Exercises Complex Functions

Gert Heckman, Radboud University Nijmegen P.O. Box 9010, 6500 GL Nijmegen, The Netherlands (E-mail: g.heckman@math.ru.nl)

June 19, 2013

1 Holomorphic Functions

Exercise 1.1. Show that for all $z, w \in \mathbb{C}$

1. $|z + w| \le |z| + |w|$ 2. $|z - w| \ge ||z| - |w||$

Exercise 1.2. Explain the geometric meaning of the following relations (with $z = x + iy \in \mathbb{C}$ and $z_1 \neq z_2 \in \mathbb{C}$)

1.
$$|z - 1 + i| = 2$$

2. $1/z = \overline{z}$
3. $|z - 2| + |z + 2| < 6$
4. $|z - 2| - |z + 2| > 3$
5. $|z - z_1| \le |z - z_2|$
6. $\Re z > 1$
7. $\Im z < |\Re z| + 1$
8. $|\Im z| > |\Re z| + 1$
9. $|z| = \Re z + 2$
10. $\pi/4 < \arg(iz - i) < 3\pi/4$
Which of these are regions, and which regions are convex or starlike?

Exercise 1.3. Check the Cauchy-Riemann equations for the complex function $z = (x + iy) \mapsto e^z = e^x(\cos y + i \sin y)$ on \mathbb{C} . What is the derivative of the function $z \mapsto e^z$?

Exercise 1.4. Using that $(e^z)' = e^z$ compute the derivative of the complex functions $\sin z = (e^{iz} - e^{-iz})/2i$ and $\cos z = (e^{iz} + e^{-iz})/2$ on \mathbb{C} .

Exercise 1.5. Suppose that f is a holomorphic function on a region Ω . Show that f is constant once its real part $\Re f$ (or likewise its imaginary part $\Im f$) is constant.

2 Power series

Exercise 2.1. In each of the following problems determine the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n z^n$

1. $a_n = 1/(n+1)$ 2. $a_n = n^n$ 3. $a_n = (2 + (-1)^n)^{-n}$ 4. $a_n = n!/n^n$ 5. $a_n = (n!)^5/(5n)!$ 6. $a_n = 0$ unless n = m!, and $a_{m!} = 2^m$ for $m \in \mathbb{N}$ Hint: Use Stirling's fomula, which says that $n! \sim \sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n}$ for $n \to \infty$.

Exercise 2.2. Suppose that the radius of convergence of the power series $\sum_{0}^{\infty} a_n z^n$ is equal to R with $0 < R < \infty$. Determine the radius of convergence of the power series $\sum_{0}^{\infty} b_n z^n$ in case

1. $b_n = n^k a_n$ 2. $b_n = n^{-n} a_n$ 3. $b_n = a_n^k$ 4. $b_n = a_n/n!$ 5. $b_n = (z_0^n - 1)a_n$ with $k \in \mathbb{N}$ and $z_0 \in \mathbb{C}$ not on the unit circle.

Exercise 2.3. Sum the following power series for |z| < 1

1.
$$\sum_{0}^{\infty} z^{n}$$

2. $\sum_{1}^{\infty} nz^{n}$
3. $\sum_{1}^{\infty} z^{n}/n$
4. $\sum_{1}^{\infty} n(n+1)z^{n}$

3 Contour integral

Exercise 3.1. Suppose Ω is a region, and $f : \Omega \to \mathbb{C}$ a continuous function. Let $\gamma : [a, b] \in t \mapsto z(t)$ be a smooth curve in Ω , and let $\delta : [c, d] \in s \mapsto z(t(s))$ be a smooth reparametrization via a diffeomorphism $[c,d] \ni s \mapsto t(s) \in [a,b]$ with a = t(c) < b = t(d), c < d. Show that

$$\int_{\delta} f(z)dz = \int_{\gamma} f(z)dz$$

and so the contour integral is independent of the parametrization.

Exercise 3.2. For γ a smooth curve in a region Ω with parametrization $\gamma : [a, b] \ni t \mapsto z(t)$ denote by $-\gamma : [-b, -a] \ni t \mapsto z(-t)$ the curve traversed in opposite direction. Show that

$$\int_{-\gamma} f(z)dz = -\int_{\gamma} f(z)dz$$

for any continuous function f on Ω .

Exercise 3.3. Compute $\oint z^n dz$ over the unit circle |z| = 1 for any $n \in \mathbb{Z}$.

Exercise 3.4. Prove the following result, which is called Jordan's lemma. Suppose $z \mapsto f(z)$ is a continuous function on $\{|z| \ge R_0, \Im z \ge 0\}$, and suppose that

$$\lim_{R \to \infty} \max\{|f(z)|; z \in \gamma_R\} = 0$$

with γ_R the semicircle $[0,\pi] \ni \theta \mapsto Re^{i\theta}$. Then

$$\lim_{R \to \infty} \int_{\gamma_R} e^{imz} f(z) dz = 0$$

for any positive number m. Hint: Estimate the modulus of the integrand using the inequality $\sin \theta \ge 2\theta/\pi$ for $0 \le \theta \le \pi/2$.

