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Chapter 1

Introduction

This thesis deals with subsets of intervals and squares. The subsets we consider
have in common that they are all constructed by very simple rules. Basically
we have two types of rules and they are mentioned in the title of this thesis:
reflecting walls and dissipating tiles.

The reflecting walls construction rule is a deterministic one. We study the orbit
of a ball moving in an interval or square respectively. Its movement is deter-
mined by the fact that the walls are reflecting. In the one-dimensional case, we
place walls at the endpoints of an interval and imagine an idealized ball to be
bouncing back and forth, see Figure 1.1. By the orbit of the ball we mean the
sequence of its landing points. This sequence has some nice properties, in par-
ticular we will study how it induces partitions of the interval into subintervals.

In the two-dimensional case, the ball is moving on a rectangle that is sur-
rounded by walls. Such a system is known under the name ’billiard’. From
a ball game player’s perspective, the relation between the one-dimensional
setting and the billiard is immediate. We will show that also from a math-
ematician’s point of view, the billiard is a natural generalization of the one-
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1. INTRODUCTION

Figure 1.1: A ball bouncing back and forth between two walls.

dimensional case. Comparing Figure 1.1 with Figure 1.2 already lifts a little
corner of the veil. In this two-dimensional setting, we again investigate how
the orbit of the ball partitions the area where it is moving into smaller pieces.

Our second construction rule involves dissipating tiles. Here the construction
procedure is probabilistic. We start with the unit interval or unit square and di-
vide it into some equally sized subintervals or subsquares. Then we randomly
select some of them that will be thrown out of our set. In the subintervals or
subsquares that are not discarded, we do the same procedure on a smaller scale.
Iterating this gives a limiting set that is a random fractal. In the literature these
sets are known as Cantor sets or as fractal percolation.

For the one-dimensional case, our main question concerns the algebraic differ-
ence of two independent random Cantor sets F1 and F2. This is the set of all
numbers that can be written as x − y, where x ∈ F1 and y ∈ F2. In a setting
where always the same fraction of subintervals survives, we find conditions
for the difference set to contain an interval with positive probability.

In two dimensions, we consider the fractal percolation process, as introduced
by Mandelbrot. Suppose we have a square floor tiled by M2 black squares. For
each of them, we flip a (biased) coin that decides whether it is discarded or not.
Those tiles that did not dissipate are subdivided into M2 smaller squares and
again we flip the coin for each of them. This is repeated ad infinitum. What
does the limiting pattern at the floor look like? Of course this highly depends

10



1.1. REFLECTING WALLS

on the bias of the coin. It is a classical result that this process exhibits a phase
transition: if the retaining probability p is smaller than some critical probability
pc, then the limiting set will be totally disconnected. We only see some black
dots here and there. If p is greater than or equal to pc, then with positive proba-
bility the limiting set still connects opposite sides of the square we started with.
Over the past decades, it turned out to be a hard problem to find the exact value
of pc. In this thesis we discuss techniques to find better bounds for pc.

1.1 Reflecting walls

Sequences of numbers have been widely studied in mathematics over a long
period of time. Already in the 6th century, the Fibonacci sequence was known
to Indian mathematicians. Sequences are not only a powerful tool in describing
and understanding the world around us, they can also have quite fascinating
mathematical properties.

A classical example is the following. Take an arbitrary real number α and con-
sider the arithmetic progression

0, α, 2α, 3α . . . , nα.

For each of the terms in this sequence, calculate the distance to the largest inte-
ger smaller than this multiple. This gives a new sequence, with values in [0, 1].
It was conjectured by Steinhaus that these numbers partition the interval [0, 1]

into subintervals which have at most three different lengths. The first proof
was provided by Sós [26]. This result can also be interpreted in terms of rota-
tions on a circle. If we walk on the circumference, each time making steps of
the same size, then after n steps the distances between footprints next to each
other can have at most three different values. This result is known as the Three
Gap Theorem. In the literature, various other statements about this sequence
have been proved. For example, if there are three different lengths, then one of
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1. INTRODUCTION

them is the sum of the other two.

1.1.1 Bouncing on an interval

In the setting of the Three Gap Theorem, multiples of an irrational number are
rounded down to an integer. Instead of rounding down to an integer, we in-
vestigate the sequence obtained by taking the distance to the nearest integer.
This leads to results closely connected to the Three Gap Theorem, see Chapter
2 of this thesis. The resulting sequence in [0, 1/2] can be thought of as landing
points of an idealized ball bouncing between reflecting walls at 0 and 1/2. See
Figure 3.2 for an illustration of the situation when we put the numbers again on
the circumference of a circle. In this setting, we will prove a Four Gap Theorem.
The first n numbers in this sequence induce a partition of [0, 1/2] into subinter-
vals having at most four different lengths. All possible relations between these
lengths are listed in the main theorem of Chapter 2. The proof provided in this
chapter is self-contained. However, as was noted by Komornik, a shorter and
more natural proof using the Three Gap Theorem can be given, see Chapter 3.

1.1.2 Bouncing on a billiard

Figure 1.2: The orbit of a billiard ball.

In Chapter 3 we turn our attention to a
two-dimensional equivalent of the Four
Gap Theorem. Here we study the orbit of
a ball on a rectangular billiard that starts
from one of the corners. Such an orbit
can be obtained by taking a halfline in
R2 that starts in the origin. Taking dis-
tances to nearest integers in both coordi-
nates transforms this halfline into a bil-
liard orbit on the square [0, 1/2]2, as is

12



1.2. DISSIPATING TILES

explained in Section 3.3. This insight, combined with the Three Gap Theorem
are our main tools to derive some results on billiard orbits. If the billiard or-
bit is truncated somewhere at the boundary, then it partitions the square into
polygons having at most 13 different sizes. This upper bound is sharp.

A special case arises when the shooting angle is rational. In that case the orbit
is periodic. After one period, the partition does not change any more. In this
regime, the polygons have at most three different sizes. However, within the
first period the maximum of thirteen can still be reached. On the other hand
also irrational angles can be exceptional, in the sense that for some irrational
angles the maximum of thirteen is never reached.

1.2 Dissipating tiles

In this section we introduce fractal sets and discuss a central notion in fractal
geometry: the Hausdorff dimension of a fractal set. We introduce Cantor sets
and discuss about the algebraic difference of two Cantor sets. In particular we
discuss the case when these Cantor sets are random. Next we move on to fractal
percolation, where we especially pay attention to the value of the probability
parameter at which the phase transition of this process occurs.

1.2.1 Fractal sets

Many phenomena in nature show highly irregular structures. Perfect circles,
Platonic solids, straight lines and continuous curves are objects that often give
an idealized rather than an accurate description of real-world objects. For this
reason, fractal geometry came into the picture in the seventies, not in the last
place because of the work of Benoit Mandelbrot [21]. He describes a fractal as
a shape for which the degree of irregularity is identical at all scales. Especially
those fractal sets that involve randomness are useful to describe the irregular
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1. INTRODUCTION

patterns around us.

Figure 1.3: Left: construction of the Koch curve. Right: construction of a random Koch
curve

Fractal sets can often be obtained by iterating some substitution procedure on
smaller and smaller scales. In Figure 1.3, left panel, we see a classical example
of this: the Koch curve. It is constructed as follows. We start with the unit in-
terval, and divide it into three line segments of equal length. Then we draw
an equilateral triangle, that has the middle segment as its base and points out-
wards. Finally, we remove the base of the triangle. Repeat this procedure in
each of the four resulting segments. This produces a curve that on all scales
displays smaller copies of itself.

