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1 Symplectic Linear Algebra

1.1 Symplectic Forms

Let E be a finite-dimensional vector space over a field k, which later usually will be R. A symplectic
form on E is a nondegenerate two-form σ on E. Here the word ”two-form” means that σ is an
antisymmetric bilinear form on E. A bilinear form on E is a mapping σ : E×E → k such that, for
every choice of u ∈ E, v 7→ σ(u, v) : E → k is a linear form and, for every choice of v ∈ E, σ(u, v)
depends linearly on u. The bilinear form σ is called antisymmetric if

σ(v, u) = −σ(u, v), u, v ∈ E. (1.1)

The bilinear form σ is called nondegenerate if σ(u, v) = 0 for every v ∈ E implies that u = 0.
As usual, we identify a bilinear form σ on E with the linear mapping u 7→ (v 7→ σ(u, v)) from

E to the dual space E∗ of E, this linear map will also be denoted by σ. The mapping which assigns
to v ∈ E the linear form α 7→ α(v) on E∗ induces a linear isomorphism from E onto (E∗)∗, which
is used to identify (E∗)∗ with E. Then the dual (= transposed) mapping σ∗ of the linear map
σ : E → E∗ is a linear mapping from (E∗)∗ = E to E∗ and the antisymmetry of σ is equivalent to
the condition that σ∗ = −σ.

The nondegeneracy of σ means that the linear mapping σ : E → E∗ has zero kernel (= null
space), and because dimE∗ = dimE, this is equivalent to the condition that the linear mapping
σ : E → E∗ is bijective.

More generally, any linear mapping from E to E∗ corresponds in the above fashion to a unique
bilinear form on E, and the linear mapping E → E∗ is bijective (= an isomorphism) if and only
if the bilinear form is nondegenerate. In the case that the bilinear form is an inner product, i.e.
symmetric and positive definite, then it is nondegenerate and we obtain the usual identification of
E with E∗ by means of the inner product. In this way we may think of a symplectic form as an
antisymmetric analogue of an inner product.

Example 1.1 On k2n = kn × kn we define σ by

σ((p, q), (p′, q′)) =
n∑
j=1

pj q
′
j − p′j qj . (1.2)

It is easy to verify that σ is a nondegenerate antisymmetric bilinear form on kn × kn. It is called
the standard symplectic form on kn × kn. A coordinate free version is the symplectic form on
E = F × F ∗ defined by

σ((x, ξ), (y, η)) = ξ(y)− η(x), x, y ∈ F, ξ, η ∈ F ∗,
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defined for any finite-diemnsional vector space F over k. �

1.2 Orthogonal Complements in the Dual Space

If L is a linear subspace of E, then the orthogonal complement or annihilator L0 of L in E∗ is
defined as the set of all α ∈ E∗ such that α(v) = 0 for every v ∈ L. Clearly L0 is a linear subspace
of E∗ and dimL0 = dimE∗ − dimL = dimE − dimL = the codimension of L in E.

Similarly the orthogonal complement or annihilator A0 in E of a linear subspace A of E∗ is
defined as the common kernel of all the linear forms α ∈ A, i.e. the set of all v ∈ E such that
α(v) = 0 for every α ∈ A. A0 is a linear subspace of E and dimA0 = dimE − dimE.

If L is a linear subspace of E, then obviously L ⊂ (L0)0, and because dim(L0)0 = dimE −
dimL0 = dimE − (dimE − dimL) = dimL, we conclude that L = (L0)0. Similarly A = (A0)0 for

any linear subspace A of E∗.
If L and M are linear subspaces of E, then obviously L ⊂ M implies M0 ⊂ L0. Therefore in

general L0 ⊂ (L∩M)0 and M0 ⊂ (L∩M)0, which implies that L0 +M0 ⊂ (L∩M)0, and similarly
(L+M)0 ⊂ L0 ∩M0. Taking orthogonal complements these inclusions imply that

L ∩M = ((L ∩M)0)0 ⊂ (L0 +M0)0 ⊂ (L0)0 ∩ (M0)0 = L ∩M,

It follows that both inclusions are equalities and therefore (L∩M)0 = L0 +M0. Similiarly we have
(L+M)0 = L0 ∩M0.

1.3 Orthogonal Complements for a Bilinear Form

Let σ be a nondegenerate bilinear form on E, not necessarily antisymmetric. If L is a linear
subspace of E, then the σ-orthogonal complement Lσ of L in E is defined as

Lσ := (σ(L))0 = {u ∈ E | σ(u, v) = 0 for every v ∈ L} . (1.3)

Clearly Lσ is a linear subspace of E. Note that Lσ = Lσ
∗

if σ is symmetric or antisymmetric. That
is, in these case we can interchange the role of u and v in the definition (1.3).

Because σ : E → E∗ is a linear isomorphism, the rules for annihilators in the dual spaces imply
the rules

dimLσ = dimE − dimL, (1.4)
L ⊂M =⇒Mσ ⊂ Lσ, (1.5)
(L ∩M)σ = Lσ +Mσ and (L+M)σ = Lσ ∩Mσ (1.6)

for the σ-orthogonal complements. If k = R and σ is an inner product, then the σ-orthogonal
complement of L is usual orthogonal complement denoted by L⊥, and we recognize (1.4), (1.5) and
(1.6) as familiar properties of the orthogonal complementation. Note that for the inner product we
have the additional property that L ∩ L⊥ = {0}, which implies that E is equal to the direct sum
L⊕ L⊥ of L and L⊥.

3



1.4 Isotropic Subspaces

In the sequel (E, σ) will be a symplectic vector space, i.e. E is a finite-dimensional vector space
and σ is a symplectic form on E.

A linear subspace L is called isotropic with respect to σ if L ⊂ Lσ, that is σ(u, v) = 0 for all
pairs of vectors u, v ∈ L. A maximal isotropic linear subspace of E is called a Lagrange plane.
Because of the finite-dimensionality of E, any striclty increasing sequence of isotropic subspaces
terminates at a maximal one, which shows that every isotropic subspace is contained in at least
one Lagrange plane.

The antisymmetry of σ implies that σ(v, v) = −σ(v, v), hence 2σ(v, v) = 0. Therefore, if the
characteristic of k is not equal to two, the antisymmetry (1.1) implies that

σ(v, v) = 0, v ∈ E. (1.7)

Conversely, if (1.7) holds, then 0 = σ(u + v, u + v) = σ(u, u) + σ(u, v) + σ(v, u) + σ(v, v) =
σ(u, v) + σ(v, u), which implies (1.1). Therefore, if char k 6= 2, such as for k = R, then (1.1)
is equivalent to (1.7). If char k = 2, then everything what follows remains true if we replace the
antisymmetry condition (1.1) by the stronger condition (1.7).

The condition (1.7) implies that every one-dimensional linear subspace of E is isotropic. This
is very different from the situation for an inner product, where {0} is the only isotropic subspace.

If L ⊂ Lσ and L 6= Lσ, then for every v ∈ Lσ \ L we have that (L + k v)σ = Lσ ∩ (k v)σ

contains L because Lσ ⊃ L and k v ⊂ Lσ implies (k v)σ ⊃ L. it also contains v because v ∈ Lσ
and v ∈ (k v)σ. It follows that the linear subspace (L + k v)σ contains L + k v, which means that
L′ := L+k v is isotropic, L ⊂ L′ and dimL′ = dimL+1. We conclude that L is a maximal isotropic
linear subspace if and only if L = Lσ. This is equivalent to the condition that L is isotropic and
dimL = dimLσ = dimE − dimL, or equivalently dimE = 2 dimL.

In particular the dimension of a symplectic vector space must be even, say equal to 2n. We
have that dimL ≤ n for every isotropic linear subspace L of E and that the maximal isotropic
subspaces are the isotropic subspaces which have dimension equal to n.

1.5 Standard Form of the Sympctic Form

In order to identify the symptic form with the standard one of Example 1.1, we start with an
L ∈ L(E, σ) and introduce a second M ∈ L(E, σ) such that L ∩M = {0}, which then implies
that E = L⊕M . The existence of such a Lagrange plane M follows from the fact that, if M is an
isotropic subspace of (E, σ) such that M 6= Mσ and L∩M = {0}, then there exists a v ∈Mσ \M
such that L ∩M ′ = {0} if M ′ := M + k v. If L ∩M ′ 6= {0} then there exist m ∈ M and c ∈ K
such that l = m+ c v is a nonzero element of L, which means that v ∈ L+M . If this would hold
for every v ∈ Mσ \M , then Mσ \ L + M , which implies that L ∩Mσ = Lσ ∩Mσ = (L + M)σ ⊂
(Mσ)σ = M , which in view of L ∩M = {0} means that L ∩Mσ = {0}. However, dimL = n
and dimMσ = dimE − dimM > dimE − n, hence dimL + dimMσ > dimE, which implies that
dim(L ∩Mσ) = dimL+ dimMσ − dimE > 0, and we arrive at a contradiction.

The restriction S to M of the mapping m 7→ (σm)|L is a linear isomorphism form M onto L∗.
Indeed, S m = 0 means that m ∈ Lσ = L, which in view of L∩M = {0} implies that m = 0. Now let
ei be a basis of L and let εj be the corresponding dual basis of L∗, determined by the conditions that
εj(ei) is equal to zero and zero when i 6= j and i = j, respectively. Let fj be the basis of M such that
S fj = εj . Then we have σ(ei, ei′) = 0, σ(fj , fj′) = 0 and −σ(ei, fj) = σ(fj , ei) = εj(ei) = δij .
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The ei and fj together form a basis on which σ has a standard form. Such a basis is called a
symplectic basis of (E, σ).

More precisely, if we write u =
∑n

i=1 pi ei + qj fj , v =
∑n

i=1 p
′
i ei + q′j fj , then it follows that

σ(u, v) is equal to the right hand side of (1.2). This means that the pull-back of σ under the linear
isomorphism (p, q) 7→

∑n
i=1 pi ei + qj fj from kn × kn onto E is equal to the standard symplectic

form on kn × kn.
For an arbitrary antisymmetric bilinear form σ on a finite-dimensional vector space E over a

field k, a basis on which σ has a standard form is obtained as follows. If N = kerσ, then the
equation σE/N (u + N, v + N) = σ(u, v) leads to a well-defined antisymmetric bilinear form on
E/N which is nondegenerate, this is called the induced symplectic form on E/N . Write r = dimN ,
m = 1

2 dim(E/N), and choose n1, . . . nr, e1, . . . em, f1, . . . , fm in E such that the n1, . . . nr from a
basis of N and the e1 +N, . . . em+N, f1 +N, . . . , fm+N form a symplectic basis of (E/N, σE/N ).
Then these r + 2m vectors for a basis of E, for which σ(ni, nj) = σ(ni, ej) = σ(ni, fj) = 0,
σ(ei, ej) = σ(fi, fj) = 0, and σ(ei, fj) = −σ(fj , ei) = δij .

The fact that antisymmetric bilinear forms on vector spaces of the same dimension and with
the same nullity (= dimension of the kernel) have the same normal form, differs from the situation
for symmetric bilinear forms. If k has the property that every element of k has a square root in
k, then all symmetric bilinear forms with the same nullity have the same normal form, but for
general fields the classification of symmetric bilinear forms can be very complicated. For k = R the
situation still is relatively simple, as a real symmetric bilinear form is determined by its nullity n0,
and its positive and negativity index = the dimension n+ and n− of any maximal linear subspace
on which the form is positive definite and negative definite, respectively.

1.6 The Lagrangian Grassmannian

The set L = L(E σ) of all Lagrange planes in the symplectic vector space (E, σ) is called the
Lagrangian Grassmannian of (E, σ). It is a non-empty algebraic subvariety of the Grassmann
manifold Gn(E) of all n-dimensional linear subspaces of E.

If L ∈ L and k ∈ Z≥0, then we denote by LL, k the set of all M ∈ L such that dimL ∩M = k.
LL, 0 is an open subset of L, and in the previous subsection we have seen that it is not empty.
Interchanging the roles of L and M we obtain that the LL, 0 for L ∈ L form an open covering of L,
i.e. for every M ∈ L there exists an L ∈ L such that M ∈ LL, 0.

Let L, M ∈ Gn(E) be such that E = L⊕M . For every L′ ∈ Gn(E) such that L′∩M = {0} there
is a unique linear mapping A : L → M such that L′ = {x + Ax | x ∈ L}. This leads to a bijctive
mapping from the open subset {L′ ∈ Gn(E) | L′ ∩M = {0}} of Gn(E) onto the n2-dimensional
vector space Lin(L, M) of all linear mappings from L onto M , and the matrix coefficients of A
with respect to any bases in L and M define a coordinatization of the aformentioned open subset
of Gn(E). These are the standard coordinatizations of Gn(E). The coordinate changes are rational
mappings and in this way Gn(E) is exhibited as a smooth n2-dimensional manifold.

Now assume that L, M ∈ L(E, σ). We have that L′ ∈ L(E, σ) if and only if, for every x, y ∈ L,

0 = σ(x+Ax, y +Ay) = σ(Ax, y) + σ(x, A y) = σ(Ax, y)− σ(Ay, x),

where we have used in the second identity that σ(x, y) = 0 and σ(Ax, A y) = 0 because L and M
are isotropic. This means that the bilinear form (x, y) 7→ σ(Ax, y) on L is symmetric. Because
A 7→ ((x, y) 7→ σ(Ax, y)) is a linear isomorphism from Lin(L, M) onto the space of all bilinear
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forms on L, we see that in the aforementioned coordinatization the Lagrangian Grassmannian
appears as the space of all symmetric bilinear forms on L, viewed as a linear subspace of the
space of all bilinear forms on L. This exhibits L(E, σ) as a smooth 1

2n(n + 1)-dimensional linear
submanifold of the n2-dimensional manifold Gn(E).

If M̃ is another Lagrange plane which is transversal to L and L′ ∈ L is transversal to both
M and M̃ , then we have a second coordinatization of L′ by means of the Ã ∈ Lin(L, M̃) such
that L′ = {y + Ã y | y ∈ L. On the other hand there exists B ∈ Lin(M, L) such that M̃ =
{z + B z | z ∈ M}. The elements of L′ are of the form x + Ax = y + Ã y for unique x, y ∈ L,
and Ã y = z + B z for a unique z ∈ M . Therefore z = Ax, y = x − B z = x − BAx, hence
x+Ax = (x−BAx) + Ã (x−BAx). Taking the symplectic product with u ∈ L, this leads to

σ(Ax, u) = σ(Ã (x−BAx), u) = σ(Ã x, u)− σ(ÃB Ax, u).

For small A, which corresponds to L′ close to L, we see that the symmetric bilinear form on L
defined by the M differs from the symmetric bilinear form on L defined by M̃ by a term which
vanishes of second order in A. In this way the tangent space TL L of L at the element L ∈ L is
canonically identified with the space Symm2(L) of all symmetric bilinear forms on L.

