Exercises Complex Functions

Gert Heckman, Radboud University Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
(E-mail: g.heckman@math.ru.nl)

June 19, 2013

1 Holomorphic Functions

Exercise 1.1. Show that for all $z, w \in \mathbb{C}$

1. $|z+w| \leq|z|+|w|$
2. $|z-w| \geq||z|-|w||$

Exercise 1.2. Explain the geometric meaning of the following relations (with $z=x+i y \in \mathbb{C}$ and $z_{1} \neq z_{2} \in \mathbb{C}$)

1. $|z-1+i|=2$
2. $1 / z=\bar{z}$
3. $|z-2|+|z+2|<6$
4. $|z-2|-|z+2|>3$
5. $\left|z-z_{1}\right| \leq\left|z-z_{2}\right|$
6. $\Re z>1$
7. $\Im z<|\Re z|+1$
8. $|\Im z|>|\Re z|+1$
9. $|z|=\Re z+2$
10. $\pi / 4<\arg (i z-i)<3 \pi / 4$

Which of these are regions, and which regions are convex or starlike?
Exercise 1.3. Check the Cauchy-Riemann equations for the complex function $z=(x+i y) \mapsto e^{z}=e^{x}(\cos y+i \sin y)$ on \mathbb{C}. What is the derivative of the function $z \mapsto e^{z}$?
Exercise 1.4. Using that $\left(e^{z}\right)^{\prime}=e^{z}$ compute the derivative of the complex functions $\sin z=\left(e^{i z}-e^{-i z}\right) / 2 i$ and $\cos z=\left(e^{i z}+e^{-i z}\right) / 2$ on \mathbb{C}.

Exercise 1.5. Suppose that f is a holomorphic function on a region Ω. Show that f is constant once its real part $\Re f$ (or likewise its imaginary part $\Im f$) is constant.

2 Power series

Exercise 2.1. In each of the following problems determine the radius of convergence of the power series $\sum_{0}^{\infty} a_{n} z^{n}$

1. $a_{n}=1 /(n+1)$
2. $a_{n}=n^{n}$
3. $a_{n}=\left(2+(-1)^{n}\right)^{-n}$
4. $a_{n}=n!/ n^{n}$
5. $a_{n}=(n!)^{5} /(5 n)$!
6. $a_{n}=0$ unless $n=m$!, and $a_{m!}=2^{m}$ for $m \in \mathbb{N}$

Hint: Use Stirling's fomula, which says that $n!\sim \sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}$ for $n \rightarrow \infty$.
Exercise 2.2. Suppose that the radius of convergence of the power series $\sum_{0}^{\infty} a_{n} z^{n}$ is equal to R with $0<R<\infty$. Determine the radius of convergence of the power series $\sum_{0}^{\infty} b_{n} z^{n}$ in case

1. $b_{n}=n^{k} a_{n}$
2. $b_{n}=n^{-n} a_{n}$
3. $b_{n}=a_{n}^{k}$
4. $b_{n}=a_{n} / n$!
5. $b_{n}=\left(z_{0}^{n}-1\right) a_{n}$
with $k \in \mathbb{N}$ and $z_{0} \in \mathbb{C}$ not on the unit circle.
Exercise 2.3. Sum the following power series for $|z|<1$
6. $\sum_{0}^{\infty} z^{n}$
7. $\sum_{1}^{\infty} n z^{n}$
8. $\sum_{1}^{\infty} z^{n} / n$
9. $\sum_{1}^{\infty} n(n+1) z^{n}$

