1, x2 and x3 with bonds between the pairs (1, 2) and (2, 3). We will write vα−β :=
vα − vβ for two vectors vα and vβ in R3. Denoting the angle between bonds (1, 2) and (2, 3)
by:

φ := cos−1 〈x1−2,x3−2〉
‖x1−2‖‖x3−2‖

,

and writing φ0 for the equilibrium angle, the contribution to the potential energy is given by:

1
2k
∠(φ− φ0)2 =

1
2
k∠
(

cos−1 〈r1−2 + q1−2, r3−2 + q3−2〉
‖r1−2 + q1−2‖‖r3−2 + q3−2‖

− cos−1 〈r1−2, r3−2〉
‖r1−2‖‖r3−2‖

)2

,

where k∠ is the angular spring constant. The harmonic approximation of this term is as follows:

1
2
k∠

1
sin2 φ0

(〈
e3−2 − cosφ0e1−2,

q1−2

‖r1−2‖

〉
+
〈

e1−2 − cosφ0e3−2,
q3−2

‖r3−2‖

〉)2

,

where eα−β := rα−β/‖rα−β‖. The total contribution to the potential energy consists of the
sum of these terms for all possible bond angles. There are two types of angles in the buckyball:
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angles inside a pentagon (for which we take k∠ = k∠5 ) and angles inside a hexagon (with another
spring constant k∠ = k∠6 ). We will not write this expression out in a form that is convenient for
reading off the matrix coefficients of the force constant matrix, since the resulting expressions
are rather cumbersome.

In total, together with the truncation parameter l, the number of adjustable model param-
eters is 11.

3.3 Computational details and results

All the calculations have been done with the computer algebra system Maple. The first step
was to represent the symmetry group G and its representations within Maple. We represented
the group elements by “words” in the generators (a,b,c and s). To represent a matrix represen-
tation of the group in Maple, it then suffices to prescribe the matrices corresponding to these
generators—Maple can calculate the other 120 − 4 matrices by itself. The second step was
to calculate the projection operators. For each irrep π we need dπ projection operators, so in
total we have to calculate 32 projection operators. This takes about three hours on a modern
2.5 GHz Pentium IV processor, which is actually rather long. The next step was constructing
the basis vectors {fπjk}. The built-in basis function of Maple turned out to be not useful for
this purpose, because after waiting for several hours we ran out of patience before it would
finish the calculation. Instead, we constructed a basis by subsequentially adding vectors to the
collection of already chosen basis vectors whenever the rank of the matrix consisting of these
vectors would increase. After a convenient basis had been constructed, the reductions of F̃ were
calculated and expressed in our basis by using the linsolve function. The final step was to
substitute the parameter values and to numerically calculate the eigenvalues and eigenvectors
of the reductions of F̃ (using the eigenvals and eigenvectors functions).

To find the optimal parameter values for the various models, we used a numerical least-
squares fit against the experimental data on the (optically active) T1u, Ag and Hg modes
taken from [5] and reproduced in Table 3.4. We have chosen not to use experimental data on
the optically inactive modes because these are less trustworthy, since their assignment to the
vibrational modes is still a matter of ongoing discussion [10]. To solve the multidimensional
minimization problem, we used the Downhill Simplex method of Nelder and Mead, as described
in [NRC, pp. 408–411] which we implemented in Maple.

To investigate the importance of the various parameters we have organized these into a hier-
archy of model families according to their complexity. One can choose some of the parameters
to be adjustable during the fit and keep the others at fixed default values (e.g. l = 1/3). The
different resulting model families can be described using a 5-bit digit d1d2d3d4d5 in which the
bits have the following meaning:
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Bit Value Meaning
d1 0 l is kept fixed at l = 1/3

1 l adjustable within its range 0 < l < 1
2

d2 0 no difference between single and double bonds, i.e.
k
‖
5 = k

‖
6, k
‖
5n = k

‖
6n, k

⊥
5 = k⊥6 , k

⊥
5n = k⊥6n, k

∠
5 = k∠6

1 the single and double bond force constants
can be chosen independently each other

d3 0 no next-nearest neighbour interaction, i.e.
k
‖
5n = 0, k‖6n = 0, k⊥5n = 0 and k⊥6n = 0

1 the next-nearest neighbour parameters can be nonzero
d4 0 no transversal interactions, i.e.

k⊥5 =, k⊥6 = 0, k⊥5n = 0 and k⊥6n = 0

1 transversal parameters can be nonzero
d5 0 no bending springs, i.e. k∠5 = k∠6 = 0