1.7 The Symplectic Linear Group

Let (E, σ), (F, τ) be a symplectic vector spaces over a field k. A linear mapping A : E → F is
called a symplectic linear mapping from (E, σ) to (F, τ), if τ(Au, A v) = σ(u, v) for all u, v ∈ E,
or A∗ τ A = σ. Because σ : E → E∗ is injective, A is injective, hence dimE ≤ dimF , and we
have that A is bijective if and only dimE = dimF , in which case A is called a symplectic linear
isomorphism from (E, σ) onto (F, τ). If dimE < dimF , then A is a symplectic linear isomorphism
from (E, σ) onto the symplectic vector subspace (A(E), τ |A(E)×A(E) of (F, τ).

A symplectic linear mapping from (E, σ) to itself is called a symplectic linear transformation
in (E, σ). The symplectic linear transformations form an algebraic subgroup of the group GL(E)
of all linear transformations in E, which is called the symplectic linear group Sp(E, σ).

If e1, . . . , en, f1, . . . , fn is a symplectic basis, then a linear mapping A is symplectic if and
only if Ae1, . . . , A en, A f1, . . . , A fn is a symplectic basis. Because any basis of a Lagrange plane
can be extended to a symplectic basis, it follows that the symplectic linear group Sp(E, σ) acts
transitively on the Lagrangian Grassmannian Sp(E, σ). If, for given L ∈ L(E, σ), Sp(E, σ)L :=
{A ∈ Sp(E, σ) | A(L) = L} denotes the stabilizer subgroup of L in Sp(E, σ), then the Lagrangian
Grassmannina L(E, σ) is identified with the homogeneous space Sp(E, σ)/ Sp(E, σ)L.

If we write A =
(
α β
γ δ

)
on a symplectic basis, in which α, β, γ, δ are n× n-matrices, then

A ∈ Sp(E, σ) if and only if α∗ γ − γ∗ α = 0, β∗ δ − δ∗ β = 0 and α∗ δ − β∗ γ = I. The first two
equations mean that α∗ γ = ε and β∗ δ = η are symmetric, and we see 2(1

2n(n− 1)) +n2 = 2n2−n
independent equations. If the first n vectors of the symplectic basis span L, then A ∈ Sp(E, σ)L if
and only if γ = 0, and the equations are that δ = (α∗)−1 and δ∗ β = α−1 β is symmetric. It follows
that dim Sp(E, σ)L = n2 + 1

2n(n + 1), and therefore dim Sp(E, σ) = n2 + n(n + 1) = 2n2 + n.
It follows that the codimension of Sp(n, E) in GL(E) is equal to 2n2 − n, in agreement with the
number of independent equations for the matrices α, β, γ, δ.

The equation A∗ σ A = σ for A ∈ Sp(E, σ) implies that A∗ = σ Aσ−1, which means that the
linear isomorphism σ : E → E∗ conjugates the linear mapping A : E → E with the linear mapping
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(A∗)−1 : E∗ → E∗. This implies that A has the same eigenvalues as (A∗)−1 with the same algebraic
multiplicities. Because A∗ has the same eigenvalues with the same algebraic multiplicities as A, it
follows that if λ is an eigenvalues of A with algebraic multiplicity m, then 1/λ is also an eigenvalue
of A with algebraic multiplicity m. If k = R, then a passage to the complexification leads to the
conclusion that the the complex eigenvalues of A appear in foursomes λ, λ, 1/λ, 1/λ with λ ∈ C,
λ /∈ R, λλ 6= 1, or in real pairs λ, 1/λ, or in complex conjugate pairs on the unit circle, in each
case with equal algebraic multiplicities.

The Lie algebra sp(E, σ) of Sp(E, σ) consists of the linear mappings A : E → E such that
σ(Au, v) + σ(u, A v) = 0 for all u, v ∈ E, or σ A+ A∗ σ = 0. These A are called the infinitesimal
symplectic linear transformations in (E, σ). Note also that the mapping which assigns to A ∈
sp(E, σ) the bilinear form σ A : (u, v) 7→ σ(Au, v) is a linear isomomorphism from sp(E, σ) onto
the space Symm2(E) of all symmetric bilinear forms on E. This shows that dim Sp(E, σ) =
1
2 2n(2n+ 1) = 2n2 + n, in agreement with our previous dimension calculations.

The equation A∗ = −σ Aσ−1 implies that if λ is an eigenvalues of A with multiplicity m, then
−λ is also an eigenvalue of A with m,ultiplicity m. When k = R, this implies that the complex
eigenvalues of A appear in foursomes λ, λ, −λ, −λ with λ ∈ C, λ /∈ R, λ /∈ i R, or in real pairs
λ, −λ, or in complex conjugate pairs on the imaginary axis, in each case with equal algebraic
multiplicities.

For k = R a complete list of normal forms of infinetesimal symplectic linear transformations
has been given by Williamson [30], and one has a corresponding list for the symplectic linear
transformations, see also [2] and [4].

1.8 Exterior Algebra

Let E be any d-dimensional vector space over k. The space of all antisymmetric p-linear forms on E
is denoted by ΛpE∗. For α ∈ ΛpE∗ and β ∈ ΛqE∗, one defines the exterior product α∧β ∈ Λp+qE∗

by
(α ∧ β)(v1, . . . , vp+q) =

∑
π

sgnπ α(vπ(1), . . . , vπ(p))β(vπ(p+1), . . . , vπ(p+q)) (1.8)

for all v1, . . . , vp+q ∈ E. Here the sum is over all equivalence classes of permutations permutations
π of the indices {1, . . . , p+ q}, where π and π ◦ ψ are equivalent if ψ maps the subsets {1, . . . , p}
and {p + 1, . . . , p + q} of indices to themselves. (Note that terms with equivalent permutations
are equal.) The signature sgnπ of the permutation is +1 or −1 when π consists of an even or odd
number of transpositions, respectively.

With this product,
ΛE∗ :=

⊕
p≥0

ΛpE∗

becomes an algebra, which is called the exterior algebra of E∗. Here we have used the convention
that Λ0E∗ = k. Note also that Λ1E∗ = E∗ is a linear subspace of ΛE∗.

The exterior product is associative, meaning that (α∧β)∧γ = α∧(β∧γ). It is anticommutative
in the sense that α ∧ β = (−1)pqβ ∧ α if α ∈ ΛpE∗ and β ∈ ΛqE∗.

Let ei be any basis of E and εj de corresponding dual basis of E∗, characterized by εj(ei) = δij .
For any strictly increasing function I : {1, . . . , p} → {1, . . . , d}, write εI = εI(1) ∧ . . . ∧ εI(p)
and eI = (eI(1), . . . , eI(p)). Then εI(eJ) = δIJ . Therefore, if α ∈ ΛpE∗, then α =

∑
I α(eI) εI ,

which follows from applying both sides to eJ and observing that the numbers α(eJ) determine α.
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Conversely, if
∑

I cI εI = 0, then application to eJ yields cJ = 0 for every J , and it follows that
the εI form a basis of ΛpE∗, which in turn implies that

dim ΛpE∗ =
(
d
p

)
. (1.9)

In particular ΛpE∗ = {0} when p > n and the space ΛdE∗ of oriented volume forms on E is
one-dimensional.

If σ ∈ Λ2E∗ is a symplectic form on E and (e1, . . . en, f1, . . . fn) is a symplectic basis, with
corresponding dual basis (ε1, . . . εn, φ1, . . . , φn), then we see from (1.2) that

σ =
n∑
i=1

εi ∧ φi (1.10)

and therefore the n-the exterior power

σn = σ ∧ . . . ∧ σ = n! ε1 ∧ φ1 ∧ ε2 ∧ φ2 ∧ . . . ∧ εn ∧ φn (1.11)

of σ is a nonzero volume form on E. (Note that the exterior product is commutative on the
subalgebra generated by the two-forms εi ∧ φi.) Here we assume that the field k has characteristic
zero or, in the case of nonzero characteristic, char k > n. This implies that also all the intermediate
powers σm ∈ Λ2mE∗, 0 ≤ m ≤ n, are nonzero.

With the identification of E with (E∗)∗, the exterior algebra ΛE of E is defined as the algebra
of antisymmetric multilinear forms on E∗. There is an natural identification of λE with the dual
space of ΛE∗ and vice versa, as follows.

If v ∈ (ΛpE∗)∗, then

i(v)(α1, . . . , αp) := v(α1 ∧ . . . ∧ αp), αi ∈ E∗,

defines an antisymmetric p-linear form on E∗, and therefore belongs to ΛpE. This defines a linear
mapping i : (ΛpE∗)∗ → ΛpE. Furthermore, if i(v) = 0, then v annihilates all p-fold exterior
products of one-forms and therefore v = 0 because the εI form a basis of ΛpE∗. We conclude that
i is injective and because

dim(ΛpE∗)∗ =
(
d
p

)
= dim ΛpE,

we conclude that i is a linear isomorphism.
We have a similar linear isomorphism j : (ΛpE)∗ → ΛpE∗. If v1∧. . .∧vp = i(v) and α1∧. . . αp =

j(α), then

α(i(v)) = j(α)(v1, . . . , vp) = (α1 ∧ . . . ∧ αp)(v1, . . . , vp) =
∑
π

sgnπ
p∏

k=1

αk(vπ(k))

= (v1 ∧ . . . ∧ vp)(α1, . . . , αp) = i(v)(α1, . . . , αp) = v(j(α)),

which shows that the mappings i and j are each others adjoints.
One uses i and j to identify (ΛpE∗)∗ with ΛpE and (ΛpE)∗ with ΛpE∗. With these identifica-

tions, one has the formulas v(α1 ∧ . . . ∧ αp) = v(α1, . . . αp) for v ∈ (ΛpE∗)∗ = ΛpE and αi ∈ E∗,
and similarly α(v1 ∧ . . . vp) = α(v1, . . . , vp) for α ∈ (ΛpE)∗ = ΛpE∗ and vi ∈ E.
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1.9 Hermitian Forms

Let E be an n-dimensional vector space over C and let h : E × E → C be a Hermitian form on
E, i.e. for every u ∈ E the mapping v 7→ h(u, v) is complex antilinear (h(u, c v) = c h(u, v)), for
every v ∈ E the mapping u 7→ h(u, v) is complex linear, and h(v, v) > 0 for every nonzero element
v of E.

From now on we regard E as a 2n-dimensional vector space over R. Then the real part g := Reh
of h is an inner product on E, and therefore a nondegenerate symmetric bilinear form. Because

Imh(u, v) = −Re(ih(u, v)) = −Reh(iu, v) = −Reh(v, iu) = Re(ih(v, u)) = − Imh(v, u),

we see that the imaginary part σ := Imh is an antisymmetric bilinear form on E. These equations
also show that σ = −g◦J , if J : E → E is the real linear transformation in E defined by J(u) = iu,
u ∈ E, the complex multiplication by means of the complex number i. Because J : E → E and
g : E → E∗ are injective, σ : E → E∗ is injective as well, and we conclude that σ is a symplectic
form on E. Note that J2 = −1 and therefore g can also be expressed in terms of σ by means of
the formula g = σ ◦ J , and the Hermitian form is equal to h = σ ◦ J + i σ.

In general, if E is a vector space over R, then a complex structure in E is defined as a real linear
mapping J : E → E such that J2 = −1. This makes E into a complex vector space if we define
(a+ i b) v = a v + J(b v) for any a, b ∈ R and v ∈ E, and it follows that the real dimension of E is
equal to 2n if n denotes the dimension of E as a complex vector space.

That every symplectic form is equal to the imaginary part of a Hermitian form with respect to
a suitable complex structure, can be seen by bringing the symplectic form into the standard form
(1.2), writing zj = qj + i pj and taking the standard Hermitian form

h(z, z′) =
n∑
j=1

zj z′j (1.12)

in Cn.
The vectors e1, . . . , en ∈ E form an h-orthonormal basis of the complex vector space E, if and

only if they form a g-orthonormal basis of a Lagrange plane L. Let U(E, h) denote the unitary
group of all complex linear transformations A : E → E such that A∗(h) = h, in which the Hermitian
form A∗h on E is defined by (A∗h)(u, v) = h(Au, A v) for all u, v ∈ E. Note that

U(E, h) = GLC(E) ∩O(E, g) = GLC(E) ∩ Sp(E, σ) = Sp(E, σ) ∩O(E, g),

in which GLC(E) denotes the group of complex linear transformations oin E and O(E, g) denotes
the group of g-orthogonal real linear transformations in E. This is based on the fact that a real
linear transformation A in E is complex linear if and only if A ◦ J = J ◦ A, and g = σ ◦ J and
h = g + i σ.

Because U(E, h) acts transitively on the set of all h-orthonormal bases of E, the compact
Lie group U(E, h) also acts transitively on the Lagrangian Grassmannian. Because for any A ∈
U(E, h) we have that A(L) = L if and only if A is the complex linear extension to E of a g-

-orthogonal transformation in L, this leads to an identification of L(E, σ) with the homogeneous
space U(E, h)/U(E, h)L, in which U(E, h)L is isomorphic to O(L, g). This is the meaning of the
equation Λ(n) = U(n)/O(n) in [1].
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1.10 Historical Remarks

The name ”symplectic” has been introduced in 1939 by Hermann Weyl as the Greek adjective
corresponding to the word ”complex”, which for him referred to the linear line complexes introduced
by Plücker, see Exercise 1.3. According to the footnote on p. 165 of [29]:

The name ”complex group” formerly advocated by me in allusion to line complexes, as they are
defined by the vanishing of antisymmetric forms, has become more and more embarassing through
collision with the word ”complex” in the connotation of complex number. I therefore propose to
replace it by the corresponding Greek adjective ”symplectic”. Dickson calls the group ”Abelian
linear group” in homage to Abel who first studied it.

(The name given by Dickson is even more embarassing, as ”Abelian group” nowadays is used for
”commutative group”, whereas the symplectic group is highly noncommutative.)

The names ”Lagrange plane” and ”Lagrangian Grassmannian” have been introduced by Arnol’d
[1], after the name ”Lagrange manifold”, introduced by Maslov [23, p. 115] in 1965 for a manifold
of which all tangent spaces are Lagrange planes.

1.11 Exercises

Exercise 1.1 In the notation of Subsection 1.9, prove that J ∈ Sp(E, σ). Prove that if L is a
Lagrange plane, then J(L) is a Lagrange plane which is g-orthogonal to L, and therefore satisfies
J(L) ∩ L = {0}. �

Exercise 1.2 It was the idea of Plücker (1846), to consider the projective lines in the three-
dimensional space as the elements (points) of a new space. The three-dimensional projective space
is defined as the space P(E) of all one-dimensional linear subspaces l of the four-dimensional vector
space E. A projective line is equal to the set P(L) of all one-dimensional linear subspaces l of a two-
dimensional linear subspace L of E. In this way, Plücker’s space is identified with the Grassmann
manifold G2(E) of all two-dimensional linear subspaces L of the four-dimensional vector space E.

