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Preface

This thesis contains the results of my master research in Mathematics at the Radboud

University Nijmegen, which I did under the supervision of Prof. Gert Heckman. I

looked at several mathematical structures that underly the Kepler problem, which

models the motion of a particle in a 1
q
potential. Eventually, I focussed on the theory

that has to do with the regularization and quantization of the Kepler problem, and

in particular on the relation with spherical and hyperbolic geometry, which I chose as

the main topic of this text.

The aim is to describe and unify two regularizations of the classical Kepler problem

by looking at the structure of the energy surfaces and the phase space, and to discuss

the quantum analogue of one of them. Heuristically speaking, in this text the method

of exhibiting the mathematical structure of the Kepler problem comes down to inter-

changing the position and momentum coordinates and to map the resulting system to

a Riemannian manifold with constant curvature.

The text aims to point out the analogies between the bounded motions and the

unbounded ones. I try to give a conceptual overview, and do not present all lengthy

calculations. In the literature, often only bounded motions are considered. It is well-

known that in this case many results have to do with spherical geometry. It is less

known that analogous results are often true for the second case, but now in the setting

of hyperbolic geometry. In this text, I aim to emphasize the similarity between the two

cases. I will not prove every result twice, but I will briefly explain the similarities and

the differences between them. Where possible, we consider the d-dimensional Kepler

problem, rather than specifying the dimension. The physical motivation, however,

comes from the three-dimensional Kepler problem, although other dimensions have

turned out to be important in theoretical physics as well.

The first chapter contains a physical, i.e. mathematically non-rigorous, introduction

to the Kepler problem, and is written as a motivation for the rest of this text. The

following two chapters contain some mathematical preliminaries, namely symplectic

geometry, which is necessary to understand the geometry of the classical Kepler prob-

lem; and the geometry of spheres and hyperboloids, which is needed for both the

classical and the quantum Kepler problem. If the reader is acquainted with one or

more of these subjects, he can skip the corresponding section(s).

After the mathematical preliminaries, the geometry of the classical Kepler problem

is discussed. First, Kepler’s laws are derived for the d-dimensional problem. Then we

discuss and generalize the result by Moser, which relates Kepler orbits to geodesics.

In particular, this method regularizes the energy surfaces. Subsequently, we discuss

the Ligon-Schaaf regularization map, which regularizes the phase space of the Kepler

problem at once, without distinguishing between the energy surfaces. At the end, we

discuss the relation between the two regularizations.

Then the quantization of the Kepler Hamiltonian is discussed. The Hamilton op-
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erator that arises naturally is not essentially self-adjoint, so there is no unique time-

evolution of the quantum system. In fact, choosing a particular self-adjoint extension,

is equivalent to fixing some unitary time-evolution. After giving some basic results

about self-adjoint extensions, we discuss the possible self-adjoint extensions of the

quantum Kepler Hamiltonian, distinguishing the dimensionality of the problem, and

describe the choice usually made in the literature.

In the last part of this text, we discuss the quantum Kepler problem. First we treat

the oldest derivation of the spectrum of the hydrogen atom by Pauli. He did this by

looking at the hidden symmetries of the Kepler problem. We describe these in the

language of Lie algebras and their representations. Then we discuss Fock’s method,

which is the quantum analogue of Moser’s work. We also discuss at which point the

choice of the self-adjoint extension of the quantum Kepler Hamiltonian is made. We

end with pointing out the relation between Pauli’s and Fock’s approaches.

This text is not intended to prove new mathematical results. However, there are

some additions to the literature, in particular connections between different approaches.

For example, the explicit proof of the Moser regularization for positive energies has

not been discussed in the literature so far. However, this result was suggested before

and merely consists of transforming the spherical arguments to the hyperbolic setting.

The relation between the Moser map and the Ligon-Schaaf map that is given in this

text is new. However, I think that still more can be said about it. Finally, the discus-

sion in which way Fock’s method contains a choice of the self-adjoint extension of the

Hamiltonian is an expected result, but I did not find this anywhere else.

I assume that the reader has at least the level of a master student in mathemat-

ics or mathematical physics. Therefore, I only give the more specific preliminaries as

described above. Strictly speaking, no physics knowledge is needed. However, it is

convenient to know something about classical and quantum mechanics.

I will consider d-dimensional spaces rather than spaces of a specific dimension. The

set of natural numbers N is the set {1, 2, 3, 4, . . .}. I will write N0 for the set N ∪ {0}.
Manifolds are considered to be real and smooth. All Hilbert spaces are assumed to

be complex, and all operators are linear and defined on a dense domain that is not

necessarily the whole Hilbert space.

Vectors in and three-dimensional spaces are denoted in boldface. In this case, its

length is denoted by q. In (arbitrary) d-dimensional spaces, the notation of vectors

does not differ from the notation of scalars. The context should clarify if a quantity

is a vector or a scalar. If it is convenient, we may denote a vector by its components.

The length of a vector a is denoted by ‖a‖.

Tim de Laat, Nijmegen, 11th August 2010



Contents

1 The Kepler problem 7

2 Symplectic geometry 13

2.1 Symplectic manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Hamiltonian formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Moment maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Contangent bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Spheres and hyperboloids 23

3.1 Pseudo-orthogonal groups . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Riemannnian manifolds of constant curvature . . . . . . . . . . . . . . . 24

3.3 Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Hyperboloid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Stereographic projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Representation theory of o(d, 1) . . . . . . . . . . . . . . . . . . . . . . . 29

4 The Classical Kepler Problem 31

4.1 Kepler’s laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Incomplete Kepler orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Kepler orbits and geodesics on manifolds . . . . . . . . . . . . . . . . . . 40

4.3.1 Negative energies . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.2 Positive energies . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 The Delaunay Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 The Ligon-Schaaf map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 From Moser to Ligon-Schaaf . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 The symmetry group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Quantization of the Kepler Hamiltonian 55

5.1 Quantization procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Schrödinger quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Self-adjointness and quantum mechanics . . . . . . . . . . . . . . . . . . 57

5.4 Self-adjoint extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.1 Spherical symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 58

5



6 CONTENTS

5.4.2 Deficiency indices . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.3 Limit point-limit circle . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4.4 Von Neumann theory . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.5 Boundary forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 The quantum Kepler Hamiltonian . . . . . . . . . . . . . . . . . . . . . 62

5.6 Self-adjoint extensions of the Kepler Hamiltonian . . . . . . . . . . . . . 63

5.6.1 Dimension d ≥ 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.6.2 Dimension d = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6.3 Dimension d = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.6.4 Dimension d = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.7 Completeness of the quantum Kepler problem . . . . . . . . . . . . . . . 70

6 Quantum Kepler problem 73

6.1 Spectrum obtained by Lie algebra representations . . . . . . . . . . . . . 73

6.1.1 Natural degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1.2 Negative Energies . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1.3 Positive Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Spaces of constant curvature . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.1 Negative Energies . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.2 Positive Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 From Pauli to Fock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Outlook 87



Chapter 1

The Kepler problem

The classical Kepler problem is to determine the trajectories of two particles in-

teracting by a central force proportional to the inverse square of the distance between

them. The quantum Kepler problem is to determine the wave functions of two

particles interacting by such a force.1 The explicit form of the force is given by:

F = − k

q3
q, (1.1)

where k is some real constant, called the coupling constant. If k > 0, then the force

is attractive. If k < 0, it is repulsive. In our treatment we assume that all quantities

are dimensionless.

The Kepler problem has a very long history. The earliest and most motivating example

of two bodies interacting with a force of the form of equation (1.1), is a planet moving

around the sun, neglecting the interactions with other planets. There have been many

attempts to describe the trajectories of planets, which we do not discuss. For our

purposes, the modern treatment of the problem started at the end of the 16th century.

At his observatory, the astronomer Tycho Brahe (1546-1601) collected a large set of

very accurate data of the positions of the planets in our solar system at different times.

Johannes Kepler (1571-1630) used these data for his description of planetary motion,

which culminated in his three laws:

1. the orbit of every planet is an ellipse with the sun at one of its foci (1605);

2. the line connecting the sun and a planet sweeps out equal areas in equal intervals

of time (1602);

3. the square of the period of a planet is proportional to the cube of the semi-major

axis of its orbit (1619).

1The difference between the definitions of both problems is remarkable. In the classical case, we look

for time-dependent trajectories, but in the quantum case, we will eventually look for eigenfunctions of

the time-independent Schrödinger equation.

7
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It is an interesting fact that Kepler derived these laws using only Brahe’s data, rather

than any theoretical framework about mechanics, which had not yet been invented at

that time.

In 1687, the brilliant Isaac Newton published his Philosophiae Naturalis Principia

Mathematica, in which he lays the groundwork of classical mechanics. In this book, he

states his three laws of motion and his law of universal gravitation.

The laws of motion are as follows:

1. in the absence of a force, a body is either at rest or moves along a straight line

with constant velocity;

2. a body subdued to a force F experiences an acceleration a determined by the

formula F = ma, where m is the mass of the body;

3. if a first body exerts a force F on a second one, then the second body exerts a

force −F on the first one.

The law of universal gravitation says that all bodies attract each other. A mass mA

exerts a force FAB on another mass mB given by:

FAB = −GmAmB

q3AB

qAB,

where qAB is the distance vector qB−qA between mA and mB pointing towards mB.

G is a proportionality constant, called the universal constant of gravitation. Note that

this force is of the form of equation (1.1).

One of the many important results in Newton’s book is the derivation of Kepler’s laws

from Newton’s laws, which was an extraordinary achievement at that time. Although

he invented differential and integral calculus partly with the purpose of describing

mechanical systems, in his book Newton obtained most results by means of geometric

reasoning.

Another realization of the Kepler problem is given by two charged particles inter-

acting by the Coulomb force, which is given by the following formula:

FAB =
1

4πε0

QAQB

q3AB

qAB, (1.2)

where QA and QB are the charges of the particles, qAB is defined as above for the

gravitational force and ε0 is the electric constant. This force is either attractive (if the

charges have different signs) or repulsive (if the charges have equal signs). In the first

case, the force is essentially the same as the gravitational force.

The general form of the force in the Kepler problem is given by equation (1.1). By

Newton’s second law, a force implies an acceleration, because F equals ma = mq̈.

Therefore, solving the Kepler problem means solving the following two differential
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equations with specified initial conditions:

mAq̈A = − k

q3BA

qBA,

mBq̈B = − k

q3AB

qAB.

If we define the center of mass z and the reduced mass µ as follows:

z =
mAqA +mBqB

mA +mB
,

µ =
mAmB

mA +mB
,

then the system decouples to the following system of differential equations:

z̈ = 0,

µq̈ = − k

q3
q,

(1.3)

where q = qB−qA. Together, equations (1.3) are called the reduced Kepler prob-

lem. From the first equation we conclude that center of mass moves along a straight

line with constant velocity. For solving the second equation it is convenient to use the

Hamiltonian formalism. For a thorough introduction to this formalism, cf. [1, 2]. We

only give a brief introduction to its underlying mathematical framework, symplectic

geometry, in Chapter 2. An important advantage of Hamiltonian dynamics is that it

depends largely on scalar-valued quantities, such as the Hamiltonian H, rather than

on vector-valued ones. The value of H corresponds to the value of the energy. The

Hamiltonian of the reduced Kepler problem is as follows:

H =
p2

2µ
− k

q
,

where p denotes the momentum of the particle. Physically, this Hamiltonian is the

energy of a particle in a 1
q
potential. It turns out that there are three essentially

different types of trajectories that solve the second equation, corresponding to the

situations H < 0, H > 0 and H = 0. We will briefly describe these situations now and

will come back to these in Chapter 4.

• H < 0: In this case, k > 0. The particle follows an ellipse with the origin, which

is the center of mass of the two particles, at one of the foci of the ellipse.

• H > 0: In this case, k can be positive as well as negative and hence the force

can either be attractive or repulsive. The particle moves along a component of

an hyperbola. If k > 0, then the trajectory is along the component closest to the

center of mass. If k < 0, then the trajectory is along the other component.
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• H = 0: In this case, k ≥ 0. If k = 0, then the particle is free and hence moves

along a straight line with constant velocity. If k > 0, the particle moves along a

parabola with the origin at its focus.

It should be pointed out that for a given system we have a given value of k, which

can be either positive, negative, or zero. The possible signs of the Hamiltonian follow

from this, and we should distinguish these cases. However, we presented the possible

forms of the trajectories by distuinguishing in the sign of H, because this determines

the nature of the orbits. The case of planets orbiting the sun, as originally studied by

Newton, corresponds to the case H < 0.

Another advantage of the Hamiltonian formalism is that the reduced Kepler problem

can be generalized to d dimensions in a straightforward way. Two masses mA and mB

interact by a central force F (q) = F (‖q‖) q
‖q‖ , which is explicitly given by

F (q) = − k

‖q‖3 q

with k ∈ R. Recall that our notation of a vector in d dimensions is different from the

three-dimensional case.

After defining the center of mass z and the reduced mass µ in the same way as

above, we obtain a decoupled system of equations given by:

z̈ = 0,

µq̈ = − k

‖q‖3 q,
(1.4)

where q = qB − qA. This is the same system as given by equations (1.3), but with

the three-dimensional vectors replaced by their d-dimensional analogues. Again, we

conclude that the center of mass moves along a straight line with constant velocity.

In the rest of this text, we are only concerned with the second equation of the set

of equations (1.4). We will simply call this the Kepler problem rather than the

d-dimensional reduced Kepler problem.

There are several methods, which even go back to Kepler and Newton, that give

explicit methods of determining the trajectory of the particle. Obviously, to obtain

a unique solution one needs to specify certain conditions, such as the initial values of

position and momentum.

The force F is conservative, so it can be written as −∇V , where V is a (scalar)

potential. Obviously, V = − k
‖q‖ . Hence, the Hamiltonian H of the n-dimensional

Kepler problem is given by:

H =
‖p‖2
2µ

− k

‖q‖ . (1.5)

So far, we only introduced the classical Kepler problem. It has a quantum analogue,

in the sense that there are quantum systems that are described by the Schrödinger

equation with a Kepler Hamiltonian. Physically, an example of such a quantum system
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is the hydrogen atom. In this system, the particles interact by an attractive Coulomb

force, as given in equation (1.2). This example even generalizes to scattering states,

since this force may also be repulsive, namely in the case of charges with the same

sign.

A more detailed approach to the quantum Kepler problem is given in this text

at the time we need it. However, a more specific definition of the quantum Kepler

problem is needed than was given at the beginning of this chapter. We say that

the quantum Kepler problem consists of solving the Schrödinger equation for the

quantum Kepler Hamiltonian. In this text, we will not give a complete solution to the

quantum Kepler problem, since this is extensively done in the literature, and requires a

lot of technicalities and lengthy calculations. We will, however, describe the quantum

analogue of our classical treatment and say something about its geometry.



12 CHAPTER 1. THE KEPLER PROBLEM



Chapter 2

Symplectic geometry

Symplectic geometry is the branch of differential geometry that deals with symplectic

manifolds, i.e. manifolds equipped with a closed, non-degenerate, smooth two-form.

Mathematicians were inspired to study such manifolds by the theory of Hamiltonian

dynamics. Indeed, one of the motivating examples of a symplectic manifold is the

cotangent bundle, which has a local chart given by the canonical coordinates qi and pi
from mechanics.

We only state some basic facts and results about symplectic geometry. For a good

introduction to the subject, cf. [6]. There one can also find the proofs we omit.

2.1 Symplectic manifolds

Definition 2.1.1. A symplectic manifold is a pair (M,ω) such that M is a C∞

manifold with a closed, nondegenerate smooth two-form ω, called the symplectic

form, defined on it, i.e. ω is a C∞ map that assigns to every p ∈ M a nondegenerate

anti-symmetric bilinear form ωp on TpM and dω = 0.

The following proposition is a consequence of the nondegeneracy of a symplectic

form.

Proposition 2.1.2. Symplectic manifolds are even-dimensional.

Remark 2.1.3. A symplectic manifold is called a symplectic vector space if the un-

derlying manifold has the structure of a vector space. In this case, the symplectic form

is just a nondegenerate, anti-symmetric bilinear form.

Example 2.1.4. A straightforward but very important example of a symplectic vector

space, and hence also of a symplectic manifold, is (R2n, ω0) with canonical base e1 =

(1, 0, . . . , 0), . . . , en, f1, . . . , fn = (0, . . . , 0, 1), i.e.

ω(ei, ej) = ω(fi, fj) = 0,

ω(ei, fj) = δij .

13
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We can explicitly write the symplectic form as:

ω0 =

n
∑

i=1

e∗i ∧ f∗i =:

n
∑

i=1

dxi ∧ dyi,

where e∗i and f∗i denote the dual vectors of ei and fi respectively.

Definition 2.1.5. A symplectomorphism is a diffeomorphism φ from a symplectic

manifold (M,ω) to another symplectic manifold (M ′, ω′) such that φ∗ω′ = ω, i.e. for

all p ∈ M we have (φ∗ω′)p = ωp, where (φ∗ω′)p(u, v) = (ω′)φ(p)(dφp(u), dφp(v)) for

u, v ∈ TpM .

Remark 2.1.6. Later in this text, we sometimes construct maps between symplectic

manifolds that are not symplectomorphisms, but respect the symplectic structure in a

weaker way. We describe this when we use it.

There is no global classification of symplectic manifolds. There is, however, a clas-

sification theorem for symplectic vector spaces and a local classification theorem for

symplectic manifolds.

Theorem 2.1.7. Let (V, ω) be a symplectic vector space. Then (V, ω) is symplecto-

morphic to (R2n, ω0) for some n ∈ N.

Theorem 2.1.8 (Darboux-Weinstein). Two symplectic manifolds are locally symplec-

tomorphic if and only if they have the same dimension.

We will discuss an example of a symplectic manifold other than a symplectic vector

space at the end of this chapter. It will turn out to be very important for the rest of

this text.

2.2 Hamiltonian formalism

Let (M,ω) be a symplectic manifold of dimension 2n. Recall Cartan’s formula for the

Lie derivative L of a smooth p-form α on a manifold M :

LXα = ιXdα+ d(ιXα), (2.1)

where X is a vector field on M , ι is the interior product of X and α, and d is the

exterior derivative.

Definition 2.2.1. A vector field X on M is called a symplectic vector field if

LXω = 0.

Proposition 2.2.2. Let X be a vector field on a symplectic manifold (M,ω). Then

the following are equivalent:

1. X is symplectic;
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2. ιXω is closed, i.e. d(ιXω) = 0;

3. ιXω = df locally for some f ∈ C∞(M), i.e. for all x ∈M there is an open set U

with x ∈ U and a smooth f :M −→ R such that ιXω = df in U .

Proof. Suppose X is symplectic. Then 0 = LXω = ιXdω + d(ιXω). Since ω is closed,

we have d(ιXω) = 0.

Suppose ιXω is closed. By Poincaré’s Lemma1, closed forms on smooth manifolds

are locally exact, so there is an f ∈ C∞(M) such that ιXω = df locally.

It is sufficient to check the last implication in local charts. Let U be some chart.

We have ιXω = df in U . Then LXω = ιXdω + d(ιXω) = 0 in U , because ω is closed,

ιXω = df and d2f = 0.

We have just considered vector fields X with some special property, namely that

ιXω is closed. We now consider what happens if they are exact. This is a stronger

condition, since the third equivalence of the property then holds globally.

Proposition 2.2.3. If H ∈ C∞(M), then there is a unique vector field XH such that

ιXH
ω = dH.

Proof. Existence follows from the fact that at each point x ∈ M there is a map from

TxM to T ∗
xM given by ξ 7→ ω(ξ, .) This is an isomorphism by nondegeneracy of ω.

To each one-form dH we can assign the image XH under the inverse isomorphism.

Uniqueness also follows, because ω is nondegenerate.

Definition 2.2.4. A vector field X such that ιXω = dH for some H ∈ C∞(M),

i.e. ιXω is exact, is called aHamiltonian vector field andH the associatedHamilto-

nian. We denote byXH the Hamiltonian vector field corresponding to the Hamiltonian

H.

Remark 2.2.5. There is a linear map C∞(M) −→ Ham(M), where Ham(M) denotes

the set of Hamiltonian vector fields on M , given by H 7→ XH . This map is surjective

by definition of Ham(M).

Proposition 2.2.6. If X and Y are symplectic vector fields on M , then [X,Y ] is a

Hamiltonian vector field with Hamiltonian function ω(Y,X).