An important notion in fractal geometry is the Hausdorff dimension of a fractal
set F . Informally speaking, the idea here is to cover F by balls of diameter δ. If
the number of balls we need to do so is of order δ−n, then n is the Hausdorff

14



1.2. DISSIPATING TILES

dimension of F . Formalizing this, we define

Hsδ(F ) := inf

{ ∞∑
i=1

|Ui|s : |Ui| ≤ δ for all i, F ⊆
∞⋃
i=1

Ui

}
,

where |Ui| stands for the diameter of the set Ui in the Euclidian metric. Letting
δ tend to 0 gives the s-dimensional Hausdorff measure of the set F :

Hs(F ) := lim
δ→0
Hsδ(F ).

If s is large, then one can construct coverings {Ui}∞i=1 by small sets for which
the sum

∑∞
i=1 |Ui|s is arbitrarily small. On the other hand, if s is small and we

are forced to cover by sets Ui with small diameter, then the sum
∑∞
i=1 |Ui|s will

be large. In fact one can prove that there is at most one value of s for which
0 < Hs(F ) < ∞, and this value is defined to be the Hausdorff dimension
dimH(F ) of the set F :

dimH(F ) := inf {s : Hs(F ) = 0} = sup {s : Hs(F ) =∞} .

The Hausdorff dimension of the Koch curve can be easily found by using that it
is equal to its so-called similarity dimension. If an object consists of N (nearly)
disjoint copies of itself that are scaled down by a factor r, then the Hausdorff di-
mension of this object equals log(N)/ log(r). As a consequence, the Koch curve
has Hausdorff dimension log(4)/ log(3) ≈ 1.26.

The above construction of the Koch curve is deterministic. One could also
change the procedure to get a random fractal. Each time we draw an equilateral
triangle that has the middle segment as its base, we flip a fair coin to decide
whether it points outwards or inwards. This gives a completely different be-
havior, as is seen in the right part of Figure 1.3. We lose the strictly self-similar
structure, but nevertheless we still have copies of the same random object at
all scales. Such random fractals are often more suitable to model real-life phe-
nomena and their unpredictable fluctuations than the deterministic ones. For
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1. INTRODUCTION

example this random Koch curve looks more like a real coastline than the de-
terministic version. In this thesis random fractals play a central role in Chapter
4 and Chapter 5.

1.2.2 Algebraic differences of Cantor sets

The algebraic difference of a two sets of real numbers A and B is given by

A−B = {a− b : a ∈ A, b ∈ B} .

An interesting case arises if we take A and B to be fractal sets. Let us see what
happens if we for A and B take the triadic Cantor set. This set is obtained
by repeatedly removing open middle thirds of a collection of intervals, starting
with the unit interval. A way to make this precise is the following: letC0 = [0, 1]

and define
Cn =

Cn−1

3
∪
(

2

3
+
Cn−1

3

)
,

and now the Cantor set C is equal to the intersection of all its approximants:

C =

∞⋂
n=0

Cn.

Alternatively, one could think of the Cantor set as those points on the deter-
ministic Koch curve that are on its baseline, so in the left part of Figure 1.3 one
can also see approximants of the Cantor set. The Hausdorff dimension of the
Cantor set can be easily found: dimH(C) = log(2)/ log(3) ≈ 0.63.

The Cantor set is full of holes and has zero Lebesgue measure, but nevertheless
it has the remarkable property that any real number between −1 and 1 can be
represented as the difference between two numbers in the Cantor set. In other
words,

C − C = [−1, 1]. (1.1)

16



1.2. DISSIPATING TILES

−1 0 1

Figure 1.4: Projecting C3 × C3 under a 45◦ degree angle gives the full interval [−1, 1].

There are several ways to prove this. One of them uses the ternary character-
ization of the Cantor set: a real number from [0, 1] belongs to the Cantor set if
and only if it has a ternary expansion that contains only digits 0 and 2. There
is also a geometric proof, that served as the basis for the results in Chapter 4
of this thesis. Consider the line in R2 through the point (a, b) that has slope 1.
Points (x, y) on this line satisfy the equation x−a = y− b. Hence also the point
(a − b, 0) lies on this line. This means that the algebraic difference C − C can
be found by projecting the Cartesian product C × C on the x-axis under a 45◦

angle. Figure 1.4 shows C3 × C3 and the way of projection on the x-axis.

The set C×C is known as Cantor dust, a term introduced by Mandelbrot. Any
line with slope 1 that intersects the x-axis between −1 and 1 has non-empty
intersection with C0 × C0, which is just the unit square [0, 1]. It is easy to see
that it also has to intersect at least one of the four corner squares, that together
build C1 × C1. By self-similarity of the set, it then also intersects C2 × C2 and
repeating this shows that the line intersects Cn × Cn for all n, and therefore it
also intersects C × C, proving (1.1).

The situation gets a lot more complicated if we introduce randomness here.

17



1. INTRODUCTION

There are several ideas to construct random Cantor sets. The size and the posi-
tion of the surviving intervals can be made stochastic, as was done by Larsson
in his thesis [17, 18]. Another option is to randomize the selection of intervals
that survive. Dekking and Kuijvenhoven studied M -adic random Cantor sets
in which each of the M subintervals survives independent of all others [8].

Also in Chapter 4 of this thesis, we study M -adic random Cantor sets with
randomly selected intervals. Our construction procedure is the following: start
with the unit interval and divide it into M subintervals of length 1/M . Now
we either discard all subintervals, leaving us the empty set, or a fixed frac-
tion of subintervals (m out of M ) survives. The selection of the m surviving
subintervals is uniformly at random. In each surviving subinterval, repeat this
process. Now intervals are not selected independently any more, and therefore
this class is called correlated fractal percolation.

We investigate the question under which conditions the algebraic difference of
two independent realizations F1 and F2 of correlated fractal percolation almost
surely contains an interval and when not. Palis [23] conjectured that ‘gener-
ically’ it should be true that the algebraic difference of two Cantor sets con-
tains an interval if the sum of their Hausdorff dimensions exceeds 1. We prove
that for correlated fractal percolation a strong version of this conjecture holds:
F1−F2 contains an interval almost surely if and only if dimH(F1)+dimH(F2) >

1. The proof involves a thorough study of 45◦ degree projections of randomized
Cantor dust.

1.2.3 Fractal percolation and its critical value

The topic that is covered in Chapter 5 of this thesis is the two-dimensional
version of random Cantor sets, called fractal percolation or Mandelbrot perco-
lation. Here we start with a square and repeatedly divide into subsquares and
select some that survive and some that are discarded. This model has received
quite some attention, mainly at the end of the twentieth century. Real world

18



1.2. DISSIPATING TILES

phenomena for which it has been proposed as a model include for example
turbulence and porous media.

Fractal percolation is constructed as follows. Choose a retaining probability
p ∈ (0, 1) and choose a natural number M ≥ 2 as division base. Let K0 be the
unit square. Divide K0 into M2 subsquares of equal size, and let each of them
survive with probability p, independent of the M2 − 1 other subsquares. Let
K1 be the set consisting of all subsquares that survived. Similarly, we obtain
K2 by dividing the squares in K1 into M2 smaller squares that again survive
with probability p, independent of all others. Repeating this procedure gives a
sequence K0,K1, . . . of random sets. In Figure 1.5 a realization of K1, . . .K8 is
shown for M = 2 and p = 0.75.