Let a, b ∈ E be linearly independent. Prove that u = a ∧ b is a nonzero element of Λ2E such
that u ∧ u = 0. Prove that every nonzero u ∈ Λ2E such that u ∧ u = 0 arises in this way, and
that x ∈ E is equal to a linear combination of a and b, if and only if u ∧ x = 0. Prove that the
relation between L ∈ G2(E) and u ∈ Λ2E, that u = a ∧ b for a basis a, b of L, is equivalent to
u ∧ x = 0 for every x ∈ L. Prove that this relation defines a bijection between G2(E) and the
quadric Q in the five-dimensional projective space P

(
Λ2E

)
defined by the equation u ∧ u = 0.

Prove that (u, v) 7→ u ∧ v is a nondegenerate symmetric bilinear form on Λ2E with values in the
one-dimensional vector space Λ4E, and that, as a consequence, the quadric Q is smooth.

The coördinates of Λ2E are called Plücker coordinates on G2(E). Stricly speaking these should
be regarded as projective coördinates and, as functions on the projective coordinate patches of
P
(
Λ2E

)
, be restricted to the quadric Q. �

Exercise 1.3 Plücker [26] defined a line complex of degree m as the intersection of Q with an
algebraic hypersurface in P

(
Λ2E

)
of degree m, defined by the equation F (u) = 0 in which F is a

homogeneous polynomial of degree m on Λ2E. He defined a linear line complex as a line complex
of degree one.
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Prove that a linear line complex corresponds to a nonzero two-form σ ∈ Λ2E∗ on E, unique up to
a nonzero scalar multiple, such that L ∈ G2(E) belongs to the linear line complex if and only if L
is σ-isotropic. Prove that if σ is nondegenerate, then the linear line complex defined by σ, viewed
as a subset of G2(E), is equal to the manifold L(E, σ) of all the Lagrange planes with respect to
the symplectic form σ.

Prove that if σ is degenerate, then kerσ ∈ G2(E). In this case Plücker called the corresponding
linear line complex special and called kerσ the axis of the special linear line complex. Prove that
the special linear line complex is equal to the set of all L ∈ G2(E) such that L ∩ kerσ 6= 0. In
terms of projective lines: the special line complex is equal to the set of all projective lines which
intersect its axis. �

Exercise 1.4 We use the notation of Subsection 1.6.
Let L ∈ L(E, σ), I ∈ Gm(L). Prove that σ induces a symplectic form on the (2n − 2m)-

-dimensional vector space Iσ/I. Prove that L′ ∈ L(E, σ) and L′ ∩ L = I if and only if L′/I
is a Lagrange plane in Iσ/I which is transversal to L/I. Prove that the mapping L′ 7→ L′ ∩ L
exhibits LL,,m as a smooth bundle over Gm(L) of which each fiber is an affine space of dimension
1
2(n − m)(n − m + 1), Prove LL,,m is a smooth submanifold of L(E, σ) of dimension equal to
1
2n(n+ 1)− 1

2m(m+ 1). Prove that the closure of LL,,m in L(E, σ) is equal to
⋃n
l=m LL, l. �

Exercise 1.5 Let γ be a differentiable curve in L = L(E, σ) such that γ(t0) ∈ LL, 1. Prove that
γ(t) intersects LL, 1 transversally at t = t0, i.e. γ′(t0) /∈ Tγ(t0) LL, 1, if and only if the restriction to
γ(t0)∩L of the symmetric bilinear on γ(t0), which is assigned to γ′t(t0) ∈ TL as in Subsection 1.6,
is nonzero. We will call the intersection positive or negative according to whether this restriction
is positive or negative definite, respectively.

It is known that by slight perturbation every closed curve γ. in L can be made such that all
intersections with LL, 1 are transversal. prove that this implies that γ intersects LL, 1 only finitely
many times. Write i(γ) for the number of positive intersections minus the number of negative
intersections.

It is also known that by slight perturbation any homotopy of closed curves, viewed as a mapping
from a two-dimensional cylinder to L can be made to miss each of the manifolds IL,m with m ≥ 2,
each of which has codimension ≥ 3 in L. This shows that i(γ) only depends on the homotopy class
of γ, and i induces a homomorphism from the fundamental group π1(L) of L to Z.

Prove that LL, 1 is connected and that LL, 0 is simply connected. Prove that if i(γ) = 0, then γ
is contractible in L. Finally, find a smooth closed curve γ in L such that i(γ) = 1 and prove that
i : π1(L)→ Z is an isomorphism.

Remark Maslov [23, p. 147–149] called the set Σ = LL, 1 and the integer i(γ) the singular set and
the index of the curve γ, respectively. Arnol’d [1] observed that Σ defines an oriented codimension
one cycle in L, that the index is equal to the topological intersection number of the one-dimensional
cycle γ with Σ and that the index defines an isomorphism of the fundamental group of L with Z.
�
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2 Symplectic Manifolds

2.1 Definition

Let M be a finite-dimensional smooth manifold. A symplectic form on M is a smooth differential
form σ of degree two on M such that

i) For every m ∈M the bilinear form σm on TmM is nondegenerate, and

ii) σ is closed, i.e. dσ = 0.

Condition i) means that, for every m ∈ M , σm is a symplectic form on TmM . This implies that
dimM = dim TmM is even, say equal to 2n, cf. Subsection 1.4. A symplectic manifold is defined

as a pair (M, σ), in which M is a finite-dimensional smooth manifold and σ is a symplectic form
on M .

Example 2.1 Probably the simplest example is Rn×Rn provided with the ”constant” standard
symplectic form of (1.2), which in differential form notation is equal to

σ =
n∑
j=1

dpj ∧ dqj . (2.1)

Here pj and qj are viewed as (coordinate) functions on Rn ×Rn. �

2.2 The Cotangent Bundle

An important generalization of the previous example is obtained by starting with an arbitrary n-
dimensional smooth manifold X. The cotangent bundle T∗X of X is defined as the vector bundle
over X of which the fiber at the point x ∈ X is equal to the dual T∗xX := (TxX)∗ of TxX , the
space of all linear forms ξ on the tangent space TxX of X at the point x.

Let π denote the projection from M := T∗xX onto X. which sends every element of T∗xX to x.
Then, for every ξ ∈ T∗xX, the tangent map Tξ π is a linear mapping from TξM onto TxX, and if
we subsequently apply the linear form ξ ∈ (TxX)∗ to it, we obtain the linear form

τξ := ξ ◦ Tξ π (2.2)

on TξM . This defines a special smooth differential form τ of degree one on M .
If α is any smooth differential form of degree one on X, then it can also be viewed as a smooth

mapping α : X → T∗X such that π ◦ α is equal to the identity on X. It follows that

(α∗τ)x = τα(x) ◦ Tx α = α(x) ◦ Tα(x) π ◦ Tx α = α(x) ◦ Tx(π ◦ α) = α(x),

where in the first, second, third and last identity we used the definition of pullback of a differential
form, the definition of τ , the chain rule for differentiation and π◦α = Id, respectively. The equation

α = α∗τ for every one-form α on X (2.3)

says that every one-form on X is equal to the pullback of τ by means of the one-form viewed as a
mapping from X to T∗X. For this reason τ is called the tautological one-form on the cotangent
bundle.
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The exterior derivative
σ := dτ (2.4)

of the tautological one-form is a two-form on T∗X, which is closed because d(dω) = 0 for ev-
ery differential form ω (of any degree). Moroever, in local coordinates (x1, . . . , xn) on X, with
corresponding dual coordinates (ξ1, . . . , ξn), the equation (2.2) takes the form

τ =
n∑
i=1

ξi dxi, (2.5)

and therefore

σ =
n∑
i=1

dξi ∧ dxi, (2.6)

which shows that σ is equal to the standard symplectic form if we substitute xi = qi and ξi = pi.
This shows that σ := dτ is a symplectic form on T∗X, which is called the canonical symplectic
form of the cotangent bundle.

2.3 Reduction

Let N be a smooth manifold and let ω be a closed smooth two-form on N for which the kernel has
constant rank, i.e. there exists a nonnegative integer k such that, for every n ∈ N , dim(kerωn) = k.
This implies that the Kn := kerωn, n ∈ N , define a smooth vector subbundle K of the tangent
bundle TN of N . (In the present differential geometric terminology, a smooth vector subundle of
the tangent bundle of N is also called a distribution on N , not to be confused with the distributions
in Analysis. In the 19-th century literature a smooth vector subbundle of the tangent bundle of N
is called a Pfaffian system in N .)

A general smooth vector subbundle K of the tangent bundle TN of any finite-dimensional
smooth manifold N is called integrable if for each n0 ∈ N there exists an open neighborhood N0

of n0 in N and a smooth fibration of N0, such that, for each n ∈ N0, Kn is equal to the tangent
space of the fiber through n. The theorem of Frobenius says that K is integrable if and only if
[X, Y ] ⊂ K holds for any pair of smooth vector fields X, Y on N such that X ⊂ K and Y ⊂ K.

Returning to our two-form ω with kernel of constant rank, the claim is that the closedness of
ω implies that its kernel K := kerω is integrable. For the proof we use that [X, Y ] is equal to the
Lie derivative LXY of Y with respect to the vector field X. In view of the Leibniz formula for Lie
derivatives, it follows that

i[X,Y ] ω = LX (iY ω)− iY (LXω) ,

whereas the homotopy formula for the Lie derivaritive yields that

LXω = iX(dω) + d (iX ω) . (2.7)

Therefore, iY ω = 0, iX ω = 0 and dω = 0 imply that i[X,Y ] ω = 0.
Now suppose that π : N → M is a fibration with connected fibers, such that, for each n ∈ N ,

kerωn is equal to the tangent space ker Tn π of the fiber through the point n. Fix m ∈ M . Then
there exists, for each n ∈ π−1({m}), a unique two-form σm,n on TmM , such that (Tn π)∗σm,n = ωn.
However, for each smooth vector field X such that X ⊂ K we see from (2.7) that LXω = 0, which
implies that (etX)∗ω = ω, whereas on the other hand π ◦etX = π. This implies that σm,n′ = σm,n if
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n′ = etX(n). Because the compositions of the flows etX with X ⊂ K act locally transitively on the
fibers, and therefore transitively because the fibers are connected, the conclusion is that σm,n = σm
does not depend on the choice of n ∈ π−1({m}).

The σm, m ∈M , define a smooth two-form on M such that ω = π∗σ. Because

ker Tn π = kerωn = Tn π
−1(kerσm),

it follows that kerσm = {0}, which means that σm is a symplectic form. Furthermore, π∗(dσ) =
d(π∗σ) = dω = 0, which in view of the surjectivity of the linear mappings Tn π, n ∈ N implies that
dσ = 0. In other words, (M, σ) is a symplectic manifold, which is called the reduced symplectic

manifold of the pair (N, ω).

2.4 Complex Projective Varieties

Let E be an n-dimensional complex vector space with Hermitian form h, which we provide with
real inner product g = Reh and the symplectic form σ = Imh as in Subsection 1.9, which are
related by g = σ ◦ J . Let

S := {z ∈ E | h(z, z) = g(z, z) = 1}

be the unit sphere in E with respect to the inner product g. Then, for each z ∈ S,

Tz S = {v ∈ E | g(z, v) = 0} = {v ∈ E | σ(i z, v) = 0}.

It follows that i z ∈ Tz S, and i z belongs to the kernel of the restriction to Tz S. Because Tz S
has real codimension one in E, its symplectic orthogonal complement is real one-dimensional, and
therefore equal to R i z. On the other hand R i z is equal to the tangent space of the circle

Cz := {c z | c ∈ C, |c| = 1} = (C z) ∩ S

through the point z. If we denote the identity mapping from S to E by ι, then ι∗σ is the restriction
to S of the two-form σ, and the fibration of S by the integral curves of the kernels of ι∗σ is equal
to the fibration of S by the circles Cz, z ∈ S. On the space M of these circles we have the reduced
symplectic form σ̂, the unique two-form σ̂ on M such that ι∗σ = π∗σ̂, if π : S → M denotes the
projection defined by π(z) = Cz, z ∈ S.

On the other hand the C z, z ∈ S, are the complex one-dimensional linear subspaces l of E,
which form the elements of the complex (n − 1)-dimensional projective space CP(E) of E. The
mapping l 7→ l∩S is a diffeomorphism from CP(E) onto M , which can be used in order to identify
M with CP(E). Note that CP(E) is a complex analytic manifold, with a complex multiplication
Jl by i in each tangent space Tl(CP(E)). It is easily verified that ĝ := σ̂ ◦ J is the inner product
on Tl(CP(E)) which correpsonds to the restriction of g to the g-orthogonal complement of i z in
Tz S.

If E = Cn and h is the standard hermitian structure on Cn, then the Hermitian inner product
ĥ := 1

π (ĝ + i σ̂) is called the Fubini-Study metric on CP(E) = CPn−1. Here the factor 1/π is
inserted in order to arrange that the integral of ω := 1

π σ̂ over any complex projective line in
CPn−1 is equal to one.

More generally, if M is a complex analytic manifold, then a Kähler structure on M is a smooth
Hermitian inner product h on its tangent bundle, such that its imaginary part, the two-form
σ := Imh, is closed. This implies that σ is a symplectic form on M , called the Kähler form of the
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Kähler manifold (M, h). The Fubini-Study metric is a Kähler structure on the complex projective
space.

If ι : V →M is a complex analytic submanifold of a Kähler manifold (M, h), then the restriction
ι∗h of h to TV is a Kähler structure on V . This exhibits every smooth complex projective variety
as a Kähler manifold, by providing it with the restriction to its tangent bundle of the Fubini-Study
metric of the projective space of which it is a subvariety. This is a very rich source of examples
of compact symplectic manifolds. Vice versa, this introduces symplectic differential geometry into
complex algebraic geometry.

2.5 Almost Complex Structure

An almost complex structure J on a smooth manifold M is a complex structure Jm on each tangent
space TmM , depending smoothly on m ∈M . As in Subsection 1.9, this turns each tangent space
into a complex vector space. If n is the complex dimension of TmM with respect to the complex
structure Jm, then the real dimension is equal to 2n.

An almost complex manifold is a pair (M, J) in which M is a smooth manifold and J is an almost
complex structure on M . The almost complex structure is called integrable if for every m0 ∈ M
there is coordinate system in an open neighborhood of m0 in M , in which m 7→ Jm is constant.
If we use the constant complex structure in order to identify R2n with Cn, we obtain a system
of local coordinatizations for which the coordinate changes are complex analytic mappings. With
these coordinatizations, M is a complex analytic manifold for which the Jm are the multiplications
by i in the tangent spaces.