Proof. Using ι[X,Y ] = [LX , ιY ] and Cartan’s formula, which is given in equation (2.1),

we obtain:

ι[X,Y ] = ιXdιY ω + dιX ιY ω − ιY ιXdω − ιY dιXω = d(ω(Y,X)).

This proves the claim.

1Poincaré’s Lemma says that on a contractible manifold, all closed forms are exact. Differentiable

manifolds are locally contractible, so we can use this Lemma locally. For a proof of Poincaré’s Lemma

in the local case, cf. [1, Theorem 2.4.17].
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Remark 2.2.7. The symplectic vector fields and the Hamiltonian vector fields form

Lie-subalgebras of the Lie-algebra of vector fields.

Definition 2.2.8. For f, g ∈ C∞(M), we define their Poisson bracket by {f, g} :=

ω(Xf ,Xg).

Remark 2.2.9. It follows that

{f, g} = ω(Xf ,Xg) = ιXg ιXf
ω = ιXgdf = Xg(f) = LXgf = −LXf

g.

Proposition 2.2.10. A function f ∈ C∞(M) is constant along the integral curves of

XH for some H ∈ C∞(M) if and only if

{H, f} = 0.

Proof. If ρt denotes the flow of XH , then (f ◦ ρt) denotes the value of f along integral

curves. We have:

d

dt
(f ◦ ρt) = ρ∗tLXH

f = ρ∗tω(Xf ,XH) = ρ∗t{f,H},

where ρ∗t denotes the pullback of the flow. From this, the result follows.

Remark 2.2.11. A function f that is constant along integral curves of XH is called

an integral of motion with respect to H.

Proposition 2.2.12. Let XH be a complete Hamiltonian vector field and let ρt :M −→
M for t ∈ R be its flow. Each diffeomorphism ρt is a symplectomorphism.

Proof.
d

dt
ρ∗tω = ρ∗tLXH

ω = ρ∗t (dιXH
ω + ιXH

dω) = 0.

Remark 2.2.13. In this way, every smooth function on M produces a family of

symplectomorphisms by the flow of its Hamiltonian vector field.

The next result follows from Proposition 2.2.6.

Proposition 2.2.14. {., .} is a Lie bracket. Moreover, it satisfies the Leibniz rule:

{f, gh} = {f, g}h + g{f, h},

for all f, g, h ∈ C∞(M).

Proof. Bilinearity of {., .} follows from the bilinearity of ω and the linearity of the map

H 7→ XH described earlier. The other properties follow from elementary calculations.
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Definition 2.2.15. An abstract Poisson bracket on a commutative algebra A is a

Lie bracket on A satisfying the Leibniz rule. A commutative algebra with a Poisson

bracket defined on it is called a Poisson algebra.

If (M,ω) is a symplectic manifold, then (C∞(M), {., .}) is a Poisson algebra. The

following example gives an explicit formula for the Poisson bracket in canonical co-

ordinates.

Example 2.2.16. On (R2n, ω0), where ω0 =
∑n

i=1 dxi ∧ dyi, we have:

ι ∂
∂yi

ω = −dxi,

ι ∂
∂xi

ω = dyi.

The following equations hold for the Poisson bracket:

{xi, xj} = {yi, yj} = 0,

{xi, yj} = δij ,

for 1 ≤ i, j ≤ n. For H ∈ C∞(M) we have:

dH =

n
∑

i=1

(
∂H

∂xi
dxi +

∂H

∂yi
dyi) = ιXH

ω.

This implies:

XH =
n
∑

i=1

(
∂H

∂yi

∂

∂xi
− ∂H

∂xi

∂

∂yi
).

The Poisson bracket of f and g then becomes:

{f, g} = ω(Xf ,Xg) =

n
∑

i=1

(
∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi
).

A curve ρ(t) = (x1(t), . . . , xn(t), y1(t), . . . , yn(t)) is an integral curve of the Hamiltonian

vector field XH with Hamiltonian H if and only if:

ẋi = XH(xi) =
∂H

∂yi
,

ẏi = XH(yi) = −∂H
∂xi

,

for 1 ≤ i ≤ n. These equations are known as theHamilton equations. The Hamilton

equations are always satisfied locally for an integral curve of XH .

Remark 2.2.17. The Hamilton equations are used extensively in physics for solving

problems in classical mechanics. They provide a way of calculating the trajectories of

a particle in local coordinates.
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Definition 2.2.18. A Hamiltonian system is a manifoldM with a symplectic form

ω and a Hamiltonian H ∈ C∞(M). The system is denoted by (M,ω,H).

Definition 2.2.19. The 2n-dimensional Hamiltonian systrem (M,ω,H) is called com-

pletely integrable or integrable if there are integrals of motion f1 = H, f2, . . . , fn ∈
C∞(M) such that:

1. f1, . . . , fn are in involution, i.e. {fi, fj} = 0 for 1 ≤ i, j ≤ n.

2. f1, . . . , fn are independent in the sense that (df1)p, . . . , (dfn)p are linearly inde-

pendent at all points p ∈ D ⊂M for some dense set D in M .

Remark 2.2.20. Every two-dimensional Hamiltonian system is trivially integrable

with f1 = H. Without proof we mention that every Hamiltonian system is locally

integrable on some neighbourhood around a point p if H(p) 6= 0. The physical import-

ance of integrability is the existence of globally conserved quantities.

2.3 Moment maps

Let G be a Lie group and g its Lie algebra. In order to define moment maps, we first

recall the definition of a Lie group action in order to fix some notation, and we treat

some important examples.

Definition 2.3.1. A (left) Lie group action of G on a manifold M is a group

homomorphism φ : G −→ Diff(M), such that the map G×M −→M, (g,m) 7→ φ(g)(m)

is smooth. A manifold M with an action of G, is called a G-manifold.

We will sometimes write φg for φ(g).

Remark 2.3.2. Analogously, we define a right action as an anti-homomorphism. If

we just say action, we mean a left action.

Definition 2.3.3. An action is called transitive if it has only one orbit.

Example 2.3.4. A Lie group G acts on itself in the following ways:

Lg : G −→ G, Lg(h) = gh,

Rg : G −→ G, Rg(h) = hg−1,

Ad(g) : G −→ G, Ad(g)(h) = ghg−1.

It follows that Ad(g) = LgRg. We call L and R the left and right action of G on itself

respectively. Ad is called the adjoint action.

Remark 2.3.5. Ad induces an action on g, by abuse of notation also denoted by

Ad (cf. [18]). Ad(g)(X) is the infinitesimal generator of the one-parameter group

g(exp tX)g−1.
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Definition 2.3.6. The adjoint representation ad of a Lie algebra g on itself is

defined by ad(X)(Y ) = [X,Y ].

Remark 2.3.7. This representation is the Lie algebra representation induced by Ad.

This representation makes sense in a merely algebraic setting as well [17].

Definition 2.3.8. The coadjoint action Ad∗ of G on g∗ is defined by:

〈Ad∗(g)η, Y 〉 = 〈η,Ad(g−1)Y 〉,

where 〈., .〉 denotes the usual pairing of g with its dual. Its infinitesimal analogue ad∗,
the coadjoint action of g on g∗ is given by:

〈ad∗(X)η, Y 〉 = 〈η, ad(−X)Y 〉 = −〈η, [X,Y ]〉.

Remark 2.3.9. Note that ωη(X,Y ) := −〈η, [X,Y ]〉 with η ∈ g∗ defines an antisym-

metric bilinear form on g.

Let now (M,ω) be a symplectic manifold, G be a Lie group and g its Lie algebra.

g∗ denotes the dual vector space of g.

Definition 2.3.10. A (Lie group) action φ : G −→ Diff(M), g 7→ φg is called a

symplectic action if each φg is a symplectomorphism, i.e. if φ : G −→ Sympl(M,ω) ⊂
Diff(M).

Definition 2.3.11. A symplectic action φ : G −→ Sympl(M) is called a Hamiltonian

action if there exists a map µ : M −→ g∗ such that for all functions µX ∈ C∞(M)

given by µX(x) = 〈µ(x),X〉 with X ∈ g:

1. for each X ∈ g we have dµX = ιX♯ω, i.e. µX is a Hamiltonian function for the vec-

tor field X♯, where X♯ is the infinitesimal generator of the action corresponding

to the one-parameter subgroup corresponding to X;

2. the map µ is equivariant with respect to φ and the coadjoint action: µ ◦ φg =

Ad∗g ◦ µ for all g ∈ G.

(M,ω,G, µ) is called a Hamiltonian G-space and µ is called a moment map.

Remark 2.3.12. The name moment map was used by French mathematicians and is

chosen because it is a generalization of linear and angular momentum.

Remark 2.3.13. A moment map is unique up to addition of an element of g∗ that

does not transform under Ad∗.

Example 2.3.14. The moment map on (R6N , ω0), which is the phase space of N

particles, with respect to the usual action of G = R
3
⋊ O(3), the Euclidean motion

group, on R
3, is given by

µ(q, p) =
N
∑

i=1

(pi,qi × pi),

where qi and pi denote the position and the momentum of the ith particle respectively.
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Definition 2.3.15. An integral of motion of a Hamiltonian G-space (M,ω,G, µ) is

a G-invariant function f ∈ C∞(M). If µ is constant along the integral curves of Hf ,

the flow {exp tHf | t ∈ R} is called a symmetry of (M,ω,G, µ).

Theorem 2.3.16 (Noether). If (M,ω,G, µ) is a Hamiltonian G-space with G connec-

ted and f is an integral of motion, then the flow of the corresponding Hamiltonian

vector field Xf is a symmetry. Conversely, if the flow of some Hamiltonian vector

field Xf is a symmetry, then its corresponding Hamiltonian function f is an integral

of motion with respect to the G-action.

2.4 Contangent bundles

The cotangent bundle of a manifold was historically one of the motivating examples

for the study of symplectic manifolds. Let M be an n-dimensional manifold and let

(U, x1, . . . , xn) be a local chart. Then the differentials (dxi)x form a basis of T ∗
xM . For

y ∈ T ∗
xM , write y =

∑n
i=1 yi(dxi)x. In this way, (T ∗U, x1, . . . , xn, y1, . . . , yn) is a local

chart of T ∗M , so T ∗M becomes a 2n-dimensional manifold.

Let π : T ∗M −→M be the natural projection. In coordinates, it is given by π(x, y) =

x, where x ∈ M and y ∈ T ∗
xM . This induces a one-form α on T ∗M by α(x,y) =

(dπ(x,y))
∗y = y ◦dπ(x,y), called the canonical one-form on T ∗M . In local coordinates

(T ∗U, x1, . . . , xn, y1, . . . , yn), we have:

α =
n
∑

i=1

yidxi.

We now define the canonical symplectic form on T ∗M by ω = −dα. In local

coordinates we have:

ω = −d(
n
∑

i=1

yidxi) =

n
∑

i=1

dxi ∧ dyi.

This two-form is nondegenerate. It is closed, because dω = −d2α = 0.

We now consider diffeomorphisms of manifolds and describe how they induce sym-

plectomorphisms of their cotangent bundles in a natural way.

Definition 2.4.1. Let φ :M −→ N be a diffeomorphism of manifolds. Let αM and αN

be the canonical one-forms on their cotangent bundles. The lift φ♯ : T
∗M −→ T ∗N of

φ is a diffeomorphism defined as follows:

φ♯((x1, y1)) = (x2, y2),

where

x2 = φ(x1),

y1 = (dφx1
)∗y2.

Here, (dfx1
)∗ is the inverse of f♯|T ∗

x1
M .
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Proposition 2.4.2. φ♯ pulls back the canonical one-form αN to αM , i.e. (φ♯)
∗αN =

αM .

This result is proved by calculations.

Corollary 2.4.3. The lift φ♯ : T ∗M −→ T ∗N of a diffeomorphism φ : M −→ N is a

symplectomorphism, i.e. (φ♯)
∗ω2 = ω1.

Corollary 2.4.4. The group Diff(M) of diffeomorphisms of M can be mapped to the

group Sympl(T ∗M,ω) of symplectomorphisms of the cotangent bundle T ∗M of M by

φ 7→ φ♯. This map is an injective homomorphism of groups. It is not surjective.

From the following theorem, it follows that we can determine whether or not a

symplectomorphism of a cotangent bundle is the lift of a diffeomorphism.

Proposition 2.4.5. A symplectomorphism Φ : T ∗M −→ T ∗M is the lift of a diffeo-

morphism φ :M −→M if and only if Φ∗α = α, where α is the canonical one-form.
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Chapter 3

Spheres and hyperboloids

In this text, two spaces are of special importance: the sphere and the hyperboloid.

Before introducing these spaces, we first introduce the reader to a family of groups

that is of importance for the study of the symmetries of the Kepler problem, and that

is closely related to the geometry of the just mentioned spaces.

3.1 Pseudo-orthogonal groups

The orthogonal group O(n + 1) and the Lorentz group O(n, 1), acting naturally on

R
n+1, turn out to be very important in the study of the Kepler problem. We assume

that the reader is familiar with the orthogonal group and give some basic results about

the pseudo-orthogonal (Lie) groups O(p, q) and their Lie algebras o(p, q) below.

The family of Lorentz groups forms a special class of pseudo-orthogonal groups, namely

the class for which q = 1.

Consider the vector space R
p+q = R

p ⊕ R
q. Denote w = (x, y) ∈ R

p+q for x ∈ R
p

and y ∈ R
q. Without loss of generality, we assume that p ≥ q. Define an indefinite

inner product on R
p+q by:

〈w1, w2〉p,q = 〈x1, x2〉 − 〈y1, y2〉

where w1 = (x1, y2) and w2 = (x2, y2) and 〈., .〉 (by abuse of notation) denotes the

standard inner product. The “norm” ‖.‖p,q of a vector w = (x, y) in R
p+q induced by

〈., .〉p,q is defined by ‖w‖2p,q = ‖x‖2 − ‖y‖2, where ‖.‖ denotes the standard norm on

Euclidean space. The space (Rp+q, 〈., .〉p,q) is denoted by R
p,q.

The isometry group of Rp,q with respect to 〈., .〉p,q consists of all g ∈ GL(p + q,R)

such that for all w1, w2 ∈ R
p,q:

〈gw1, gw2〉p,q = 〈w1, w2〉p,q.

Since O(n) is the group of linear isometries of R
n with respect to 〈., .〉, the group

O(p)×O(q) becomes a subgroup of O(p, q). This subgroup stabilizes the decomposition

R
p+q = R

p ⊕ R
q. Since O(n) is a compact Lie group for all n ∈ N, also O(p) × O(q)

23
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is a compact subgroup of O(p, q). It is actually a maximal compact subgroup, which

plays an important role in the representation theory of Lie groups. However, we will

focus on the Lie algebras.

The Lie algebra o(p, q) of O(p, q) consists of the matrices X ∈ Mp+q(R) such that

X = ρ′(0) for some C∞ curve ρ : (−ε, ε) −→ O(p, q) such that ρ(0) = I. We obtain

o(p, q) = {X ∈Mp+q(R)|〈Xw1, w2〉p,q + 〈w1,Xw2〉p,q ∀w1, w2 ∈ R
p+q}.

It turns out that the elements of this Lie algebra are the (p+ q)× (p+ q)-matrices X

of the form

X =

(

A B

BT C

)

such that A = −AT ∈Mp(R), C = −CT ∈Mq(R) and B ∈Mp,q(R).

3.2 Riemannnian manifolds of constant curvature

We first recall the definition of a Riemannian manifold and some properties of such

manifolds.

Definition 3.2.1. Let M be a manifold of dimension n. A Riemannian metric on

M is a family of inner products gp on the tangent spaces TpM for p ∈M , which depends

smoothly on p, i.e. on a chart (U, x) we can write it as the form
∑n

i,j=1 gijdx
idxj for

every p ∈ U , where (gij(p)) is a positive-definite symmetric matrix for all p ∈ M and

gij : U −→ R is smooth. A manifold with a Riemannian metric defined on it is called a

Riemannian manifold.

Definition 3.2.2. A Levi-Civita connection ∇ on a Riemannian manifold (M,g)

is an affine connection that is metric-preserving, i.e. X(g(Y,Z)) = g(∇XY,Z) +

g(Y,∇XZ), and torsion-free, i.e. ∇XY −∇YX = [X,Y ] for all vector fields X,Y,Z.

Proposition 3.2.3. A Riemannian manifold has a unique Levi-Civita connection.

Recall that the best known way of describing the curvature of a Riemannian manifold

is by the Riemann curvature tensor.

Definition 3.2.4. The Riemann curvature tensor is the smooth tensor field R :

XM × XM × XM −→ XM given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

for all smooth vector fields X,Y,Z ∈ XM , the set of smooth vector fields on M , where

∇ is the Levi-Civita connection.

The Riemann curvature tensor describes the curvature of the manifold at all points.

There is another notion of curvature, which only depends on the choice of a two-

dimensional plane in the tangent space of a point. It is defined as a contraction of the

Riemann curvature tensor.
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Definition 3.2.5. Let σ be a two-dimensional subspace of TpM with basis u, v. The

sectional curvature of M along σ is given by

K(σ) = − g(R(u, v)u, v)

g(u, u)g(v, v) − g(u, v)2

Definition 3.2.6. A Riemannian manifold is called geodesically complete or com-

plete if every geodesic can be extended to a geodesic line, i.e. a geodesic with domain

R.

The sphere and the hyperboloid have an intrinsic geometric definition. For each

n ∈ N and k ∈ R it is possible to define a simply connected n-dimensional complete

Riemannian manifold M of constant sectional curvature k. For a proof of this fact,

cf. [20, Theorem V.3.1]. Let n be given. We distinguish three cases:

1. For k > 0, the manifold M is called elliptic.

2. For k < 0, the manifold M is called hyperbolic.

3. For k = 0, the manifold M is called flat.

For our purposes, it is useful and sufficient to have an explicit geometric realization of

these three possibilities. A realization of the n-dimensional flat Riemannian manifold

is given by the n-dimensional Euclidean space. The n-dimensional elliptic Riemannian

manifold of sectional curvature k can be described by the n-sphere of radius k
1

2 . For

each hyperbolic space there is an n-hyperboloid isometric to it. Because we consider

spaces up to diffeomorphism, we may restrict ourselves to a realization of Rieman-

nian manifolds of constant sectional curvature of each of the following three sectional

curvatures: k = 0 (Euclidean space), k = 1 (unit sphere), k = −1 (unit hyperbol-

oid). We assume that the n-Euclidean space is well-known to the reader. In the next

sections, we introduce the unit sphere and the unit hyperboloid and describe some of

their important properties. For more information about these manifolds, cf. [20, Sec-

tion V.3] and [30]. In the rest of this text, we use the geometric realizations described

below rather than the abstract definition.

3.3 Sphere

The unit n-sphere Sn, or sphere for short, consists of the points in R
n+1 of modulus

1 with respect to the Euclidean norm. We thus have

Sn = {x ∈ R
n+1 | ‖x‖ = 1}.

The Euclidean distance between points on the sphere is not intrinsic to the sphere. An

intrinsic notion of distance on the sphere is given by arclength. After embedding in

Euclidean space, this spherical metric is given by

dS(x, y) = θ(x, y) = arccos

( 〈x, y〉
‖x‖‖y‖

)

,
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which corresponds to the Euclidean angle between the points x and y defined via the

standard inner product on R
n+1. The spherical metric and the Euclidean metric define

the same topology on the sphere. The following theorem classifies the geodesic curves

Sn.

Proposition 3.3.1. Let ξ : [a, b] −→ Sn be a curve such that b − a < π. Then the

following statements are equivalent:

1. ξ is a geodesic curve parametrized by arc length s with respect to the spherical

metric.

2. There are orthogonal vectors x, y ∈ Sn such that ξ(s) = cos(s−a)x+sin(s−a)y.

3. The curve ξ(s) satisfies ξ′′ + ξ = 0 in R
n+1.

For a proof, cf. [30], Theorem 2.1.4.

We say that the intersection of Sn with a two-dimensional linear subspace of Rn+1

is a great circle of Sn. A consequence of Proposition 3.3.1 is that the geodesic

lines1 on Sn correspond to its great circles, in the sense that every geodesic curve can

be extended to a great circle. This also explains why dS corresponds to the notion of

geodesic distance between two points on the sphere, because three points are spherically

collinear, i.e. collinear with respect to dS if they all lie on the same great circle.

Another important result we need, has to do with the symmetry of the sphere.