4 Cauchy theorem

Exercise 4.1. Prove the Fresnel integrals

$$\int_0^\infty \sin(x^2) dx = \int_0^\infty \cos(x^2) dx = \frac{\sqrt{2\pi}}{4}$$

Hint: Consider the contour integral of the function $f(z) = e^{iz^2}$ along the boundary of the sector $\{0 \le |z| \le R, 0 \le \arg z \le \pi/4\}$ for R > 1, use Jordan's lemma, and use the familiar integral $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$.

Exercise 4.2. Prove the Dirichlet integral

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2} \; .$$

Hint: Integrate the function $f(z) = e^{iz}/z$ along the boundary of the sector $\{\epsilon \leq |z| \leq R, 0 \leq \arg z \leq \pi\}$ for $0 < \epsilon < 1 < R$, and use Jordan's lemma.

Exercise 4.3. Prove the integral formulas

$$\int_0^\infty x^{s-1}\cos x dx = \Gamma(s)\cos\frac{\pi s}{2} \ , \ \int_0^\infty x^{s-1}\sin x dx = \Gamma(s)\sin\frac{\pi s}{2}$$

for 0 < s < 1. Hint: Integrate the function $f(z) = z^{s-1}e^{iz}$ along the boundary of the sector $\{\epsilon \leq |z| \leq R, 0 \leq \arg z \leq \pi/2\}$ for $0 < \epsilon < 1 < R$, use Jordan's lemma, and the integral representation $\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx$ of the gamma function for s > 0.

Cauchy's integral formula 5

Exercise 5.1. Expand the given functions in a power series $\sum_{n=0}^{\infty} a_n z^n$ around the origin and find the radius of convergence.

- 1. $\cosh z$
- 2. $\sin^2 z$
- 3. $z/(z^2-2z+5)$
- 4. $\log\{(1+z)/(1-z)\}$ 5. $\int_0^z \zeta^{-1} \sin \zeta d\zeta$

Exercise 5.2. The Fundamental Theorem of Algebra states that a monic polynomial

$$p(z) = z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n$$

of degree n > 1 with complex coefficients must vanish somewhere in \mathbb{C} . Here is a proof using Cauchy's integral formula.

- 1. Show that there exists $\rho = \rho_p > 0$ such that $|p(z)| \ge |z|^n/2$ for $|z| \ge \rho$.
- 2. If p(z) is nowhere 0 on \mathbb{C} then f(z) = 1/p(z) is a nowhere vanishing holomorphic function on \mathbb{C} and $|f(z)| \leq 2|z|^{-n}$ for $|z| \geq \rho$. Taking the limit for $R \to \infty$ in Cauchy's integral formula

$$f(0) = \frac{1}{2\pi i} \oint_{|z|=R} \frac{f(z)}{z} dz$$

show that f(0) = 0, which gives a contradiction.

Exercise 5.3. The theorem of Liouville states that a bounded holomorphic function f on \mathbb{C} is constant. Prove this theorem by evaluating the integral (for |a| < R, |b| < R and $a \neq b$)

$$\oint_{|z|=R} \frac{f(z)dz}{(z-a)(z-b)}$$

using partial fraction and taking the limit for $R \to \infty$.

Exercise 5.4. Suppose f is a holomorphic function on a domain Ω containing the closed disc $|z| \leq R$ with radius R > 0.

1. Show that

$$\Re\left(\frac{\zeta+z}{\zeta-z}\right) = \frac{\zeta}{\zeta-z} - \frac{\zeta}{\zeta-R^2/\overline{z}}$$

for $|\zeta| = R$ and $z(z - \zeta) \neq 0$. Hint: Put $w = z/\zeta$. 2. Show that for |z| < R

$$f(z) = \frac{1}{2\pi i} \oint_{|\zeta|=R} f(\zeta) \Re\left(\frac{\zeta+z}{\zeta-z}\right) \frac{d\zeta}{\zeta}$$

by using the Cauchy integral formula and the Cauchy theorem.

3. Deduce that the real part $u(z) = \Re f(z)$ is given by

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} u(Re^{i\varphi}) \Re\left(\frac{Re^{i\varphi} + z}{Re^{i\varphi} - z}\right) d\varphi$$

for |z| < R. This real analogue of the Cauchy integral formula is called the Poisson integral formula. It shows that a harmonic function on a disc is completely determined by its values on the boundary of the disc. This is in accordance with the intuition from physics: a stationary temperature distribution on a domain is a harmonic function, as follows from the heat equation.

4. Rewrite the so called Poisson kernel function in the form

$$\Re\left(\frac{\zeta+z}{\zeta-z}\right) = \frac{R^2 - r^2}{R^2 - 2rR\cos(\theta - \varphi) + r^2}$$

if $\zeta = Re^{i\varphi}$ and $z = re^{i\theta}$.

6 Laurent series

Exercise 6.1. Expand the given function in a Laurent series either in the given ring or in the neighbourhood of the given point(s). In the latter case determine the domain of convergence of the series expansion.