For each m ∈ M one has the antisymmetric bilinear mapping [J, J ]m from TmM × TmM to
TmM , which is defined by

[J, J ](v, w) = [J v, J w]− J [J v, w]− J [v, J w]− [v, w], (2.8)

in which v and w are smooth vector fields on M and the brackets in the right hand side are the Lie
brackets of vector fields. The theorem of Newlander and Nirenberg says that the almost complex
structure J is integrable, if and only if [J, J ] = 0, cf. [25], [13], [22].

Lemma 2.2 Let σ be a symplectic form on M . Then there exists an almost complex structure J
on M such that h = σ ◦J + i σ is a Hermitian structure on TM . If σ is invariant under the action
of a group G on M , and M carries a G-invariant Riemannian structure, then J can be chosen to
be G-invariant as well.

Proof There exists a Riemannian structure g in M . Such a Riemannian structure exists in local
coordinates. Let ξj be a smooth partition of unity subordinate to ta locally finite covering of M
by means of open subsets Mj on which we have a Riemannian structure gj . This means that the
ξj are smooth real valued functions on M such that ξj ≥ 0, the support of ξj is contained in Mj

and
∑

j ξj = 1. Then g =
∑

j ξj gj is the desired Riemannian structure on M .
Define, for each m ∈ M , Am := σ−1

m gm. Then gm ◦ Am = gm ◦ σ−1
m ◦ gm is antisymmetric, or

Am is gm-antisymmetric, and there exists a gm-orthonormal basis in TmM on which the matrix

of Am consists of 2 × 2-matrices
(

0 −aj
aj 0

)
along the diagonal, with aj > 0. Let Bm be the

linear transformation in TmM of which the matrix consists of the 2× 2-matrices
(

1/aj 0
0 1/aj

)
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along the diagonal. Then Jm := Am ◦ Bm = σ−1
m ◦ gm ◦ Bm is a complex structure on TmM ,

ĝm := gm ◦Bm = σm ◦ Jm is an inner product on TmM and therefore σm ◦ Jm + i σ is a Hermitian
form on TmM .

At first sight this construction seems to depend on the choice of the gm-orthonormal basis, but
B2
m = −A−2

m , which shows that actually Bm is equal to the unique positive definite square root of
the positive definite linear transformation −A−2

m (all with respect to the inner product gm). This
makes Jm globally well-defined and depending smoothly on m ∈M .

If σ and g are G-invariant, then the uniqueness of the Bm, m ∈ M , make that also B and J
are G-invariant. 2

It cannot always be arranged that in addition J is integrable. In other words, not every symplectic
form is equal to a Kähler form on a complex analytic manifold. However, the weaker almost complex
structure is sufficient for many purposes.

2.6 Cohomology Classes

It follows from the observation in Subsection 1.8 that the n-the power of a symplectic form is
nonzero that σn is a nowhere vanishing volume form on M .

Assume in the sequel that M is compact and connected. Then the de Rham cohomology class
[σn] ∈ H2n(M) of the nowhere vanishing volume form σn is nonzero, and therefore generates the
one-dimensional vector space H2n(M). Because [σn] = [σ]n, this in turn implies that the element
[σ]k ∈ H2k(M) is nonzero for every 1 ≤ k ≤ n.

The fact that H2k(M) 6= 0, or more precisely that there exists an s ∈ H2(M) such that sk 6= 0
for every 1 ≤ k ≤ n, puts a quite severe topological restriction on a compact smooth manifold for
allowing a symplectic form. For instance, if M is a 2n-dimensional sphere, then Hp(M) = 0 for all
p except p = 0 and p = 2n, and therefore the only sphere which can carry a symplectic form is the
two-dimensional one.

If M is the complex n-dimensional complex projective space, then Hp(M) = 0 except when
p = 2k, 0 ≤ k ≤ n, in which case dimH2k(M) = 1. In other words, in this case the whole
cohomology ring is generated by the cohomology class [ω] of the Kähler form ω defined by the
Fubini-Study metric. This is even true for the cohomology ring with values in Z, cf. [9, pp. 60,
150].

2.7 Exercises

Exercise 2.1 let X and Y be smooth manifolds and let φ : X → Y be a local diffeomorphism.
Define the induced transformation Φ : T∗X → T∗ Y by

Φ(x, ξ) :=
(
φ(x), ((Tx φ)∗)−1 (ξ)

)
, x ∈ X, ξ ∈ (TxX)∗ .

Prove that
Φ∗τT∗ Y = τT∗X

and that
Φ∗σT∗ Y = σT∗X .

In other words, the induced mapping is a canonical transformation, in the sense that it preserves
the canonical symplectic forms. �
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Exercise 2.2 Consider the standard coordinatization

ϕ : (z1, . . . , zn) 7→ C (1, z1, . . . , zn)

of the open subset of the n-dimensional complex projective space which consist of the one-dimensional
complex linear subspaces l which are not contained in the n-dimensional linear subspace defined
by the equation z0 = 0. Write

w = ψ(z) := (1 + (z, z))−1/2 (1, z1, . . . , zn) ,

wj = uj + i vj with uj , vj ∈ R, 0 ≤ j ≤ n, and zj = xj + i yj with xj , yj ∈ R, 1 ≤ j ≤ n. Prove
that the pullback of the Fubini-Study Kähler form ω under ϕ satisfies

π ω := ψ∗

 n∑
j=0

dvj ∧ duj

 = (1 + (z, z))−1
n∑
j=1

dyj ∧ dxj

−(1 + (z, z))−2
n∑

j, k=1

(xj xk + yj yk) dyj ∧ dxk + xj yk (dxj ∧ dxk + dyj ∧ dyk) .

(This may be compared with [9, p. 30, 31].) How easy is it to verify by direct computation that
the two-form in the right hand side is closed?

Verify that for n = 1 we have

π ω = (1 + x2 + y2)−2 dy ∧ dx,

and that the integral of ω over the complex projective line is equal to 1. �

Exercise 2.3 Let J be an almost complex structure on the manifoldM . Prove that [J, J ](v, J v) =
0 for any smooth vector field v on M and prove that J is integrable if dimM = 2. Now assume
that dimM = 2, that M is connected and that σ is a nowhere vanishing area form = symplectic
form on M . Prove that g := σ ◦ J is a symmetric bilinear form on each tangent space which is
invariant under the linear transformations et Jm . Prove that g is either positive definite or negative
definite. In other words, M is a complex analytic ”curve” and either σ or −σ is equal to the Kähler
form of a Kähler structure on M . �

Exercise 2.4 For which compact oriented surfaces is the cohomology ring generated by the class
of a symplectic form? �

Exercise 2.5 If n = 2 in Subsection 2.4, identify the projection π : S → CP(E) with the Hopf
fibration. �
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3 Hamiltonian Systems

3.1 Flows of Vector Fields

Let M be a smooth manifold. If v is a smooth vector field on M then the general theory of
systems of ordinary differential equations, see for instance [3], implies the following statements.
For every m ∈M , there is a unique maximal solution γ = γm : Im →M of the differential equation
dγ(t)/ dt = v(γ(t)), such that γ(0) = m. The domain of definition Im of this maximal solution γ

is an open interval in R containing 0. If s := sup Im < ∞ or i := inf Im > −∞, then there exists
for every compact subset K of M an ε > 0 such that γ(t) /∈ K for every t ∈]s− ε, s[ or t ∈]i, i+ ε[,
respectively. In other words, the only way the maximal solutions do not exits for all time is that
run out of every compact subset of M in a finite time. This implies that if γm(t) stays within a
compact subset of M for all t ∈ Im, then Im = R. The set D := {(t, m ∈ R ×M | t ∈ Im} is an
open subset of R×M which contains {0}×M , and A : (t, m) 7→ γm(t) is a smooth mapping from
D to M . If s ∈ Im and t ∈ Iγm(s), then s + t ∈ Im and γm(s + t) = γγm(s)(t). This follows from
the uniquenss of the solutions, because, as a function of t, γm(s+ t) and γγm(s)(t) satisfy the same
differential equation and have the same initial value.

We say that the vector field v is complete if D = R ×M , in which case A : R ×M → M is a
smooth action of the additive group (R, +) on M . The mapping m 7→ γm(t) : M → M is called
the time t flow of the vector field v an will be denoted by et v. This notation reminds of the defining
equation det v / dt = v ◦ et v and of the group homomorphism property e(s+t) v = et v ◦ es v. Because
et v ◦ e−t v = Id = e−t v ◦ et v, the time t flow is a diffeomorphism of M , i.e. it is bijective from M

to M and has a smooth inverse (equal to e−t v).
If D is a proper subset of R×M , then the flow et v is defined on the open subset

Mt := {m ∈M | (t, m) ∈ D}

ofM , and e(s+t) v(m) = et v ◦ es v(m) holds whenm ∈Ms and es v(m) ∈Mt, in which case m ∈Ms+t.
Also, et v is a diffeomorphism from the open subset Mt of M onto the open subset M−t of M , with
inverse equal to e−t v. If D 6= R×M we don’t have a group action, but we have the same identities
”as far as the objects appearing in the formulas are defined”. Lie [21] called t 7→ et v the one-
parameter group of transformations generated by the vector field v, where he did not worry about
domains of definition.

3.2 Lie Derivatives

Let Ωp(M) denote the space of smooth p-forms on the smooth manifold M , where Ω0(M) = F(M)
denotes the space of smooth real valued functions on M and Ωp(M) = {0} if p > dimM . If M
and N are smooth manifolds of any dimensions, and ϕ : M → N is a smooth map, then for any
ω ∈ Ωp(N) the pullback ϕ∗ω of ω under the map ϕ is defined by

(ϕ∗ω)m (v1, , , vn) = ωϕ(m) (Tm ϕv1, , , Tm ϕvn) . (3.1)

Note that ϕ∗ defines a continuous linear operator from Ωp(N) to Ωp(M), where the word ”pullback”
reminds of the fact that this goes in the opposite direction of the map ϕ : M → N . For p = 0 we
have ϕ∗ω = ω ◦ ϕ, which means that the pullback under ϕ is just the substitution n = ϕ(m) in
ω(n), and ϕ∗ is just a convenient notation for the linear mapping ω 7→ ω ◦ ϕ.
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The transposition symbol ∗ in the notation is a reminder to the transposition of ϕ in the formula
ϕ∗ω = ω ◦ ϕ. It also helps reminding that in the natural composition formula (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗
the order is reversed: pullback is an antihomomorphism with respect to composition.

It is known that the exterior derivative d : Ωp(M) → Ωp+1(M) of differential forms behaves
naturally under smooth mappings, in the sense that

ϕ∗(dω) = d (ϕ∗ω) , ω ∈ Ωp(N), ϕ : M → N. (3.2)

Let X (M) denote the vector space of smooth vector fields on M . If v ∈ X (M), then the Lie
derivative Lvω of ω ∈ Ωp(M) with respect to the vector field v is defined as

Lvω :=
d

dt

(
et v
)∗
ω
∣∣∣
t=0

. (3.3)

If in (
et v
)∗ ◦ (es v)∗ ω =

(
es v ◦ et v

)∗
ω =

(
e(t+s) v

)∗
ω

we take the derivative with respect to s at s = 0 in the left and right hand side, we obtain that(
et v
)∗ Lvω =

d

dt

(
et v
)∗
ω.

This implies that Lvω = 0 if and only if t 7→
(
et v
)∗
ω is constant, hence equal to its value ω at

t = 0. We say that ω is called invariant under the flow of v if, for every t ∈ R,
(
et v
)∗
ω = ω in Mt.

We have proved that ω is invariant under the flow of v if and only if the Lie derivative of ω with
respect to v is equal to zero.

If v ∈ X (M) and ω ∈ Ωp(M), then the inner product iv ω ∈ Ωp−1(M) of ω with v is defined by

(iv ω)m (v2, . . . , vn) = ωm (v(m), v2, . . . , vn) . (3.4)

In other words, iv is the continuous linear operator from Ωp(M) to Ωp−1(M) of inserting the vector
field v at the first slot.

If p = 0, then obviously Lvω = iv(dω), which is the derivative of the function ω in the direction
of the vector field v. For general p we have the homotopy formula

Lvω = iv(dω) + d (iv ω) , (3.5)

or Lv = iv ◦ d + d ◦ iv. Note that in the first summand d and iv is a linear operator from Ωp(M) to
Ωp+1(M) and from Ωp+1(M) to Ωp(M), respectively, whereas in the second summand iv and d is
a linear operator from Ωp(M) to Ωp−1(M) and from Ωp−1(M) to Ωp(M), respectively. This makes
the beautiful formula (3.5) easy to remember.

Let v ∈ X (M) and let ϕ : M → M be a smooth mapping for which, at each point m ∈ M ,
Tm ϕ : TmM → Tϕ(m)M is invertible. Then the pullback ϕ∗v ∈ X (M) on M of v under ϕ is

defined by
(ϕ∗v)(m) := (Tm ϕ)−1 v(ϕ(m)), m ∈M. (3.6)

This definition has been arranged in such a way that

ϕ∗(iv ω) = iϕ∗v ϕ∗ω
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for any v ∈ X (M) and ω ∈ Ωp(M). If w is another smooth vector field on M , ϕ = et w, and we
differentiate the left and right hand side with respect to t at t = 0, then we obtain that

Lw(iv ω) = i[w, v] ω + iv (Lw ω) , (3.7)

if we define the Lie brackets [w, v] ∈ X (M) of the vector fields w and v on M by means of

[v, w] = Lvw :=
∂

∂t

(
et v
)∗
w

∣∣∣∣
t=0

:=
∂

∂t

(
∂

∂s
e−t v ◦ esw ◦ et v

∣∣∣∣
s=0

) ∣∣∣∣
t=0

. (3.8)

Note that this yields the opposite sign compared with the usual definition for the Lie agebra of a Lie
group, but it is probably better to conform with the generally accepted definition of Lie brackets
of vector fields.

In local coordinates, the Lie brackets of the vector fields v and w can be computed as

[v, w](m) = (Dw)(m) v(m)− (Dv)(m)w(m). (3.9)

If in the local coordinates the vector fields are linear, then this leads to [v, w] = w ◦v−v ◦w, where
the right hand side is equal to the opposite of the commutator of w and v.

If in (3.7) we substitute ω = df in which f is a smooth function, then we obtain that

L[w, v] f = [Lw, Lv] f, (3.10)

in which [A, B] := A ◦ B − B ◦ A denotes the commutator of the linear operators A and B. It is
customary in differential geometry to identify the smooth vector field v with the derivation D = Lv
of functions in the direction of v, and with this identification the Lie brackets of vector fields is
defined as their commutator. This definition has been adopted in Lie [21, Vol. I], where the identity

(
et v
)∗
f = etLv f :=

∞∑
k=0

tk

k!
(Lv)k f,

which is valid if the vector field v and the function f are analytic, is presented as another motivation
for the exponential notation for the one-parameter group of transformations generated by the vector
field v.

