Teaching the Kepler laws for freshmen.
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We present a natural proof of Kepler’s law of ellipses in terms of Fuclidean geometry, which we
believe is new. Moreover we discuss two existing Euclidean geometric proofs, one by Feynman in
hist Lost Lecture from 1964 and the other by Newton in the Principia of 1687.

PACS numbers:

I. INTRODUCTION.

One of the highlights of classical mechanics is the
mathematical derivation of the three experimentally ob-
served Kepler laws of planetary motion from Newton’s
laws of motion and of gravitation. Newton published his
theory of gravitation in 1687 in the Principia Mathemat-
ica [1]. After two short introductions, one with defini-
tions and the other with axioms (the laws of motion),
Newton discussed the Kepler laws in the first three sec-
tions of Book 1 (in just 40 pages, without ever mentioning
the name of Kepler!)

Kepler’s second law (motion is planar and equal areas
are swept out in equal times) is an easy consequence of
the conservation of angular momentum L = r X p, and
holds in greater generality for any central force field. All
this is explained well by Newton in Propositions 1 and 2.

Kepler’s first law (planetary orbits are ellipses with
the center of the force field at a focus) however is spe-
cific for the attractive 1/7? force field. Using Euclidean
geometry Newton derives in Proposition 11 that the Ke-
pler laws can only hold for an attractive 1/r2 force field.
The reverse statement that an attractive 1/r? force field
leads to elliptical orbits Newton concludes in Corollary 1
of Proposition 13. Tacitly he assumes for this argument
that the equation of motion F = ma has a unique solu-
tion for given initial position and initial velocity. Theo-
rems about existence and uniqueness of solutions of such
a differential equation have only been formulated and
mathematically rigorously been proven in the 19th cen-
tury. However there can be little doubt that Newton did
grasp these properties of his equation F = ma [2].

Somewhat later in 1710 Jakob Hermann and Johan
Bernoulli gave a direct proof of Kepler’s first law, which is
still the standard proof for modern text books on classical
mechanics [3]. One writes the position vector r in the
plane of motion in polar coordinates r and #. The trick
is to transform the equation of motion ma = —kr/r?
with variable the time ¢ into a second order differential
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equation of the scalar function v = 1/r with variable the
angle #. This differential equation can be solved exactly,
and yields the equation of an ellipse in polar coordinates
[4].

Another popular proof goes by writing down the so
called Runge-Lenz vector

K=pxL-—kmr/r

with p = mv momentum and F(r) = —kr/r® the force
field of the Kepler problem. The Runge-Lenz vector K
turns out to be conserved, i.e. K = 0. This result can be
derived by a direct computation as indicated in Section 2.
An alternative geometric argument is sketched in Section
3. Working out the equation r - K = rK cos 8 gives the
equation of an ellipse in polar coordinates [4]. The geo-
metric meaning of the Runge-Lenz vector becomes clear
only a posteriori as a vector pointing in the direction of
the major axis of the ellipse. But the start of the proof to
write down the Runge-Lenz vector remains a trick. For
a historical account of the Runge-Lenz vector we refer
to Goldstein [5]. Goldstein traces the Runge-Lenz vector
back to Laplace in his Traité de Mécanique Céleste from
1798. However the Runge-Lenz vector already appeared
in a paper of Lagrange from 1781 [6], and as far as we
know this is the oldest reference on the Runge-Lenz vec-
tor. Lagrange writes the Runge-Lenz vector down after
algebraic manipulations and without any geometric mo-
tivation. It is clear by now, that the name Runge-Lenz
vector is inappropriate, but with its widespread use in
modern literature it seems too late to change that.

The purpose of this note is to present in Section 2 a
proof of the Kepler laws for which a priori the reasoning
is well motivated in both physical and geometric terms.
In Section 3 we review the hodographic proof as given by
Feynman in his "Lost Lecture” [7], and in Section 4 we
discuss Newton’s proof from the Principia [1]. All three
proofs are based on Euclidean geometry, although we do
use the language of vector calculus in order to make it
more readable for people of the 21st century. We feel
that our proof is really the simplest of the three, and at
the same time it gives more refined information (namely
the length of the major axis 2a = —k/H of the ellips £).
In fact we think that our proof in Section 2 can compete



equally well both in transparency and in level of compu-
tation with the standard proof of Jakob Hermann and
Johann Bernoulli, making it an appropriate alternative
to present in a freshman course on classical mechanics.