3 Contour integral

Exercise 3.1. Suppose Ω is a region, and $f: \Omega \rightarrow \mathbb{C}$ a continuous function. Let $\gamma:[a, b] \in t \mapsto z(t)$ be a smooth curve in Ω, and let $\delta:[c, d] \in s \mapsto z(t(s))$
be a smooth reparametrization via a diffeomorphism $[c, d] \ni s \mapsto t(s) \in[a, b]$ with $a=t(c)<b=t(d), c<d$. Show that

$$
\int_{\delta} f(z) d z=\int_{\gamma} f(z) d z
$$

and so the contour integral is independent of the parametrization.
Exercise 3.2. For γ a smooth curve in a region Ω with parametrization $\gamma:[a, b] \ni t \mapsto z(t)$ denote by $-\gamma:[-b,-a] \ni t \mapsto z(-t)$ the curve traversed in opposite direction. Show that

$$
\int_{-\gamma} f(z) d z=-\int_{\gamma} f(z) d z
$$

for any continuous function f on Ω.
Exercise 3.3. Compute $\oint z^{n} d z$ over the unit circle $|z|=1$ for any $n \in \mathbb{Z}$.
Exercise 3.4. Prove the following result, which is called Jordan's lemma. Suppose $z \mapsto f(z)$ is a continuous function on $\left\{|z| \geq R_{0}, \Im z \geq 0\right\}$, and suppose that

$$
\lim _{R \rightarrow \infty} \max \left\{|f(z)| ; z \in \gamma_{R}\right\}=0
$$

with γ_{R} the semicircle $[0, \pi] \ni \theta \mapsto R e^{i \theta}$. Then

$$
\lim _{R \rightarrow \infty} \int_{\gamma_{R}} e^{i m z} f(z) d z=0
$$

for any positive number m. Hint: Estimate the modulus of the integrand using the inequality $\sin \theta \geq 2 \theta / \pi$ for $0 \leq \theta \leq \pi / 2$.

4 Cauchy theorem

Exercise 4.1. Prove the Fresnel integrals

$$
\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\frac{\sqrt{2 \pi}}{4}
$$

Hint: Consider the contour integral of the function $f(z)=e^{i z^{2}}$ along the boundary of the sector $\{0 \leq|z| \leq R, 0 \leq \arg z \leq \pi / 4\}$ for $R>1$, use Jordan's lemma, and use the familiar integral $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$.

Exercise 4.2. Prove the Dirichlet integral

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

Hint: Integrate the function $f(z)=e^{i z} / z$ along the boundary of the sector $\{\epsilon \leq|z| \leq R, 0 \leq \arg z \leq \pi\}$ for $0<\epsilon<1<R$, and use Jordan's lemma.
Exercise 4.3. Prove the integral formulas

$$
\int_{0}^{\infty} x^{s-1} \cos x d x=\Gamma(s) \cos \frac{\pi s}{2}, \int_{0}^{\infty} x^{s-1} \sin x d x=\Gamma(s) \sin \frac{\pi s}{2}
$$

for $0<s<1$. Hint: Integrate the function $f(z)=z^{s-1} e^{i z}$ along the boundary of the sector $\{\epsilon \leq|z| \leq R, 0 \leq \arg z \leq \pi / 2\}$ for $0<\epsilon<1<R$, use Jordan's lemma, and the integral representation $\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x$ of the gamma function for $s>0$.

5 Cauchy's integral formula

Exercise 5.1. Expand the given functions in a power series $\sum_{0}^{\infty} a_{n} z^{n}$ around the origin and find the radius of convergence.

1. $\cosh z$
2. $\sin ^{2} z$
3. $z /\left(z^{2}-2 z+5\right)$
4. $\log \{(1+z) /(1-z)\}$
5. $\int_{0}^{z} \zeta^{-1} \sin \zeta d \zeta$

Exercise 5.2. The Fundamental Theorem of Algebra states that a monic polynomial

$$
p(z)=z^{n}+a_{1} z^{n-1}+\cdots a_{n-1} z+a_{n}
$$

of degree $n \geq 1$ with complex coefficients must vanish somewhere in \mathbb{C}. Here is a proof using Cauchy's integral formula.

1. Show that there exists $\rho=\rho_{p}>0$ such that $|p(z)| \geq|z|^{n} / 2$ for $|z| \geq \rho$.
2. If $p(z)$ is nowhere 0 on \mathbb{C} then $f(z)=1 / p(z)$ is a nowhere vanishing holomorphic function on \mathbb{C} and $|f(z)| \leq 2|z|^{-n}$ for $|z| \geq \rho$. Taking the limit for $R \rightarrow \infty$ in Cauchy's integral formula

$$
f(0)=\frac{1}{2 \pi i} \oint_{|z|=R} \frac{f(z)}{z} d z
$$

show that $f(0)=0$, which gives a contradiction.