Actually, since derivations are linear operators in the space of smooth functions, and linear
operators are usually denoted by capital letters, the identification of vector fields with derivations
has led to the custom in differential geometry and in Lie groups to denote vector fields and elements
of the Lie algebra by capital letters, usually X. This in turn has led to the notation X (M) for the
Lie algebra of all smooth vector fields on M . Lie’s ”continuous groups” were subgroups G of the
groups of diffeomorphism of a smooth manifold M , which depend smoothly on parameters. The
corresponding infinitesimal transformations form a Lie subalgebra g of X (M).

If in the local coordinates the vector fields are linear, then (3.9) leads to [v, w] = w ◦ v − v ◦w,
where the right hand side is equal to the opposite of the commutator of w and v. This is another
consequence of the opposite sign choice for the Lie brackets of vector fields as compared to the one
in the Lie algebra of a Lie group.
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3.3 Hamiltonian Vector Fields

Let (M, σ) be a symplectic manifold. Then, according to Subsection 3.2, the flow et v of the smooth
vector field v ∈ X (M) leaves the symplectic form σ invariant, if and only if

0 = Lvσ = iv(dσ) + d (iv σ) = d (iv σ) ,

i.e. if and only if the one-form iv σ is closed. Here we have used the homotopy formula (3.5) for
the Lie derivative in the second identity and the fact that σ is closed in the third identity.

In turn the condition that iv σ is closed is locally equivalent to the condition that iv σ is equal
to the total derivative of a smooth function. In formula:

iv σ = −df (3.11)

for a locally defined smooth function f , where the minus sign is a matter of convention. If H1(M) =
0, then there is a globally defined function f on M such that (3.11) holds, and if M is connected,
then f is uniquely determined up to an additive constant.

Conversely, if f is a smooth function on M , then the fact that for every m ∈ M the linear
mapping

σm : v 7→ iv σm : TmM → (TmM)∗

is bijective shows that there is a unique vector field v on M which satisfies (3.11). Moreover, v is
smooth because df and m 7→ σ−1

m are smooth. The smooth vector field v on M such that (3.11)
holds is called the Hamiltonian vector field Hf on M defined by the function f . In the literature f
is called the Hamiltonian function of the vector field v and denoted by H. However, we would like
to stress that f can be any smooth function on M . It is quite remarkable that there are so many
smooth vector fields whose flows leave σ invariant: one for every closed one-form on M , or smooth
function on M modulo an additive constant.

A system of coordinates xi, ξi in M is called a canonical system of coordinates if (2.6) holds.
Let, in such a coordinate system, ẋi, ξ̇i denote the coordinates of the vector field

v = Hf =
(
ẋ1, . . . , ẋn; ξ̇1, . . . , ξ̇n

)
.

With these notations, the equation (3.11 reads

iv σ =
n∑
i=1

(
ξ̇i dxi − ẋi dξi

)
= −

n∑
i=1

(
∂f

∂xi
dxi +

∂f

∂ξi
dξi

)
,

from which obtain that

ẋi =
∂f(x, ξ)
∂ξi

, ξ̇i = −∂f(x, ξ)
∂xi

, 1 ≤ i ≤ n. (3.12)

In other words, if dm(t)/ dt = v(m(t)) is the differential equation for the flow defined by
the vector field v = Hf , then in canonical local coordinates we arrive at the system of ordinary
differential equations (3.12), in which we replace ẋi and ξ̇i by dxi(t)/ dt and dξi(t)/ dt, respectively,
and in the right hand side take the partial derivatives of f at xi = xi(t), ξi = ξi(t). We recognize
the resulting system of ordinary differential equations as the Hamiltonian system defined by the
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function f as it appears in the textbooks in Classical Mechanics, where usually the position and
momentum coordinates xi and ξi are denoted by qi and pi, respectively.

Note that if we would have taken the other sign convention in (3.11), then the signs in (3.12)
would be opposite to the standard ones in classical mechanics. Also note that the convention, to
use Greek letters for the momentum coordinates corresponding to the Latin letters for the position
coordinate, allows us to write for example the momentum coordinates coordinates corresponding
to the position coordinates x, y, z as ξ, η, ζ, respectively.

Example 3.1 If X is an n-dimensional smooth manifold and v ∈ X (X), then the momentum
function of the vector field v in the base manifold X is the function µv on the cotangent bundle
M := T∗X, defined by

µv(x, ξ) = ξ(v(x)), x ∈ X, ξ ∈ (TxX)∗ . (3.13)

Then the fiber derivative of µv is equal to

ẋ =
∂µv(x, ξ)

∂ξ
= v(x) ∈ TxX = ((TxX)∗)∗ .

It follows that the projection π : (x, ξ)→ x : T∗X → X intertwines the Hµv -flow in T∗X with the
v-flow in X, in the sense that

π ◦ et Hµv = et v ◦π.

More precisely, for every x ∈ X and ξ ∈ (TxX)∗ we have that

et Hµv (x, ξ) =
(

et v(x),
((

Tx et v
)∗)−1

(ξ)
)
.

In other words, the flow in T∗X of the Hamiltonian system defined by the function µv is equal to
the flow in T∗X which is induced by the flow in X of the vector field v. �

3.4 The Legendre Transform

Let L be a smooth real-valued function on an open subset U of the tangent bundle TX of an
n-dimensional smooth manifold X, where we will write L(x, v) ∈ R whenever x ∈ X and v ∈ TxX.
For any smooth curve γ : [a, b]→ X such that (γ(t), γ′(t)) ∈ U for all t ∈ [a, b], define the integral

I(γ) =
∫ b

a
L(γ(t), γ′(t)) dt. (3.14)

The variational formula of Euler and Lagrange states that if γ = γε depends smoothly on a param-
eter ε, then

dI(γε)
dε

= −
∫ b

a
[L](t) δ(t) dt

+µ(γ(b), γ′(b)) δ(b)− µ(γ(a), γ′(a)) δ(a). (3.15)

Here
δ(t) :=

∂γε(t)
∂ε

∈ Tγ(t)X (3.16)
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denotes the ”variation with respect to ε” of the curve γε(t), [L](t) is the linear form on Tγ(t)X
which in local coordinates is given by

[L]i :=
dµi(γ(t), γ′(t))

dt
− ∂L(x, γ′(t)

∂xi

∣∣∣∣
x=γ(t)

(3.17)

and the linear form µ(x, v) = µL(x, v) on TxX is defined by

µ(x, v) :=
∂L(x, v)

∂v
∈ (TxX)∗ . (3.18)

The formula (3.15) is obtained by differentiating with respect to ε under the integral sign, and then
performing an integration by parts on the term with the factor

∂2γε(t)
∂ε ∂t

=
∂2γε(t)
∂t ∂ε

.

The linear form µ(x, v) on the tangent space in (3.18), which is defined in a coordinate-independent
way, is called the momentum vector assigned to the velocity vector v by means of the function L.

It is one of the basic observations of Lagrange [19, Tome I, Partie 2, Section IV] that, although
the two summands in (3.17) transform in a quite complicated manner under a change of coordinates,
the quantity [L](t) transforms as a covector, an element of

(
Tγ(t)X

)∗. His argument is that for
any w ∈ Tγ(t0)X the real number −[L](t0)w is equal to the limit for j → ∞ of the left hand side
of (3.17), which is independent of any choice of coordinates, if we take γjε (t) in such a way that
δj(t) = ∂γjε (t)/∂ε is only nonzero for t in a shrinking neighborhood of t0 and is asymptotically equal
to a large multiple of v, in such a way that the integral over t remains equal to w. (Those who
are familiar with the theory of distributions will recognize δj(t) as a sequence of smooth functions
which approximate the Dirac delta function at the point t0 times w, where the approximation is in
the distributional sense.)

The velocity-to-momentum mapping

Φ = ΦL : (x, v) 7→ (x, µ(x, v)) : U → T∗X

is a local diffeomorphism if and only if its tangent mapping is invertible, which is equivalent to
Legendre’s condition that

the symmetric bilinear form
∂µ(x, v)
∂v

=
∂2L(x, v)

∂v2
on TxX is nondegenerate.

Here, in linear coordinates in TxX, the bilinear form ∂2L(x, v)/∂v2 has the symmetric matrix
∂2L(x, v)/∂vi ∂vj , 1 ≤ i, j ≤ n, the Hessian of the function v 7→ L(x, v). By restricting U to open
subsets on which Φ is injective, we obtain a diffeomorphism from U onto an open subset V of the
cotangent bundle T∗X of X.

A curve γ(t) is called a stationary curve for the integral I in (3.14), if it satisfies the Euler-
Lagrange equations

[L](t) ≡ 0, (3.19)

i.e. if the integral in (3.15) vanishes for any variation δ(t) of γ(t). If the Legendre condition holds,
then the Euler-Lagrange equations can be written in local coordinates as a second order system of
ordinary differential equations

d2γi(t)
dt2

= ai(γ(t), γ′(t)), 1 ≤ i ≤ n,
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in which the components of the acceleration ai(x, v) are smooth functions of x and v. Actually, it
is more convenient to view this second order system as a first order system

x′(t) = v(t), v′(t) = a(x(t), v(t)),

defined by the vector field (v, a(x, v)) in the tangent bundle.
Now define the functions H on U and h on V subsequently by means of the equations

H(x, v) := 〈v, µ(x, v)〉 − L(x, v), h = H ◦ Φ−1. (3.20)

Here 〈v, ξ〉 is the customary, more symmetric notation for the value ξ(v) which the linear form ξ
takes on the vector v. The function h on the open subset V of the cotangent bundle T∗X of X is
called the Legendre transform of the function L.

Write v = v(x, ξ) for the solution v of the equation µ(x, v = ξ. Then

h(x, ξ) = 〈v(x, ξ), ξ〉 − L(x, v(x, ξ),

hence
∂h(x, ξ)
∂ξi

= 〈∂v(x, ξ)
∂ξi

, ξ〉+ vi(x, ξ)− 〈
∂v(x, ξ)
∂ξi

, µ(x, v(x, ξ))〉 = vi(x, ξ),

where in the first and second identity we have used the definition (3.18) of µ and the equation
µ(x, v(x, ξ)) = ξ, respectively. Similarly we have

∂h(x, ξ)
∂xi

= 〈∂v(x, ξ)
∂xi

, ξ〉 − ∂L(x, v)
∂xi

∣∣∣∣
v=v(x, ξ)

− 〈∂(v, ξ)
∂xi

, µ(x, v(x, ξ))〉 = − ∂L(x, v)
∂xi

∣∣∣∣
v=v(x, ξ)

,

where again in the first and second identity we have used the definition (3.18) of µ and the equation
µ(x, v) = ξ, respectively.

The Euler-Lagrange equations are

dx(t)
dt

= v(t),
dξi(t)

dt
=
∂L(x, v)
∂xi

∣∣∣∣
v=v(x, ξ)

,

where in the second equation we have substituted ξ = µ(x, v) = ∂L(x, v)/∂v. The point of the
computation of the partial derivatives of the function h(x, ξ) is that the velocity-to-momentum
mapping Φ transforms the Euler-Lagrange equations into the Hamiltonian system

dxi
dt

=
∂h(x, ξ)
∂ξi

,
dξi
dt

= −∂h(x, ξ)
∂xi

on V which is defined by the function h.
Conversely, if h is a smooth real-valued function on an open subset V of T∗X for which the

momentum-to-velocity mapping

Ψ = Ψh : (x, ξ) 7→ (x, v(x, ξ)) , v(x, ξ) :=
∂h(x, ξ)
∂ξ

is a diffeomorphism from V onto an open subset U of TX, then we can define subsequently

l(x, ξ) := 〈v(x, ξ), ξ〉 − h(x, ξ), L = l ◦Ψ−1.
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It is then not hard to verify that Ψh = Φ−1
L and h is equal to the Legendre transform of L, which

shows that ΨL transforms the Hamiltonian system defined by the function h into the Euler-Lagrange
equations for the function L.

We now turn to the relation with Classical Mechanics. Lagrange [19, Tome 1, partie 2, Section IV]
actually made his observation, that [L] transforms under changes of local coordinates as a covector,
in the case that L(x, v) is equal to the kinetic energy

T (x, v) =
1
2
m(x)(v, v)

of a classical mechanical system. Here m(x), the inertial mass tensor is an inner product on TxX.
If we have local coordinates in which m(x) = m does not depend on x, then [T ] = d(mv)/dt and
we recognize the equation

[T ] = F = the force acting on the system (3.21)

as Newton’s equations of motion. However, Lagrange observed that under arbitrary nonlinear
changes of coordinates, such as the passage from recangular coordinates to polar coordinates, the
acceleration a = dv/dt transforms in a complicated way, not at all as a tensor, and the transformed
equations of motion do not look like Newton’s equations F = ma at all. (Also the inertial mass
tensor in this case no longer is independent of the position.)

Because Lagrange had understood that in general a quantity of the form [L] transforms covari-
antly, he proposed to formulate the equations of motion for a general classical mechanical system
as (3.21), in which T is the kinetic energy function viewed as a smooth function on the tangent
bundle. Moreover, the force field F is (has to be equal to) a smooth mapping which assigns to each
x ∈ X and v ∈ TxX an element of (TxX)∗, a linear form on TxX.

The force field F is called conservative, if F (x, v) = F (x) does noet depend on v and F (x) =
−dV (x) for a potential energy function V which is a smooth real-valued function on X. In this case
one has F = [V ] and we recognize the equations of motion (3.21) as the Euler-Lagrange equations
[L] = 0, in which L = T − V .

The momentum defined by L = T − V is equal to µ(x, v) = m(x) v, in which the inertial
mass tensor m(x) is regarded as a bijective linear mapping from TxX onto (TxX)∗. Using that
v 7→ T (x, v) is homogeneous of degree two, one obtains that its Legendre transform is equal to
T ◦ Φ−1, whereas the Legendre transform of V is equal to −V . This yields that the Legendre
transform of L = T −V is equal to the total energy function h = T ◦Φ−1 +V , viewed as a function
of the positions and the momenta. In this way the equations of motion for a classical mechanical
system with a conservative force field are equivalent to the Hamiltonian system defined by the total
energy function, viewed as a function on the cotangent bundle T∗X rather than on the tangent
bundle TX.