Recall that an isometry from a metric space (X, dX) to a metric space (Y, dY ) is a

continuous bijection that preserves the distance, i.e. φ is an isometry if and only if

dY (φ(x), φ(y)) = dX(x, y) for all x, y ∈ X. The set of isometries of a metric space to

itself form a group with respect to composition. This group is called the isometry

group.

Proposition 3.3.2. The isometry group of the sphere Sn is isomorphic to the ortho-

gonal group O(n+ 1).

For a proof, cf. [30, Theorem 2.1.3]. In this way, O(n+ 1) defines a very important

symmetry group of Sn.

3.4 Hyperboloid

The hyperboloid is, like the sphere, defined as the level set of a “norm” on R
n+1, but

not of the Euclidean norm. The hyperboloid is embedded in the space R
n,1, which

was described at the start of this chapter. Its underlying space is Rn+1 and it has the

following indefinite inner product:

〈x, y〉L = x1y1 + . . .+ xnyn − xn+1yn+1.

1A geodesic line is a geodesic curve with domain R.
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R
n,1 is called the Lorentzian (n+1)-space and 〈., .〉L is called the Lorentzian inner

product.

The Lorentzian inner product defines a “norm”, the Lorentzian norm, in the

following way:

‖x‖2L = 〈x, x〉L.
In Lorentzian spaces there is a certain asymmetry between the different coordinates.

Therefore, it makes sense to define some properties that vectors may or may not have.

First we define another space.

Definition 3.4.1. The light cone Cn consists of the points in R
n,1 \ {0} of modulus

0 with respect to the Lorentzian norm. We thus have:

Cn = {x ∈ R
n,1 \ {0} | ‖x‖L = 0}.

Remark 3.4.2. The name light cone is chosen, because in Einstein’s special theory of

relativity, which is defined in R
3,1, the light cone corresponds to that part of spacetime

minus the origin that would be passed by a flash of light emanating from the origin in

all directions.

Definition 3.4.3. Let x ∈ R
n+1. We say that x is light-like if ‖x‖L = 0. We say that

x is space-like (time-like) if ‖x‖2L > 0 (‖x‖2L < 0). A time-like vector x is positive

(negative) if xn+1 > 0 (xn+1 < 0).

For two positive or two negative time-like vectors x, y in R
n,1, there is a unique

non-negative η(x, y) ≥ 0 such that 〈x, y〉L = ‖x‖L‖y‖L cosh η(x, y). This number is

called the Lorentzian time-like angle between x and y. We see that η(x, y) = 0 if

and only if x = λy with λ ≥ 0.

Definition 3.4.4. The unit n-hyperboloid Hn, or hyperboloid for short, consists

of the points in R
n,1 of Lorentzian norm −1 and xn+1 > 0. We thus have:

Hn = {x ∈ R
n+1 | ‖x‖2L = −1, xn+1 > 0}.

This space is, in some sense, analogous to the sphere, since it corresponds to the

level set of the Lorentzian norm of imaginary unit length. However, this analogy does

not hold for its topology, since Sn is compact and Hn is not. We could equally well

have defined the hyperboloid as the set of points x ∈ R
n+1 such that ‖x‖2L = −1 and

xn+1 < 0, because the two spaces are homeomorphic. They both form a model of the

hyperbolic space form of constant sectional curvature k = −1. However, we call this

space Hn
− and adopt the following notation:

Fn = {x ∈ R
n+1|‖x‖2L = −1} = Hn ∪Hn

−.

We say that Hn (Hn
−) is the positive (negative) sheet of Fn. An intrinsic metric

on Hn written after embedding in the coordinates of Rn+1 is given by the hyperbolic

metric

dH(x, y) = η(x, y).

Geodesics on Hn are classified by the following theorem.
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Proposition 3.4.5. Let ξ : [a, b] −→ Hn be a curve. Then the following statements

are equivalent:

1. ξ is a geodesic curve parametrized by arc length s with respect to the hyperbolic

metric.

2. There are vectors x, y ∈ R
n,1 that are orthogonal with respect to 〈., .〉L such that

ξ(s) = cosh(s− a)x+ sinh(s− a)y.

3. The curve ξ(s) satisfies ξ′′ − ξ = 0.

For a proof, cf. [30, Theorem 3.2.4].

We say that the intersection of Hn with a two-dimensional linear subspace of Rn,1

which contains a time-like vector is a hyperbolic line of Hn. A consequence of

Proposition 3.4.5 is that the geodesics on Hn correspond to its hyperbolic lines in the

sense that every geodesic curve can be extended to a hyperbolic line. Similarly, we can

define hyperbolic lines on Hn
−.

We also know the symmetry group of Fn.

Proposition 3.4.6. The group of isometries φ : Fn −→ Fn is isomorphic to the Lorentz

group O(n, 1), explicitly given by the set of matrices T ∈Matn+1(R) such that T tJT =

J , where J = diag(1, . . . , 1,−1).

3.5 Stereographic projection

It is well-known that the n-sphere punctured at one point is topologically equivalent

to R
n. An analogue of this is true for the hyperboloid. Below we will make these

statements precise.

Consider the punctured sphere, i.e. the sphere with one point removed from it.

Without loss of generality we assume that this point is the north pole N = (0, . . . , 0, 1).

We write Ŝn = Sn \ {N}. Define the spherical stereographic projection from the

north pole σ : Ŝn −→ R
n as the map given by

xk =
ξk

1− ξn+1

for k = 1, . . . , n. This map is smooth, because ξn+1 6= 1 in Ŝn. Furthermore, it is

bijective. Its inverse is given by

ξk =
2xk

1 + ‖x‖2 and ξn+1 = −1− ‖x‖2
1 + ‖x‖2

for k = 1, . . . , n. This map is also smooth. So the spherical stereographic projection

is a diffeomorphism. Geometrically, the spherical stereographic projection assigns to

a point P on Ŝn the point of intersection of the straight line generated by the points
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P and N and the plane Rn through the origin perpendicular to the vector from 0 to N .

The hyperbolic analogue of the stereographic projection of the sphere is defined as

follows. Consider the space Fn := Hn ∪ Hn
−. In order to map this space to R

n, we

again remove the point N = (0, . . . , 0, 1) and write F̂n for Fn \ {N}. The hyperbolic
stereographic projection from the north pole is the map σ : F̂n −→ R

n \Sn−1 given

by

xk =
ξk

1− ξn+1

for k = 1, ...n. This map is smooth, because ξn+1 6= −1 in F̂n. Furthermore, it is

bijective. Its inverse is given by

ξk =
2xk

1− ‖x‖2 and ξn+1 =
‖x‖2 + 1

‖x‖2 − 1

for k = 1, . . . , n. This map is also smooth. So the hyperbolic stereographic projection

is a diffeomorphism. Geometrically, the hyperbolic stereographic projection assigns to

a point P on F̂n the point of intersection of the straight line generated by the points

P and N and the plane R
n through the origin perpendicular to the vector from 0 to

N . We can restrict the hyperbolic stereographic projection to the space Hn \ {N} or

Hn
−.

Remark 3.5.1. If it is clear which stereographic projection is meant, we will omit the

adjectives spherical and hyperbolic.

3.6 Representation theory of o(d, 1)

For the discussion of the symmetries of a manifold, it is useful to consider the rep-

resentations of its symmetry groups. Recall that a representation of a Lie group G

on a Hilbert space H is an action φ : G −→ B(H) such that the corresponding map

G×H −→ H is continuous and such that the image of φ is the set of the bounded linear

operators with bounded inverse, which is a subset of B(H), the set of bounded linear

operators on H. If H is finite-dimensional, then φ is automatically smooth. Lie group

representations induce representations of the corresponding Lie algebras. We will in

particular look at the latter ones, since for our purposes they give enough information

about the groups, and they are technically simpler.

The infinitesimal symmetries that are important for the study of the d-dimensional

Kepler problem are given by the Lie algebras so(d+ 1) and o(d, 1), called the special

orthogonal (Lie) algebra and the Lorentz (Lie) algebra respectively. We assume

that the reader is acquainted with the representation theory of the special orthogonal

algebras, which is described in [14, 17]. We will explain the important aspects of the

representation theory of the Lorentz algebra [14, 16].
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We already introduced the light cone Cd. Denote by Cd,+ the so-called positive

light cone, which consists of all points of the light cone for which xd+1 > 0. The

proper Lorentz group O◦(d, 1) acts transitively on Cd,+.

Definition 3.6.1. Let s ∈ C. The space Ss of homogeneous functions on Cd,+ of

degree −s is defined as follows:

Ss := Ss(C
d,+) := {f ∈ C∞(Cp,q)|f(tw) = t−sf(w), w ∈ Cd,+, t > 0}.

It is straightforward to prove that Ss is invariant under the natural action of O(p, q).

We consider the spaces Ss as representation spaces of o(d, 1) with spectral parameter

s. From the theory of spherical harmonics we recall the following result, which is

explicitly proved in [14].

Lemma 3.6.2.

Ss ∼= ⊕mH
m(Rd)x

−(s+m)
d+1 ,

where Hm(Rd) denotes the space of harmonic polynomials of degree m.

We will need the unitary irreducible representations of the Lorentz algebra in order

to determine the positive spectrum of the hydrogen atom. They are classified by the

following result.

Theorem 3.6.3. The space Ss is a unitary irreducible representation of the Lorentz

algebra o(d, 1) if and only if either ℜ(s) = d−1
2 or 0 < s < d− 1.

A proof of this theorem is obtained by using the decomposition of Ss as given in the

previous lemma and the action of the elements of o(d, 1) on Ss.



Chapter 4

The Classical Kepler Problem

In this chapter, we use the mathematical concepts introduced earlier to describe the

classical d-dimensional Kepler problem (for d ≥ 2) in a rigorous way in terms of its

geometry. As described in Chapter 1, the classical Kepler problem is determined by

the Kepler Hamiltonian:

H =
‖p‖2
2µ

− k

‖q‖ .

We do not specify any initial values or boundary conditions.

First, Kepler’s laws are derived in d dimensions by means of integrals of motions and

geometry. Then the Kepler orbits are related to geodesics on Riemannian manifolds of

constant sectional curvature. In particular, this treatment gives rise to a regularization

of the Kepler orbits, in the sense that the energy surfaces, which contain incomplete

motions, are embedded into larger manifolds with a complete Hamiltonian vector field.

After that, another way of regularizing the Kepler problem is described. At the end, we

exhibit the relation between the two regularizations. Along the way, we also determine

the symmetry group of the problem.

4.1 Kepler’s laws

In a text about the Kepler problem, one should derive Kepler’s laws of planetary

motion, as given in Chapter 1, at least once. They were originally formulated for

H < 0. This automatically implies that k > 0. We give a formulation of Kepler’s

laws in d dimensions, due to Önder and Verçin [27], which does not only apply to the

bounded motions, but works for arbitrary H (except for the third law of course, in

which the condition that the orbits are bounded is explicitly stated). However, our

derivation of the laws is due to Van Haandel and Heckman [34, 35]. Their derivation,

originally given in three dimensions, is intuitive and elegant.

Consider a particle with Hamiltonian H equal to the Kepler Hamiltonian. The

d-dimensional Kepler laws are as follows:

1. the orbit of the object is a two-dimensional conic section with 0 as one of its foci;

31
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2. the line connecting the object to 0 sweeps out equal areas in the plane of motion

in equal intervals of time;

3. in the case of bounded orbits, in which the orbit is an ellipse, the period of the

object is proportional to the cube of the semi-major axis of its orbit.

We will now derive these laws. To this end, we first look at some physical quantities

and prove that they are integrals of motion.

The phase space of the d-dimensional Kepler problem is T ∗(Rd \ {0}), which is

identified with the subspace of (R2d, ω) given by {(q, p) ∈ R
d ⊕ R

d | q 6= 0}. The

symplectic form ω is given by ω = ω0 =
∑d

i=1 dqi ∧ dpi.
Definition 4.1.1. The (generalized) angular momentum L is an anti-symmetric

d× d-matrix given by its components

Lij = qipj − qjpi,

with 1 ≤ i, j ≤ d. The (generalized) Runge-Lenz vector K is given by its

Ki =

d
∑

j=1

Lijpj − µk
qi

‖q‖ = ‖p‖2qi − 〈q, p〉pi − µk
qi

‖q‖ ,

with 1 ≤ i ≤ d.

Remark 4.1.2. The generalized angular momentum is not an d-vector any more: it

is an anti-symmetric matrix. Note that in the case d = 3, the usual components of

L, i.e. L1, L2 and L3 correspond to the matrix entries L23, L31 and L12 respectively.

The generalized Runge-Lenz vector indeed generalizes the usual Runge-Lenz vector,

because of the three-dimensional relation p× (q× p) = 〈p,p〉q− 〈q,p〉p.
First, we prove that the energy of an object with Hamiltonian H is conserved. This

is however not only true for the Kepler Hamiltonian, but for more general ones.

Proposition 4.1.3. For a spherically symmetric central force field F (q) = f(‖q‖) q
‖q‖ ,

the Hamiltonian H = ‖p‖2
2µ + V (‖q‖), where V (‖q‖) = −

∫

f(s)ds, is a conserved

quantity.

Proof. The proof follows by explicit calculation. First note that:

˙‖q‖ =
d

dt
(〈q, q〉) 1

2 = 〈q̇, q

‖q‖〉.

Hence:

d

dt
H =

〈ṗ, p〉
µ

+ V̇

= 〈F, q̇〉 − f(‖q‖) ˙‖q‖
= 〈F, q̇〉 − f(‖q‖)〈q̇, q

‖q‖〉 = 0,

because F (q) = f(‖q‖) q
‖q‖ .
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Corollary 4.1.4. The Kepler Hamiltonian is conserved.

Proposition 4.1.5. The angular momentum L = (Lij) and the Runge-Lenz vector

K = (Ki) are integrals of motion.

Proof. For all i, j ∈ {1, . . . , d} we have:

{H,Lij} =

d
∑

l=1

(

∂H

∂ql

∂Lij

∂pl
− ∂H

∂pl

∂Lij

∂ql

)

=
d
∑

l=1

(

k

‖q‖3 ql(δjlqi − δilqj)−
pl

µ
(δilpj − δjlpi)

)

=
k

‖q‖3 qjqi −
k

‖q‖3 qiqj −
pi

µ
pj +

pj

µ
pi = 0.

Using this result, for all i ∈ {1, . . . , d} we obtain:

{H,Ki} =

d
∑

j=1

({H,Lij}pj + Lij{H, pj})− µk{H, qi‖q‖}

=

d
∑

j=1

(qipj − qjpi)
∂H

∂qj
+ µk

d
∑

l=1

pl

µ

(

δil
1

‖q‖ − qiql

‖q‖3
)

=

d
∑

j=1

(

qiqjpj
k

‖q‖3 − qjqjpi
k

‖q‖3
)

+

d
∑

l=1

pl

µ

(

δil
1

‖q‖ − qiql

‖q‖3
)

=
k

‖q‖3 〈q, p〉qi −
k

‖q‖pi +
k

‖q‖pi −
k

‖q‖3 〈q, p〉qi = 0.

Remark 4.1.6. This proposition also follow from Noether’s Theorem, which is stated

in this text as Theorem 2.3.16.

Corollary 4.1.7. The orbit in R
d of a particle described by the Kepler Hamiltonian

is contained in a two-dimensional plane.

Proof. K(t) is perpendicular to the plane of motion for fixed time t, since this plane

is spanned by q(t) and p(t). Since K is an integral of motion, this plane stays the

same.

With this in mind, we can prove Kepler’s second law. We assume that the plane of

motion is spanned by two orthogonal unit vectors e1 and e2. We will write the relevant

quantities with respect to this basis. In fact, all vectors are d-dimensional, but we will

treat them as if they are two-dimensional.

Theorem 4.1.8. If an object subdued to a spherically symmetric central force field

moves through a curve q(t) in R
2, then the area swept out by the line piece [0, q(t)]

per unit of time is constant.
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Proof. The area At1,t2 swept out by [0, q(s)] for t1 ≤ s ≤ t2 for some t1 and t2 can be

calculated by:

At1,t2 =

∫ t2

t1

1

2
‖q(t)× q̇(t)‖dt = 1

2µ
‖l‖(t2 − t1), (4.1)

where |l| denotes the norm of the ordinary angular momentum of the motion in the

plane, which is conserved by Proposition 4.1.5. This expression only depends on the

duration t2 − t1, which proves the claim.

Remark 4.1.9. For both claims of this proof the conservation of angular momentum

has been used. The above theorem proves Kepler’s second law.

Now the first law will be proved. We consider the different signs of the Hamiltonian

separately. Again, note that in fact we should first distinguish between the signs of

k, because a sign of k comes with the definition of the Hamiltonian itself already.

Later, we summarize the results in what we call Kepler’s first law. This way is chosen,

because it both gives the explicit nature of the Kepler orbits for negative, positive and

zero energy, and it unifies these observations into one clear statement. We consider

the orbits restricted to the plane of motion.

Suppose that H < 0. This implies that k > 0.

Proposition 4.1.10. The motion of the particle is bounded inside the circle (in the

plane of motion) with center 0 and radius − k
H
.

Proof. We have

−H = −‖p‖2
2µ

+
k

‖q‖ ≤ k

‖q‖ ,

which implies that ‖q‖ ≤ − k
H
. So the motion takes place in the circle (in the plane of

motion) with center 0 and radius − k
H
.

Consider the circle C centered at 0 with radius − k
H
, i.e. the circle from the previous

proposition. Let s = − kq
‖q‖H be the point of intersection of the line through 0 and q

and C. The line L through q parallel to p is the tangent line to the orbit at the point

q. Let t be the reflection of s in L. The situation is sketched below. Note that q is on

the line piece [0, s].
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We want to define a vector n perpendicular to p. Let us define n by

n =
(

q1p
2
2 − q2p1p2, q2p

2
1 − q1p1p2

)

.

Indeed:

〈p, n〉 = q1p1p
2
2 − q2p

2
1p2 + q2p

2
1p2 − q1p1p

2
2 = 0.

Proposition 4.1.11. The point t is equal to K
µH

.

Proof. The point t is given by:

t = s− 2
〈(s − q), n〉

‖n‖2 n.

First observe that:

‖n‖2 = ‖p‖2L2
12 = ‖p‖2(q1p2 − q2p1)

2.

We thus have:

〈(q − s), n〉 = 〈q + kq

‖q‖H ,n〉

=

(

1 +
k

‖q‖H

)

〈q, n〉

=

(

1 +
k

‖q‖H

)

(

q21p
2
2 − q1q2p1p2 + q22p

2
1 − q1q2p1p2

)

=

(

1 +
k

‖q‖H

)

(q1p2 − q2p1)
2 .
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Hence:

µHt = −µk q

‖q‖ + µH
2

‖p‖2
(

1 +
k

‖q‖H

)

(

q1p
2
2 − q2p1p2, q2p

2
1 − q1p1p2

)

= −µk q

‖q‖ + n

= K,

using the fact that ‖p‖2 = 2µ(H + k
‖q‖) and the form of n.

Because the vector K is conserved, we know that t is a fixed point in space.

Theorem 4.1.12. The orbit of the particle is an ellipse with foci 0 and t and major

axis 2a = − k
H
.

Proof. For a point q on the orbit we have:

‖q − 0‖+ ‖q − t‖ = ‖q‖+ ‖q − s‖ = 2a.

This exactly characterizes an ellipse.

Until now, we only considered the case for which H < 0 (and hence k > 0), which

physically corresponds to bounded orbits. In the case that H > 0, it is still true

that the point t is a fixed point in R
d, since the Runge-Lenz vector is still conserved.

However, the motion is not necessarily bounded to some region, as was the case for

H < 0. In this case, the coupling constant can assign both positive and negative

values. For k > 0, we get the situation as indicated in the figure below. Note that 0 is

on the line piece [q, s].
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Theorem 4.1.13. Suppose that H > 0 and k > 0. The orbit of the particle is the

branch of the hyperbola with foci 0 and t closest to 0 and major axis equal to 2a = k
H
.
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Proof. We have:

‖q − t‖ − ‖q − 0‖ = ‖q − s‖ − ‖q‖ =
k

H
.

This exactly characterizes the particular hyperbola branch.

For the case in which H > 0 and k < 0, we know that s is on the line piece [0, q]. We

now prove a result analogous to 4.1.10.

Proposition 4.1.14. The motion of the particle in the plane of motion is outside the

circle with center 0 and radius − k
H
.

Proof. We have H = ‖p‖2
2µ − k

‖q‖ ≥ − k
‖q‖ , which implies that ‖q‖ ≥ − k

H
.