Exercise 5.3. The theorem of Liouville states that a bounded holomorphic function f on \mathbb{C} is constant. Prove this theorem by evaluating the integral (for $|a|<R,|b|<R$ and $a \neq b$)

$$
\oint_{|z|=R} \frac{f(z) d z}{(z-a)(z-b)}
$$

using partial fraction and taking the limit for $R \rightarrow \infty$.
Exercise 5.4. Suppose f is a holomorphic function on a domain Ω containing the closed disc $|z| \leq R$ with radius $R>0$.

1. Show that

$$
\Re\left(\frac{\zeta+z}{\zeta-z}\right)=\frac{\zeta}{\zeta-z}-\frac{\zeta}{\zeta-R^{2} / \bar{z}}
$$

for $|\zeta|=R$ and $z(z-\zeta) \neq 0$. Hint: Put $w=z / \zeta$.
2. Show that for $|z|<R$

$$
f(z)=\frac{1}{2 \pi i} \oint_{|\zeta|=R} f(\zeta) \Re\left(\frac{\zeta+z}{\zeta-z}\right) \frac{d \zeta}{\zeta}
$$

by using the Cauchy integral formula and the Cauchy theorem.
3. Deduce that the real part $u(z)=\Re f(z)$ is given by

$$
u(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(R e^{i \varphi}\right) \Re\left(\frac{R e^{i \varphi}+z}{R e^{i \varphi}-z}\right) d \varphi
$$

for $|z|<R$. This real analogue of the Cauchy integral formula is called the Poisson integral formula. It shows that a harmonic function on a disc is completely determined by its values on the boundary of the disc. This is in accordance with the intuition from physics: a stationary temperature distribution on a domain is a harmonic function, as follows from the heat equation.
4. Rewrite the so called Poisson kernel function in the form

$$
\Re\left(\frac{\zeta+z}{\zeta-z}\right)=\frac{R^{2}-r^{2}}{R^{2}-2 r R \cos (\theta-\varphi)+r^{2}}
$$

$$
\text { if } \zeta=R e^{i \varphi} \text { and } z=r e^{i \theta} .
$$

6 Laurent series

Exercise 6.1. Expand the given function in a Laurent series either in the given ring or in the neighbourhood of the given point(s). In the latter case determine the domain of convergence of the series expansion.

1. $1 /((z-a)(z-b))$ for $0<|a|<|b|$, in the neighbourhood of the points $z=0, z=a, z=\infty$ and on the ring $|a|<|z|<|b|$.
2. $\left(z^{2}-2 z+1\right) /\left((z-2)\left(z^{2}+1\right)\right)$ around the point $z=2$ and on the ring $1<|z|<2$.
3. $z^{3} \log ((z-a) /(z-b))$ for $a, b \in \mathbb{C}$, in the neighbourhood of $z=\infty$.

Exercise 6.2. Find the singular points in the extended complex plane $\mathbb{C} \sqcup$ $\{\infty\}$ and explain their nature (pole (of which order), essential singular point or a nonisolated singular point) for the given functions. After giving the function an appropriate value removable singular points will be considered regular points.

1. $\cot z-1 / z$
2. $(\sin z) / z$
3. $z \sin (\pi(z+1) /(z-1))$

Exercise 6.3. The gamma function $\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t$ is a holomorphic function for $\Re z>0$ and satisfies the functional equation $\Gamma(z+1)=z \Gamma(z)$.