Remark 3.1 Lagrange [19, Tome 1, Partie 2, Section V] explictly introduced the velocity-to-
-momentum mapping Φ = ΦL and the two-form Φ∗L σ on the tangent bundle TX, but without
mentioning the canonical two-form σ of the cotangent bundle T∗X. He also proved that Φ∗L σ
is invariant under the flow defined by the Euler-Lagrange equations. His proof is paraphrased in
Exercise 3.4

The equivalence between the Euler-Lagrange equations of variational calculus and Hamiltonian
systems has been found for L = T − V by Hamilton [11], and then it was soon realized by many
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authors that his proof holds for an arbitrary function L on the tangent bundle which satisfies
Legendre’s condition. Earlier, the perturbation equations of a classical mechanical system in which
the potential energy is perturbed were written in a Hamiltonian form by Lagrange [19, Tome I,
p. 310]. He might have missed the general equivalence between Euler-Lagrange equations and
Hamiltonian systems, because he probably was not aware of the Legendre transform. �

3.5 Poisson Brackets

If f, g ∈ F(M), then the Poisson brackets {f, g} of f and g are defined as the derivative of the
function g in the direction of the Hamiltonian vector field Hf defined by the function f :

{f, g} := LHf
(g) = iHf

(dg) = − iHf

(
iHg

σ
)

= σ (Hf , Hg) . (3.22)

Here we used (3.11) and the antisymmetry of σ in the third and fourth identity, respectively. The
right hand side shows that the Poisson brackets are antisymmetric in the sense that

{g, f} = −{f, g}, f, g ∈ F(M). (3.23)

In canonical local coordinates the Poisson brackets are given by

{f, g}(x, ξ) =
n∑
i=1

(
∂f(x, ξ)
∂ξi

∂g(x, ξ)
∂xi

− ∂f(x, ξ)
∂xi

∂g(x, ξ)
∂ξi

)
. (3.24)

It follows immediately that the following conditions a)–d) are equivalent:

a) g is a constant of motion for the Hamiltonian system defined by the function f , in the sense
that g is invariant under the Hf -flow.

b) {f, g} = 0.

c) {g, f} = 0.

d) f is a constant of motion for the Hamiltonian system defined by the function g.

In the applications, one often has that the Hg-flow is a one-parameter group of symmetry for the
function f , which means that d) holds. The conclusion, that in this case g is a constant of motion
for the Hamiltonian system defined by the function f , is called Noether’s principle for Hamiltonian
systems. In many examples we have M = T∗X and g = µv, the momentum function of a smooth
vector field v in the base manifold X, cf. Example 3.1.

It also follows from (3.23) that {f, f} = 0, meaning that the function f is a constant of motion
for the Hamiltonian system defined by f . If f is equal to the total energy of a classical mechanical
system as in Subsection 3.4, then this is the law of conservation of the total energy.

The derivative of {f, g} is equal to

d{f, g} = dLHf
g = LHf

dg = −LHf

(
iHg

σ
)

= − i[Hf ,Hg ] σ.

Here we used in the first, second, third and fourth identity the definition (3.22) of the Poisson
brackets, the fact that exterior differenitation commutes with pullbacks and therefore with Lie
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derivatives, the defintion (3.11) of Hamiltonian vector fields, and formula (3.7) together with the
fact that LHf

σ = 0.
This formula for the derivative of {f, g} just means that

[Hf , Hg] = H{f, g} . (3.25)

In words, the Lie brackets of the Hamiltonian vector fields of the functions f and g is again a
Hamiltonian vector field, namely of the Poisson brackets of f and g.

If we now let act the left and right hand side of (3.25) on a third smooth function h on M , then
we obtain, using (3.10), that

{f, {g, h}} − {g, {f, h}} = {{f, g}, h}.

Using the antisymmetry (3.23) at several places, this identity can be rewritten as the Jacobi identity
for Poisson brackets:

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0. (3.26)

(Note the cyclic permuation of f , g and h in the left hand side of (3.26). Together, (3.26) and
(3.25) mean that

Theorem 3.2 The space of smooth functions F(M) on M is a Lie algebra with respect to the
Poisson brackets, and the mapping which assigns to a smooth function its Hamiltonian vector field
is a homomorphism of Lie algebras from F(M) to the Lie algebra X (M) of smooth vector fields on
M . The kernel of this homomorphism is equal to the space of function which are constant on the
connected components of M .

Remark 3.2 The Jacobi identity for the Poisson brackets (3.26) (in canonical coordinates) goes
back to the article of Jacobi [18], which appeared posthumously in 1862. Jacobi mentioned that
(3.26) implies the earlier theorem of Poisson, which states that if g and h are constants of motion
for the Hamiltonian system defined by the function f , then {g, h} also is a constant of motion for
the Hamiltonian system defined by f . It could very well be that Jacobi was led to (3.26) by means
of an analysis of Poisson’s proof. This observation of Jacobi may also have led to adoption of the
name ”Poisson brackets”, which brackets appeared earlier in the work of Lagrange [19, Tome I, p.
315].

Inspired by the Jacobi identity for Poisson brackets, Lie [21, Vol. 1, Kap. 5, §26 and Vol.
2, Kap. 7, §44, 45] introduced the Jacobi identity for vector fields, and coined the name ”Jacobi
identity”. �

3.6 Darboux’s Lemma

Let (M, σ) be a symplectic manifold. The Darboux lemma states that locally σ form can be brought
into the canonical form (2.6). This means that for every m0 ∈M there exists an open neighborhood
U of m0 in M and a diffeomorphism Φ from U onto an open subset V of Rn ×Rn such that

Φ∗
(

n∑
i=1

dξi ∧ dxi

)
= σ on U.
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A proof can be given as follows. Let φ be any smooth function defined in a neighborhood of
m0 such that φ(m0) = 0 and dφm0 6= 0. Choose any codimension one smooth submanifold S of
M through m0 such that Hφ(m0) /∈ Tm0 S. Then there is a locally unique smooth function f on
a neighborhood of m0 such that {φ, f} = LHφ

f = 1 and f = 0 on S. It follows from (3.22) that
the symplectic product of Hφ and Hf is equal to one, which implies that at every points these
vectors are linearly independent, which in turn implies that at every point dφ and df are linearly
independent. This implies in particular that

N := {m ∈ U | f(m) = φ(m) = 0}

is a smooth codimension 2 submanifold of the open neighborhood U of m0 on which φ and f
are defined. Moreover, the restriction σN of σ to N is a symplectic form, because the symplectic
orthogonal complement of TnN is spanned by Hφ(n) and Hf (n), which space is complementary to
the TnN = ker(dφn) ∩ ker(dfn), as is readily verified.

It follows from (3.25) and the fact that the Hamiltonian vector field of any constant function is
equal to zero, that the vector fields Hφ and Hf commute, which implies that their flows commute
as well. Now define, for n ∈ N and t, τ ∈ R,

Φ(n, t, τ) := et Hφ ◦ e−τ Hf (n) = e−τ Hf ◦ et Hφ(n).

Then ∂Φ(n, t, τ)/∂t = Hφ(Φ(n, t, τ)) and ∂Φ(n, t, τ)/∂τ = −Hf (Φ(n, t, τ)). It follows that the
value s which (Φ∗σ)(n, t, τ) takes on the pair of vectors (δn, δt, δτ) and (δn′, δt′, δτ ′) is equal to
σΦ(n, t, τ)(v, v′), in which

v = Tn

(
et Hφ ◦ e−τ Hφ

)
δn+ δt Hφ−δτ Hf ,

and v′ is given by the same formule with δn, δt, δτ replaced by δn′, δt′, δτ ′, respectively. Using
again that σ(Hφ, Hf ) = 1 and that Hamiltonian flows preserve the symplectic form, we arrive at
the conclusion that

s = σn(δn, δn′) + δτ δt′ − δτ ′ δt.

This shows that Φ∗σ is equal to the direct sum of σN and the standard symplectic form in R2. The
proof of Darboux’s lemma now follows by induction on n.

Remark 3.3 Weinstein [27] gave a proof of the Darboux lemma which is based on a deformation
argument which has been introduced in normal form theory by Moser [24]. The proof given above
is closer to the one given by Darboux. Both proofs have their merits. �

If we combine the Darboux lemma with the reduction in Subsection 2.3, then one obtains that any
closed two-form of constant rank has a local normal form.

3.7 Hamiltonian Group Actions

If a Lie group G acts on the smooth manifold M , we will denote for each g ∈ G the diffeomorphism
m 7→ gm of M by gM . For each element X in the Lie algebra g of G we have the infinitesimal
action

XM :=
d

dt
(exp(tX))M

∣∣∣
t=0
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of X on M , which is a smooth vector field on M . Note that, as a consequence, (exp(tX))M = etXM
for every t ∈ R.

The definition (3.8) of the Lie brackets of vector fields implies that

[X, Y ]M = −[XM , YM ], X, Y ∈ g, (3.27)

i.e. the mapping X 7→ XM is an anti-homomorphism from the Lie algebra g to the Lie algebra
X (M).

Now suppose that σ is a symplectic form on M . The action of G on M will be called Hamiltonian
with respect to σ, if for every X ∈ g we have given a smooth function 〈X, µ〉 on M such that

XM = H〈X,µ〉 . (3.28)

It will furthermore be required that 〈X, µ〉 depends linearly on X ∈ g and that

{〈X, µ〉, 〈Y, µ〉} = −〈[X, Y ], µ〉, X, Y ∈ g. (3.29)

In other words, we require that X 7→ 〈X, µ〉 is an anti-homomorphism of Lie algebras from g to
the Poisson Lie algebra F(M) of all smooth functions on M .

The condition that the infinitesimal actions are Hamiltonian implies that the one-parameter
subgroups preserve the symplectic form. Therefore, if G is connected, it follows that the G-action
leaves the symplectic form invariant. In other words, the action is a homomorphism from G to the
group of canonical transformations in (M, σ).

For every m ∈M , µ(m) : X 7→ 〈X, µ〉(m) is a linear form on g, this defines a smooth mapping
µ : M → g∗ which is called the momentum mapping of the Hamiltonian action of G on M . Note
that the notation has been arranged such that 〈X, µ(m)〉 = 〈X, µ〉(m) for every m ∈M .

On g we have the adjoint action (g, X) 7→ (Ad g)(X) of G, and transposition leads to the action

(g, ξ) 7→ ((Ad g)∗)−1 (ξ)

on the dual g∗ of the Lie algebra, which is called the co-adjoint action of G on g∗. The infinitesimal
co-adjoint action of X ∈ g is given by the linear mapping

Xg∗ = −(adX)∗ : g∗ → g∗,

or, more explicitly,
〈Y, Xg∗ ξ〉 = −〈[X, Y ], ξ〉, ξ ∈ g∗, X, Y ∈ g. (3.30)

If in (3.30) we substitute ξ = µ(m) and combine the resulting equation with (3.29), and use
that the left hand side of (3.29) is equal to LXM 〈Y, µ〉, we arrive at the conclusion that

LXM µ = Xg∗ µ, (3.31)

which means that the momentum mapping µ : M → g∗ intertwines the infinitesimal action of g on
M with the infinitesimal co-adjoint action of g on g∗. If G is connected, then this implies in turn
that the momentum mapping intertwines the action of G on M with the co-adjoint action of G on
g∗, in the sense that

g∗
M
µ = ((Ad g)∗)−1

µ, g ∈ G. (3.32)
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Example 3.3 A very simple, but important example of a Hamiltonian group action on (M, σ)
can be obtained as follows. Assume that fi, 1 ≤ i ≤ k, are smooth functions on M which Poisson
commute, i.e. {fi, fj} = 0 for all 1 ≤ i, j ≤ k. Let f : M → Rk be the mapping which has the fi
as components. Then for every c ∈ Rk the level set Mc := {m ∈M | f(m) = c} is invariant under
the flows of the Hamiltonian vector fields Hfi . Let us assume that the Hamiltonian vector fields
Hfi are complete, which condition in view of the above is certainly satisfied if the level set Mc is

compact.
In view of (3.25), the fact that the functions fi Poisson commute implies that the Hamiltonian

vector fields Hfi commute, which in turn implies that their flows commute. This implies that

((t1, . . . , tk) , m) 7→ etk Hfk ◦ . . . ◦ et1 Hf1 (m)

defines an action of tha additive group (Rk, +) on M . This action is Hamiltonian, with f as its
momentum mapping. Because the Lie algebra Rk is commutative, the adjoint action is trivial,
hence the co-adjoint action is trivial as well and the fact that f intertwines the action on M with
the co-adjoint action reproduces the observation that the functions fi are invariant under the action
on M .

The system is called integrable if k = n and the mapping f has regular values. If c is a regular
value of f , then Mc is an n-dimensional smooth submanifold of M on which the action is locally
transitive, and therefore is transitive on each connected component C of Mc. If we choose m ∈ C,
then the period lattice PC in Rn is defined as the set of all T ∈ Rn such that TM (m) = m. PC
does not depend on the choice of m ∈ C (but in general it depends sensitively on the level c), and
PC is a discrete subgroup of Rn. The mapping t 7→ tM (m) induces a diffeomorphism from Rn/PC
onto C, which intertwines the translational action of Rn on Rn/PC with the action of Rn on C.

If C is compact, which certainly is the case if Mc is compact, then Rn/PC is compact, hence a
torus, and the flow of each of the Hamiltonian vector fields Hfi is quasi-periodic, meaning that by
means of a diffeomorphism it can be mapped to a constant speed motion on a standard torus. �

3.8 Poisson Structures

It follows from the third expression in (3.22) and from (3.11) that

{f, g}(m) = −σ−1
m (df(m), dg(m)),

in which πm := σ−1
m : (TmM)∗ → TmM is regarded as an antisymmetric bilinear form on (TmM)∗,

or as an element of Λ2 TmM , which is also called a two-vector in TmM .
For any smooth manifold M , a Poisson structure on M is defined as a smooth two-vector field

πm ∈ Λ2 TmM , m ∈M , in such a way that the corresponding Poisson brackets {f, g}, defined by

{f, g}(m) = πm(df(m), dg(m)), m ∈M, (3.33)

satisfy the Jacobi identity (3.26).
Viewing πm as a linear mapping from (TmM)∗ to TmM , we can defined the Hamiltonian vector

field Hf of the function f by Hf (m) = πm df(m). With this convention, {f, g} = LHf
g.

If πm is surjective, then it is bijective, and we have that πm = −σ−1
m for a symplectic form on

M . We therefore only get really new examples of Poisson structures if πm is not surjective.
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Write Hm = πm ((TmM)∗). If the rank of πm, the dimension of Hm, is constant as a function
of m ∈M , then the Hm, m ∈M , define a smooth vector subbundle H of TM , and it follows from
the Jacobi identity for the Poisson brackets that H is integrable. Furthermore, for each integral
manifold I of H, the restriction of {f, g} to I only depends on f |I and g|I , and we obtain a Poisson
structure on I, which turns out to be defined by a sysmplectic structure on I. In this way the
Poisson manifold (M, π) can be characterized as a manifold which is foliated by symplectic leaves,
where the Poisson brackets are defined by taking the Poisson brackets of the restrictions of the
functions to the symplectic leaves.