We have the situation as sketched below.
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Theorem 4.1.15. Suppose that H > 0 and k < 0. The orbit of the particle is the

branch of the hyperbola with foci 0 and t closest to t and major axis equal to 2a = − k
H
.

Proof. We have:

‖q − 0‖ − ‖q − t‖ = ‖q‖ − ‖q − s‖ = − k

H
.

This exactly characterizes the particular hyperbola branch.

The last case, in which H = 0 and hence ‖p‖2 = 2µk
‖q‖ , is sketched below. It may be the

case that k = 0. Then the particle is free and moves along a straight line in the plane

of motion. Consider now the other possible case, namely k > 0. Note that we now

also may divide by ‖p‖. We again define the line L to be the line through q tangent

to the orbit. So it is parallel to p. The point s is the reflection of 0 in L.
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Proposition 4.1.16. For the point s we have s = ‖q‖
kµ
n, where n is as defined above.

We conclude that s− q = ‖q‖
kµ
K.

Proof. s is equal to 2 〈q,n〉
|n|2 n, which equals

2

‖p‖2n =
‖q‖
kµ

n,

using the calculations done earlier. From this, it follows that s− q = ‖q‖
kµ
K.

Theorem 4.1.17. If H = 0, then the orbit is the parabola with focus 0 and directrix

D.

Proof. Indeed, ‖q − s‖2 = ‖q‖2 + ‖s‖2 − 2〈q, n〉 = ‖q‖2 + 4
‖p‖4 ‖n‖2 − 4

‖p2‖
‖n‖2
‖p‖2 = ‖q‖2,

which proves the claim, because a parabola is the locus consisting of points such that

the distance to a given point (its focus) and a given line (its directrix) is equal.

We have now considered all possible cases of Kepler orbits and summarize them in the

first law.

Theorem 4.1.18. The orbit of the object is a conic section with a fixed two-dimensional

linear subspace with 0 as one of its foci.

Proof. The ellipse, hyperbola and parabola are the (only) two-dimensional conic sec-

tions in R
d.

We did not explicitly treat the degenerate conics, such as the double line, because

they all are special cases of one of the above. They correspond to incomplete Kepler

orbits, which will be explained in the next section.

Kepler’s third law follows from the values of the parameters of the ellipse. We know

that a = − k
2H . The distance 2c between the two foci is given by 4c2 = 〈t, t〉 = ‖K‖2

µ2H2 =
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2µH‖l‖2+µ2k2

µ2H2 . Therefore the semiminor axis b of the ellipse is given by 4b2 = −2‖l‖2
µH

.

Hence, the square of the area of this ellipse is:

π2a2b2 = π2
k2‖l‖2
8µH3

=
‖l‖2T 2

4µ2
,

where T is the period of the orbit. The last expression follows from Kepler’s second

law. Using the relation a = − k
2H , we obtain:

T 2

a3
=

4π2µ

k
=

4π2

G(m1 +m2)
,

which is exactly Kepler’s third law. In the unified point of view, Kepler’s third law is

merely a special case of the second law. It relates the period of the orbit, which exists

if the orbit is closed, to the semi-major axis.

4.2 Incomplete Kepler orbits

The orbits corresponding to the nondegenerate conic sections in R
d are regular in the

sense that they correspond to a globally defined integral curve of the Hamiltonian

vector field. The following result gives the intrinsic incompleteness of the Kepler

problem. The degenerate conic sections in R
d correspond to integral curves of the

Hamiltonian vector field that are not globally defined.

Proposition 4.2.1. The Kepler Hamiltonian vector field is incomplete.

Proof. Consider the motion of a particle with energy H < 0 and L = 0, i.e. this particle

is on some fall circle C as defined in the last section. Suppose that (q(0), q̇(0)) =

(−kµ
H
, 0). The time for the particle to reach the origin with infinite speed is given by:

T =

∫ − kµ
H

0

dr

(2kµ
r

+ 2µH)
1

2

<∞,

so the particle gets to the origin in a finite time, which proves the proposition.

Definition 4.2.2. The motions “through” the origin are the incomplete motions.

By an embedding of the incomplete phase space in another manifold with a complete

Hamiltonian vector field, it can be realized that the phase space is regularized in the

sense that the integral curves of the (incomplete) phase space become complete under

the embedding. This process is called regularization. In the rest of this chapter, we

will discuss two ways of regularization of the Kepler problem and describe how they

are related.
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4.3 Kepler orbits and geodesics on manifolds

We show that the space of Kepler orbits in R
d of a fixed energy E can be embedded

in the set of geodesics on some complete Riemannian manifold of constant sectional

curvature in such a way that the Hamiltonian vector field of the Kepler problem is

regularized, in the sense that it is extended in such a way that the incomplete Kepler

orbits are also mapped to particular geodesics. This map turns out to preserve some

of the symplectic structure, but it is weaker than a symplectomorphism. Whether

the manifold is of positive or negative curvature is determined by the sign of E. The

method used here fits in our general method of interchanging the coordinates of position

and momentum and afterwards applying a stereographic projection.

Because of the symmetry of the set of geodesics on a manifold, we will find a sym-

metry group along the way that is richer than the intuitively obvious symmetry group

O(d) of the Kepler Hamiltonian.

The results in this section are due to Moser [24], but also [22, 28, 33] discuss the

geometry of the phase space of the Kepler problem. [22, 28] even consider the case

E > 0. Moser only considers the case E < 0, but we extend his way of reasoning to

positive energies. In [22], the phase space of the Kepler problem is regularized at once,

without the restriction to the energy surfaces. We will come back to this later.

The configuration space Q of the Kepler problem is the set of possible positions,

so in the case of the d-dimensional problem, it is R
d \ {0}. The phase space P is

given by the cotangent bundle T ∗Q ⊂ R
d ⊕ R

d of Q. For any E ∈ R, we define the

energy surface ΣE of energy E to be defined by:

ΣE := {x ∈ T ∗Q |H(x) = E}.

Since the energy is conserved, these submanifolds are well-defined and closed. We

introduce two open submanifolds of P as follows:

P+ := ∪E>0ΣE,

P− := ∪E<0ΣE.

P+ corresponds to hyperbolic Kepler orbits, whereas P− contains the elliptic Kepler

orbits. Thus P = P+ ∪ Σ0 ∪ P−.
In the next subsections, we map each ΣE to the cotangent bundle of some Rieman-

nian manifold. Hereto, we consider the cases of negative and positive energies separ-

ately. We will see that the regularization map is geometrically very simple.

4.3.1 Negative energies

Suppose E < 0. As described earlier, the trajectory of a particle with this Hamiltonian

is an ellipse with the origin as one of its foci. Its semi-major axis a equals − k
2H .

It turns out that the elliptic Kepler orbits in d dimensions are equivalent to the

geodesics on a d-sphere in a certain way. Without loss of generality, we assume that

µ = 1 and k = 1. In R
d+1 we write N = (0, . . . , 0, 1).
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Theorem 4.3.1. The space ΣE of Kepler orbits with energy E < 0 is mapped to the

unit cotangent bundle T ∗
1 (Ŝ

d) of Ŝd = Sd \ {N} by an extension of the stereographic

projection in a diffeomorphic way such that the canonical one-forms match.

Proof. The sphere Sd consists of the points ξ = (ξ1, . . . , ξd+1) ∈ R
d+1 for which

‖ξ‖2 = 1. By the stereographic projection, the sphere punctured at its north pole

N = (0, . . . , 0, 1), can be mapped diffeomorphically onto R
d, as is described in Section

3.5. We start with the geodesic flow on the sphere and map it to the space of Kepler

orbits with energy E = −1
2 .

A curve ξ(s) on the sphere is a geodesic if and only if it satisfies:1

ξ′′ + ‖ξ′‖2ξ = 0.

If ‖ξ′‖ = 1, then this equation corresponds to the parametrization by arc length, which

we assume from now on. If we introduce the tangent vector η = ξ′, then we have the

following equations:

ξ′ = η, η′ = −‖η‖2ξ,
with ‖ξ‖ = 1 and 〈ξ, η〉 = 0, since a tangent vector to the sphere are always perpen-

dicular to the position vector of the point at which it is defined. These two equations

represent the tangent bundle T (Sd) of Sd, which we linearly identify with the cotangent

bundle T ∗(Sd).

We now map the punctured sphere Ŝd onto R
d by the spherical stereographic pro-

jection and extend it to a map from T ∗
1 (Ŝ

d) to T ∗(Rd) as follows. First we consider

T ∗
1 (Ŝ

n) as a submanifold of T ∗(Rd+1), which we in turn identify with R
d+1 ⊕R

d+1. In

this embedding, T ∗
1 (Ŝ

d) corresponds to the pairs (ξ, η) such that ‖ξ‖ = 1, 〈ξ, η〉 = 0

and ‖η‖ = 1. The canonical one-form θ
Ŝd is the restriction of the canonical one-form

on T ∗(Rd+1). We define the extended mapping by the following two equations:

xk =
ξk

1− ξd+1
,

yk = (1− ξd+1)ηk + ξkηd+1,

for k = 1, . . . , d. Its inverse is given by:

ξk =
2xk

‖x‖2 + 1
,

ξd+1 =
‖x‖2 − 1

‖x‖2 + 1
,

ηk =
‖x‖2 + 1

2
yk − 〈x, y〉xk,

ηd+1 = 〈x, y〉,
for k = 1, . . . , d.

These equations define a diffeomorphism. Let us check that the canonical one-forms

θ
Ŝd and θRd are mapped to each other.2 The canonical one-forms on T ∗Ŝd and T ∗

R
d

1Cf. Chapter 3.
2Note that T ∗

1 Ŝ
d is not a symplectic manifold, since it is not even-dimensional.
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are given by θ
Ŝd = 〈η, dξ〉 and θRd = 〈y, dx〉 respectively.

If we substitute dxk = dξk
1−ξd+1

+
dξd+1

(1−ξd+1)2
ξk, we get

〈y, dx〉 =
d
∑

k=1

ykdxk

=

d
∑

k=1

((1− ξd+1)ηk + ηd+1ξk)

(

dξk

1− ξd+1
+

dξd+1

(1− ξd+1)2
ξk

)

=

d
∑

k=1

(

ηkdξk +
ηd+1

1− ξd+1
ξkdξk +

ηkξkdξd+1

1− ξd+1
+ ηd+1ξ

2
k

dξd+1

(1− ξd+1)2

)

.

Using 0 = 1
2d‖ξ‖2 = 〈ξ, dξ〉 = ∑d

k=1 ξkdξk + ξd+1dξd+1 in the second term and using

the definition of the stereographic projection and the description of T ∗(Sd) as subspace

of Rd+1 ⊕ R
d+1 gives us:

d
∑

k=1

(

ηkdξk +
ηd+1

1− ξd+1
ξkdξk +

ηkξkdξd+1

1− ξd+1
+ ηd+1ξ

2
k

dξd+1

(1− ξd+1)2

)

=

d
∑

k=1

(

ηkdξk −
ηd+1

1− ξd+1
ξd+1dξd+1 +

−ηd+1ξd+1dξd+1

1− ξd+1
+ ηd+1dξd+1

)

= 〈η, dξ〉.

Note that ‖η‖ = (‖x‖2+1)‖y‖
2 . The Hamiltonian of the geodesic flow is given by the

Hamiltonian Φ(ξ, η) = 1
2‖η‖2. In this way we get the following Hamiltonian in the

(x, y)-space:

F (x, y) = Φ(ξ, η) =
1

2
‖η‖2 =

(‖x‖2 + 1)2‖y‖2
8

,

which gives the following transformed Hamilton differential equations:

x′ = Fy, y′ = −Fx. (4.2)

This set of equations follows from straightforward calculations. The geodesics such

that ‖η‖ = 1, and hence Φ = 1
2 , correspond to solutions for which F = 1

2 .

Now comes the elegant part of the argument. The differential equations (4.2) form a

system, in which only the first partial derivatives of F occur. We can therefore replace

F by G := u(F ) :=
√
2F −1, because this defines a differentiable function at the point

F = 1
2 and u′(12 ) = 1. So at this point, the gradients of both functions agree, such

that:

x′ = Gy, y′ = −Gx. (4.3)

Note that the system given by equation (4.2) with F = 1
2 is mapped to the system

given by equation (4.3) with G = 0. If we change the variable s to:

t =

∫

‖y‖ds,
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then (denoting differentiation with respect to t by a dot) we obtain3 ẋ = ‖y‖−1x′ =
‖y‖−1Gy and ẏ = ‖y‖−1y′ = −‖y‖−1Gx. If we define the following Hamiltonian:

H =
1

2
‖x‖2 − 1

‖y‖ = ‖y‖−1(
√
2F − 1)− 1

2
= ‖y‖−1G− 1

2
,

then we obtain the Hamilton equations ẏ = Hx and ẋ = −Hy. So the Hamiltonian

system (4.3) for G = 0 is mapped to this system with H = −1
2 . It is obvious that after

applying the canonical transformation p = x and q = −y, the system goes over into

the Kepler problem. The trajectories of the geodesic flow on the sphere away from the

north pole parametrized by s are mapped to the trajectories of the Hamiltonian flow

of H = 1
2‖x‖2 − 1

‖y‖ away from y 6= 0 parametrized by t.

By rescaling, the energy surface corresponding to E = − 1
2ρ2

can be mapped to

T ∗
1 (Ŝ

n) as follows:

q′ = ρ2q, p′ = ρ−1p, t′ = ρ3t.

This mapping maps the Kepler problem to itself and replaces E by E′ = ρ−2E.

So far we have proven that any energy surface (after an appropriate rescaling) can

be mapped to T ∗
1 (Ŝ

d) in a canonical way. We also saw that the mapping that achieves

this is a diffeomorphism. By restoring the north pole, we obtain the compactification

T ∗
1 (S

d) of T ∗
1 (Ŝ

d). If we apply the inverse stereographic projection and the canonical

interchange of the position and the momentum coordinates, the geodesics through the

north pole correspond to the incomplete Kepler orbits. In this way, we also obtain

a compatification Σ̃E of the energy surface ΣE. Hence we obtain a regularization

of the Kepler problem, since the Hamilton vector field on the unit cotangent bundle

of the sphere is complete. The reparametrization of the time is essential for this

regularization.

Remark 4.3.2. The formulas for the extended stereographic projection do not only

make sense for energy H = −1
2 and covectors of length one. Indeed, they define a

canonical map from T ∗(Ŝd) to T ∗(Rd). We will call the inverse of this map composed

with the canonical interchange of the position and the momentum coordinates the

Moser map ΦM .

Remark 4.3.3. Geometrically, the north pole corresponds to the points at infinity in

p-space, as can be seen from the geometry of the usual (non-extended) stereographic

projection. In order to maintain a finite energy, it also corresponds to q = 0. The

corresponding orbits are degenerated ellipses, the collision orbits of the Kepler problem.

A particle moves to the origin in a straight line in a finite interval of s. After that, its

motion is reflected in both position and momentum.

Corollary 4.3.4. For each E < 0, the regularized energy surface Σ̃E possesses O(d+1)

symmetry, since this group acts on it. The energy surfaces possesses the infinitesimal

symmetry so(d+ 1).

3Note that ‖y‖ 6= 0, because we chose ‖η‖ = 1.
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Proof. The group O(d+1) acts on the space T ∗
1 (S

d) by matrix multiplication and takes

geodesics (parametrized by arc length) into geodesics (parametrized by arc length).

We will now derive the explicit map relating s and t. By an orthogonal trans-

formation that leaves the ξd+1-axis invariant, we can always map a geodesic into the

two-dimensional space given by ξ3 = ξ4 = ξd = 0. We may therefore, in what follows,

assume that d = 2. After a suitable rotation of the geodesic [24], we have:

ξ1 = sin s,

ξ2 = − cosα cos s,

ξd+1 = sinα cos s,

ηk = ξ′k,

for k = 1, 2, d + 1. Here, α denotes the angle between the subspace given by ξd+1 = 0

and the circle. The image of this circle in the (x, y)-space is:

x1 = (1− sinα cos s)−1 sin s,

x2 = −(1− sinα cos s)−1 cosα cos s,

y1 = cos s− sinα,

y2 = cosα sin s.

Hence we obtain:

q1 = − cos s+ e,

q2 = −
√

1− e2 sin s,

where e := sinα. This denotes an ellipse in terms of its eccentric anomaly s [7, 13].

t is called the mean anomaly. We have ‖y‖ = 1 − sinα sin s = 1 − e cos s. We now

obtain the following expression for the rescaled time t:

t =

∫ s

0
‖y‖ds = s− e sin s. (4.4)

This equation is called the Kepler equation.

4.3.2 Positive energies

Suppose E > 0. Then k can either be positive or negative. The trajectory of the

particle is now an arc of an hyperbola. As we saw before, which specific arc it is

depends on the sign of k. Without loss of generality, we assume that µ = 1 and

k = ±1.

It turns out that the hyperbolic Kepler orbits are equivalent to the geodesics on a

hyperboloid in a canonical way, as can be concluded by applying the same method

that Moser used.
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Theorem 4.3.5. The space ΣE of Kepler orbits with energy E is mapped to the

unit cotangent bundle T ∗
1 (F̂

d) of F̂ d = F d \ {N} by an extension of the stereographic

projection in a diffeomorphic way such that the canonical one-forms match.

The proof of this theorem is a translation of the proof of the negative energy case to

the hyperbolic setting. It was suggested in the literature to do this. To my knowledge,

it was first done explicitly by Adriaan Kleinhout [19].

Proof. The hyperboloid F d consists of the points ξ = (ξ1, . . . , ξd+1) ∈ R
d+1 for which

‖ξ‖2L = −1. By the stereographic projection, the hyperboloid with its north pole

N = (0, . . . , 0, 1) removed can be mapped diffeomorphically onto Rd\Sd−1, as described

in Section 3.5.

We start with the geodesic flow on the hyperboloid and map it to the space of Kepler

orbits with energy H = 1
2 .

A curve ξ(s) on the hyperboloid is a geodesic if and only if it satisfies:

ξ′′ − ‖ξ′‖2Lξ = 0.

If ‖ξ′‖L = 1, then this equation corresponds to the parametrization by arc length. If

we introduce the tangent vector η = ξ′, then we have the following equations:

ξ′ = η, η′ = −‖η‖2Lξ,

with ‖ξ‖L = −1 and 〈ξ, η〉L = 0, since tangent vectors to the hyperboloid are always

perpendicular to the position vector of the point at which it is defined with respect

to the Lorentzian inner product. These two equations represent the tangent bundle

T (F d) of F d, which we linearly idenfity with the cotangent bundle T ∗(F d).

We now map the T ∗
1 (F̂

d) to T ∗(Rd) by an extended hyperbolic stereographic pro-

jection. First we consider T ∗
1 (F̂

d) as a submanifold of T ∗(Rd+1), which we in turn

identify with R
d+1 ⊕ R

d+1. In this embedding, T ∗
1 (F̂

d) corresponds to the pairs (ξ, η)

such that ‖ξ‖L = −1, 〈ξ, η〉L = 0 and ‖η‖L = 1. The canonical one-form θ
F̂ d is the

restriction of the canonical one-form on T ∗(Rd+1). We define the extended mapping

by the following two equations:

xk =
ξk

1− ξd+1
,

yk = (1− ξd+1)ηk + ξkηd+1,

for k = 1, . . . , d. Its inverse is given by:

ξk =
2xk

1− ‖x‖2 ,

ξd+1 =
‖x‖2 + 1

‖x‖2 − 1
,

ηk =
1− ‖x‖2

2
yk + 〈x, y〉xk,

ηd+1 = −〈x, y〉,
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for k = 1, . . . , d.

These equations define a diffeomorphism. Let us check that the canonical one-forms

θ
F̂ d and θRd are mapped to each other. The canonical one-forms on T ∗F̂ d and T ∗

R
d

are given by θ
F̂ d = 〈η, dξ〉L and θRd = 〈y, dx〉 respectively.

If we substitute dxk = dξk
1−ξd+1

+
dξd+1

(1−ξd+1)2
ξk, we get

〈y, dx〉 =
d
∑

k=1

ykdxk

=
d
∑

k=1

((1− ξd+1)ηk + ηd+1ξk)

(

dξk

1− ξd+1
+

dξd+1

(1− ξd+1)2
ξk

)

=

d
∑

k=1

(

ηkdξk +
ηd+1

1− ξd+1
ξkdξk +

ηkξkdξd+1

1− ξd+1
+ ηd+1ξ

2
k

dξd+1

(1− ξd+1)2

)

.