1 angular spring constants can be nonzero

Since the truncation parameter l cancels out if there is no next-nearest neighbour interaction
and no angular interaction, we can neglect 4 models, namely those with d1 = 1, d3 = 0 and
d5 = 0. Also we did not consider models with d1 = 1 and d5 = 1 because the algebra would
really become cumbersome in this case, even for a computer algebra system. For the remaining
model families, the free parameters have been adjusted by the least-squares fitting procedure to
give optimal agreement with the 14 experimental eigenfrequencies of the optically active modes.
The results are shown in Table 3.3. In addition, we have done two fits (those marked with a ∗)
using all available experimental frequency data (i.e. also for optically inactive modes). These
data were taken from [10] and are reproduced in Table 3.4.

3.4 Discussion and conclusion

Several, somewhat surprising, conclusions can be drawn from Table 3.3.

• First of all, the truncation parameter l cannot be inferred from the vibrational frequen-
cies. In general, “setting the first bit” does not yield significantly better fits. This may
be surprising since l might in the first instance be thought of as the most basic model
parameter. Instead it turns out to be only a higher order correction.

• The two-parameter model 01000 in which we distinguish single and double bonds does
not give a better result than the one-parameter model 00000 in which single and double
bonds have identical force constants. Only when combined with next-nearest neighbour
interaction does distinguishing between single and double bonds give significant improve-
ments.

• Taking into account next-nearest neighbour interaction (setting the third bit) gives in all
cases a significant improvement.

• Out of the four two-parameter models (01000, 00100, 00010, 00001), model 00010 performs
extremely well. Unfortunately, however, all models with transversal interactions turn out
to have an additional T1u mode since the Hessian is not zero on the rotational subspace.
This means that on principal grounds, we should reject these models because they are

24



Model χ2 % l k
‖
5 k

‖
6 k

‖
5n k

‖
6n k⊥5 k⊥6 k⊥5n k⊥6n k∠5 k∠6

00000 1120 32 766 idem
01000 1120 32 809 711
00100 280 15.6 463 idem 206 idem
01100 170 12.5 161 266 48 643
00010 29.0 5.3 677 idem 147 idem
01010 27.1 5.0 693 655 167 108
00110 15.5 4.2 643 idem 35 idem 196 idem -25 idem
01110 13.1 4.0 572 665 85 29 205 228 -25 -34
10100 156 10.5 0.5 161 idem 425 idem
11100 149 9.3 0.49 388 45 333 423
10110 14.8 4.2 0.22 626 idem 40 idem 204 idem -28 idem
11110 12.5 3.9 0.46 526 696 105 46 202 219 -25 -35
00001 134 10.1 627 idem 15.9 idem
01001 132 9.7 631 615 12.7 18.2
00101 45 4.3 478 idem 95 idem 15.2 idem
01101 11.8 2.6 236 347 311 95 8.8 21.9
01111 5.9 2.7 305 315 366 74 136 223 -25 -33 12.8 3.2
01111∗ 46 2.6 489 666 61 73 97 62 -15 -2.4 5.6 4.8
01101∗ 274 7.6 345 525 212 61 12.1 11.4

Table 3.3: Results of the least-squares fitting for all possible model families. The first column
describes the model family, as explained in the main text. The second column, labeled “χ2”,
contains the sum of the squares of the residuals after fitting (in units of 103) and indicates the
goodness-of-fit, a lower value meaning a better fit. The third column, labeled “%” gives the
average percentual error of the fitted frequencies, which is another measure for the goodness-of-
fit that is somewhat easier to interpret than χ2. The fourth column contains the optimal value
for the truncation parameter; if it is missing then the value l = 1/3 has been kept fixed. The
remaining columns contain the optimal values for the force constants (in 103 dyn/cm, except
the angular ones, these are in units of 103 dyn cm); if a value is missing this means that the
parameter was kept fixed at the value 0 during the fit. “Idem” means that the parameter for
the double bond k?

6? is kept equal to the corresponding parameter k?
5? for the single bond. The

last two rows (with model names marked with a ∗) are fits using all 46 modes, i.e. also optically
inactive ones.

not harmonic approximations of rotationally invariant potential energies. This result is
rather disappointing regarding the excellent performance of the models with transversal
interactions. One could fix this problem by subtracting a compensating part from the
force constant matrix. Or alternatively, one could ignore the extra mode (it has a low fre-
quency and is easily visually identified, since its eigenspace is reminiscent of the rotational
subspace, see Figure 3.7). Either way however, the situation remains unsatisfactory.