A prime example is the Poisson structure in g∗ which is defined by

πξ(X, Y ) = −〈[X, Y ], ξ〉, ξ ∈ g∗, X, Y ∈ (g∗)∗ = g. (3.34)

The symplectic leaves are the co-adjoint orbits in g∗.
The formula (3.29) shows that, for a Hamiltonian action of G on the symplectic manifold (M, σ),

the momentum mapping µ intertwines the Poisson structure on (M, σ) with the Poisson structure
on the dual of the Lie algebra of G.

Remark 3.4 The general concept of Poisson structures has been invented by Lichnerowicz [20].

However, Lie [21, Vol. 2, Kap. 8] introduced a ”function group” as a fibration φ of a symplectic
manifold (M, σ) over a manifold N with the property that for every smooth pair of functions f and
g on N the Poisson brackets {f ◦φ, g ◦φ} are constant along the fibers of φ. This means that there
is a unique Poisson structure on N such that {f ◦ φ, g ◦ φ} = {f, g}N ◦ φ for every f, g ∈ F(N).

Moreover, in [21, Vol. 2, Kap. 19], Lie discussed the dual g∗ of the Lie algebra of a Lie group G,
and showed that the projection from T∗G onto g∗ by means of the left trivialization T∗G = G× g∗

is a ”function group”. The Poisson structure on g∗ defined by this ”function group” is equal to the
one in (3.34). �

3.9 Exercises

Exercise 3.1 Prove that
L[u, v]ω = [Lu, Lv] ω

for every u, v ∈ X (M), ω ∈ Ωp(M), p ∈ Z≥0. �

Exercise 3.2 Prove that in canonical coordinates the vector field Hf is linear, if and only if f is
equal to a quadratic form plus a constant. Prove that if f and g are quadratic forms, then {f, g}
is a quadratic form and we have the identity

H{f, g} = Hg ◦Hf −Hf ◦Hg

between 2n × 2n-matrices = linear mappings from R2n to R2n. Hint: verify first that we have
H{f, g} = Hf ◦Hg −Hg ◦Hf if we view the vector fields as derivations. �

Exercise 3.3 Let p ∈M and v ∈ X (M). p is called an equilibrium point of v if it is a fixed point
for the v-flows et v, t ∈ R. Now let v = Hf for a smooth function f on M . Prove that the following
statements are equivalent:
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i) p is an equilibrium point of v = Hf .

ii) v(p) = 0.

iii) p is a stationary point of the function f in the sense that df(p) = 0.

In the sequel assume that p is an equilibrium point of v = Hf . Write A(t) := Tp

(
et v
)
, which is a

linear mapping from E := TpM to itself. Write B := A′(0), which also is a linear mapping from
E to itself. Prove that A(t) = etB, t ∈ R, that A(t) ∈ Sp(E, σp), and that B is an infinitesimally
symplectic matrix.

Prove that, if we view B as a (linear) vector field on TpM , then B = Hf2 , in which f2 denotes
the quadratic term in the Taylor expansion of f at the point p, where the Taylor expansion is
written down in any suitable system of local coordinates. Prove that f2 is independent of the
choice of the system of local coordinates. �

Exercise 3.4 In (3.15), let ε run over a finite-dimensional smooth manifold E. Define Γt : E →
TX by Γt(ε) = (γε(t), γ′ε(t)), and define i : E → R by i(ε) = I(γε). Assume furthermore that, for

every ε ∈ E, γε is a solution of the Euler-Lagrange equations [L] = 0.
Let ΦL : TX → T∗X be the velocity-to-momentum mapping defined by L. Prove that

di = Γ∗bΦ
∗
Lτ − Γ∗aΦ

∗
Lτ,

in which τ is the tautological one-form on T∗X. Prove that

Γ∗bΦ
∗
Lσ = Γ∗aΦ

∗
Lσ.

Now let, for every (x, v) ∈ TX, t 7→ γ(x, v)(t) denote the solution γ of the Euler-Lagrange
equations such that γ(0) = x and γ′(0) = v. Apply the previous equation to this family of curves
in order to prove that Φ∗Lσ is invariant under the Euler-Lagrange flow in TX. �

Exercise 3.5 With the notation of (3.13), prove that {µv, µw} = µ[v, w]. �

Exercise 3.6 Let (M, σ) be a 2n-dimensional symplectic manifold and let Φ : M → R2n be a
smooth mapping with coordinate functions x1, . . . , xn, ξ1, . . . , ξn. Prove that

Φ∗
(

n∑
i=1

d ξi ∧ dxi

)
= σ,

if and only if {xi, xj} = 0, {ξi, xj} = δij , and {ξi, ξj} = 0. �

Exercise 3.7 Let β be a closed two-form on the configuration space X, and let the force field
F be given by F (x, v) = −dV (x) − βx(v) for every x ∈ X, v ∈ TxX. Here we identify βx in the
usual way with a linear mapping from TxX to (TxX)∗. The term −βx(v) is called a magnetic
term in the force field.

Prove that σ+π∗β is a symplectic form on T∗X. Prove that the velocity-to-momentum mapping
ΦT : (x, v) 7→ (x, ∂T (x, v)

∂v transforms the equations of motion [T ] = F into the Hamiltonian system
defined by the function h = (T + V ) ◦Φ−1

T , not with respect to the canonical symplectic form σ of
T∗X, but with respect to the symplectic form σ + π∗β, the canonical stymplectic form ”shifted

by the magnetic term”. �
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4 Hamilton-Jacobi Theory

4.1 Lagrange Manifolds

Consider a first order partial differential equation

f(x, dφ(x)) = 0, (4.1)

in which the unknown function φ is a smooth function defined on an open subset U of an n-
-dimensional smooth manifold X and f is a given smooth function on an open subset V of the
cotangent bundle T∗X of X.

If we write
N := {(x, ξ) ∈ V | f(x, ξ) = 0} (4.2)

for the zeroset of f in T∗X and

Λ = {(x, dφ(x)) ∈ T∗X | x ∈ U} (4.3)

for the graph of dφ viewed as a subset of T∗X, then (4.1) is equivalent to the inclusion

Λ ⊂ N (4.4)

between subsets of T∗X.
The mapping dφ : x 7→ (x, dφ(x)) is a smooth mapping from U to T∗X, with image equal to

Λ and with the canonical projection π : T∗X → X as a left inverse. Therefore dφ is a smooth
embedding and Λ is a smooth n-dimensional submanifold of T∗X. The fact that, for each λ ∈ Λ,
the restriction to Tλ Λ of Tλ π is bijective from Tλ Λ to Tπ(λ)X is equivalent to the condition that

Tλ Λ ∩ ker Tλ π = 0, (4.5)

i.e. Tλ Λ is complementary to the tangent space ker Tλ π of the fiber through the point λ.
Conversely, if Λ is any smooth n-dimensional submanifold of T∗X which satisfies (4.5), then

π|Λ is a local diffeomorphism from Λ onto an open subset U of X. If moreover π|Λ is injective,
which can be arranged by restricting to a suitable open neighborhood of any given point of Λ, then
π|Λ is a diffeomorphism, and its inverse α := (π|Λ)−1 : U → T∗X is a smooth one-form on U .
Locally the condition that α = dφ for a smooth function φ is equivalent to the condition that α is
closed, i.e. dα = 0

It follows from (2.3) and (2.4) that

dα = d(α∗τ) = α∗(dτ) = α∗σ,

and therefore α is closed if and only if α∗σ = 0. The latter condition means that, for every x ∈ U ,

σα(x) (Tx α(u), Tx α(v)) = 0, u, v ∈ TxX. (4.6)

On the other hand
T(x, α(x)) Λ = {Tx α(v) | v ∈ TxX} ,

and therefore (4.6) means that Tλ Λ is an isotropic linear subspace of Tλ(T∗X), if we write λ =
(x, α(x)). Because dim Tλ Λ = n, it is a Lagrange plane in Tλ(T∗X).

A Lagrange submanifold of a 2n-dimensional symplectic manifold (M, σ) is defined as an n-
dimensional smooth submanifold Λ of M such that, for every λ ∈ Λ, Tλ Λ is a Lagrange plane in
TλM , with respect to the symplectic form σλ. We have just proved above that a submanifold Λ

of T∗X is equal to α(U) for a closed one-form on an open subset U of X, if and only if
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i) Λ is a Lagrange submanifold of T∗X,

ii) Λ is transversal to the fibers of T∗X in the sense of (4.5), and

iii) The restriction of π to Λ is injective.

4.2 Lie’s View on First Order PDE

It is the idea of Lie, to generalize the concept of a solution of (4.1) slightly, by first investigating
what the condition means for a Lagrange submanifold Λ of a symplectic manifold (M, σ) to be
contained in the given subset N of M . Thereby he dropped the conditions ii) and iii), which relate
the position of Λ with respect to the projection π.

In the sequel we will assume that df(n) 6= 0 for every n ∈ N . This implies that N is a smooth
(2n − 1)-dimensional submanifold of M , and TnN = ker(df(n)) for every n ∈ N . Furthermore,
Λ ⊂ N implies that, for every λ ∈ Λ,

Tλ Λ ⊂ TλN = ker(df(λ)),

which is equivalent to the inclusion

R Hf (λ) = ker(df(λ))σλ ⊂ (Tλ Λ)σλ = Tλ Λ. (4.7)

of the σλ-orthogonal complements. In the first identity in (4.7) we have used that the codimension
of ker(df(λ) is equal to one, and that σλ(u, Hf (λ)) = df(λ)(u) = 0 if u ∈ ker(df(λ)). In the third
identity in (4.7) we have used that Tλ Λ is a Lagrange plane with respect to the symplectic form
σλ.

The inclusion (4.7) means that, at every point of Λ, the vector field Hf is tangent tot Λ. This
implies that Λ is foliated by the one-dimensional solution curves of the Hamiltonian system defined
by the function f .

Clearly, every submanifold I of Λ is isotropic, in the sense that, for every i ∈ I, Ti I is an
isotropic linear subspace of TiM . Also we have obviously that I ⊂ N and that the ”Hf -flow-out
of I”, the set

I ′ :=
{

et Hf (i) | (i, t) ∈ J
}

is contained in Λ, if J is a suitable open neighborhood of I × {0} in I ×R. If dim I = n − 1 and
Hf (i) /∈ Ti I for every i ∈ I, then the mapping

(i, t) 7→ et Hf (i)

is a smooth immersion, hence its image is n-dimensional, and the conclusion is that I ′ is an open
subset of Λ. In this sense Λ is locally the only Lagrange submanifold of M such that I ⊂ Λ ⊂ N .

Now suppose conversely that I is an (n−1)-dimensional isotropic submanifold of M , I ⊂ N and
Hf (i) /∈ Ti I for every i ∈ I. Then I ′ is an n-dimensional smooth submanifold of M . Furthermore
I ′ ⊂ N , because f is invariant under the Hf -flow, and therefore its zeroset N is invariant under
the Hf -flow. If i ∈ I then Ti I ⊂ TiN implies that

R Hf (i) = (TiN)σi ⊂ (Ti I)σ
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and therefore
Ti I

′ = Ti I + R Hf (i)

is isotropic, and hence a Lagrange plane because it is n-dimensional. If (i, t) ∈ J and we write
Φ = et Hf , then

TΦ(i) I
′ = Ti Φ

(
Ti I

′)
is a Lagrange plane as well, because Ti Φ preserves the symplectic form. The conclusion is that I ′ is
a Lagrange submanifold of M such that I ⊂ I ′ ⊂ N , and we have a local existence and uniqueness
theorem for Lagrange submanifolds Λ of M such that I ⊂ Λ ⊂ N .

Remark 4.1 More generally, let N be a smooth submanifold of M of any dimension, and suppose
that the dimension of Kn := TnN ∩ (TnN)σ does not depend on n ∈ N . Because Kn is equal to
the kernel of the restriction to TnN of σn, we are in the situation of Subsection (2.3) with ω = σ|N .
Let π : N → P be a fibration as in Subsection (2.3), and let σP be the reduced symplect ic form,
the symplectic form on P such that σ|N = π∗σP . Then the Lagrange submanifolds Λ of M such
that Λ ⊂ N are locally of the form Λ = π−1(ΛP ), in which ΛP is an arbitrary Lagrange submanifold
of P with respect to the symplectic form σP . This characterization is also due to Lie. �

4.3 An Initial Value Problem

Let S be an (n − 1)-dimensional smooth submanifold of X and ψ a smooth real-valued function
on S. The above leads to a local existence and uniqueness theorem for solutions φ of (4.1) which
satisfy the additional ”initial condition” that

φ(s) = ψ(s), s ∈ S. (4.8)

We will make the assumptions that x0 ∈ S, ξ0 ∈ (Tx0 X)∗, f (x0, ξ0) = 0,

∂f(x0, ξ)
∂ξ

∣∣∣∣
ξ=ξ0

/∈ Tx0 S. (4.9)

and finally
dψ(x0) = ξ0|Tx0 S

. (4.10)

Obviously the condition (4.10) is necessary if we want to have ξ0 = dφ(x0) for a solution φ of (4.1)
and (4.8). The transversality condition (4.9) is the natural one in order to avoid singularities in
the solution.

For every s ∈ S, the restriction mapping ξ 7→ ξ|Ts S
is a linear mapping from (TsX)∗ onto

(Ts S)∗ with a one-dimensional kernel, equal to (Ts S)0. Therefore the set

ls :=
{
ξ ∈ (TsX)∗ | ξ|Ts S

= dψ(s)
}

is a straight line in (TsX)∗, and the condition (4.9) means that, at ξ0, lx0 is transversal to
N ∩ (Tx0 X)∗. It follows therefore from the implicit function theorem, that there is an open
neighborhood S0 of x0 in S and a neighborhood W of (x0, ξ0) in T∗X, such that for each s ∈ S0

there is a unique ξ = ξ(s) ∈ (TsX)∗, such that (x, ξ) ∈W and

ξ|Ts S
= dψ(s) and f(s, ξ) = 0. (4.11)
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Moreover, s 7→ (s, ξ(s)) is a smooth mapping from S0 to T∗X. Because it has π as a left inverse,
it is an embedding and the image is a smooth (n− 1)-dimensional subsmanifold I of T∗X, which
by construction is contained in N .

Below we shall prove that I is isotropic. According to Subsection 4.2, locally there is a unique
Lagrange submanifold Λ of T∗X such that I ⊂ Λ ⊂ N , and

Tλ0 Λ = Tλ0 I + R Hf (λ0)

if λ0 = (x0, ξ0). Because Tλ0 π maps Tλ0 I onto Tx0 S and maps Hf (λ0) to ∂f/∂ξ(λ0) /∈ Tx0 S,
cf. (4.9, we have that the restriction to Tλ0 Λ of Tλ0 π is surjective from Tλ0 Λ to Tx0 X, hence
bijective, because both vector spaces have the same dimension n. It follows that the transversality
condition (4.5) holds at λ = λ0, and therefore Λ is locally equal to the graph of dφ for a smooth
function φ, which is a solution of (4.1) because Λ ⊂ N . On the other hand I ⊂ Λ implies that for
all s in a connected neighborhood S0 of x0 in S we have that the restriction to Ts S of dφ(s) is
equal to dψ(s), which implies that d

(
φ|S0

)
= dψ, or φ|S0

− ψ = c is a constant. Replacing φ by
φ− c we arrive at the locally unique solution of the initial value problem (4.1), (4.8).