Using 0 = 1
2d‖ξ‖2L = 〈ξ, dξ〉L =

∑d
k=1 ξkdξk − ξd+1dξd+1 in the second term and using

the definition of the stereographic projection and the description of T ∗(F d) as subspace

of Rd+1 ⊕ R
d+1 gives us:

d
∑

k=1

(

ηkdξk +
ηd+1

1− ξd+1
ξkdξk +

ηkξkdξd+1

1− ξd+1
+ ηd+1ξ

2
k

dξd+1

(1− ξd+1)2

)

=
d
∑

k=1

(

ηkdξk +
ηd+1

1− ξd+1
ξd+1dξd+1 +

ηd+1ξd+1dξd+1

1− ξd+1
+ ηd+1dξd+1

)

= 〈η, dξ〉L.

We can calculate that ‖η‖L = (1−‖x‖2)‖y‖
2 . In this way we get the following Hamiltonian:

F (x, y) = Φ(ξ, η) =
1

2
‖η‖2L =

(1− ‖x‖2)2‖y‖2
8

,

which gives the following transformed Hamilton differential equations:

x′ = Fy, y′ = −Fx.

This set of equations follows from straightforward calculations. The geodesics such

that ‖η‖L = 1 and Φ = 1
2 correspond to F = 1

2 . Now again comes the elegant trick.

The differential equations form a system and the first partial derivatives of F are the

only things which occur in the description. We can now replace F by u(F ) =
√
2F −1,

because this defines a differentiable function at the point F = 1
2 and u′(12) = 1. Now

the gradients of both functions agree and thus we get for G = u(F ):

x′ = Gy, y′ = −Gx.

Note that the system on F = 1
2 is now mapped to the system for which G = 0. If we

change the variable s to:

t =

∫

‖y‖ds,
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then ẋ = ‖y‖−1x′ = ‖y‖−1Gy and ẏ = −‖y‖Gx. If we define the following Hamiltonian:

H =
1

2
‖x‖2 ± 1

‖y‖ = ∓‖y‖−1G+
1

2
= ∓‖y‖−1(

√
2F − 1) +

1

2
,

then we obtain the Hamilton equations ẏ = Hx and ẋ = −Hy. So the Hamiltonian

system (4.3) for G = 0 is mapped to this system with H = 1
2 . It is obvious that

by the canonical transformation p = x and q = −y, the system goes over into the

Kepler problem. The trajectories of the geodesic flow on the hyperboloid away from

the north pole parametrized by s are mapped to the trajectories of the Hamiltonian

flow of H = 1
2‖x‖2± 1

‖y‖ away from y 6= 0 parametrized by t. The sign of the potential

in H is determined by the sign of k. The trajectories for which k = 1 are mapped

to geodesics on the positive sheet of the hyperboloid and the trajectories for which

k = −1 to geodesics on the negative sheet. Note that this would interchange if we had

chosen to perform a stereographic projection from the south pole.

A rescaling argument analogous to the one for negative energies.

Again, by restoring the north pole, we obtain the regularization of the Kepler prob-

lem.

Remark 4.3.6. Geometrically, the north pole corresponds to the points at infinity in

p-space, as can be seen from the geometry of the usual (non-extended) stereographic

projection. In order to maintain a finite energy, it also corresponds to q = 0. The

corresponding orbits are degenerated hyperbolas for which k > 0.

Corollary 4.3.7. For each E > 0, the energy regularized energy surface Σ̃E pos-

sesses O(d, 1) symmetry. The infinitesimal symmetry is given by the Lorentz group

o(n, 1). The group O(d, 1) acts on the space T ∗
1 (S

d) by matrix multiplication and takes

geodesics (parametrized by arc length) into geodesics (parametrized by arc length).

If we would consider the group O(d, 1)◦, the connected component of the identity

of O(d, 1), then the Kepler orbits with k = 1 would be mapped to Kepler orbits with

k = 1. Allowing all transformations of O(d, 1) also interchanges geodesics with different

k-signs.

In the next sections, we will describe another way of regularizing the Kepler problem.

This method generalizes the whole negative (or the whole positive) phase space at

once. We will prove that the corresponding regularization map is in fact a canonical

deformation of the Moser map.

From now on, we restrict ourselves to the negative energy case, but remark that it

can be formulated in the positive energy case as well. We also assume that µ = 1 and

k = 1.
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4.4 The Delaunay Hamiltonian

Definition 4.4.1. Let T be the complement of the zero section of the cotangent bundle

of the sphere, i.e.

T := {(ξ, η) ∈ T ∗(Sd)|‖η‖ > 0}.
The space T can be identified with a subspace of Rd+1 ⊕ R

d+1 as follows:

T ∼= {(x, y) ∈ R
d+1 ⊕ R

d+1 | ‖x‖ = 1, 〈x, y〉 = 0, y 6= 0}.

As we have seen in the description of the relation between the Kepler orbits and the

geodesic flow on the sphere, a reparametrization of the “time variable” occurs. In this

section, we define a new Hamiltonian on T , whose Hamiltonian vector field is a time

rescaling of the geodesic flow.

Remark 4.4.2. A moment map µ̃ : T −→ so(d+ 1)∗ is given by µ̃(x, y) = x ∧ y.
Definition 4.4.3. The Delaunay Hamiltonian H̃ on T is given by

H̃(ξ, η) = −1

2

1

‖η‖2 = −1

2

1

‖µ̃‖2 .

Remark 4.4.4. It is obvious that H̃ = g ◦F , where F is the geodesic Hamiltonian on

the sphere and g : R>0 −→ R, z 7→ − 1
4z .

Remark 4.4.5. The Hamiltonian vector field XH̃ is a time rescaling of the geodesic

vector field on T . In particular, its integral curves are geodesic curves on T .

The Delaunay Hamiltonian will turn out to be important for the following regular-

ization procedure.

4.5 The Ligon-Schaaf map

We discuss another regularization of the Kepler problem. It leans heavily on integrals of

motion and was described by Ligon and Schaaf [22]. Later Cushman and Duistermaat

wrote down a more conceptual treatment of this regularization procedure [8], but they

still rely on more calculations than necessary. The advantage of the method is that

it regularizes the whole negative (or the whole positive) phase space of the Kepler

problem at once, and it is a symplectomorphism.

We first give the Ligon-Schaaf map and briefly describe some properties formulated

by Ligon and Schaaf. In addition, we will in detail describe how the Ligon-Schaaf

regularization map arises naturally from the Moser method. This gives a geometrically

well-formulated regularization procedure of the whole negative energy phase space of

the Kepler problem.

We treat the regularization of the phase space P− for negative energies here. Ana-

logues for P+ are true as well. The explicit Ligon-Schaaf map for the positive energy

phase space can be found in [22].

For the Moser map ΦM , as defined in section 4.3, the following holds.
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Proposition 4.5.1. On the energy surface Σ 1

2

, theMoser map Π : T ∗(Rd) −→ T ∗
1 (Ŝ

d)

is explicitly given by

ξ =
(

‖q‖p, ‖q‖‖p‖2 − 1
)

, η =
(

‖q‖−1q + 〈q, p〉p,−〈q, p〉
)

.

ΦM is a canonical diffeomorphism.

Remark 4.5.2. The new claim of this proposition is the explicit form of the Moser

map. It follows directly from the formulas of Section 4.3.

Definition 4.5.3. The Ligon-Schaaf map ΦLS : P− −→ T is defined by

ΦLS(q, p) :=
(

(cosφLS)ξ + (sinφLS)η, (−2H)−
1

2 ((sinφLS)ξ − (cosφLS)η)
)

,

where ξ and η are given by

ξ =
(

(−2H)
1

2 ‖q‖p, ‖q‖‖p‖2 − 1
)

, η =
(

‖q‖−1q + 〈q, p〉p,−(−2H)−
1

2 〈q, p〉
)

.

and

φLS = −(−2H)
1

2 〈q, p〉 (4.5)

The following results are proved by Ligon and Schaaf.

Theorem 4.5.4. ΦLS satisfies the following three properties:

1. ΦLS is a diffeomorphism of P− onto T− = {(x, y) ∈ T |x 6= (0, . . . , 0, 1)};

2. ΦLS is canonical;

3. if γ is an integral curve of the Kepler Hamiltonian vector field XH in P−, then
ΦLS ◦ γ is a integral curve of the Delaunay Hamiltonian vector field X

H̃
in T ;

Remark 4.5.5. The reason that the Ligon-Schaaf map regularizes the Kepler problem

is that it defines a symplectic embedding of P− onto T− (in the slightly larger space

T ) whose Hamiltonian vector field is complete.

By comparison of the Moser map and the Ligon-Schaaf map, it might be the case

that somehow the Moser map fits into the treatment by Ligon and Schaaf, because

the components of the image of the Moser map are explicitly contained in the Ligon-

Schaaf map, since ν = 1 for H = −1
2 . This motivates the definition of the Moser

regularization fibration.

Definition 4.5.6. If we take ξ and η as defined in the Ligon-Schaaf map, then we

define the Moser regularization fibration to be the map ΠM : P− −→ T ∗
1 (Ŝ

d) given

by ΠM (q, p) = (ξ, η).

Remark 4.5.7. Obviously, the restrictions of this map and the Moser map to the

energy level Σ− 1

2

are the same.

Remark 4.5.8. If we change φLS in the Ligon-Schaaf map into the zero function,

then we get the Moser regularization fibration fibration.
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4.6 From Moser to Ligon-Schaaf

If we start with the Moser map, the Ligon-Schaaf map geometrically arises as the

extension of it to P−. The results of this section are also in [15]. In this article, also

the details of the calculations regarding the symmetry group are given.

The relation between the geodesic flow given by F and the Delaunay flow is as

follows.

Proposition 4.6.1. The geodesic flow of Hamiltonian F = 1
2‖η‖2 and the Delaunay

flow of the Delaunay Hamiltonian H̃ = − 1
2‖η‖2 are the same for F = 1

2 and H̃ = −1
2 .

Proof. On F = 1
2 we have:

dH̃ = g′(F )dF =
1

41
2
2 dF = dF.

Hence, the Hamiltonian vector fields match.

The most important part of the argument, however, is the explicit relation between

the arclength s and the real time t. A reparametrization of the time explicitly occurs

in the Moser treatment. In the Ligon-Schaaf treatment it turns out to be implicitly

done.

As was written before, the Kepler problem given by

dq

dt
= p,

dp

dt
= −‖q‖−3q

parametrized by t goes over by the Moser map in the (circular) geodesic motion given

by
dξ

ds
= η,

dη

ds
= −ξ.

parametrized by s. The vectors ξ and η are orthonormal. If we define a complex

structure on this plane by introducing the rotation by the angle π
2 in the counter-

clockwise direction and call this i, then we get:

iξ = η, iη = −ξ.

If we define

u = exp (−i〈q, p〉)ξ, v = (−2H)−
1

2 exp (−i〈q, p〉)η,

then on Σ− 1

2

we obtain

du

dt
= v,

dv

dt
= −u,

since
du

dt
= −id〈q, p〉

dt
u+ exp (−i〈q, p〉)ds

dt

dξ

ds
= (−p2 + 2

q
)v = v,
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and a similar calculation for the second equation. This means that the circular motion

parametrized by t is equivalent to the circular motion parametrized by s, which is

in turn equivalent to the Kepler orbits parametrized by t. The multiplication by

exp (−i〈q, p〉) makes this relation explicit. Recall that ηd+1 = −〈q, p〉, so we can also

write this factor in terms of the coordinates ξ and η.

We can use the actions defined on P− and T− to extend the Moser picture. Let ρ

denote a parameter in R>0. Consider the rescaling function on P− as defined earlier

by

Rρ(q, p, t,H) = (ρ2q, ρ−1p, ρ3t, ρ−2H).

We now also define a rescaling on T− according to Ligon and Schaaf by

R̃ρ(ξ, η, t, H̃) = (ξ, ρη, ρ3t, ρ−2H̃)

Remark 4.6.2. Both scalings are well-defined.

Remark 4.6.3. ΠM is invariant under the scaling Rρ, i.e. ΠM (Rρ(q, p)) = ΠM (q, p).

From direct calculations we obtain the following:

Proposition 4.6.4. The Ligon-Schaaf map intertwines both actions of R+, i.e.

ΦLS ◦Rρ = R̃ρ ◦ ΦLS.

Theorem 4.6.5. The restriction of the Moser map ΦM to the energy surface Σ− 1

2

extends to the symplectomorphism ΦLS : P− −→ T− by the scaling actions R and R̃.

Proof. If we perform the multiplication of exp (iηd+1) on the energy surface corres-

ponding to H = −1
2 , i.e.

(ξ, η) 7→ exp (iηd+1)(ξ, η) = (u, v)

the Moser map corresponds to the Ligon-Schaaf map on this energy surface, where

now the curves of H and H̃ are now related by the same time t.

By the two actions of R+, which are intertwined by ΦLS , this map extends to the

whole P− in a well-defined way. This gives the Ligon-Schaaf map as defined earlier.

This map is canonical. This follows from the canonicity of the Moser map and from

the fact that Φ∗
LSH̃ = H, since ΦLS is obtained from the Moser map by a canonical

modification along the ruled surfaces with base the Kepler orbits in Σ− 1

2

and rulings

the scale action. Indeed, on a surface S corresponding to a Kepler orbit, we have that

ω|S = dt∧ dH|S is mapped to ω̃|ΦLS(S) = dt∧ dH̃. The scaling of dt∧ dH and dt∧ dH̃
is consistent with the scaling of ω and ω̃.

This theorem gives the geometric relation between the regularization by Moser and

the regularization by Ligon and Schaaf.
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4.7 The symmetry group

Recall that the components of angular momentum and the Runge-Lenz vector are

given by

Lij = qipj − qjpi,

Ki = (‖p‖2 − 1

‖q‖)qi − 〈qi, pi〉pi

respectively.

Proposition 4.7.1. The following commutation relations hold for Lij.

{Lij, Lkl} = δjlLik + δikLjl − δjkLil − δilLjk,

where 1 ≤ i, j, k, l ≤ d.

This proposition is proved by straightforward calculations. From this proposition, it

follows that the components Lij for 1 ≤ i, j ≤ d generate the Lie algebra so(d), which

corresponds to the infinitesimal symmetry of the Kepler problem.

If we set
Ki√
−2H

= Li(d+1) = −L(d+1)i

on P−, then it turns out that the components Lij for 1 ≤ i, j ≤ d + 1 generate the

Lie algebra so(d + 1), which accounts for the hidden symmetry. In the literature,

it is not well-motivated that the components of the Runge-Lenz vector come up as

generators for the richer symmetry. The following theorem exhibits this symmetry of

the Kepler problem by using the well-known symmetry of the complement T of the

zero section of the cotangent bundle of the sphere and take the pull-back under the

canonical Ligon-Schaaf map.

Theorem 4.7.2. If Mij := uivj − viuj are the components of angular momentum on

T ⊂ R
d+1 ⊕ R

d+1, then

Φ∗
LSMij = Lij

for 1 ≤ i, j ≤ d+ 1.

A proof of this theorem consists of straightforward calculations by writing out the

expression Φ∗
LSMij at (q, p). This theorem proves that the Ligon-Schaaf map inter-

twines the infinitesimal actions of so(d+ 1). We can integrate the Hamiltonian vector

fields of Lij to obtain an incomplete Hamiltonian action of SO(d + 1). This action is

regularized by the Ligon-Schaaf regularization. By definition, the Ligon-Schaaf map

intertwines both actions of SO(d+1). From this, it follows that it also intertwines the

moment maps.

Corollary 4.7.3. The Ligon-Schaaf map intertwines the two moment maps µ and µ̃,

i.e. µ(q, p) = µ̃(ΦLS(q, p)).
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Remark 4.7.4. This property of the Ligon-Schaaf regularization map was proved by

Ligon and Schaaf and was one of the key properties of this map in the article by

Cushman and Duistermaat. They prove that this property and the three properties of

Theorem 4.5.4 completely characterize the Ligon-Schaaf map.

Corollary 4.7.5. The commutation relations

{Lij ,Kk} = δikKj − δjkKi,

{Ki,Kj} = −2HLij

follow from the fact that Φ∗
LSMij = Lij.

Note that the Runge-Lenz vector is indeed obtained as the integral of motion that

accounts for the hidden symmetry.
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Chapter 5

Quantization of the Kepler

Hamiltonian

In this chapter, we look at possible quantizations of the Kepler Hamiltonian, which are

operators that arise as the result of a quantization procedure applied to the classical

Kepler Hamiltonian. Quantum mechanics has deterministic aspects if the Hamilton

operator of a system is self-adjoint. The system is then said to be complete. We

discuss in which way the classically incomplete Kepler problem gives rise to complete

quantum Kepler problems by extending the naturally quantized Hamilton operator in a

self-adjoint way. First we explain the idea of Schrödinger quantization, the framework

in which the quantization of a Hamiltonian function fits. After some general theory

about self-adjoint extensions, we then discuss the possible self-adjoint extensions of

the quantum Kepler Hamiltonian.

5.1 Quantization procedures

In physics, the term quantization refers to any way of obtaining a quantum mech-

anical description of a physical system from its classical mechanical description. Even

if we make this notion mathematically precise, there are several essentially different

versions of it.

Definition 5.1.1. A classical mechanical system is a triple (M, {., .},H) consisting

of manifoldM , the phase space, with a Poisson bracket {., .} on C∞(M) and a smooth

Hamiltonian function H :M −→ R.

Definition 5.1.2. A quantum mechanical system is a pair (H, Ĥ) consisting of

a Hilbert space H, playing the role of a “quantum phase space”, with a self-adjoint

operator Ĥ, the Hamilton operator, defined on it.

Remark 5.1.3. On a Hilbert space, the commutator bracket [A.B] of two operators

A and B is formally defined as the operator AB −BA. The commutator bracket is a

Lie bracket.

55
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Remark 5.1.4. We distinguish in notation between the Hamiltonian function H and

the Hamilton operator Ĥ. We will, however, for simplicity call both objects the

Hamiltonian.

Quantization relates classical and quantum mechanical systems. A quantization

procedure assigns a quantum mechanical system (H, Ĥ) to each classical mechanical

system (M, {., .},H), i.e. Q((M, {., .},H)) = (H, Ĥ), in such a way that self-adjoint

operators acting on H are assigned to functions in C∞(M). There are many different

versions of quantization, based on very different concepts. We will not go into this,

since this goes beyond the scope of this thesis.

Remark 5.1.5. It turns out that it is not possible to find a quantization procedure

that assigns a non-zero scalar operator to each non-zero constant function and such

that the {., .} goes over into i
~
[., .] in a consistent way. This result is known as the

Groenewold-Van Hove Theorem [13].

In the next section, we will describe Schrödinger quantization, since we defined the

quantum Kepler problem as solving the Schrödinger equation of the Kepler problem.

5.2 Schrödinger quantization

The best well-known quantization procedure is Schrödinger quantization. Since we

consider the Kepler problem, we restrict ourselves to classical systems with a config-

uration space Q ⊂ R
d. The procedure of Schrödinger quantization maps the classical

phase space, i.e. the cotangent bundle of the configuration space, to the Hilbert space

L2(Q). Furthermore, the canonical coordinates are mapped to operators on this Hil-

bert space by

qi 7→ qi,

pi 7→ −i~ ∂

∂qi
.

The image of the position coordinate qi is the multiplication operator, given by multi-

plication by this coordinate. However, we do not distinguish in notation between the

classical and the quantum case.

The Poisson brackets for qi and pj goes over in
i
~
[qi, pj ] and the Hamiltonian function

is mapped to the Hamilton operator. In this way, a particle with classical Hamiltonian

H = T + V , where T is the kinetic energy and V the potential of the particle, is

described quantum mechanically by its wave function Ψ(x, t), which satisfies the time-

dependent Schrödinger equation:

i~
∂

∂t
Ψ(x, t) = Ĥψ(x, t), (5.1)

where the Hamilton operator is obtained as the direct quantization of the classical

Hamilton function, i.e.

Ĥ = − ~
2

2m
∆Rd + V,
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where ∆Rd is considered as the restriction to the functions on Q that form a suitable

domain, and V is a multiplication operator.

If the potential is time-independent, which is a physically quite weak assumption,

and in particular it is the case for the Kepler problem, we can apply the method of

separation of variables q and t. It is well-known that solving the time-dependent way

then breaks down to solving the time-independent Schrödinger equation.