Figure 1.5: A realization of the random sets K1, . . .K8, with base M = 2 and survival
probability p = 0.75. In this thesis we investigate the connectivity of the liimiting set.

The sequence (Kn)∞n=0 is monotone decreasing and therefore it converges to
a limit set K =

⋂∞
n=0Kn. Conditioned on the event that K is non-empty, its

Hausdorff dimension dimH(K) is almost surely equal to log(pM2)/ log(M).

Our primary interests lie in the connectivity properties of the limiting setK. We
say thatK percolates if it contains a connected component intersecting both the

19



1. INTRODUCTION

left side and the right side of the unit square. Define the percolation function
θ(M,p) as the probability that K percolates if we use base M and survival
probability p. Then obviously θ(M,p) is increasing in p and θ(M, 0) = 0 and
θ(M, 1) = 1. So we can define a critical value as follows:

pc(M) := inf {p : θ(M,p) > 0} .

0 1

1

p
c

Figure 1.6: Rough sketch of θ(M,p).

There is a pretty large difference between
the subcritical behavior and the (super)critical
behavior. The function θ(M,p) is known to
be discontinuous at pc, see Figure 1.6. Chayes,
Chayes and Durrett [4] prove that in the sub-
critical regime p < pc the set K is almost
surely ”dust-like”, that is to say, the largest
connected component is a point. If p ≥ pc,
then there is a positive probability that K
percolates. So, the process exhibits a first order phase transition at pc.

The problem to find pc turned out to be quite a hard one. The first non-trivial
lower bound is pc(M) > 1/M2, since the surviving squares form a branching
process with mean pM2. This dies out almost surely for p ≤ 1/M2, such that
K is empty almost surely. Another branching process argument (see Chapter
5) enabled Chayes, Chayes and Durrett to prove that pc(M) > 1/

√
M . For the

case M = 2, White [31] sharpened this to pc(2) ≥ 0.810 by adding countably
many straight line segments to the set K in order to simplify its connectivity
structure.

To establish upper bounds, the first idea (which works for M ≥ 3 and is again
due to Chayes et al) was the following. We call a realization of K1 good if in the
first construction step at least M2 − 1 subsquares survive. A realization of Kn

can be obtained by taking a realization of K1 and then replacing each square
that survived independent of all others by a scaled realization of Kn−1. Define

20



1.2. DISSIPATING TILES

a realization of Kn to be good if at least M2 − 1 of these scaled realizations are
good.

It is not hard to see that Kn percolates if it is a good realization. The argument
roughly goes as follows: two neighboring good squares share an edge, and
along this edge they both have M subsquares, making M pairs. At least one of
these pairs consists of two good squares, since M ≥ 3. Consequently, a connec-
tion crossing this edge is preserved. This is sufficient to have Kn percolating
for all n, and hence also K percolates. Filling in the details in this reasoning
leads to the following result: pc(M) ≤ p∗(M) for M ≥ 3, where p∗(M) is the
infimum over p for which the polynomial

(px)M
2

+M2(px)M
2−1(1− px)

has a fixed point in the half open interval (0, 1]. An upper bound for M = 2

can be obtained by a coupling with the case M = 4. For M = 3 this leads to
pc(3) < 0.993. Dekking and Meester [9] described the problem using multi-
valued substitutions and sharpened the upper bound to pc(3) < 0.991, which
was improved in the thesis of van der Wal to pc(3) < 0.965.

In Chapter 5, we combine several insights of the aforementioned work. In par-
ticular, we extend the idea to classify realizations, where we do not restrict
ourselves to good and bad realizations, but we map realizations to a finite al-
phabet. The choice of the alphabet is inspired by van der Wal’s work. Together
with a coupling with site percolation, this permits us for all M to construct a
principally computable sequence of lower bounds for pc(M) that converges to
pc(M). We also show how to compute upper bounds using similar ideas. This
leads to the following numerical results:

0.881 < pc(2) < 0.993, 0.784 < pc(3) < 0.940, and pc(4) < 0.972.
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Chapter 2

On the distribution of
distances of multiples
of an irrational number
to the nearest integer

2.1 Introduction

Take an arbitrary irrational number α and compute for the first n multiples the
distance to the nearest integer. What can we say about the distribution of this
sequence in the interval [0, 1/2]? In this chapter we study the partition of the
interval [0, 1/2] induced by this sequence. The main result (Theorem 2.2) states
that this sequence divides the interval in subintervals which can take at most
four different lengths. This result is strongly related to the Three Gap Theorem,
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2. DISTANCES OF MULTIPLES OF AN IRRATIONAL TO THE INTEGERS

which states that for α irrational and n ∈ N, the numbers

{α}, {2α}, {3α}, . . . , {nα} (2.1)

divide the interval [0, 1] in subintervals of at most three different lengths. Here
{x} = x−bxc = x mod 1 is the fractional part of x. The Three Gap Theorem was
originally a conjecture of H. Steinhaus. Proofs were offered by various authors,
for example by Sós [26], Świerckowski [29], Surányi [28], Slater [25] and van
Ravenstein [24].

We start with Theorem 2.1, a variation on the Three Gap Theorem, which states
that if we divide the interval [0, 1] in subintervals by the numbers

{α}, {−α}, {2α}, {−2α}, . . . , {nα}, {−nα} (2.2)

then the subintervals again have at most three different lengths. We give an
elementary proof for this theorem.

From Theorem 2.1 we extract the main result, Theorem 2.2. This ‘Four Gap The-
orem’ gives an analogous statement about the distances to the nearest integers
of the multiples of α: the numbers

||α||, ||2α||, ||3α||, . . . , ||nα|| (2.3)

divide the interval [0, 1
2 ] in subintervals of at least two and at most four dif-

ferent lengths, where ||x|| denotes the distance from x to the nearest integer.
Here the number four is the best possible. We also derive some properties of
the lengths of the subintervals in which [0, 1

2 ] is divided.
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2.2. A VARIATION ON THE THREE GAP THEOREM

2.2 A variation on the three gap theorem

If we consider not only the fractional parts of the positive multiples of an ir-
rational number α, but also of the negative multiples, we have the following
result:

Theorem 2.1. Let α be an irrational number between 0 and 1, and let n ∈ N, n ≥ 1.
For the first n numbers in the sequence

Sα : {α}, {−α}, {2α}, {−2α}, {3α}, {−3α}, . . . (2.4)

the following assertions hold:

1. They divide the interval [0, 1] in subintervals of either two or three different
lengths, l1 > l2(> l3). If we have three different lengths, l1 > l2 > l3, then
l1 = l2 + l3.

2. By adding the (n + 1)th element of the sequence Sα to the partition of [0, 1],
one of the subintervals of length l1 is divided in a subinterval of length l2 and a
subinterval of length l1 − l2.

Before proving the assertions we make some preparations by collecting obser-
vations that will be helpful in proving the assertions. Note that it makes no
difference in Theorem 2.1 if we consider the open interval

(
0, 1
)
.

First note that for x ∈ R\Z we have {−x} = 1−{x}, so the partition induced by
the first 2n terms of the sequence Sα is symmetric with respect to 1

2 . This also
means that without loss of generality we may assume that α < 1

2 . Sometimes
α will be called the step size.

It will prove useful to introduce some notation and definitions. For n ≥ 1,
Sα(n) denotes the nth term of Sα. For each k ∈ N, k ≥ 1 let nk(α) be the unique
integer for which:

nk(α)α < k < (nk(α) + 1)α. (2.5)
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(n1(α) + 1)α

Figure 2.1: The first steps in the partition process.