II. A EUCLIDEAN PROOF OF KEPLER’S
FIRST LAW.

We shall use inner products u-v and outer products ux
v of vectors u and v in R3, the compatibility conditions

u-(vxw)=(uxv) - w

ux (vxw)=(u-w)v—(u-v)w
and the Leibniz product rules

(u-v)y=u-v+u-v

(uxv)y=uxv4+uxv

without further explanation.

For a central force field F(r) = f(r)r/r the angular
momentum vector L = rxp is conserved by Newton’s law
of motion F = p, thereby leading to Kepler’s second law.
For a spherically symmetric central force field F(r) =
f(r)r/r the energy

H=p*/2m 4 V() V() =~ [ fr)ar

is conserved as well.
marks.

From now on consider the Kepler problem f(r) =
—k/r? en V(r) = —k/r with k > 0 a coupling constant.
By conservation of energy the motion for fixed energy
H < 0 is bounded inside a sphere with center 0 and ra-
dius —k/H. Consider the following picture of the plane
perpendicular to L.

These are the general initial re-
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The circle C with center 0 and radius —k/H is the
boundary of a disc where motion with energy H < 0
takes place. Let s = —kr/rH be the projection of r from
the center 0 on this circle C. The line £ through r with
direction vector p is the tangent line of the orbit £ at po-
sition r with velocity v. Let t be the orthogonal reflection
of the point s in the line £. As time varies, the position
vector r moves along the orbit &£, and likewise s moves
along the circle C. It is a good question to investigate
how the point t moves.

Theorem. The point t equals K/mH and therefore is
conserved.

Proof. The line N spanned by n = p x L is perpendicular
to L. The point t is obtained from s by subtracting twice
the orthogonal projection of s — r on the line N, and
therefore

t =s—2((s—r) -n)n/n?
Now

s=—kr/rH
(=) n = —(H+k/r)r-(px L)/ H = —(H+k/r)L2/H

n? = p*L* = 2m(H + k/r)L?
and therefore
t=—kr/rH +n/mH =K/mH

with K = p x L — kmr/r the Runge-Lenz vector. The
final step K = 0 is derived by a straightforward compu-
tation using the compatibility relations and the Leibniz

product rules for inner and outer products of vectors in
R3. O

Corollary. The orbit £ is an ellipse with foci 0 and t,
and magjor axis equal to 2a = —k/H.

Proof. Indeed we have
t—r|+r—0/=|s—r|+|r—0/=|s—0|] =—k/H.

Hence € is an ellipse with foci 0 and t, and major axis
2a = —k/H. O

The above proof has two advantages over the earlier
mentioned proofs of Kepler’s first law. The conserved
vector t = K/mH is a priori well motivated in geometric
terms. Moreover we use the gardener’s definition of an el-
lipse. The gardener’s definition, called that way because
gardeners sometimes use this construction for making an
oval flowerbed, is wellknown to freshmen. On the con-
trary, the equation of an ellipse in polar coordinates is
unknown to most freshmen, and so additional explana-
tion would be needed for that. Yet another advantage of
our proof is that the solution of the equation of motion is



achieved by just finding enough constants of motion (of
geometric origin), whose integration is performed triv-
ially by the main theorem of calculus. The proofs by
Feynman and Newton in the next sections on the con-
trary rely at a crucial point on the existence and unique-
ness theorem for differential equations.

We proceed to derive Kepler’s third law along standard
lines [4]. The ellipse £ has numerical parameters (the
major axis equals 2a, the minor axis 2b and a? = b +c?)
a,b,c > 0 given by 2a = —k/H, 4c> = K?/m?H? =
(2mH L?4+m?2k?)/m?H?. The area of the region bounded
by & equals

mwab = LT /2m

with T the period of the orbit. Indeed L/2m is the area
of the sector swept out by the position vector r per unit
time. A straightforward calculation gives

T?/a® = 47*m k.