Ĥψ = Eψ, (5.2)

where Ψ(x, t) = ψ(x)T (t). Solutions ψ of equation (5.2) are called stationary states.

5.3 Self-adjointness and quantum mechanics

In the time-independent Schrödinger equation, the Hamilton operator plays an essen-

tial role. If it is time-independent, we can define a time-evolution operator by:

U(t) = e−
iĤt
~ . (5.3)

This gives us a solution of the time-dependent Schrödinger equation by

Ψ(x, t) = U(t)Ψ(x, 0) =: U(t)ψ.

The operators U(s) and U(t) with s, t ∈ R satisfy

U(s)U(t) = U(s+ t) = U(t+ s) = U(t)U(s).

Moreover, U(0) = 1, the identity operator on H.

We will now make the above precise. The formal properties of U are a motivation

for the following definition.

Definition 5.3.1. A unitary time-evolution on a Hilbert space H is a unitary

one-parameter group R −→ U(H) ⊂ B(H), t 7→ U(t) that is strongly continuous,

i.e. ‖U(t)ψ − ψ‖ → 0 for t→ 0 for all ψ ∈ H.

Remark 5.3.2. Strong continuity is imposed as a consequence of the time-evolution

of equation (5.1). The fact that the one-parameter group is unitary is motivated by

equation (5.3).

We describe what conditions on the Hamiltonian give rise to unitary time-evolutions

in the sense of Definition 5.3.1. It is obvious that if Ĥ is bounded and self-adjoint, then

U(t) = e−
iĤt
~ defines a unitary time-evolution. However, Hamilton operators are often

unbounded and often not self-adjoint. The first turns out to be not very problematic,

as explained by the following theorem. The latter often has to do with the domain

of definition of the operator. If this is well-chosen, the operator may have a unique
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self-adjoint extension. However, if the Hamiltonian is only symmetric, i.e. densely

defined and 〈Ĥx, y〉 = 〈x, Ĥy〉 for all x, y ∈ H, then the operator may have infinitely

many self-adjoint extensions. Different self-adjoint extensions can give rise to different

time evolutions. The key result relating self-adjointness to unitary time-evolutions is

Stone’s Theorem [31, Section VIII.4].

Theorem 5.3.3. Let A be a self-adjoint operator on a Hilbert space H and let U(t) :=

eitA for t ∈ R be defined by the functional calculus. Then:

1. {U(t) | t ∈ R} is a strongly continuous unitary one-parameter group on H;

2. if ψ ∈ D(A), then limt→0
1
t
(U(t)ψ − ψ) exists and equals iAψ;

3. if ψ ∈ H and limt→0
1
t
(U(t)ψ − ψ) exists, then ψ ∈ D(A).

Conversely, if {U(t) | t ∈ R} is a strongly continuous unitary one-parameter group on

H, then there is a self-adjoint operator (A,D(A)) on H such that U(t) = eitA for all

t ∈ R.

5.4 Self-adjoint extensions

The goal of this section is to give the basic results of the theory of self-adjoint extensions

of a closable symmetric1 operator. Recall that for a closable symmetric operator A,

we have A ⊂ A∗, i.e. A∗ is an extension of A.

Definition 5.4.1. Let A be a closable symmetric operator with domain DomA. A

self-adjoint extension A′ of A is a self-adjoint operator such that A ⊂ A′ ⊂ A∗. In
particular, A′ has the same action as A∗ on a domain DomA′ ⊂ DomA∗.

Remark 5.4.2. From this definition, it follows that in order to determine all self-

adjoint extensions of an operator, one needs to find all possible domains of them, since

the action is already known as the restriction of the action of its adjoint.

The results in this section are to be found in [9, 32, 37].

5.4.1 Spherical symmetry

A Schrödinger operator on (a, b) is the sum of minus the one-dimensional Lapla-

cian and a potential function acting on a Hilbert space of the form L2(a, b) with

−∞ ≤ a < b ≤ ∞. Such Schrödinger operators play an essential role in quantum

mechanics, in particular if the quantum system studied is spherically symmetric. In-

deed, after separation of variables, the radial part of the quantum Kepler Hamiltonian

is of the desired form, as will be explained soon. In this case, whether or not the

1Recall that in the definition of a symmetric operator, it is implicitly assumed that it is densely

defined.
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resulting Schrödinger operator is self-adjoint is important for the study of possible

time-evolutions of the quantum Kepler problem, since its self-adjointness is closely

related to the self-adjointness of the Hamiltonian before separation of variables.

Separation of variables for spherical coordinates is used in the case of the Kepler

problem. We assume that the reader is at least intuitively acquainted with this method

and do not discuss it here. For more information and the application to the Schrödinger

equation with a spherically symmetric potential, cf. [37, Chapter 18].

Recall that

L2(Rd) = L2((0,∞) × Sd−1; rd−1drdΩ) = L2((0,∞); rd−1dr)⊗̂L2(Sd−1; dΩ). (5.4)

The Laplacian on the sphere has the set of spherical harmonics Yl,j, where l ∈ N0 and

j = 1, . . . , N(l, d) = (2l+d−2)(l+d−3)!
l!(d−2)! as a complete set of solutions. Define

Xl,j := {f(r)Yl,j | f ∈ L2(0,∞; rd−1dr)}

and

X0
l,j := {f(r)Yl,j | f ∈ C∞

0 (0,∞)}.

Then X0
l,j is dense in Xl,j . Because of equation (5.4) we have

L2(Rd) = ⊕l,jXl,j.

5.4.2 Deficiency indices

Definition 5.4.3. Let A be a symmetric operator on a Hilbert space H. The defi-

ciency subspaces K+(A) and K−(A) of A are defined by

K+(A) := ker(A∗ − i) = Ran(A+ i)⊥,

K−(A) := ker(A∗ + i) = Ran(A− i)⊥.

Their dimensions n+(A) := dim(K+) and n−(A) := dim(K−) are called the deficiency

indices of A.

From the deficiency indices, it is possible to conclude the family of self-adjoint ex-

tensions of A in two essentially different ways. First, we say what deficiency subspaces

have to do with self-adjoint extensions.

Definition 5.4.4. A symmetric operator is called essentially self-adjoint if its clos-

ure is self-adjoint.

An essentially self-adjoint operator has a unique self-adjoint extension, namely its

closure, which coincides with its adjoint.

Proposition 5.4.5. Let A be a symmetric operator. Then

1. A is essentially self-adjoint if and only if n+(A) = n−(A) = 0;
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2. if n+(A) = n−(A) then there is a one-to-one correspondence between self-adjoint

extensions of A and unitary operators between K+(A) and K−(A), so if n+(A) =

n−(A) ≥ 1, then A has infinitely many self-adjoint extensions.

This proposition follows from [32, Theorem X.2]. We do not consider the case

n+(A) 6= n−(A), in which A has no self-adjoint extension at all.

5.4.3 Limit point-limit circle

We now investigate under which conditions on a potential V the corresponding Schrödinger

operator is essentially self-adjoint. Conceptually, this is the case if the classical motion

“stays away” from the points at infinity of the configuration space.

In what follows, let V : (a, b) −→ R a locally square-integrable function with −∞ ≤
a < b ≤ ∞, i.e. V ∈ L2

loc(a, b).

Definition 5.4.6. The minimal Schrödinger operator H with potential V on the

interval (a, b) is the operator H with domain DomH := C∞
0 (a, b) and action

H = − d2

dx2
+ V (x).

Recall that a function f : (a, b) −→ C is called absolutely continuous if for every ε > 0

there exists a δ > 0 such that if (a1, b1), . . . , (an, bn) is a collection of finitely many

pairwise disjoint intervals in (a, b) with

n
∑

i=1

(bi − ai) < δ

then
n
∑

i=1

|f(bi)− f(ai)| < ε.

Proposition 5.4.7. The domain DomH∗ of the adjoint of the minimal Schrödinger

operator H of the previous definition is given by

DomH∗ = {ψ ∈ L2(a, b) |ψ,ψ′ ∈ AC(a, b),H∗ψ ∈ L2(a, b)},

where AC(a, b) denotes the set of absolutely continuous functions on (a, b). The oper-

ator H∗ acts by the same action of H extended to the absolutely continuous functions.

This domain is dense in L2(a, b).

Remark 5.4.8. Recall that an operator A is closable if and only if A∗ is densely

defined. It follows that minimal Schrödinger operators are closable.

Definition 5.4.9. A function f : (a, b) −→ C is called square-integrable at a if there

exists a c ∈ (a, b) such that f ∈ L2(a, c). A function f : (a, b) −→ C is called square-

integrable at b if there exists a c ∈ (a, b) such that f ∈ L2(c, b).
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Definition 5.4.10. The potential V is said to be in the limit circle case at a (at

b) if for some —and therefore all [37, Theorem 13.17]— λ ∈ C all solutions ψ of the

Schrödinger equation Hψ = λψ, where H is the minimal Schrödinger operator from

Definition 5.4.6, are square-integrable at a (at b). If V is not at the limit circle case

at a (at b), then it is said to be in the limit point case at a (at b).

Theorem 5.4.11. The operator H is essentially self-adjoint if and only if the corres-

ponding V is in the limit point case at both a and b.

A proof of this theorem is found at [9, Theorem 7.2.13]. If a symmetric operator

is not essentially self-adjoint, it is possible that is has infinitely many self-adjoint

extensions. Below, we describe two ways to determine them.

5.4.4 Von Neumann theory

The following theorem by von Neumann characterizes all self-adjoint extensions in

terms of the closure. It follows from [9, Section 2.5].

Theorem 5.4.12. Let A be a closable symmetric operator on a Hilbert space H. Then

A′ is a self-adjoint extension if A′ has the same action as A∗ and domain

DomA′ = DomAU := {ψ + ψ− − Uψ− |ψ ∈ DomA, ψ− ∈ K−(A)},

where U : K−(A) −→ K+(A) is a unitary map between the deficiency spaces.

5.4.5 Boundary forms

Boundary forms are sesquilinear maps from the domain of an adjoint to C, which

classify the self-adjoint extensions of a symmetric operator explicitly by means of the

unitary operators between the deficiency subspaces.

Definition 5.4.13. Let A be a symmetric operator. Define the boundary form

corresponding to A as the sesquilinear map Γ := ΓA∗ : DomA∗ × DomA∗ −→ C given

by

Γ(f, g) := 〈A∗f, g〉 − 〈f,A∗g〉
for f, g ∈ DomA∗.

The following result, a proof of which is found at [9, Proposition 7.1.8], classifies the

self-adjoint extensions explicitly.

Proposition 5.4.14. Let A be a symmetric operator with equal deficiency indices.

Then each unitary operator U : K−(A) −→ K+(A) gives rise to a self-adjoint extension

with domain

DomAU = {f ∈ DomA∗ |Γ(f, g − Ug) = 0∀g ∈ K−(A)}

and action AUf = A∗f .
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There are convenient ways of finding the unitaries U .

Definition 5.4.15. Let A be a symmetric operator such that n−(A) = n+(A). We

define a boundary triple (L, ρ1, ρ2) for A as a Hilbert space L and two linear maps

ρ1, ρ2 : DomA∗ −→ L with dense ranges such that

aΓ∗
A(f, g) = 〈ρ1(f), ρ1(g)〉 − 〈ρ2(f), ρ2(g)〉

for all f, g ∈ DomA∗ and some constant 0 6= a ∈ C.

Proposition 5.4.16. Let A be a symmetric operator such that n−(A) = n+(A). If

(L, ρ1, ρ2) is a boundary triple for A, then the self-adjoint extension AU of A corres-

ponding to the unitary map unitary map U : L −→ L is the operator with domain

DomAU = {f ∈ DomA∗ | ρ2(f) = Uρ1(f)}

and action AUf = A∗f .

A proof of this proposition is found at [9, Theorem 7.1.13].

5.5 The quantum Kepler Hamiltonian

We now return to the problem of quantizing the quantum Kepler Hamiltonian. For

our purposes in this chapter, this part of the Schrödinger quantization procedure is

the most important.

The results in this chapter are taken from [9, 32, 36, 37]. There, one can also find

details and proofs. It is possible to say much more.

Remark 5.5.1. In this chapter, we leave our notation in coordinates q and p and use

r and Ω instead to emphasize that we are working in spherical coordinates.

The d-dimensional quantum Kepler Hamiltonian is initially defined as the operator

Ĥ : D −→ L2(Rd)

given by

Ĥ = −∆Rd − k

r
,

where r = ‖(x1, . . . , xd)‖ and

D = C∞
0 (Rd \ {0}).

Note that this operator is not self-adjoint on this domain. Using separation of variables,

the Laplacian on R
d is given by

∆Rd =
∂2

∂r2
+
d− 1

r

∂

∂r
+

1

r2
∆Sd ,



5.6. SELF-ADJOINT EXTENSIONS OF THE KEPLER HAMILTONIAN 63

where ∆Sd is the Laplacian on the d-sphere.

The quantum Kepler Problem is to determine the eigenvalues and eigenfunctions of

the Schrödinger equation

Ĥψ = Eψ.

Physically, this problem corresponds to determining the energy levels and correspond-

ing electron disctributions of the hydrogen atom.

Remark 5.5.2. The physical version of the quantum Kepler Hamiltonian contains

some constants, such as ~ and µ. For our purposes, the values of these constants do

not matter, as long as they are positive. Therefore, it is harmless to set ~ = 1 and

µ = 1
2 , as we did.

5.6 Self-adjoint extensions of the Kepler Hamiltonian

In this section, we discuss the self-adjoint extensions of the quantum Kepler Hamilto-

nian. To this end, we distuinguish between different dimensions. It is expected that

in higher dimensions, there is “less to choose” than in the lower dimensions, because

of the topological nature of the singularity at 0.

The results in this section are explicitly given for the Kepler Hamiltonian. Many

can be generalized to other potentials, but we do not make the proofs lengthier to that

purpose, as this text is about the Kepler problem. For the general results, cf. [32, 37].

First, we consider the cases d ≥ 4 and d = 3, then the case d = 2, and finally d = 1.

For both the case d ≥ 4 and the case d = 3, which we need to treat separately later,

we consider the operator Ĥ on domain D := C∞
0 (Rd \ {0}) with d ≥ 3. Recall our

definition of Xl,j and X0
l,j:

Xl,j := {f(r)Yl,j | f ∈ L2(0,∞; rd−1dr)}X0
l,j := {f(r)Yl,j | f ∈ C∞

0 (0,∞)}.

Proposition 5.6.1. The operator Ĥ maps X0
l,j to Xl,j

Proof.

Ĥ(f(r)Yl,j(θ)) =

(

−d
2f

dr2
− d− 1

r

df

dr
− kf(r)

r

)

Yl,j(θ)−
f(r)

r2
∆Sd−1Yl,j(θ)

=

(

−d
2f

dr2
− d− 1

r

df

dr
− kf(r)

r
+
l(l + d− 2)

r2
f(r)

)

Yl,j,

which is an element of Xl,j.

From this, it follows that the restriction of Ĥ to X0
l,j is unitary equivalent to

Ĥ ′
l := − d2

dr2
− d− 1

r

d

dr
− k

r
+
l(l + d− 2)

r2

with domain C∞
0 (0,∞) ⊂ L2(0,∞; rd−1dr), since Ĥ only depends on l and not on j

on the domain X0
l,j. It follows that Ĥ

′
l is symmetric on this domain.
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Proposition 5.6.2. If we define Ĥl by

Ĥl := UĤ ′
lU

−1,

where U : L2(0,∞; rd−1dr) −→ L2(0,∞) is the unitary operator given by (Uf)(r) =

r
d−1

2 f(r), then Ĥl acts on C
∞
0 (0,∞) ⊂ L2(0,∞) by

Ĥl = − d2

dr2
+

(

l(l + d− 2) +
1

4
(d− 1)(d − 3)

)

1

r2
− k

r
.

In particular, Ĥl and Ĥ
′
l are unitary equivalent.

Proof. It is obvious, U being a unitary operator, that Ĥl and Ĥ
′
l are unitary equivalent.

The action of Ĥl is obtained by writing out UĤ ′
lU

−1.

(Ĥlf)(r) = (UĤ ′
lU

−1f)(r)

= (UĤ ′
l)r

− d−1

2 f(r)

= U(−(d− 1)(d + 1)

4
r−

d+3

2 f(r) + (d− 1)r−
d+1

2
df(r)

dr
− r−

d−1

2
d2f(r)

dr2

+
(d− 1)2

2r
r−

d+1

2 f(r)− d− 1

r
r−

d−1

2
df(r)

dr
+
l(l + d− 2)

r2
r−

d−1

2 f(r)

− k

r
r−

d−1

2 f(r))

= −(d− 1)(d + 1)

4r2
f(r) +

(d− 1)

r

df(r)

dr
− d2f(r)

dr2

+
(d− 1)2

2r2
f(r)− d− 1

r

df(r)

dr
+
l(l + d− 2)

r2
f(r)− k

r
f(r),

Write W (r) :=
(

l(l + d− 2) + 1
4(d− 1)(d − 3)

)

1
r2

− k
r
and consider it as an effective

potential.

5.6.1 Dimension d ≥ 4

For the treatment of this case, we follow [37, Section 18.3].

Lemma 5.6.3. For d ≥ 4, the potential W is in the limit point case at 0.

Proof. For d ≥ 5 and l ∈ N0, as well as for d = 4 and l ≥ 1, we have W (r) ≥ 3
4r

−2 for

small r. Hence [32, Theorem X.10] applies.

For the case d = 4 and l = 0, the effective potential takes the form W (r) = 3
4r

−2 +

V (r). We use the fact that V has −∆-bound 0 [37, Theorem 17.2]. From this, it

follows that V has also −∆+ 3
4r

−2-bound 0. Because 3
4r

−2 is in the limit point case

at 0, also W is in the limit point case at 0, which follows from [36, Theorem 10.4].

Lemma 5.6.4. For d ≥ 3, the potential W is in the limit point case at ∞.
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Proof. This result follows from [32, Theorem X.8] by choosing a large enough constant

function for M(r). This works, because W has a minimum on (0,∞).

From these two lemmas, it follows that Ĥl is essentially self-adjoint for all l ∈ N0.

Let Tl denote the (unique) self-adjoint extension of Ĥl for l ∈ N0. Recall the following

proposition about the sum of self-adjoint operators [37, Theorem 18.2].

Proposition 5.6.5. If Ai with domain Dom(Ai) denotes a self-adjoint operator on the

Hilbert space Ĥi for each i ∈ I, then the orthogonal sum A = ⊕i∈IAi is a self-adjoint

operator on ⊕i∈IĤi.

From Lemma 5.6.3 and Lemma 5.6.4, the following result is immediate.

Theorem 5.6.6. The operator ⊕l∈N0,j=1,...,N(l,d)Tl is a self-adjoint operator.

Remark 5.6.7. This self-adjoint extension is unitary equivalent to the (unique) self-

adjoint extension of Ĥ with domain C∞
0 (Rd).

Corollary 5.6.8. The Hamilton operator Ĥ admits a unique unitary time-evolution.

So the quantum Kepler problem for d ≥ 4 is complete.

Remark 5.6.9. Note that the Kepler problem for d ≥ 4 is an example of a prob-

lem which is complete in the quantum description, but incomplete in the classical

description.

5.6.2 Dimension d = 3

For the treatment of the three-dimensional case, we use the same methods as for the

higher-dimensional case, but the result is different. We expose the material in the same

way as before. The technical details are due to [10].

Define Ĥ ′
l and Ĥl in the same way as above. Their form is the same. Moreover, we

can substitute d = 3, which yields

Ĥl := − d2

dr2
+
l(l + 1)

r2
− k

r
.

The potential W (r) = l(l+1)
r2

− k
r
is in the limit point case at ∞, which was proved in

Lemma 5.6.4. By an analogous argument as in Lemma 5.6.3 to prove that W (r) is in

the limit point case at 0 for d ≥ 4 and l ≥ 1, we conclude that for d = 3 and l ≥ 1 is

in the limit point case, since then also W (r) ≥ 3
4r

−2 for small r.

Lemma 5.6.10. For d = 3 and l = 0, the potential W (r) is in the limit circle case.