- 1. 1/((z-a)(z-b)) for 0 < |a| < |b|, in the neighbourhood of the points $z = 0, z = a, z = \infty$ and on the ring |a| < |z| < |b|.
- 2. $(z^2 2z + 1)/((z 2)(z^2 + 1))$ around the point z = 2 and on the ring 1 < |z| < 2.
- 3. $z^3 \log((z-a)/(z-b))$ for $a, b \in \mathbb{C}$, in the neighbourhood of $z = \infty$.

Exercise 6.2. Find the singular points in the extended complex plane $\mathbb{C} \sqcup \{\infty\}$ and explain their nature (pole (of which order), essential singular point or a nonisolated singular point) for the given functions. After giving the function an appropriate value removable singular points will be considered regular points.

- 1. $\cot z 1/z$
- 2. $(\sin z)/z$
- 3. $z\sin(\pi(z+1)/(z-1))$

Exercise 6.3. The gamma function $\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$ is a holomorphic function for $\Re z > 0$ and satisfies the functional equation $\Gamma(z+1) = z\Gamma(z)$.

- 1. Show that $\Gamma(1) = 1$ and $\Gamma(n+1) = n!$ for $n \in \mathbb{N}$.
- 2. Using $\Gamma(z) = \Gamma(z+1)/z$ the gamma function has a meromorphic continuation to $\Re z > -1$. Show that $\Gamma(z)$ has a simple pole at z = 0 with residue equal to 1.
- 3. Using $\Gamma(z) = \Gamma(z+n+1)/(z(z+1)\cdots(z+n))$ the gamma function has a meromorphic continuation to all of \mathbb{C} . Show that $\Gamma(z)$ has a simple pole with residue equal to $(-1)^n/n!$ at $z = -n \in -\mathbb{N}$.

7 Residue formula

Exercise 7.1. Find the residues of the given functions at the isolated singular points in the extended complex plane $\mathbb{C} \sqcup \{\infty\}$.

1.
$$1/\sin z$$

2. $\sin \pi z/(z-1)^3$
3. $z^3 \cos(1/z)$
4. $1/(1+z^2)^2$

Exercise 7.2. Show that

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^4} = \pi/\sqrt{2}.$$

Exercise 7.3. Show that

$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^{n+1}} = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} \pi$$

for $n = 1, 2, 3, \cdots$.

Exercise 7.4. Show that

$$\int_{-\infty}^{\infty} \frac{\cos ax}{x^2 + b^2} = \pi \frac{e^{-ab}}{b}$$

for a, b > 0. Hint: Integrate $f(z) = e^{iaz}/(z^2 + b^2)$ over the boundary of the semicircle $\{z \in \mathbb{C}; |z| \le R, \Im z \ge 0\}$.

Exercise 7.5. Show that

$$\int_{-\infty}^{\infty} \frac{x \sin ax}{x^2 + b^2} = \pi e^{-ab}$$

for a, b > 0.

Exercise 7.6. Show that

$$\int_0^{2\pi} \frac{d\theta}{a + \cos\theta} = 2\pi/\sqrt{a^2 - 1}$$

for a > 1. Hint: Put $z = e^{i\theta}$ and integrate over the unit circle |z| = 1.

Exercise 7.7. Show that

$$\int_0^{2\pi} \frac{d\theta}{(a+\cos\theta)^2} = 2\pi a/(a^2-1)^{3/2}$$

for a > 1.

Exercise 7.8. Show that

$$\int_0^{2\pi} \frac{d\theta}{1 + a^2 - 2a\cos\theta} = \frac{2\pi}{(a^2 - 1)}$$

for a > 1.

Exercise 7.9. Show that

$$\int_0^\infty \frac{dx}{x^p(x+1)} = \pi/\sin(\pi p)$$

for $0 . Hint: Integrate the function <math>f(z) = z^{-p}/(z+1)$ over the boundary of $\{z \in \mathbb{C}; \epsilon \leq |z| \leq R, 0 < \arg z < 2\pi\}$ and let $\epsilon \downarrow 0$ and $R \to \infty$. Pay attention to the multivalued character of $\log z = \ln |z| + i \arg z$ in $z^{-p} = e^{-p \log z}$.

Exercise 7.10. Show that

$$\int_0^\infty \frac{\log x}{x^2 + a^2} dx = \frac{\pi \log a}{2a}$$

for a > 0. Hint: Integrate the function $f(z) = \log z/(z^2 + a^2)$ over the boundary of $\{z \in \mathbb{C}; \epsilon \le |z| \le R, 0 \le \arg z \le \pi\}$ for $0 < \epsilon < a < R$.

Exercise 7.11. Show that

$$\int_0^\infty \frac{x^p dx}{1+x^2} = \frac{1}{2}\pi / \cos(\pi p/2)$$

for -1 .

Exercise 7.12. Show that

$$\int_0^\infty \frac{x^p dx}{(1+x^2)^2} = \frac{1}{4}\pi(1-p)/\cos(\pi p/2)$$

for -1 .