In order to prove that I is an isotropic submanifold of T∗X, we consider the submanifold T∗S X
of all (x, ξ) ∈ T∗X such that x ∈ S and ξ ∈ (TxX)∗. Let ι denote the identity as a mapping from
T∗S X to T∗X, and define the restriction mapping ρ : T∗S X → T∗ S by

ρ(x, ξ) =
(
x, ξ|Tx S

)
, x ∈ S, ξ ∈ (TxX)∗ .

Then
ι∗ (τT∗X) = ρ∗ (τT∗ S) on T∗S X,

which is a tautology if one writes out the definitions of the left and right hand side. Taking
the exterior derivative of the left hand side and using that the exterior derivative commutes with
pullbacks by smooth mappings, we obtaine that

ι∗ (σT∗X) = ρ∗ (σT∗ S) on T∗S X.

Because the graph of dψ is an isotropic submanifold ΛS of T∗ S, it follows that ρ−1(ΛS) is an
isotropic submanifold of T∗X, and therefore I = ρ−1(ΛS) ∩N is isotropic as well.

4.4 Ray Bundles

It is a classical observation that the bundles of rays (= straight lines) which appear in geometrical
optics, are orthogonal to some hypersurface S. An example is the bundle of rays which emanate
from a given source point, these are the normals to every sphere with center at the source point.
In the plane every bundle of rays = one-parameter familty of straight lines is orthogonal to some
curve, for this it suffices to take a solution curve of a vector field which is orthogonal to the rays.
However, in higher dimensions n it is a quite special property of an (n − 1)-parameter family of
rays to be normal to a hypersuface S.

Let S be an oriented hypersurface, which leads to an orientation of the normals of S. Let φ be
the function which is equal to zero on S and has derivative in the direction of the oriented normals
equal to 1. Then, at least where the normals define a fibration of the space, φ is a smooth function,
and the rays are orthogonal to every level hypersurface of φ. Indeed, if n(s) denotes the normal
vector to S at the point s ∈ S, then the level set of φ at the level t is equal to the set of points

St = {s+ t n(s) | s ∈ S}
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and its tangent space consists of the points δs+t Dn(s) δs in which δs is tangent to S. It follows from
〈n(s), n(s)〉 ≡ 1 that 〈Dn(s) δs, n(s)〉 = 0, and therefore 〈δs+ t Dn(s) δs, n(s)〉 = 〈δs, n(s)〉 = 0.

It follows that the gradient of φ at the point s + t n(s) is equal to n(s), which means that the
function φ satisfies the nonlinear first order partial differential equation

n∑
i=1

(
∂φ(x)
∂xi

)2

= 1. (4.12)

Conversely, if φ satisfies (4.12), then the normals to the level hypersurfaces of φ form an (n−1)-
parameter family of straight lines.

Hamilton [10] discovered this bijective correspondence between the ray bundles in geometrical
optics and real-valued function φ which satisfy a partial differential equation of the form (4.12),
where the rays are the the lines which are orthogonal to the level surfaces of φ. He called φ the
characteristic function of the ray bundle, and the partial differential equation (4.12) is sometimes
called the eikonal equation of geometrical optics.

The equation (4.12) is of the form (4.1), if we take

f(x, ξ) =
n∑
i=1

(ξi)
2 − 1. (4.13)

The corresponding Hamiltonian system is dx/ dt = 2ξ, dξ/dt = 0, we obtain that the velocity
vector dx(t)/ dt does not depend on t. Moreover, it is pointing in the direction of ξ = gradφ,
which means that the projections x(t) to the position space X = Rn are straight lines orthogonal
to the level hypersurfaces of φ, they form the ray bundle corresponding to solution φ of the eikonal
equation.

In the construction of the characteristic function, it is essential that the rays define a fibration of
X, which is the case as long as the Lagrange manifold Λ, which is supposed to be the graph of dφ, is
transversal to the fibers, cf. (4.5). However, it is a very common phenomenon that at some points
the rays start criss-crossing, which correspond to points where the transversality condition (4.5) no
longer holds. At such a point the density of the rays becomes infinite, and for this reason such a
point is called a caustic point, a point ”where the light burns”. At caustic points the characteristic
function is no longer smooth, and at points through which more than one ray passes the function
φ becomes multi-valued.

The good news is that, even if such singularities in the ray bundle and its characteristic function
occur, the Lagrange manifold Λ remains a smoothly immersed submanifold of T∗X. Therefore, in
order to include ray bundles with caustics, we propose the following definition:

A ray bundle consists of the projections to the base manifold X of the Hf -solution curves in a
smoothly immersed Lagrange submanifold of T∗X, which is contained in the zeroset of f .

This makes Lie’s point of view, of allowing any smoothly immersed Lagrange submanifold of T∗X
which is contained in the zeroset of f as a solution of (4.1), not just aan matter of abstract
generalization, but very relevant from the point of view of practical applications.

Ray propagation in inhomogenous media, where the local speed of propagation c(x) depends
smoothly on the position x ∈ X, is described by the above theory in which the function f in (4.13)
is replaced by

f(x, ξ) = c(x)2
n∑
i=1

(ξi)
2 − 1.
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Ray bundles defined by other types of functions f on T∗X also have applications.

4.5 High Frequency Waves and Fourier Integral Operators

Huygens [15] could not convince the physicists of the wave nature of light, but Young and especially
Fresnel [8] did, with their beautiful quantitative analysis of interference patterns, which have no
decent explanation in a particle model.

Let us consider waves which are solutions of the standard wave equation

2 :=
∂2u

∂t2
−∆u :=

∂2u

∂t2
−

n∑
j=1

∂2u

∂x2
j

. (4.14)

Let us see what happens if we apply the wave operator 2 to a simple progressing wave

u(x, t) = eiω (t−φ(x)) a(x), (4.15)

in which φ(x) and a(x) are real valued functions of x, called the phase function and the amplitude
function of the simple progressing wave, where the level surfaces φ(x) = t in the position space,
the x-space, are the wave fronts. ω is a frequency variable, and we are in particular interested in
the asymptotic behaviour as ω → ∞. (Due to the small wave length and the very high speed of
propagation, visible light has an extremely high frequency.)

We have
(2u)(x, t) = eiω (t−φ(x))

[
ω2 u2(x, t) + iω u1(x, t) + u0(x, t)

]
,

in which

u2(x, t) =

 n∑
j=1

(
∂φ(x)
∂xj

)2

− 1

 a(x),

u1(x, t) = 2
n∑
j=1

∂φ(x)
∂xj

∂a(x)
∂xj

+ (∆φ)(x) a(x)

and u0(x, t) = −∆a(x).
If a(x) 6= 0, then (2u)(x, t) grows quadratically as a function of ω for ω →∞, unless the phase

function φ(x) satisfies the eikonal equation (4.12).
Assuming that φ satisfies the eikonal equation, the leading term in 2u grows linearly with ω,

unless the amplitude satisfies the homogeneous linear first order partial differential equation

u1(x, t) = 2
n∑
j=1

∂φ(x)
∂xj

∂a(x)
∂xj

+ (∆φ)(x) a(x) = 0, (4.16)

called the transport equation for the amplitude.
In order to analyse (4.16), we consider the solutions x(s) of the system of ordinary differential

equations
dxj
ds

= 2
∂φ(x)
∂xj

, 1 ≤ j ≤ n. (4.17)
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The solution curves of (4.17) are orthogonal to the wave fronts φ(x) = constant, and therefore are
equal to the rays of the ray bundle of which φ is the characteristic function. The transport equation
(4.16) then is equivalent to

da(x(s))
ds

+ (∆φ)(x(s)) a(x(s)) = 0,

a homogeneous first order linear ordinary differential equation for the function s 7→ a(x(s)). This
implies that we can prescribe a(x) freely on an (n− 1)-dimensional manifold S which is transversal
to the rays. If we choose the ”initial amplitude” a|S equal to zero outside a small neighborhood of
a given point x0 then the solution a(x) will be equal to zero outisde a narrow tube along the ray
through the point x0. In this sense the waves u of the form (4.15) which are asymptotic solutions
of (4.14) in the sense that 2u remains bounded as ω → ∞, will propagate along the rays. In this
sense geometrical optics is the high frequency limit of wave optics.

The procedure can be refined by replacing the amplitude function a(x) in (4.15) by an asymp-
totic expansion of the form

a(x, ω) ∼
∞∑
k=0

aj(x)ω−k, ω →∞

in negative powers of the frequency ω. One may verify that by successively solving inhomogenous
linear ordinary differential equations along the rays for the ak(x), k ≥ 1, one can arrange that, for
any K, 2u = O(ω−K) as ω →∞.

As observed in Subsection 4.4, the construction of the phase function φ(x), and therefore of the
simple progressing wave (4.15), brakes down at caustic points, and the amplitude a(x) becomes
infinite if one approaches such a point. It turns out that near such points one can still obtain
asymptotic solutions of the wave equation by replacing the simple progressing wave (4.15) by a
”continuous superposition” of such waves, an oscillatory integral of the form

u(x, t) ∼
∞∑
k=0

ωN/2−k
∫
RN

eω (t−φ(x, θ)) ak(x, θ) dθ, ω →∞. (4.18)

Here, in order to avoid any problems with the convergence of the integral over the auxiliary θ-
-variables, it is assumed that ak(x, θ) = 0 for all θ outside a compact subset. Maslov [23] showed
that for quite general linear partial differential equations P u = 0 one can construct oscillatory
integrals (4.18) which are global asymptotic solutions, i.e. also in neighborhoods of caustic points.
These oscillatory integrals correspond to Lagrange submanifolds Λ of T∗X which are contained
in the zeroset of a certain function p on T∗X which is called the principal symbol of the linear
differential operator P . Cf. [6] for a survey.

If one also integrates over the frequency variable ω, then one obtains distributions, which are
called Fourier integral distributions, invented by Hörmander [14]. The singularities of a Fourier
integral distribution, i.e. its behaviour near points where it is not equal to a smooth function, have
a very precise description in terms of the corresponding Lagrange submanifold of T∗X.

A simple example is Dirac’s delta function situated at a point x ∈ X. It is a Fourier integral
distribution and the Lagrange manifold corresponding to it is the fiber (TxX)∗ of the cotangent
bundle T∗X over the point x. This is an extreme example of a Lagrange manifold which does not
satisfy the transversality condition (4.5).

Linear integral operators from F(Y ) to F(X) which have a distribution kernel on X ×Y which
is a Fourier integral distribution are called Fourier integral operators. These form a very wide class
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of operators, which include all the propagation operators = ”Green functions” of linear partial
differential equations P u = 0 of wave type. The aforementioned description of the singularites of
Fourier integral distributions leads to very detailed descriptions of the propagation of singularities
of the solutions of the partial differential equation P u = 0, or of the corresponding inhomogenous
equation P u = f , cf. [5].

4.6 Some History

As already mentioned, Hamilton [10] found the description of ray bundles in geometrical optics
in terms of their characteristic functions, together with the nonlinear partial differential equation
(4.12 satisfied by the characteristic function.

However, he did not ask the question how to solve a general nonlinear partial differential equa-
tion of the form (4.1). — it was Jacobi [16], [17] who observed that the solution of such a partial
differential equation can be reduced to the solution of a Hamiltonian system of ordinary differential
equations. Since then the theory is called ”Hamilton-Jacobi theory”.

Lie developed the idea of viewing the solution as a Lagrange submanifold of the cotangent
bundle in a series of articles in 1872–78, and stressed the point that it is based on the fact that the
flow of the Hamiltonian system of the function f leaves the canonical two-form σ of the cotangent
bundle invariant. For him the use of the group of transformations which leave f and σ invariant was
analogous to the use of the Galois group in the solution of polynomial equations. Engel introduced
the name ”Verein” = ”club” for any submanifold of the cotangent bundle. Lie followed this, but
later authors like Élie Cartan didn’t. An accessible account of Lie’s ideas on first order partial
differential equations is the book of Engel and Faber [7].

The fact that Lagrange manifolds are fundamental in so many situations made Weinstein [28]
talk about the Symplectic Creed: ”Everything is a Lagrange manifold”. More recently so-called
special Lagrange manifolds, invented by Harvey and Lawson [12], made their appearance in mirror
symmetry.

4.7 Exercises

Exercise 4.1 In the notation of Example 3.3 on integrable systems, prove that the level sets Mc

are Lagrange submanifolds of M . If M = T∗X and the connected component C of Mc is compact,
then C can only be equal to dφ for some smooth function φ on X, if X is diffeomorphic to a torus.
�

Exercise 4.2 Prove that, for any given x ∈ X, the fiber (TxX) j over x is a Lagrange submanifold
of T∗X. Define

I = {ξ ∈ (TxX)∗ | f(x, ξ) = 0} .

Suppose that ∂f(x, ξ)/∂ξ 6= 0 for every ξ ∈ I. Prove that N is an (n − 1)-dimensional isotropic
submanifold of T∗X, that (i, t) 7→ et Hf (i) defines a smooth immersion from an open subset J of
I ×R to T∗X, and that the image is a smoothly immersed Lagrange submanifold Λ of T∗X such
that Λ ⊂ N , where N denotes the zeroset of f in T∗X. Verify that the the projections in X of the
Hf -solution curves in Λ all pass through the given point x. This is called the ray bundle emanating

from x, for a general function f on T∗X. �
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gewöhnlicher Differentialgelichungen. Crelle’s Journal für die reine und angewandte Mathe-
matik 1 (8137) 97–162 = Gesammelte Werke, 4. Band, 1886. Reprint Chelsea Publ. Cy., New
York, 1969.

41



[17] C.G.J. Jacobi: Vorlesungen über Dynamik. Gehalten an der Universität Königsberg im Win-
tersemester 1842–43 und nach einem von C.W. Borchardt ausgearbeiteten Hefte. Verlag G.
Reimer, Berlin, 1881. Reprint Chelsea Publ. Cy., New York, 1969.

[18] C.G.J. Jacobi: Nova methodus, equationes differentiales partiales primi orins inter numerum
variabilium quemcuque propositas integrandi. Crelle journal für die reine und angewandte
Mathematik 60 (1862) 1–181. Also in: Gesammelte Werke, V. Band, 1–189., Berlin 1890.
Reprint Chelsea Publ. Cy., New York, 1969.
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