Since α is irrational, k can never be a multiple of α. Define β by

β := (n1(α) + 1)α− 1. (2.6)

Note that β = {(n1(α) + 1)α}. Figure 2.1 illustrates these definitions in case
n1(α) = 3.

Definition 2.1. For k ∈ N, k ≥ 1 the kth cycle of the sequence Sα consists of all
those fractional parts {mα} ,m ∈ Z for which k − 1 < |mα| < k, or equivalently
nk−1(α) < |m| ≤ nk(α).

Observe that a cycle consists of at least four partition points, because we as-
sumed that α < 1

2 . We are going to use this observation later. The next defini-
tion concerns intervals which are partitioned in the same way.

Definition 2.2. For 0 ≤ a, b < 1, y ≤ min{1 − a, 1 − b} and n ∈ N we write(
a, a+ y

)
(n) '

(
b, b+ y

)
(n) if for all x ∈

(
0, y
)

the following equivalence holds:

∃k1 ∈ Z, |k1| ≤ n such that a+ x = {k1α}

⇐⇒

∃k2 ∈ Z, |k2| ≤ n such that b+ x = {k2α}.

Note that ' is an equivalence relation on the class of partitioned open subin-
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2.2. A VARIATION ON THE THREE GAP THEOREM

tervals of
(
0, 1
)
. If we replace b + x by b + y − x in Definition 2.2, we get an

equivalence for an interval and the mirror image of an other interval. If two in-
tervals satisfy this adjusted definition, we will write

(
a, a+y

)
(n)

m'
(
b, b+y

)
(n).

Now let us investigate what happens in the interval
(
0, α

)
. Note that Sα is a

sequence in the open interval
(
0, 1
)
. Therefore also here we investigate which

values we get in the open interval
(
0, α

)
. For k ∈ N, k ≥ 1 the interval

(
k, k +

α
)

contains exactly one positive multiple of α and the interval
(
−k,−k + α

)
contains exactly one negative multiple of α. Hence, in each cycle we get two
values in

(
0, α

)
, one of them being the fractional part of a positive multiple of

α and the other being the fractional part of a negative multiple of α. The first
cycle is the only exception, since there is no positive multiple of α in

(
0, α

)
.

The first positive multiple of α for which the fractional part is in
(
0, α

)
is

(n1(α) + 1)α = 1 + β, which gives β as a first hit in
(
0, α

)
. Because 1 + β is

a positive multiple of α, for k ∈ N the number k+kβ is also a positive multiple
of α. The fractional parts of these numbers are fractional parts of multiples of
β. As long as kβ < α this gives hits in

(
0, α

)
. As soon as kβ exceeds α, i.e. when

k = bα/βc+ 1, we leave the interval
(
0, α

)
, but in that case we already had hit

the value kβ − α. This is exactly how it continues all the time: each next hit in(
0, α

)
is shifted β in positive direction and as soon as we leave the interval, we

come back modulo α. Hence, for every positive integer k, the kth hit in
(
0, α

)
by the fractional part of a positive multiple of α is kβ mod α.

The first negative multiple of α for which the fractional part is in
(
0, α

)
is

−n1(α)α, giving the value {−n1(α)α} = 1 − {n1(α)α} = 1 − n1(α)α = α − β.
Each next hit in

(
0, α

)
is shifted β to the left until α− kβ dives under 0. In that

case we leave
(
0, α

)
, but the previous hit was α − kβ + α, which is in

(
0, α

)
.

Hence, the kth hit in
(
0, α

)
by the fractional part of a negative multiple of α is

α− (kβ mod α).

By noting that the hits by fractional parts of positive and negative multiples of
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α are alternating we see that in
(
0, α

)
we get the following sequence of hits:

α− (β mod α), β mod α, α− (2β mod α), 2β mod α,

α− (3β mod α), 3β mod α, . . . (2.7)

By multiplying each term by 1/α we get

1−
(β
α

mod 1
)
,
β

α
mod 1, 1−

(2β

α
mod 1

)
,

2β

α
mod 1,

1−
(3β

α
mod 1

)
,

3β

α
mod 1, . . . (2.8)

By defining α̃ := 1− β

α
, we can rewrite this as

{α̃}, {−α̃}, {2α̃}, {−2α̃}, {3α̃}, {−3α̃}, . . . (2.9)

Hence, (2.7) is a scaled version of the sequence Sα (with a different irrational
step size). That means that the partition of the subinterval

(
0, α

)
has exactly

the same structure and properties as the partition of
(
0, 1
)
. The same self-

similarity holds for the subintervals
(
α, 2α

)
, . . . ,

(
(n1/2(α) − 1)α, n1/2(α)α

)
,

where n1/2(α)α is the largest multiple of α smaller than 1/2. In these subin-
tervals we get the same sequence (2.7), but now shifted by a multiple of α to
the corresponding positions in the subinterval. By using symmetry we also
find the same structure of lengths for the intervals

(
1−n1/2(α)α, 1− (n1/2(α)−

1)α
)
, . . . ,

(
1− α, 1

)
. These intervals are mirror images of the subintervals

(
0, α

)
, . . . ,

(
(n1/2(α)− 1)α, n1/2(α)α

)
.

Each cycle of Sα gives two hits in each of those intervals. We conclude that for
all k ∈ N, k ≥ 1

(
0, α

)
(nk(α)) ' . . . '

(
(n1/2(α)− 1)α, n1/2(α)α

)
(nk(α))

m' (2.10)(
1− n1/2(α)α, 1− (n1/2(α)− 1)α

)
(nk(α)) ' . . . '

(
1− α, 1

)
(nk(α)).
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Figure 2.2: Each interval between two integers consists of two parts of length n1/2(α)α
and a part of length L (bold). Fractional parts of numbers in the bold intervals are in
Im. The lengths of the bold parts to the left of s add up to α.

The only part which is not yet considered is the middle part of
(
0, 1
)
: the inter-

val
(
n1/2(α)α, 1− n1/2(α)α

)
, which will be denoted by Im and its length by L.

Denote the smallest positive multiple of α for which the fractional part is in Im
by s, see Figure 2.2. The Lebesque measure of the set

{x ∈ (0, s) : {x} 6∈ Im} (2.11)

is a multiple of n1/2(α)α. Hence the Lebesque measure of the set

{x ∈ (0, s) : {x} ∈ Im} (2.12)

must also be a multiple of α. From the fact that s is the smallest number for
which the measure of this set is a multiple of α it follows that its measure is
exactly α. This implies that the first element of Sα which is in Im is given by

{s} = n1/2(α)α+ (α mod L). (2.13)

For each next multiple of α giving a hit in Im, a similar argument applies, but
now the measure of the set in (2.12) increases with α for each next hit. We
conclude that the positive multiples of α give the following sequence of hits in
Im: (

n1/2(α)α+ (kα mod L)
)∞
k=1

(2.14)

By symmetry we see that by adding the negative multiples of α too, we find
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the following sequence of hits in Im:

n1/2(α)α+ (α mod L), 1− n1/2(α)α− (α mod L),

n1/2(α)α+ (2α mod L), 1− n1/2(α)α− (2α mod L),

n1/2(α)α+ (3α mod L), 1− n1/2(α)α− (3α mod L), . . . , (2.15)

where the alternating order follows from the fact that the successor of {kα} in
Sα is {−kα}.