Proof. Because for l = 0 we have W (r) = k
r
≤ C

r2
for all C > 0 and small enough r, it

follows that W (r) is in the limit circle case at 0 [32, Theorem X.10] .
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Denote by Ĥ∗
l the (unique) self-adjoint extension of Ĥl by for l ≥ 1. Recall ([9,

Proposition 2.3.20]) that the domain of Ĥ∗
l (and its adjoint) is given by

D(Ĥ∗
l ) = {f ∈ L2(0,∞) | f, f ′ ∈ AC(0,∞), Ĥ∗

l f ∈ L2(0,∞)}, (5.5)

where Ĥ∗
l has the same action as Ĥl.

By [9, Theorem 2.1.24], the adjoint T ∗ of an Hermitean operator T is an extension

of all self-adjoint extensions of T . So in the case l = 0, we look for extensions
˜̂
H0 of Ĥ0

with domain D such that Dom Ĥ0 ⊂ D ⊂ Dom Ĥ∗
0 and the same —but restricted—

action as Ĥ∗
0 .

In order to determine these self-adjoint extensions explicitly, we use the following

lemma [10, Lemma 1].

Lemma 5.6.11. For g ∈ Dom Ĥ∗
0 , the lateral limits

g(0+) := lim
r→0+

g(r),

g̃(0+) := lim
r→0+

(g′(r) + g(r) log(r))

exist and are finite.

The boundary form corresponding to Ĥ0 is defined as

Γ(f, g) := 〈Ĥ∗
0f, g〉 − 〈f, Ĥ∗

0g〉

for f, g ∈ Dom Ĥ∗
0 . Using Lemma 5.6.11 and integration by parts, it follows [10] that

Γ(f, g) = −
(

f(0+)g̃(0+)− f̃(0+)g(0+)
)

.

The results of Subsection 5.4.5 give us a way to explicitly determine the self-adjoint

extensions of Ĥ0. For f ∈ Dom Ĥ∗
0 , define

ρ±(f) := f(0+)± if̃(0+)

The ranges images of ρ± are dense in C. It follows that

〈ρ+(f), ρ+(g)〉X+
− 〈ρ−(f), ρ−(g)〉X−

= 2iΓ(f, g), (5.6)

where 〈., .〉X±
denotes the standard inner product on X± and f, g ∈ Dom Ĥ∗

0 .

By [37, Theorem 13.19], Ĥ0 has deficiency indices equal to 1. By Proposition 5.4.16,

finding the domains D for which equation (5.6) holds, comes down to determining, for

each unitary operator U : L −→ L, the elements f of Dom Ĥ∗
0 such that Uρ+(f) =

ρ−(f). Explicitly, the unitary mappings between one-dimensional Hilbert spaces are

given by {Uθ := eiθ | θ ∈ [0, 2π)}. These all give rise to an extension with domain

Dom Ĥ0,θ = {f ∈ Dom Ĥ∗
0 | (1 − eiθ)f(0+) = i(1 + eiθ)f̃(0+)}.

For θ 6= 0, this is equivalent to

f(0+) = λf̃(0+), λ = i
1 + eiθ

1− eiθ
∈ R.

For θ = 0, we set λ = ∞. The following result follows.
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Proposition 5.6.12. The self-adjoint extensions Ĥλ
0 with λ ∈ R ∪ {∞} have domain

Dom Ĥλ
0 = {f ∈ Dom Ĥ∗

0 | f(0+) = λf̃(0+)}

and action

Ĥλ
0 f = Ĥ∗

0f.

The following theorem now holds.

Theorem 5.6.13. The self-adjoint extensions of (Ĥ, C∞
0 (R3 \ {0})) are

Ĥλ = (U−1Ĥλ
0U ⊗ I0)⊕

∞
⊕

l=1

(U−1Ĥ∗
l U ⊗ Il), λ ∈ R ∪ {∞},

where each summand acts on its specified domain and Il (l ≥ 0) denotes the identity

operator on Xl,j.

5.6.3 Dimension d = 2

For the treatment of the 2-dimensional quantum Kepler problem, we follow [10].

Hereto, consider the operator Ĥ on domain C∞
0 (R2 \ {0}). We only sketch the ar-

guments here and do not treat the explicit properties of the special functions involved.

In two dimensions, the Laplacian has the following form:

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
.

By the theory of spherical harmonics, the eigenfunctions of the Laplacian are given by

d2

dθ2
Yl(θ) = −l2Yl(θ).

It follows that an orthogonal base of eigenfunctions is given by

{eilθ | l ∈ Z}.

Remark 5.6.14. The eigenspace corresponding to the eigenvalue −l2 for l 6= 0 is two-

dimensional and the eigenspace corresponding to the eigenvalue 0 is one-dimensional,

which is in agreement with the numbers N(l, 2), which give the multiplicity of the

eigenspaces.

Let now Xl denote the space Xl := {f(r)Yl | f ∈ L2(0,∞; rdr)} and likewise X0
l :=

{f(r)Yl | f ∈ C∞
0 (0,∞)}. Obviously Ĥ maps X0

l to Xl and just as in the higher-

dimensional case, the restriction Ĥl of Ĥ to Xl is unitary equivalent to the operator

Ĥ ′
l = − d2

dr2
− 1

r

d

dr
− k

r
+
l2

r2
,
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with domain C∞
0 (0,∞) ⊂ L2(0,∞; rdr). The unitary transformation (Uf)(r) =

r
1

2 f(r) shows that Ĥl is unitary equivalent to

Ĥl := UĤ ′
lU

−1 = − d2

dr2
− k

r
+
l2 − 1

4

r2
,

with domain C∞
0 (0,∞) ⊂ L2(0,∞).

Remark 5.6.15. Let l 6= 0. The fact that W (r) =
l2− 1

4

r2
− k

r
is in the limit point case

at ∞ again follows from [32, Theorem X.8].

We now prove that W (r) is in the limit point case at 0 for l 6= 0 and in the limit

circle case at 0 for l = 0. To this end, we look at the eigenfunctions of Ĥ∗
l ψ = λψ for

λ = i. We obtain the following equation:

−ψ′′ +

(

(l2 − 1

4
)
1

r2
− k

r
− i

)

ψ = 0.

Changing variables to y =
√
−4ir, this equation takes the form

ψ′′ +

(

(
1

4
− l2)

1

y2
+

k√
−4iy

− 1

4

)

ψ = 0, (5.7)

and we prove that this equation has solutions that are not square-integrable at 0, which

implies that W is limit point at 0.

Equation (5.7) is solved by the Whittaker functions [38]. For l = 0, these func-

tions are square-integrable at 0; for l 6= 0, some Whittaker functions are not square-

integrable at 0. So W is in the limit circle case at 0 for l = 0 and is in the limit point

case for l 6= 0.

From these facts, the following result follows.

Proposition 5.6.16. The operator Ĥl is essentially self-adjoint for l 6= 0. The oper-

ator Ĥ0 has deficiency indices equal to 1.

For l 6= 0, let Tl denote the (unique) self-adjoint extension of Ĥl. The Whittaker

function M−(y) := M
(−4i)−

1
2 ,0

(y) spans the deficiency subspace K−, since this is a

square-integrable solution at 0. The deficiency subspace K+ is spanned by the function

M+(y) :=M(y). In this case, from the von Neumann theory of self-adjoint extensions

(cf. Subsection 5.4.4), the following result follows.

Proposition 5.6.17. The self-adjoint extensions Ĥθ
0 of Ĥ0 are the operators with

domain

Dom Ĥ0,θ = {ψ + c(φ+ − eiθφ−) |ψ ∈ Dom Ĥ0, c ∈ C},
where φ± defined as above, and action Ĥ0,θψ = Ĥ∗

0ψ.

Proof. The unitary operators from K−(Ĥ0) to K+(Ĥ0) are again multiplications by eiθ

and the complex conjugation.
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Theorem 5.6.18. The self-adjoint extensions Ĥθ of Ĥ on C∞
0 (R2 \ {0}) are given by

Ĥθ = (U−1Ĥ0,θU)⊕
⊕

l∈Z\{0}
(U−1TlU),

where each summand acts on its specified domain.

5.6.4 Dimension d = 1

The one-dimensional case is the most subtle, since the natural domain of definition of

the Hamiltonian is not even connected. There is a lot to say about this [9, 10]. We

only give a more sketchy overview than for the cases of other dimensions. In [10], some

physical considerations are discussed as well.

Consider the one-dimensional quantum Kepler Hamiltonian with natural domain

C∞
0 (R \ {0}). This domain is not connected. Therefore, the one-dimensional case

needs to be considered carefully, since we need to deal with the behaviour of the

solutions near zero from two sides that do not have to do anything with another at

first.

Let us write C∞
0 (R \ {0}) = C∞

0 (−∞, 0) ⊕ C∞
0 (0,∞) and define Ĥ1 := Ĥ|C∞

0
(−∞,0)

and Ĥ2 := ĤC∞
0

(0,∞). Thus, Ĥ = Ĥ1 ⊕ Ĥ2. The domain of the adjoint of Ĥ1 is given

by

Dom Ĥ∗
1 = {f ∈ L2(0,∞) | f, f ′ ∈ AC(0,∞), Ĥ∗

+f ∈ L2(0,∞)},

and a similar expression holds for Ĥ2. It follows that

Dom Ĥ∗ = {f ∈ L2(R) | f, f ′ ∈ AC(R \ {0}), Ĥ∗f ∈ L2(R)}.

The method of finding self-adjoint extension that we applied in higher dimensions can

also be used for the one-dimensional problem, but we need to distinguish more cases.

First, we state an analogue of Lemma 5.6.11.

Lemma 5.6.19. 5.6.11 For g ∈ Dom Ĥ∗, the lateral limits

g(0±) := lim
h→0±

g(x),

g̃(0±) := lim
h→0±

(g′(x)± g(x) ln(|x|))

exist and are finite.

A proof of this lemma can be found in [9, Lemma 7.4.3]. In [25], the following result

is proved.

Proposition 5.6.20. For the deficiency indices, the following holds:

n+(Ĥ±) = n−(Ĥ±) = 1,

n+(Ĥ) = n−(Ĥ) = 2.
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It follows that the boundary form takes the form

Γ(f, g) = f(0+)g̃(0+)− f̃(0+)g(0+) + f̃(0−)g(0−)− f(0−)g̃(0−).

For f ∈ Dom Ĥ∗, define ρ1, ρ2 : Dom Ĥ∗
C
2 by

ρ1(f) :=

(

f̃(0+) + if(0+)

f̃(0−)− if(0−)

)

,

ρ2(f) :=

(

f̃(0+)− if(0+)

f̃(0−) + if(0−)

)

.

It follows that

〈ρ1(f), ρ1(g)〉C2 − 〈ρ2(f), ρ2(g)〉C2 = −2iΓ(f, g),

where f, g ∈ Dom Ĥ∗
0 . We proceed in the same way as in for the previous cases. Each

unitary matrix U ∈ Mat2(C) gives rise to a self-adjoint extension ĤU with domain

Dom ĤU = {f ∈ Dom Ĥ∗ | ρ2(f) = Uρ1(f)}

and the same action as Ĥ∗.

5.7 Completeness of the quantum Kepler problem

Definition 5.7.1. A quantum system on a Hilbert space Ĥ for which the time evolu-

tion is described by a unitary time-evolution is said to be complete.

Remark 5.7.2. In this way, a self-adjoint Hamiltonian gives rise to a unitary time-

evolution by Theorem 5.3.3. If the Hamiltonian is not self-adjoint, it may have infin-

itely many self-adjoint extensions. If it has a unique self-adjoint extension, then for

convenience we will also say that the quantum system described by it is complete.

From the calculations above, it follows that the quantum Kepler problem is complete

for dimensions d ≥ 4. In one, two and three dimensions there are infinitely many

choices. Our expectation that the lower the dimension, the more there is to choose,

turns out to be true.

In the physics literature, the hydrogen atom in three dimensions is often solved

in the way given in [12, 21]. Nothing is mentioned about the self-adjoint extension

that is chosen. However, implicitly an extension is chosen by the method of solution.

Indeed, they assume that the wave functions can be smoothly extended to the origin,

so in fact the initial domain that is chosen for the Hamiltonian is C0(R
3) rather that

C0(R
3 \ {0}). We have

‖V ψ‖2 =
∫

R3

|ψ(x)|2
|x|2 dx

=

∫ 2π

0

∫ π

0

∫ ∞

0
|ψ̃(r, θ, φ)|2dr sin θdθdφ

<∞,

(5.8)
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which justifies the extension of the domain. By the Kato-Rellich theorem [9, Theorem

6.1.8], the operator (Ĥ, C0(R
3)) is essentially self-adjoint. This choice corresponds to

the Dirichlet boundary conditions, and hence to λ = 0.

Remark 5.7.3. This method of extending the operator to the smooth functions on

the whole Rd only works for d ≥ 3. However, for d ≥ 4, we already proved the stronger

result that Ĥ is essentially self-adjoint on C∞
0 (Rd \ {0}).

In the next chapter, we will discuss the quantum analogue of Moser’s treatment and

come back to the question of choosing self-adjoint extension. In particular, we will

address the question which explicit extension is chosen in the Fock approach.



72 CHAPTER 5. QUANTIZATION OF THE KEPLER HAMILTONIAN



Chapter 6

Quantum Kepler problem

In this chapter, solving the quantum Kepler problem refers to any way to obtain the

spectrum of the Hamiltonian of the hydrogen atom together with the corresponding

electron distributions. The most important aim of this chapter is to discuss Fock’s

treatment of the hydrogen atom. Although this was done thirty-four years earlier, it

can be considered as the quantum analogue of Moser’s work. In this case, we look

at what we call the Schrödinger quantization of the Kepler problem, as described

in Chapter 5, and we will apply our general method of interchanging the position

and momentum coordinates and then apply a stereographic projection. However, we

start with Pauli’s abstract method to obtain the spectrum of the hydrogen atom,

because it was the first theoretical derivation of the spectrum, without calculating

the corresponding electron wave functions. We will also explain the relations to the

rest of the chapter later. The quantization procedure here is often called canonical

quantization.

6.1 Spectrum obtained by Lie algebra representations

In 1926, Pauli gave the first quantum mechanical treatment of the hydrogen atom [29].

He derived its negative energy spectrum by means of calculations with operators and

commutators. Later, his method was understood in terms of Lie algebras, as described

by Bander and Itzykson [3]. They also described the method for positive energies in

[4]. We treat this method here in terms of Lie algebra theory, but we leave out most

of the proofs and calculations leading to the technical results.

Pauli’s article treats the three-dimensional Kepler problem. We think that the

method can be generalized to d dimensions in a straightforward way, but the rep-

resentation theory will be more difficult in other cases, so we only decribe the three-

dimensional case here.

Suppose that the position operator q and the momentum operator p are self-adjoint

operators1 on some Hilbert space H representing the three-dimensional space, corres-

1The classical counterparts of these operators in three dimensions are denoted in boldface.

73
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ponding to the physical situation of a particle of mass 1 in a Kepler potential. They

are subjected to the following (Heisenberg) commutation relations:

[qi, qj] = [pi, pj ] = 0,

[qi, pj] = i~δij .
(6.1)

Remark 6.1.1. We treat these observables as mere algebraic objects and apply (Lie)

algebraic methods to them. We do not refer to the explicit Hilbert space, on which these

operators are initially unbounded, closable and densely defined, and where functional

analytic comments are needed.

According to the recipe of canonical quantization we quantize the Hamiltonian H

and the angular momentum vector L by just replacing the position and momentum

vectors occurring in their expression by the corresponding operators. For the Hamilto-

nian we obtain:

Ĥ =
p2

2
− k

‖q‖ ,

where p2 =
∑3

i=1 p
2
i . These expressions are algebraically well-defined. The other

important quantity needed for the description of the hydrogen atom is the quantization

of the Runge-Lenz vector, classically given by K = p × L − kq
‖q‖ . This expression,

however, cannot be quantized just by replacing classical position and momentum by

their quantum analogues, since there would be an ambiguity in the cross product.

Indeed, should we take p2L3 − p3L2 or L3p2 − L2p3 for the first component of p× L?

These operators are not the same, which follows from the commutation relations of p

and L.

Pauli solved this by quantizing the expression:

K =
1

2
(p× L− L× p)− kq

‖q‖ .

Classically, this expression is the same as the original definition, but the ambiguity in

quantum mechanics now vanishes.2

It turns out to be useful to use the Levi-civita symbol in the description of a cross

product. The Levi-Civita symbol εijk is the totally anti-symmetric tensor. If a = b×c,

we write:

ai =
∑

j,k

εijkbjck.

Remark 6.1.2. This is a convention rather than merely an agreement on notation,

since we also decide in which order the cross product should be taken. In this definition

of the cross product, there is no ambiguity.

2The ambiguity can also be removed by writing p × L = p × (q × p) = ‖p‖2q − 〈p,q〉p in the

classical case and quantizing this expression, which yields an unambiguous quantization.
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Proposition 6.1.3. Next to the Heisenberg commutation relations given in equation

(6.1), the angular momentum and the Runge-Lenz vector are conserved, i.e.

[Ĥ, Li] = 0, [Ĥ,Ki] = 0,

and the following commutation relations hold:

[qi, Lj] = i~
∑

k

εijkqk, [pi, Lj ] = i~
∑

k

εijkpk,

[Li, Lj ] = i~
∑

k

εijkLk, [Li,Kj ] = i~
∑

k

εijkKk,

[Ki,Kj ] = i~
∑

k

εijk(−2Ĥ)Lk,

for all i, j ∈ {1, 2, 3}.

Proof. The first two relations follow from the conservation of L and K in the classical

case. The other relations are the result of explicit calculations. We use the fact

that 1
‖q‖ is rotationally invariant and hence commutes with the angular momentum

operator.

Proposition 6.1.4.
3
∑

i=1

LiKi =
3
∑

i=1

KiLi = 0.

A proof is obtained by calculation. These relations also hold in the classical case.

However, note that in the quantum case, we need to check both relations, whereas in

the classical case checking one of them suffices because of the commutativity of the

scalar product. In the quantum case, the expression given above does not define an

inner product.

In the case of the length of the Runge-Lenz vector we have a “quantum correction”

in the following way, as follows from explicit calculation.

Proposition 6.1.5.

‖K‖2 = 2Ĥ(‖L‖2 + ~
2) + k2. (6.2)

In what follows, we will determine the energy spectrum of the hydrogen atoms by

identifying the eigenspaces with Lie algebra representations using the relations derived

above. To this end, we distinguish the different signs of E, leaving out the case

E = 0. First, however, we need to discuss the concept of natural degeneracy, because

this gives a correct interpretation of the spectrum and its degeneracy in terms of

unitary irreducible representations of the Lie algebra corresponding to the infinitesimal

symmetries of the system.
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6.1.1 Natural degeneracy

It turns out that the spectrum of many Hamiltonian operators can be determined and

examined by means of Lie algebra theory. The eigenspaces corresponding to elements

of the spectrum, both in the discrete and in the continuous one, can be identified with

unitary irreducible representations. This method also contains some aspects of the

problem of degeneracy, since the multiplicity of the representation equals the spectral

degeneracy in the case of a discrete spectrum. It is well-known that this is more subtle

for the continuous spectrum, but the method still accounts for the elements of the

spectrum.

If a degeneracy comes up “coincidentally”, i.e. without any obvious reason, it is

often referred to as accidental degeneracy. This notion is not very well defined.

In many cases, there is reason to believe that degeneracy is not accidental, but due to

a certain hidden symmetry of the system. Thus, the system is naturally degenerate.

To this end, the higher-dimensional eigenspaces corresponding to some element of the

discrete spectrum are identified with the unitary irreducible representations of some

infinitesimal symmetry group of the system. More about this is written in [23]. We

apply this idea to the hidden symmetries of the Kepler problem. We determine the

dimension of HE for any nonzero value of E. Indeed, the well-known results will follow.

6.1.2 Negative Energies

Let E < 0. The operators L and K together with their commutation relations can be

identified with a Lie algebra in the following way.

Proposition 6.1.6. The operators L and K span a six-dimensional Lie algebra iso-

morphic to isu(2) ⊕ isu(2).

Proof. Define the following operators:

I :=
1

2
(L+ (−2E)−

1

2K),

J :=
1

2
(L− (−2E)−

1

2K).

For I and J , the following commutation relations hold:

[Ii, Ij ] = i~
∑

k

εijkIk,

[Ji, Jj ] = i~
∑

k

εijkJk,

[Ii, Jj ] = 0,

for all i, j ∈ {1, 2, 3}. This is checked by writing out the commutation relations. Using

the obervations I∗ = I and J∗ = J , we conclude that I and J span a Lie algebra

isomorphic to isu(2) ⊕ isu(2). Note that the scalar multiplication of both summands

with i is because of the self-adjointness of I and J .
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Following to the idea of natural degeneration, we assume that HE is isomorphic to

a unitary irreducible representation of isu(2) ⊕ isu(2).