The mass m we have used so far is in fact equal to the re-
duced mass mM/(m+ M), with m the mass of the planet
and M the mass of the sun, and this almost equals m if
m < M. The coupling constant k is according to Newton
equal to GmM with G the universal gravitational con-
stant. We therefore see that Kepler’s (harmonic) third
law, stating that 72 /a® is the same for all planets, holds
only approximately for m < M.

It might be a stimulating question for the students to
adapt the arguments of this section to the case of fixed en-
ergy H > 0. Under this assumption the motion becomes
unbounded and traverses one branch of a hyperbola.

III. FEYNMAN’S PROOF OF KEPLER’S FIRST
LAW.

In this section we discuss a different geometric proof of
Kepler’s first law based on the hodograph H. By defini-
tion H is the curve traced out by the velocity vector v in
the Kepler problem. This proof goes back to Mobius in
1843 and Hamilton in 1845 [8] and has been forgotten and
rediscovered several times, among others by Feynman in
1964 in his "Lost Lecture” [7].

Let us assume (as in the picture of the previous sec-
tion) that sun/n = v with ¢ the counterclockwise rota-
tion around 0 over 7/2. So the orbit £ is assumed to be
traversed counterclockwise around the origin 0.

Theorem. The hodograph H is a circle with center ¢ =
1K/mL and radius k/L

Proof. We shall indicate two proofs of this theorem. The
first proof is analytic in nature, and uses conservation of
the Runge-Lenz vector K by rewriting

K=pxL—Fkmr/r=mvLln/n— kmr/r

vn/n =K/mL+ kr/rL

or equivalently
v =iK/mL +ikr/rL .

Hence the theorem follows from K = 0.

There is a different geometric proof of the theorem,
discussed by Feynman, which as a corollary gives the
conservation of the Runge-Lenz vector K. The key point
is to reparametrize the velocity vector v from time ¢ to
angle 6 of the position vector r. It turns out that the
vector v(0) is traversing the hodograph H with constant
speed k/L. Indeed we have from Newton’s laws

dv dt
ma— =

e T e

and Kepler’s second law gives

ke
r3 df

r2df/2 = Ldt/2m .
Combining these identities yields

dv
v _ I
7 kr/rL ,

so indeed v(0) travels along H with constant speed k/L.
Since r = re'? a direct integration yields

v(0) =c+ikr/rL,¢=0

and the hodograph becomes a circle with center ¢ and
radius k/L. Comparison with the last formula in the
first proof gives

c=iK/mL
and K = 0 comes out as a corollary. ]

All in all, the circular nature of the hodograph H is
more or less equivalent to the conservation of the Runge-
Lenz vector K.
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Now turn the hodograph H clockwise around 0 over
/2 and translate over ic = —K/mL. This gives a circle
D with center 0 and radius k/L. Since

kr/rL +K/mL =wvn/n = —iv

the orbit £ intersects the line through 0 and kr/rL in
a point with tangent line £ perpendicular to the line



through kr/rL and —K/mL. For example the ellipse
F with foci 0 and —K/mL and major axis equal to
k/L has this property, but any scalar multiple A\F with
A > 0 equally satisfies this property. Since curves with
the above property are uniquely charcterized once an ini-
tial point on the curve is chosen we conclude that £ = AF
for some A > 0. This proves Kepler’s first law. A com-
parison with the picture of the previous section shows
that & = AF with A = —L/H. Indeed & has foci 0 and
—AK/mL = K/mH = t and the major axis is equal to
Ak/L = —k/H = 2a.

It is not clear to us if Feynman was aware of his use
of the existence and uniqueness theorem for differential
equations. On page 164 of [7] the authors quote Feyn-
man: ” Therefore, the solution to the problem is an ellipse
- or the other way around, really, is what I proved: that
the ellipse is a possible solution to the problem. And it
is this solution. So the orbits are ellipses.”