Subtract n1/2(α)α to get

α mod L,L− (α mod L), 2α mod L,

L− (2α mod L), 3α mod L,L− (3α mod L), . . . (2.16)

Multiplying by 1/L yields

α

L
mod 1, 1−

(α
L

mod 1
)
,

2α

L
mod 1,

1−
(2α

L
mod 1

)
,

3α

L
mod 1, 1−

(3α

L
mod 1

)
, . . . (2.17)

This is exactly Sα, with step size α/L. It follows that (2.15) is a scaled and
translated version of the sequence Sα with a different step size.

The next step is to find the relation between the behavior of the partition pro-
cess in Im and its complement. The intervals

(
0, L

)
and Im have the same

length (by definition of L) and the distance between their left endpoints is a
multiple of α. From this we can conclude that in each cycle a value x ∈

(
0, L

)
is hit if and only if in the same cycle the point x + n1/2(α) is hit in Im. This
reasoning is also valid when

(
0, L

)
and Im are not disjoint (which is possible

when L > α). By noting that
(
0, L

)
(n1(α)) ' Im(n1(α)) and using induction
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on k it follows that ∀k ∈ N, k ≥ 1:

(
0, L

)
(nk(α)) ' Im(nk(α)). (2.18)

In words: after each complete cycle the two intervals
(
0, L

)
and Im are parti-

tioned in an equivalent way in the sense of Definition 2.2.

Proof of Theorem 2.1
To prove Theorem 2.1, we use induction on the cycle number k. Note that if the
theorem holds for n, then to go to n+ 1 it suffices to check the second assertion
of the theorem. We can see this as follows. If we had three lengths, then one of
the longest subintervals is divided in two existing lengths, so we get nothing
new. If we had two lengths, then we get one new length, being the difference
of the two existing lengths. These remarks show that the ‘at most three’ part of
the first assertion and the requirement l1 = l2 + l3 in case of three lengths are
not violated. The ‘at least two’ part of the first assertion of the theorem follows
from the irrationality of α. If only one length is remaining, the interval [0, 1]

must be divided in equal parts. But in this case α would be a rational number.

-Step 1- The first step in our induction argument is to show that during the
first cycle (containing the first 2n1(α) terms of Sα) always one of the longest
subintervals is divided in two intervals of which one has the second length
occurring before the division. The first number in the sequence Sα is {α}, so
after adding this first number the interval

(
0, 1
)

is divided in two subintervals,
one of length α and one of length 1− α, where the latter is the longest in view
of our assumption that α < 1/2. So now this longest subinterval should be
divided in a part of length α (the second length) and a remaining part. Because
the second hit is {−α} = 1 − α this is indeed the case. The process continues
in the same way, each time reducing the length of the middle subinterval by
α, until the length of the middle subinterval becomes smaller than α. Now this
middle subinterval has length α− β, by definition of β.

At this point we have two different lengths: α and α− β. The situation is illus-
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0 {α} {2α} . . . {ν1α} {−ν2α} . . . {−2α} {−α} 1

-� -� -� -� -� -� -�
α α α α− β α α α

Figure 2.3: Halfway the first cycle: either ν1 = ν2 or ν1 = ν2 + 1.

trated by Figure 4.5. We now distinguish two cases.
If ν1 = ν2, then the next hit will be {(ν1 + 1)α}, dividing an interval of length
α in a part of length α − β (which was the second length) and a part of length
β (a new length). Now we have three different lengths and the sum of the two
smallest equals the largest, as required. The next hit now is {−(ν1 + 1)α} and
again this divides an interval of length α in a part of length α− β and a part of
length β. The partition process continues in this way as long as we are in the
first cycle.
If ν1 = ν2 + 1, then the next hit will be {−ν1α} and also in this case all intervals
of length α will successively be divided in a part of length α − β and a part of
length β.
Hence we conclude that the theorem is valid for the first cycle.

-Step 2- The next step in the induction argument is to show that if the theorem
holds in the first k cycles, then the theorem also holds in the next cycle. To
prove this we use the observations made before, which state that the behavior
of the partition process in each of the intervals

(
0, α

)
, . . . ,

(
(n1/2(α)− 1)α, n1/2(α)α

)
,
(
n1/2(α)α, 1− n1/2(α)α

)
,(

1− n1/2(α)α, 1− (n1/2(α)− 1)α
)
, . . . ,

(
1− α, 1

)
(2.19)

has after rescaling the same properties as the behavior in the entire interval(
0, 1
)
. From now on we will call these intervals elementary intervals.

32



2.2. A VARIATION ON THE THREE GAP THEOREM

A crucial remark is that all boundaries (except 0 and 1) of the elementary inter-
vals belong to the first cycle of Sα. This implies that (at any point in one of the
next cycles) the subintervals in which

(
0, 1
)

is divided can only intersect one of
the elementary intervals. This guarantees that to find all lengths of subintervals
in
(
0, 1
)
, it suffices to find all lengths in the elementary intervals.

For the elementary intervals we introduce the following abbreviations:

Ip :=
(
(p− 1)α, pα

)
, (2.20)

I−p :=
(
1− pα, 1− (p− 1)α

)
, (2.21)

where 1 ≤ p ≤ n1/2(α), p ∈ N. Recall that for the middle elementary interval
we already introduced the symbol Im. The sequence of hits in an elementary
interval I will be denoted by SIα. For example, SI

1

α is equal to the sequence (2.7).
Because these sequences are scaled and translated versions of Sα (possibly with
a different step size), we can also here introduce cycles. Every element of the
kth cycle of Sα is, for some I and l also an element of the lth cycle of SIα, where
l may be different from k. We are going to use these cycles later, but we do not
need to specify them explicitly.

Induction Hypothesis: Assume that for all α and some k ≥ 1 the theorem
holds as long as we are in one of the first k cycles of Sα.

Let 2nk(α) ≤ n < 2nk+1(α), implying that Sα(n + 1) is an element of the
(k + 1)th cycle of Sα. Consider the partition of

(
0, 1
)

in subintervals by the
first n terms of Sα. Denote the lengths of the subintervals by l1 > l2(> l3). To
prove that the theorem holds for the (k+ 1)th cycle, it suffices to show that the
following three requirements are satisfied:

Requirement 1: If Sα(n+ 1) is the very first hit in an elementary interval, then
it splits a subinterval of length l1 into subintervals of length l2 and l1− l2.

Requirement 2: If Sα(n + 1) ∈ I , where I is one of the elementary intervals,
then I contains a subinterval of length l1 just before Sα(n+ 1) is added.
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Requirement 3: If Sα(n + 1) is not the very first hit in an elementary interval,
denote the two largest lengths in this elementary interval by l̂1 > l̂2. Then
Sα(n + 1) splits a subinterval of length l̂1 into subintervals of length l̂2

and l̂1 − l̂2.

First we argue why it is sufficient that these three requirements hold and then
we check each of them in the substeps below.