The unitary irreducible representations of isu(2) ⊕ isu(2) are given by the tensor

products L(m) ⊗ L(n) for some natural numbers m,n [17]. Here, L(n) denotes the

irreducible representation of sl(2) of highest weight n. We conclude that

{ψ ∈ H|Ĥψ = Eψ} ∼= L(m)⊗ L(n)

for some m,n ∈ N0. The first factor corresponds to the Lie algebra spanned by the

Ii’s and the second to the Lie algebra spanned by the Ji’s.

The elements I2 and J2 are the Casimir operators of their corresponding summands

of isu(2)⊕ isu(2). Hence, the following holds:

I2|L(m)⊗L(n) = m(m+ 2)
~
2

4
,

J2|L(m)⊗L(n) = n(n+ 2)
~
2

4
,

There is also a relation between the two Casimir operators, as follows from the following

calculations:

I2 − J2 =
1

2
(〈I + J, I − J〉+ 〈I − J, I + J〉

=
1

2
(−2mE)−

1

2 (〈K,L〉 + 〈L,K〉) = 0.

We conclude that m = n. Hence

{ψ ∈ H|Ĥψ = Eψ} = L(n)⊗ L(n)

for some n ∈ N0.

Note that on L(n) ⊗ L(n) we have L2 + (−2E)−
1

2K2 + ~
2 = 2(I2 + J2) = n(n +

2)~2 + ~
2 = (n+ 1)2~2. Luckily, we can rewrite equation (6.2) as

L2 + (−2E)−
1

2K2 + ~
2 = − k2

2E
,

from which we obtain the possible energy levels:

En = − k2

2(n+ 1)2~2
.

Since the dimension of L(n) is n+1, it follows that dimHEn = (n+1)2, so the energy

levels are degenerate with multiplicity (n+ 1)2.

6.1.3 Positive Energies

Let E > 0. The operators L and K together with their commutation relations can be

identified with a Lie algebra in the following way.
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Proposition 6.1.7. The operators L and K̃ = ( µ
2E )

1

2K span a six-dimensional Lie

algebra isomorphic to io(3, 1).

Proof. The commutation relations of L and K̃ show that these operators generate the

Lorentz algebra io(3, 1) [4, 26].

According to the idea of natural degeneration, we assume that HE can be identified

with a unitary irreducible representation of io(3, 1).

The unitary irreducible representations of iso(3, 1) are given by the spherical rep-

resentations Ss, labelled by a complex number s, as described in Section 3.6. So we

have

{ψ ∈ H | Ĥψ = Eψ} = Ss

for some s ∈ C such that either ℜ(s) = d−1
2 or 0 < s < d− 1 = 2.

Using the fact that K̃2 − L2 acts as a Casimir operator corresponding to the scalar

−~
2s(s− 2) for the representation labelled by s, it follows from equation (6.2) that

H =
k2

2(K̃2 − L2 − ~2)
= − k2

2~2(s− 1)2
.

From this, it follows that we are in the case 0 < s < 2, since the Hamiltonian is an

observable.

Remark 6.1.8. The degeneration is according to the representation theory of the

Lorentz algebra. However, in the positive case we cannot say anything about the

“multicplicity” of a representation, since the positive spectrum is continuous. However,

notice that two s-values, namely an arbitrary s-value and its mirror image in 1, yield

a representation with the same energy.

Remark 6.1.9. The reason that the derivation of the spectrum for positive energies

seems shorter than the one for negative energies is that we do not need to introduce

new operators that come up as the actual generators of the Lie algebra for positive

energies. However, we did not perform the calculations to check if L and K really

generate the Lorentz algebra, but we want to make the idea of the method clear rather

than its technical details.

6.2 Spaces of constant curvature

In this section, we describe the method by Fock [11] to solve the quantum Kepler

problem. It can be considered the quantum analogue of Moser’s method, which we

described in Section 4.3. It is remarkable that the article by Fock was published thirty-

five years earlier than its classical analogue. In this section, we describe its general idea

in d dimensions. After this section, we also give Bargmann’s comments on the relation

between this method and the method by Pauli, of which we gave a modern descrption

in Section 6.1. Fock only considered the negative energy case in detail and mentions
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very little about postitive energies. Bander and Itzykson gave a modern treatment of

Fock’s work in 1966 [3] and also accounted for positive energies [4]. We also describe

this.

We consider the d-dimensional quantum Kepler problem, which is given by the (time-

independent) Schrödinger equation Ĥψ = Eψ, where Ĥ denotes the Hamilton operator

of the Kepler problem, which is some self-adjoint extension of Ĥ = − ~2

2µ∆Rd− k
‖q‖ , which

is initially defined on C0(R
d \ {0}). For now, we do not need to specify this extension.

The Schrödinger equation is given by:

(− ~
2

2µ
∆Rd − k

‖q‖)ψ(q) = Eψ(q). (6.3)

Fock solves this equation by transforming it to momentum space (by a Fourier trans-

form), and then applying a stereographic projection to the sphere for E < 0. Bander

and Itzykson showed that for E > 0 it is possible to do the same by performing a

stereographic mapping to the hyperboloid. We will point out that the problem is

solved by spherical functions. The method fits in the general idea of interchanging the

position and momentum coordinates, which is in the quantum case done by a Fourier

transform, and then apply a stereographic projection, just as we did in the Moser case.

Definition 6.2.1. The Fourier transform from position space to momentum space in

quantum mechanics is given by:

ψ̂(p) = Ad

∫

Rd

ψ(q) exp (− ip · q
~

)dq. (6.4)

Remark 6.2.2. Here Ad is a normalisation constant, which does not bother us, be-

cause we transform both sides of an equation, so that these constants cancel. We

choose to not specify it, because there are different conventions for it.

To calculate the Fourier transform3 of equation (6.3), we recall that the Laplacian

with respect to q of a function corresponds to multiplication with ‖p‖2 and that the

Fourier transform of 1
‖q‖ is given by 2d−1π

d−1

2 Γ(d−1
2 )‖p‖−(d−1). Using the formula

F(fg) = 1
(2π)d

F(f) ∗ F(g) with respect to k
‖q‖ψ(q), we obtain the following result.

Proposition 6.2.3. The Kepler Schrödinger equation in momentum space is given by

1

2
(‖p‖2 − 2µE)ψ̂(p) = Cd

∫

Rd

ψ̂(p′)
‖p − p′‖d−1

ddp′, (6.5)

where Cd =
µkΓ(d−1

2
)

2π
d+1
2 ~

.

Remark 6.2.4. We will look for L2 solutions ψ̂ of this Fourier transformed Schrödinger

equation. From these, by applying the inverse Fourier transform, we recover the wave

functions as function of q.

3Note that it is not yet necessary to distinguish between E < 0 and E > 0.



80 CHAPTER 6. QUANTUM KEPLER PROBLEM

Definition 6.2.5. We define themth Sobolev spaceWm(Rd) to be the space of func-

tions f ∈ L2(Rd) such that the function p 7→ (ip)n(Ff)(p) ∈ L2(Rd)∀n ∈ {1, . . . ,m},
i.e.

Wm(Rd) := {f ∈ L2(Rd) | p 7→ (ip)n(Ff)(p) ∈ L2(Rd)∀n ∈ {1, . . . ,m}}. (6.6)

Remark 6.2.6. This definition generalizes to the concept of differentiation on R
d,

since the Fourier transform intertwines differentiation and multiplication by the in-

dependent variable. There are more general definitions of Sobolev spaces. E.g., one

does not need to restrict to R
d and it turns out to be possible and useful to define

non-integer Sobolev spaces.

The following result relates the previous chapter on self-adjoint extensions of the

quantum Kepler Hamiltonian to the quantization presented in this section. Indeed, if

we look for solutions of the Schrödinger equation, we need a self-adjoint Hamiltonian in

order to have a complete theory. In the text by Fock, this choice is not explicitly made.

However, it is made implicitly, as follows from the next theorem. We use the fact that

the quantum Fourier transform is a unitary transformation from the L2 functions of q

to the L2 functions of p.

Theorem 6.2.7. The self-adjoint extension of the Hamiltonian automatically chosen

in the generalized Fock method is

• the unique one for d ≥ 4;

• the unique one for initial domain C∞
0 (R3).

Proof. For d = 4, the claim is obvious. For d = 3, we know that the inverse Fourier

transformed wave functions are L2. Therefore, in particular all functions of C∞
0 (R3)

are in the domain of the self-adjoint extension. For every domain of the symmetric

Schrödinger equation that contains these functions, the named self-adjoint extension

is the unique one.

Remark 6.2.8. From this we conclude that indeed the generalized Fock method de-

scribes the same physics as the usual way of solving the hydrogen Schrödinger equation.

The steps in the next sections, which give an explicit way of finding the solutions of

the Fourier transformed Schrödinger equations are analytically harmless.

Remark 6.2.9. The one-dimensional case is not included in the generalized Fock

method. There are still choices to be made in the two-dimensional case. We did not

manage to obtain an explicit result about the latter case. In particular, the three-

dimensional choice is interesting physically. The choice made also corresponds to

the usual choice in which the wave functions are continuously extended, which was

described in the previous chapter.

We will now distinguish between both energy signs and apply a stereographic pro-

jection.
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6.2.1 Negative Energies

SupposeE < 0. We search for the negative spectrum and the corresponding eigenvalues

of the Schrödinger equation (6.5). We map the equation to an equation on Sd. We

follow both [3] and [7], but use the notation of the latter, since this is more elegant.

Proposition 6.2.10. Let p0 =
√−2µE and set pj = p0xj for j = 1, . . . , d. We embed

the space R
d with coordinates xj into R

d+1 with coordinates Xj by a stereographic

projection of the sphere, i.e.

Xj =
2xj

‖x‖2 + 1
,

Xd+1 =
‖x‖2 − 1

‖x‖2 + 1
,

for j = 1, . . . , d. Then, setting Ψ(X) = 1√
p0

(

‖p‖2+p2
0

2p0

)
d+1

2

ψ̂(p), equation (6.5) is

equivalent to the following integral equation:

Cd

∫

Sd

Ψ(X ′)
‖X −X ′‖d−1

dΩ′
d = p0Ψ(X). (6.7)

A proof is obtained by straightforward, but tedious calculations, as is performed in

[7]. Note that from the stereographic projection, the explicit form of the volume form

follows, which is needed for the calculation. We may interpret this integral equation

as an eigenvalue equation with spectral parameter p0 > 0 instead of E < 0.

Proposition 6.2.11. The group O(d+1) is a symmetry group of the quantum Kepler

problem.

Proof. If A ∈ O(d+1), then we see that if Ψ(X) satisfies equation , then also Ψ(OX)

satisfies this equation, since the domain of integration, 1
‖X−X′‖d−1 and dΩ′

d are invariant

under O.

Remark 6.2.12. This result is really important. Inherent to the quantization method

and the implicit choice of the self-adjoint extension, the problem is regularized in some

sense. Therefore, in the quantum case, the global symmetry is obtained automatically.

In the classical case, we needed to explicitly regularize the problem before we were

able to determine the richer global symmetry.

In the case of the negative spectrum, which is discrete, we can use the virial theorem

[9, Theorem 6.2.8] to conclude the following.

Lemma 6.2.13 (Virial theorem). The expectation values 〈E〉 and 〈T 〉 of the energy

E and the kinetic energy T in the case of negative energy are related according to:

〈E〉 = −〈T 〉.



82 CHAPTER 6. QUANTUM KEPLER PROBLEM

Remark 6.2.14. The Virial theorem is true for Hamiltonians with some special prop-

erties. It must be relatively bounded with respect to the Laplacian. We cannot use

this result for the continuous spectrum.

Proposition 6.2.15. The map given by ψ̂(p) 7→ Ψ(X) corresponding to some fixed

E preserves scalar products.

Proof. If we invoke the Virial theorem of quantum mechanics, stated as Lemma 6.2.13,

we conclude that:

E

∫

Rd

‖ψ̂(p)‖2ddp = −
∫

Rd

p2

2µ
‖ψ̂(p)‖2ddp.

We use this to obtain:
∫

Sd

‖Ψ(X)‖2dΩd =

∫

Rd

‖p‖2 + p20
2p20

‖ψ̂(p)‖2ddp

=

∫

Rd

−2µE

2(−2µE)
‖ψ̂(p)‖2ddp+ 1

2

∫

Rd

‖ψ̂(p)‖2ddp

=

∫

Rd

‖ψ̂(p)‖2ddp.

So the map ψ̂(p) 7→ Ψ(X) is a linear isometry, which proves the claim.

Corollary 6.2.16. The map ψ̂(p) composed with the quantum Fourier transform

with An (cf. equation (6.4)) chosen such that the Fourier transform is an isometry,

extends to a unitary map T : H −→ L2(Sd), where H denotes the completion of the

pre-Hilbert space of (infinite) linear combinations of eigenfunctions corresponding to

negative eigenvalues of the Kepler Hamiltonian to L2(Sd).

Remark 6.2.17. It is well-known [21] that the eigenfunctions corresponding to differ-

ent eigenvalues of the Kepler Hamiltonian are orthogonal. The same holds for solutions

of equation (6.2.1).

In what follows, we refer to [3, 7] for the details. It is known that equation (6.2.1)

is solved by spherical harmonics, since:

Γ(d−1
2 )

2π
d+1

2

∫

Sd

Yl(X
′)

‖X −X ′‖d−1
dΩ′

d =
2

d− 1 + 2l
Yl(X).

Because the set of spherical harmonics is complete, we have also found all eigenvalues

of the Kepler Hamiltonian because of the one-to-one unitary correspondence T . We

can calculate the energy spectrum by comparing equations (6.3) and (6.2.1):

~

µk

√

−2µE =
2

d− 1 + 2l
,

from which it follows that:

El = − 2µk2

~2(d− 1 + 2l)2
,
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with l = 0, 1, 2, . . .. Note that the energy levels also depend on the dimension d. Each

eigenvalue has multiplicity (d+2l−1)(d+l−2)!
(d−1)!l! . In three dimensions, this corresponds to

the well-known formula:

El = − µk2

~2(l + 1)2
.

Remark 6.2.18. We have proved that the set of solutions of the d-dimensional Kepler

Schrödinger equation is unitary equivalent to the set of d + 1-dimensional spherical

harmonics. The latter must not be confused with the spherical harmonics one obtains

by solving the Kepler Schrödinger equation by separation of variables. They arise in

a totally different way.

6.2.2 Positive Energies

Suppose E > 0. We search for positive elements of the spectrum.

Remark 6.2.19. We cannot do this in exactly the same way as for the negative

energies, because the positive spectrum is continuous, and hence technically more

difficult. E.g., it is not possible to look for eigenvalues in the same way as for a

discrete part of the spectrum. We follow [4].

In the positive spectrum case, the map to the hyperboloid integral equation is done

in a similar way as in the negative one, but we divide it in two steps.

Proposition 6.2.20. Let p0 =
√
2µE and set pj = p0xj for j = 1, . . . , d. Define

φ(x) = ψ̂ψ(p). Then equation (6.5) is equivalent to:

1

2
(‖x‖2 − 1) =

Cd

(2µE)−
1

2

∫

φ(x′)
‖x− x′‖2 d

dx′

This result can be verified in a straightforward way.

Proposition 6.2.21. Let us embed the space R
d with coordinates xj into R

d,1 with

coordinates Xj by a stereographic projection of the two-sheeted hyperboloid, i.e.

Xj =
2xj

1− ‖x‖2 ,

Xd+1 =
1 + ‖x‖2
1− ‖x‖2 ,

for j = 1, . . . , d. Then, setting Ψ(X) = ‖1 −Xn+1‖−
d+1

2 φ(x), equation (6.5) is equi-

valent to:

Ψ(X) = −Cdε(Xn+1)

(2µE)−
1

2

∫

Fn

Ψ(X ′)

‖(‖X −X ′‖2L)‖
d−1

2

dΩ′
d,

where ε(Xn+1) denotes the function that is equals 1 forXn+1 ≥ 1 and −1 forXn+1 < 1.

This function assigns a sign to every sheet of the hyperboloid.
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The proof consists of straightforward, but tedious calculations.

Proposition 6.2.22. The group O(d, 1) is a symmetry group of the quantum Kepler

problem for positive energies.

The proof is analogous to the proof of Proposition 6.2.11.

Remark 6.2.23. The equation we turned the problem into is of the same type as for

negative energies. However, we cannot proceed in the same way now. E.g., the Virial

Theorem does not hold for the continuous spectrum. The problem can analytically be

solved by a lot of calculations. Cf. [4] for the details. They indeed find the well-known

positive spectrum in the three-dimensional case.

6.3 From Pauli to Fock

The approaches of Pauli and Fock both calculate the spectrum. Fock’s approach

yields more results. Indeed, the wave functions are also calculated and he accounts

for the global symmetry of the quantum Kepler problem, where Pauli only accounts

for infinitesimal symmetries of the system. Bargmann showed that both treatments

are closely related to each other by explaining how Pauli’s method fits into Fock’s

one [5]. We will briefly describe this. To this end, we restrict ourselves to the three-

dimensional case of Fock’s treatment, since we treated only the three-dimensional

case of the Pauli method because of its simplicity. We also only treated the negative

energy case. We think, however, that a generalization of Pauli’s method, as well as

of Bargmann’s comments, can be obtained in a straighforward way, but it would need

some calculations.

Recall that an infinitesimal rotation acting on a function f is a linear combination

of terms of the form

Dijf = yi
∂f

∂yj
− yj

∂f

∂yi
.

In particular, Pauli’s angular momentum operators Li are of this form, since pi =

−i~ ∂
∂qi

. He shows that these operators, and the Runge-Lenz vector operators Ki,

commute with the Hamiltonian, and can hence be considered as quantum integrals of

motion. We treated this too, and we also gave the other commutation relations in

Section 6.1. We now come to the idea of Bargmann. To this end, we change notation

from the usual Li’s to

Lij = qipj − qjpi.

Definition 6.3.1. Define anti-symmetric Uij and Vij with 1 ≤ i, j ≤ 3 operators by:

Uijf = Vijf = −i~Lij = pi
∂f

∂pj
− pj

∂f

∂pi
,

V4if = U4if + 2
pi

p0
f = − ikµ

~
Kif



6.3. FROM PAULI TO FOCK 85

Uij and Vij satisfy the commutation relations of infinitesimal rotations. If Vijg = 0

for some test function g, then

Vijψ = gUij(
ψ

g
),

where we use the relation Vij(fg) = g(Uijf)+ f(Vijg), which is verified by calculation.

From this it follows that g ∝ (p20 + p2)−2. Define Φ = C(p20 + p2)2ψ. Then

Vijψ = C−1(p20 + p2)−2UijΦ,

which has the form of an infinitesimal transformation. The idea is to look for functions

ξ1, . . . , ξ4 as functions of p1, . . . , p3 which perform an infinitesimal rotation if Uij acts

on them. Bargmann observed that these functions are given by

ξi =
2p0pi
p20 + p2

,

ξ4 =
p20 − p2

p20 + p2
,

which are exactly the coordinates of the stereographic projection. This means that the

infinitesimal rotations of the three-dimensional sphere obtained by the stereographic

projection are given by the integrals of motion obtained in Pauli’s treatment. This

exhibits a close relation between the two approaches.

Remark 6.3.2. Bargmann also remarks that the positive energy case can be con-

sidered in an analogous way.
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Chapter 7

Outlook

As said earlier, much work has been done on the Kepler problem. A small part of it,

namely the results that have to do with the Moser and Fock treatments of regularization

and quantization, is described in this text, and we hope to have explained some new

connections and relations as well as some analogues between the classical and the

quantum case.

One question is how the relation between Moser and Ligon-Schaaf is described in

quantum theory. In particular, what the time-relation between arclength s and real

time t translates to in the quantum case.

Another problem is to understand the regularization and quantization in terms of the

Plancherel Theorem. This was the author’s original thesis project, but eventually this

project went in another direction.1 The original idea was to relate the spectral prob-

lem corresponding to the Kepler problem, i.e. the Schrödinger equation, to a spectral

problem on the sphere and the hyperboloid and relate and explain their similarities.

This is still an open question.

1In particular the work concerning the self-adjoint extensions of the quantum Kepler Hamiltonian

and their relations to Fock’s method were not planned at the start.

87
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