Apparently Feynman had trouble following Newton’s
proof of Kepler’s first law. On page 111 of 7] the authors
write: ”In Feynman’s lecture, this is the point at which he
finds himself unable to follow Newton’s line of argument
any further, and so sets out to invent one of his own”.

IV. NEWTON’S PROOF OF KEPLER’S FIRST
LAW.

In this section we discuss the original proof by Newton
of Kepler’s first law as given in [1]. The proof starts with
a nice general result.

Theorem. Let £ be a smooth closed curve bounding a
convex region containing two points ¢ and d. Let r(t)
traverse the curve £ counterclockwise in time t, such that
the areal speed with respect to the point c is constant.
Likewise let r(s) traverse the curve £ counterclockwise in
time s, such that the areal speed with respect to the point
d is equal to the same constant.

Let L be the tangent line to £ at the point r, and let e
be the intersection point of the line M, which is parallel

to L through the point c, and the line through the points
r and d. Then the ratio of the two accelerations is given

by
d*r d?

ol sl = —ef (e —cl- e —df).
Proof. Using the chain rule we get
dr dr dt
s~ dt s

d’r  d’r (dt)2 dr d*t

ds2  dt?2 ‘ds dt ds?’
Because d?r/dt? is proportional to ¢ — r and likewise
d*r/ds? is proportional to d — r we see that

d’r,  d*r dt o d*vr dr d*t  dt.,  d°r
gz e = (G e T g a2/ ) el =
(S e el Je el

Since the curve & is traversed with equal areal speed
relative to the two points ¢ and d we get

dr dr
lir—el=|—|.-lr-d
el =2 -]

and therefore also
dt

= r—e|:|r—d|.
In turn this implies that
d*r  d’r dt
|@\ : |@| = (%)2'|1‘—e| r—c| =

which proves the theorem. ]

We shall apply this theorem in case £ is an ellipse
with center ¢ and focus d. Assume that r(t) traverses
the ellipse £ in harmonic motion, say

d?r

@:Cfr.



Let b be the other focus of £, and let f be the intersec-
tion point of the line N, passing through b and parallel
to £, with the line through the points d and r. Then we
find

d—el=le—f|, [f—r| = |b—r|

which in turn implies that |e —r| is equal to the half
major axis a of the ellipse £. We conclude from the
formula in the above theorem that the motion in time s
along an ellipse with constant areal speed with respect
to a focus is only possible in an attractive inverse square
force field. The converse statement that an inverse square
force field (for negative energy H) indeed yields ellipses
as orbits follows from existence and uniqueness theorems
for solutions of Newton’s equation F' = ma and the above
reasoning. This is Newton’s line of argument for proving
Kepler’s first law.

V. CONCLUSION.

There exist other proofs of Kepler’s law of ellipses from
a higher viewpoint. One such proof by Arnold uses com-
plex analysis, and is somewhat reminiscent to Newton’s
proof in Section 4 by comparing harmonic motion with
motion under an 1/r? force field [2]. Apparently Kasner
had discovered the same method already back in 1909 [9].
Another proof by Moser is also very elegant, and uses the
language of symplectic geometry and canonical transfor-

mations [10-12]. However our goal here has been to give
a proof which is as basic as possible, and at the same
time is well motivated in terms of Euclidean geometry.

It is hard to exaggerate the importance of the role of
the Principia Mathematica in the history of science. The
year 1687 marks the birth of both modern mathemati-
cal analysis and modern theoretical physics. As such the
derivation of the Kepler laws from Newton’s law of mo-
tion and law of universal gravitation is a rewarding sub-
ject to teach to freshmen students. In fact we were moti-
vated for our work, because we plan to teach this material
to high school students in their final grade. Of course,
the high school students first need to get acquainted with
the basics of vector geometry and vector calculus. But
once this is achieved there is nothing in the way of un-
derstanding our proof of Kepler’s law of ellipses.

For physics or mathematics freshmen students in the
university who are already familiar with vector calculus
our proof in Section 2 is fairly short and geometrically
well motivated. In our opinion of all proofs it qualifies
best to be discussed in a freshman course on mechanics.
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