The idea of the proof is to use the self-similar structure by applying the induc-
tion hypothesis to the elementary intervals. The theorem only gives an asser-
tion about the division in subintervals if we have already at least two lengths.
Hence, our induction hypothesis makes no statement about the very first hit
in an elementary interval. Therefore, in Substep 2.1 we start by checking that in
each of the elementary intervals the partition process starts in the right way, as
indicated by Requirement 1. Suppose I is the elementary interval containing
Sα(n + 1). Denote the lengths occurring in I just before adding Sα(n + 1) by
l̂1 > l̂2(> l̂3). Then the maximal length in I should equal the maximal length
in [0, 1]: l̂1 = l1, which is Requirement 2. Since all lengths in I are also lengths
in [0, 1], either l̂2 = l2 or l̂2 = l3. In both cases, splitting an interval of length l̂1
in two subintervals of lengths l̂2 and l̂1 − l̂2 (as is demanded in Requirement 3)
is the same as splitting an interval of length l1 in two subintervals of lengths
l2 and l1 − l2, since l3 = l1 − l2. We conclude that these three requirements are
sufficient to complete the proof. The induction hypothesis is only needed to
prove Requirement 3.

-Substep 2.1- All elementary intervals, except Im if L < α, get at least one hit in
the first cycle of Sα. So here we have no problems, because we already checked
that the theorem holds for the first cycle. Suppose that L < α and that Sα(n+1)

is the first value we hit in Im. Then Sα(n + 1) can be written as n1/2(α)α + x,
where x ∈ (0, L). In the same cycle the value x was already hit in (0, L). The
hit n1/2(α)α+ x splits Im in exactly the same way as x has divided (0, L). That
means, two subintervals are generated with lengths already occurring before
the division. The two new subintervals have lengths l2 and l3 = l1 − l2.
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-Substep 2.2- After each complete cycle of Sα, Im is partitioned in a symmetric
way. This implies that the longest subinterval occurring in Im is a subinterval
of
(
n1/2(α)α, (n1/2(α) + 1)α

)
. From this observation, combined with (2.10) and

(2.18) it follows that after each complete cycle all the intervals Ip,I−p, where
1 ≤ p ≤ n1/2(α), contain a subinterval which has the maximal length. Now
note that in each cycle the order in which the elementary intervals will get hits
is as follows (writing n1/2(α) as nα1/2 for typographical reasons):

I1, I−1, I2, I−2, . . . , In
α
1/2 , I−n

α
1/2︸ ︷︷ ︸

1st sequence

, Im, . . . , Im︸ ︷︷ ︸
2nd sequence

, I−n
α
1/2 , In

α
1/2 , . . . , I−2, I2, I−1, I1︸ ︷︷ ︸
3rd sequence

,

(2.22)
where the second sequence contains 0, 2 or 4 elements. Observe that the equiv-
alences

(
0, α

)
' . . . '

(
(n1/2(α)− 1)α, n1/2(α)α

) m' (2.23)(
1− n1/2(α)α, 1− (n1/2(α)− 1)α

)
' . . . '

(
1− α, 1

)
hold after the first sequence and after the second sequence. At the start of the
cycle, all elementary intervals in the first sequence contain a subinterval of the
maximal length. It follows that Requirement 2 is satisfied if Sα(n + 1) belongs
to the first sequence.

Now let us first check the third sequence. After the third sequence of hits a cycle
is completed, so then again all the intervals Ip,I−p, where 1 ≤ p ≤ n1/2(α), con-
tain a subinterval which has the maximal length. Just before the third sequence
the maximal subinterval in each of these elementary intervals was certainly not
smaller. Since (2.23) holds after the second sequence, those maximal subinter-
vals all had the same length, which shows that Requirement 2 is satisfied if
Sα(n+ 1) belongs to the third sequence.

The hits corresponding to the second sequence in (2.22) can only violate Re-
quirement 2 if the last of these hits does so. This last hit gives a value in(
n1/2(α)α, (n1/2(α) + 1)α

)
. After the third sequence the (k + 1)th cycle is com-
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plete and hence we have the equivalence

(
0, α

)
(nk+1(α)) '

(
n1/2(α)α, (n1/2(α) + 1)α

)
(nk+1(α)).

The third sequence gives only one hit in
(
0, α

)
. The distance between this hit

and the last hit of the second sequence is n1/2(α)α. It follows that the last hit
of the second sequence splits an interval in two subintervals in the exactly the
same way as the third sequence does in

(
0, α

)
. By equivalences and symmetry

the same holds for the other elementary intervals. Hence, Requirement 2 is also
satisfied if Sα(n+ 1) belongs to the second sequence.

-Substep 2.3- To check Requirement 3 we use our induction hypothesis. Suppose
Sα(n+ 1) is a hit in I , where I is one of the elementary intervals. If Sα(n+ 1) is
an element of one of the first k cycles of SIα, then by our induction hypothesis it
follows that Sα(n+ 1) divides an interval of length l̂1 in a part of length l̂2 and
a part of length l̂1 − l̂2, where l̂1 > l̂2(> l̂3) are the lengths of the subintervals
in I , and we are ready.

Suppose that the elementary interval I containing Sα(n + 1) has length not
larger than α. Then each cycle of Sα gives at most 2 hits in I . After k + 1 com-
plete cycles of Sα, we have recorded at most 2(k + 1) values in I . After k com-
plete cycles of SIα, we have at least 4k hits in I . Since 4k ≥ 2(k + 1), Sα(n + 1)

belongs to one of the first k cycles of SIα and Requirement 3 is satisfied by the
induction hypothesis.

Suppose that Sα(n + 1) ∈ Im and L > α (this is the only case where the ar-
gument from the previous paragraph fails). Note that from the definitions it
follows that L = 2α − β. In the first cycle of Sα we get 2 hits in Im. Each next
cycle of Sα gives either 2 or 4 hits in Im. After k + 1 complete cycles of Sα, we
have recorded at most 4k + 2 values in Im. After k complete cycles of SImα , we
have at least 4k hits in Im. It follows that if the (k + 1)th cycle of Sα gives two
hits in Im, then Sα(n + 1) belongs to one of the first k cycles of SImα and again
we use the induction hypothesis to conclude that Requirement 3 is satisfied.
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If the (k + 1)th cycle of Sα gives four hits in Im, denote the last two hits by x1

and x2. We can only have a problem when Sα(n+ 1) is equal to x1 or x2, since
otherwise Sα(n+1) belongs to one of the first k cycles of SImα . So we check if x1

and x2 split an interval according to Requirement 3. Note that x1 and x2 are in(
(n1/2(α) + 1)α, 1− n1/2(α)α

)
and

(
n1/2(α)α, 1− (n1/2(α) + 1)α

)
respectively.

These intervals have both length L− α = α − β. The distance between x2 and
the next hit x in

(
0, α − β

)
is a multiple of α and by (2.18) we know that at

the moment that x is reached in Sα, we have
(
n1/2(α)α, 1− (n1/2(α) + 1)α

)
'(

0, α − β
)
. Hence x2 splits

(
n1/2(α)α, 1 − (n1/2(α) + 1)α

)
in exactly the same

way as x splits
(
0, α − β

)
. Since x belongs to one of the first k cycles of SI

1

α ,
we already know that x gives the right splitting. Therefore Requirement 3 is
satisfied if x2 = Sα(n + 1). Using symmetry we see that Requirement 3 is also
satisfied when x1 = Sα(n+ 1), which completes the proof. �

2.3 A Four Gap Theorem

We are now in position to prove our main theorem, the ‘Four Gap Theorem’.