• The parameters k⊥5n and k⊥6n can be safely omitted from the models since they are almost
zero. The fact that the optimal values of these parameters are negative should be of
no concern since they form only a small correction on the other large and positive force
constants.

• Initially, we hoped that increasing the complexity of the model would only lead to minor
modifications of the force constants. This turns out to be a little naive. A redefinition
of the force constants might help. Indeed, a variation in the value of k‖6n e.g. should be
compensated with a variation in k

‖
6, since they have similar contributions to particular

elements of the force constant matrix.
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It should be noted that it is not difficult to construct a model that perfectly reproduces all
46 eigenfrequencies (this model is most easily formulated in normal coordinates). However, this
model does not survive application of Ockham’s Razor.

The frequencies found for the best models, 01101 and 01101∗, are shown in the last two
columns of Table 3.4. Also shown in this table are the results of calculations of other groups
as well as experimental results. The first column contains early theoretical results from [4],
who also use the symmetry reduction method but use a less sophisticated potential energy
with fixed force constants (namely the corresponding values for benzene). The second column
contains the results of modern Density Functional Theory calculations from [10], the most
accurate theoretical method currently available for the case of C60. The third column contains
conventional IR and Raman spectroscopy data taken from [5]. The fourth column contains all
available experimental data, collected using different experimental methods, reproduced from
the “supporting information” of [10]. The experimental errors for these data are not known.

Concluding, the results of this work are a significant improvement over [4] but cannot com-
pete with the DFT results of e.g. [10]. However, in contrast with the DFT results, the potential
energy model for the buckyball found here is easily written down analytically.

A final remark has to be made concerning the computer algebra system. We chose to
use Maple because this program is used in the education of mathematics students at the KUN.
However, the next time that the author undertakes such a large project with a computer algebra
system he will definately not use Maple again. Working with Maple (version 8) turned out to
be very frustrating because of its instability, the bugs that were encountered, its slowness and
its user-unfriendliness. For example, in general one does not know how much time a calculation
will take—whether it is a question of seconds or hours—and there is no auditory signal when a
calculation finishes. The author also would have liked to produce some animations of vibrating
buckyballs, but because of a memory leak in Maple this was not possible. Instead, some of the
modes have been illustrated in Figures 3.4–3.7.

26



Mode Calculated Experimental Calculated (this work)
[4] [10] [5] [10] 01101 01101∗

T1u 478 528 527± 1 525 538 422
618 577 577± 1 578 598 576
1462 1189 1183± 1 1182 1165 1125
1868 1431 1428± 1 1433 1418 1451

Ag 510 487 496± 2 496 512 491
1830 1474 1470± 2 1468 1442 1477

Hg 274 261 273± 2 264 274 250
413 429 437± 2 430 416 369
526 705 710± 2 709 630 529
828 772 774± 2 773 755 738
1292 1104 1099± 2 1101 1110 1129
1575 1251 1250± 2 1251 1290 1166
1910 1426 1428± 2 1425 1438 1420
2085 1585 1575± 2 1576 1603 1576

T1g 513 562 560 565 448
1045 823 825 1029 897
1662 1276 1260 1602 1294

T2g 615 555 552 667 586
724 724 713 809 651
951 789 796 1178 1015
1900 1344 1345 1504 1347

Gg 433 480 485 412 379
593 565 567 657 538
657 741 751 731 678
1327 1072 1078 980 1017
1813 1308 1309 1492 1385
2006 1507 1497 1660 1510

Au 1243 946 956 1549 1138
T2u 358 337 341 370 339

526 709 706 650 535
1122 958 963 985 1013
1543 1177 1166 1269 1185
1954 1536 1540 1556 1553

Gu 360 351 354 346 309
663 738 741 795 639
876 751 756 851 841
1086 962 972 973 950
1845 1307 1307 1362 1336
2004 1434 1428 1571 1425

Hu 405 400 403 400 356
470 531 533 464 435
569 665 665 680 559
849 729 738 844 747
1464 1219 1215 1302 1161
1797 1343 1341 1578 1365
2086 1576 1566 1655 1564

Table 3.4: Vibrational frequencies of Buckminsterfullerene: theoretical and experimental results
(all values in cm−1). A description of the contents of each column is given in the main text.
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Figure 3.4: Stereoscopic view of the Au mode.

Figure 3.5: Stereoscopic view of the low-frequency Ag mode.

Figure 3.6: Stereoscopic view of the high-frequency Ag mode.
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Figure 3.7: Stereoscopic view of the unphysical rotational T1g mode.
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