1. Show that $\Gamma(1)=1$ and $\Gamma(n+1)=n$! for $n \in \mathbb{N}$.
2. Using $\Gamma(z)=\Gamma(z+1) / z$ the gamma function has a meromorphic continuation to $\Re z>-1$. Show that $\Gamma(z)$ has a simple pole at $z=0$ with residue equal to 1.
3. Using $\Gamma(z)=\Gamma(z+n+1) /(z(z+1) \cdots(z+n))$ the gamma function has a meromorphic continuation to all of \mathbb{C}. Show that $\Gamma(z)$ has a simple pole with residue equal to $(-1)^{n} / n$! at $z=-n \in-\mathbb{N}$.

7 Residue formula

Exercise 7.1. Find the residues of the given functions at the isolated singular points in the extended complex plane $\mathbb{C} \sqcup\{\infty\}$.

1. $1 / \sin z$
2. $\sin \pi z /(z-1)^{3}$
3. $z^{3} \cos (1 / z)$
4. $1 /\left(1+z^{2}\right)^{2}$

Exercise 7.2. Show that

$$
\int_{-\infty}^{\infty} \frac{d x}{1+x^{4}}=\pi / \sqrt{2}
$$

Exercise 7.3. Show that

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{n+1}}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots 2 n} \pi
$$

for $n=1,2,3, \cdots$.
Exercise 7.4. Show that

$$
\int_{-\infty}^{\infty} \frac{\cos a x}{x^{2}+b^{2}}=\pi \frac{e^{-a b}}{b}
$$

for $a, b>0$. Hint: Integrate $f(z)=e^{i a z} /\left(z^{2}+b^{2}\right)$ over the boundary of the semicircle $\{z \in \mathbb{C} ;|z| \leq R, \Im z \geq 0\}$.

Exercise 7.5. Show that

$$
\int_{-\infty}^{\infty} \frac{x \sin a x}{x^{2}+b^{2}}=\pi e^{-a b}
$$

for $a, b>0$.
Exercise 7.6. Show that

$$
\int_{0}^{2 \pi} \frac{d \theta}{a+\cos \theta}=2 \pi / \sqrt{a^{2}-1}
$$

for $a>1$. Hint: Put $z=e^{i \theta}$ and integrate over the unit circle $|z|=1$.
Exercise 7.7. Show that

$$
\int_{0}^{2 \pi} \frac{d \theta}{(a+\cos \theta)^{2}}=2 \pi a /\left(a^{2}-1\right)^{3 / 2}
$$

for $a>1$.
Exercise 7.8. Show that

$$
\int_{0}^{2 \pi} \frac{d \theta}{1+a^{2}-2 a \cos \theta}=2 \pi /\left(a^{2}-1\right)
$$

for $a>1$.

Exercise 7.9. Show that

$$
\int_{0}^{\infty} \frac{d x}{x^{p}(x+1)}=\pi / \sin (\pi p)
$$

for $0<p<1$. Hint: Integrate the function $f(z)=z^{-p} /(z+1)$ over the boundary of $\{z \in \mathbb{C} ; \epsilon \leq|z| \leq R, 0<\arg z<2 \pi\}$ and let $\epsilon \downarrow 0$ and $R \rightarrow \infty$. Pay attention to the multivalued character of $\log z=\ln |z|+i \arg z$ in $z^{-p}=e^{-p \log z}$.

Exercise 7.10. Show that

$$
\int_{0}^{\infty} \frac{\log x}{x^{2}+a^{2}} d x=\frac{\pi \log a}{2 a}
$$

for $a>0$. Hint: Integrate the function $f(z)=\log z /\left(z^{2}+a^{2}\right)$ over the boundary of $\{z \in \mathbb{C} ; \epsilon \leq|z| \leq R, 0 \leq \arg z \leq \pi\}$ for $0<\epsilon<a<R$.

Exercise 7.11. Show that

$$
\int_{0}^{\infty} \frac{x^{p} d x}{1+x^{2}}=\frac{1}{2} \pi / \cos (\pi p / 2)
$$

for $-1<p<1$.
Exercise 7.12. Show that

$$
\int_{0}^{\infty} \frac{x^{p} d x}{\left(1+x^{2}\right)^{2}}=\frac{1}{4} \pi(1-p) / \cos (\pi p / 2)
$$

for $-1<p<3$.