Theorem 2.2. (The Four Gap Theorem) Let α ∈ R \ Q and n ∈ N. Let ||x|| denote
the distance from x to the nearest integer. The numbers

||α||, ||2α||, ||3α||, . . . , ||nα|| (2.24)

divide the interval [0, 1
2 ] in subintervals of at least two and at most four different

lengths. For these lengths the following assertions hold:

1. The rightmost length, denoted by lr, is unique.

2. There are two different lengths if and only if n||α|| < 1
2 .

3. If we have three different lengths, denote the two lengths not equal to lr by l1 >
l2. Then exactly one of the following four equalities holds: 2lr = l1, 2lr = l2,
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2lr + l2 = l1 or l1 + l2 = 2lr.1

4. If we have four different lengths, denote the three lengths not equal to lr by
l1 > l2 > l3. Then l1 = l2 + l3 and one of these lengths is equal to twice lr.

Proof. It is not possible to have only one length occurring, since α is irrational.
Without loss of generality we assume that α ∈ [0, 1/2].

Observe that min{{x}, {−x}} ∈ [0, 1
2 ]. So if we look at the sequence

min
{
{α}, {−α}

}
,min

{
{2α}, {−2α}

}
,min

{
{3α}, {−3α}

}
, . . . (2.25)

we get a subsequence of the sequence Sα. A term of the sequence Sα is a term of
the sequence (2.25) if and only if it is in [0, 1

2 ]. Consequently, by Theorem 2.1, the
first n terms of the sequence (2.25) divide the interval [0, 1

2 ] in subintervals of
at least two and at most four different lengths. We possibly get a fourth length
because the partition of [0, 1] (which gave three lengths) is now truncated at 1

2 .
Since

min
{
{nα}, {−nα}

}
= ||nα||, (2.26)

the numbers in (2.24) divide [0, 1
2 ] in subintervals of at least two and at most

four different lengths.

We now turn our attention to the four assertions about the lengths. If the right-
most length is not unique, then there exist integers 0 ≤ k, l,m ≤ n, l 6= m such
that

1

2
− ||kα|| = ||lα|| − ||mα||, (2.27)

which implies that 1
2 is the sum of a multiple of α and an integer, contradicting

the irrationality of α. Hence, the rightmost length lr is unique.

If n||α|| < 1
2 , then the only lengths are ||α|| and lr, so we have only two dif-

ferent lengths. For the opposite implication, assume that we have only two
different lengths. The leftmost interval has length min1≤k≤n ||kα||. It follows

1For all four possibilities we found an example.
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2.3. A FOUR GAP THEOREM

that the numbers ||α||, . . . , ||nα|| are all multiples of min1≤k≤n ||kα||. From the
irrationality of α we conclude that min1≤k≤n ||kα|| = ||α|| and ||nα|| = n||α||,
which is only possible if n||α|| < 1

2 .

Consider the partition of [0, 1] by the numbers

{α} , {−α} , {2α} , {−2α} , . . . , {nα} , {−nα} . (2.28)

This partition is symmetric with respect to 1
2 . The subintervals in which [0, 1] is

divided by these numbers, have either two or three different lengths, according
to Theorem 2.1. We check what happens in both cases. If we have two differ-
ent lengths and after truncating the partition of [0, 1] at 1

2 have three different
lengths, then either 2lr = l1 or 2lr = l2. If we have three different lengths and
after truncating the partition at 1

2 again have three different lengths, then either
2lr + l2 = l1 or l1 + l2 = 2lr.

The last assertion of the Four Gap Theorem follows immediately from Theorem
2.1 and the observations made before. �
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Chapter 3

Polygons in billiard orbits

3.1 Introduction

Let a billiard ball be shot from a corner of a rectangular billiard. Consider the
ball as a point, and truncate the orbit somewhere at the boundary. The trun-
cated orbit of the ball generates a partition of the rectangular billiard into poly-
gons, similar to Figure 3.1. Many of these triangles and quadrangles seem to
have the same shape and size. In this chapter we will show that (for a fixed
shooting angle and stopping point) the number of different areas is at most
thirteen. This universal upper bound is the sharpest possible. We also consider
rational shooting angles and irrational shooting angles for which the thirteen
is never reached.

There is an extensive literature on billiard problems. Some introductory mate-
rial can be found in [1, 5, 19], while [2] is a recent publication.
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3. POLYGONS IN BILLIARD ORBITS
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Figure 3.1: Truncated orbit of a billiard ball. The arrows indicate start and end of the
orbit.

3.2 Rotations

The results in this chapter are closely related to the Three Gap Theorem (see
e.g. [26], [24]) and the Four Gap Theorem (see [11]). The statements of these
two theorems are best illustrated by a picture; see Figure 3.2.

The Three Gap Theorem is naturally associated to the concept of rotations. First
we recall the theorem and then we discuss rotations on intervals. For x ∈ R, let
{x} = x− bxc denote its fractional part.
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Figure 3.2: Left figure, the Three Gap Theorem: Cutting a pie n times where each next
cut is obtained by shifting the previous one over a fixed angle α gives at most three
different sizes of pieces of the pie. Right figure, the Four Gap Theorem: Now the first
cut (at 0) works as a ‘reflecting boundary’. As soon as it is reached, we continue in the
opposite direction. In this case we have after n cuts at most four different sizes. For this
picture we used α = 0.1405 ∗ 2π and n = 17.

Theorem 3.1. (The Three Gap Theorem) Let n ∈ N and α ∈ (0, 1). The numbers

0, {α} , {2α} , {3α} , . . . , {nα} (3.1)

induce a partition of the interval [0, 1] in subintervals which can have at most three
different lengths. If there are three lengths, then the largest is the sum of the other two.

Letting Tα(x) = {x+ α} for x ∈ [0, 1], the numbers (3.1) transform into

0, Tα(0), T 2
α(0), . . . , Tnα (0). (3.2)

If we consider x as a point on the circle of unit circumference, then Tα(x) is ob-
tained by rotating x over a distance α. This gives a more dynamical view of the
partition of [0, 1]: the partition is induced by a truncated orbit of the rotation
map Tα. These observations lead to the following generalization of the Three
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3. POLYGONS IN BILLIARD ORBITS

Gap Theorem:

Property 3.1. Let n1, n2 ∈ N, α ∈ (0, 1) and a, b ∈ R. The n1 + n2 + 1 numbers

aT−n1
α (0) + b, . . . , aT−1

α (0) + b, b , aTα(0) + b, . . . , aTn2
α (0) + b (3.3)

induce a partition of [b, b+ a] in subintervals having at most three different lengths.

This can easily be obtained by taking n = n1 + n2 in (3.2), rotating over an
appropriate angle and applying the affine map a · +b to the orbit. Actually, a
special case of this property already appeared as a theorem in [11]. However,
there a complicated proof was given to obtain this result. Vilmos Komornik
came up with the idea to place the numbers on the circle, thus obtaining a
much simplified and more natural argument [16]. In the sequel we will refer to
(3.3) as a rotation orbit on [b, b+ a].

There is a slightly stronger property we will need in Remark 3.1 (see e.g. [11]
and [24]):

Property 3.2. Take a truncated orbit of a rotation on an interval. Suppose the orbit
consists of n numbers. Create another orbit from this by removing the last number. The
two partitions induced by these orbits give two sets of lengths. The union of these two
sets contains at most three different lengths.

3.3 Billiards and the Four Gap Theorem

The billiard in Figure 3.1 can be seen as a generalization to two dimensions of
the pie-cutting process of the Four Gap Theorem, as illustrated in Figure 3.2.
This statement deserves some explanation. Figure 3.3, a picture in some sense
equivalent to the right panel of Figure 3.2, gives a description of the Four Gap
Theorem in terms of a ball bouncing on the unit interval.
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Figure 3.3: A ball bouncing on an interval between two walls. The Four Gap Theorem
makes a statement about the subset of the interval consisting of the landing points of
the ball. We used 0.1405 times the length of the interval as bouncing distance.

This figure shows the movement of a ball bouncing between two walls, where
we assume that the ball is a point and that there is no loss of energy. The land-
ing points of the ball build a sequence in the interval. The first n numbers in
this sequence (0 included) define a splitting of the interval in n subintervals.
The main statement of the Four Gap Theorem is that these subintervals can
have at most four different lengths. In Figure 3.1 we now have a subset of a
square, consisting of those points where the billiard ball appears. This obser-
vation gives already some reason to consider the billiard as a 2-dimensional
generalization of the pie of the Four Gap Theorem. However, we can also ar-
gue this point of view in a more mathematical way.

Let ||x|| denote the distance from x to the nearest integer. For α ∈ R \Q, let

Sα := (||kα||)∞k=0.

Obviously this is a sequence in [0, 1
2 ]. Moreover, it is exactly the sequence of

landing points of a ball bouncing between 0 and 1
2 with horizontal bouncing

distance α. The sequence Sα is obtained by ‘folding’ the sequence of integer
multiples of α into the interval [0, 1

2 ]. What we mean by this folding is illus-
trated in Figure 3.4, where we plot the function f1 : [0,∞)→ [0, 1

2 ]

f1(x) := ||x||,

45



3. POLYGONS IN BILLIARD ORBITS

and illustrate how [0,∞) is mapped to [0, 1
2 ] by f1.

0 0.5 1 1.5 2 2.5 3
0

0.5

Figure 3.4: Plot of the folding map f1(x) = ||x||.

Now we concentrate on the billiard: the orbit of the billiard ball is obtained
by ‘folding’ a halfline into a rectangle. Since the shooting angle is arbitrary
between 0 and π/2, we may without loss of generality assume that instead
of a rectangle the billiard is a square and equal to [0, 1

2 ]2. The ‘folding’ map
corresponding to this billiard is given by a two-variable function f2 : [0,∞)2 →
[0, 1

2 ]2:
f2(x, y) = (||x||, ||y||).

As we see, f2(x, y) = (f1(x), f1(y)), which is why the billiard can be viewed as
being a generalization of the setting of the Four Gap Theorem to two dimen-
sions. The folding map f2 applied to a line creates a billiard orbit. Let α > 0,
then

Bα[0,M ] := {(||x||, ||αx||) : x ∈ [0,M ]}

describes a truncated billiard orbit that has initial slope α (the slope alternates
between α and −α). LetAα[0,M ] and Sα[0,M ] denote the number of different areas
respectively different shapes in the partition of [0, 1

2 ]2 induced by Bα[0,M ]. Two
shapes are different if one can not be obtained from the other by translating,
rotating and reflecting. For orbits truncated in a boundary point, we will prove
the following theorem:

Theorem 3.2. Let α > 0 and choose M > 0 such that (||M ||, ||αM ||) ∈ [0, 1
2 ]2 \

(0, 1
2 )2. Then the billiard orbit Bα[0,M ] induces a partition of [0, 1

2 ]2 in polygons for
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3.4. ORBIT CONSTRUCTION

which
Aα[0,M ] ≤ 13 and Sα[0,M ] ≤ 16.

These upper bounds are the best possible.

In this theorem the billiard is square, but the result for rectangular billiards
easily follows since the square can be scaled to any rectangle without changing
the ratios between the shapes. From now on, we will assume that M satisfies
the condition in the theorem.

3.4 Orbit construction

We already have an explicit expression for the billiard orbit Bα[0,M ], but we will
need a more tractable description. Therefore, in this section we present a rough
intuitive outline of the way one can think of the geometry and construction of
the billiard. The corresponding lemmata and their proofs are given in Section
3.5. Consider the unit square and draw a line starting from the lower left corner
with slope α. The boundaries are now considered to be connected as in a torus,
so when we reach it, the line continues at the opposite boundary. Equivalently,
if one of the coordinates is about to exceed 1, we subtract 1. But this is exactly
taking fractional parts in both coordinates. Therefore, after we have traversed
the unit square N times, we have a set which can be expressed as

{({x} , {αx}) : 0 ≤ x < M} ,

for some M ∈ R. A plot of such a set is shown in the left panel of Figure 3.5.

Now do the same starting from the other corners, traversing the squareN times
with a line either with slope α or −α. Explicit expressions for these four sets
(one for each corner) are given in Lemma 3.2. For an illustration, see the middle
plot in Figure 3.5.

The key observation now is that intersection of all 4N lines with [0, 1
2 ]2 gives
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Figure 3.5: Construction of a billiard orbit in three steps. Here N = 4 and α =
√

3− 1.

exactly a truncated billiard orbit with slope α, as is proved in Lemma 3.4. This
fact is illustrated in the right plot in Figure 3.5. Obviously not all 4N lines actu-
ally contribute to the billiard orbit. However, there is a good reason to consider
them all: the intercepts of the 2N lines with positive slope form a truncated
orbit of a rotation on the interval [−α, 1], see Lemma 3.3. For the lines with
negative slope a similar result holds. Having collected these insights, a simple
counting argument suffices to obtain the upper bounds claimed in Theorem
3.2, see Section 3.6.

3.5 Lemmata and their proofs

Let α > 0 be an irrational number and consider the halfline l(x) = αx, x ≥ 0.
Let S1 = [0, 1)2 and define S2, S3, S4, . . . to be the squares of the form [k, k +

1)× [m,m+ 1), with k and m integers, that are consecutively traversed by the
halfline, see Figure 3.6. Choosing an index N , there exists M ∈ R such that

N⋃
k=1

Sk ∩ {(x, αx) : x ≥ 0} = {(x, αx) : 0 ≤ x < M} .

Taking fractional parts in both coordinates can be seen as mapping each of the
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Figure 3.6: Construction of the squares Sk. Here α =
√

3 − 1, N = 8 and M = 5.
The numbers yk are approximately given by y0 = 0, y1 ≈ 0.732, y2 ≈ −0.268, y3 ≈
0.464,. . . Compare with Figure 3.5, left plot.

squares Sk to [0, 1)2. Therefore, doing this for the above set gives

{({x} , {αx}) : 0 ≤ x < M} = [0, 1)2 ∩
N⋃
k=1

{(x, αx+ yk) : x ∈ R} (3.4)

for numbers yk defined by the recursion

y1 = 0,

yk+1 =

{
yk + α if yk < 1− α,
yk − 1 if yk > 1− α.

(3.5)

We will denote the set in (3.4) by A++. The ++ superscript reflects the fact that
we started with a halfline in the first quadrant, so both coordinates are positive.
Doing similar operations to halflines in the second, third and fourth quadrant,
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3. POLYGONS IN BILLIARD ORBITS

we can define sets A−+, A−− and A+− respectively as follows:

A−+ = {(1− {x} , {αx}) : 0 ≤ x < M} ,
A−− = {(1− {x} , 1− {αx}) : 0 ≤ x < M} ,
A+− = {({x} , 1− {αx}) : 0 ≤ x < M} .

Taking the union of these four sets and intersecting with [0, 1
2 ] gives us a bil-

liard orbit, as is proved in the lemma below.

Lemma 3.1. The billiard orbit Bα[0,M) satisfies

Bα[0,M) =
⋃

u,v∈{+,−}
Auv ∩ [0,

1

2
]2.

Proof. Observe that

(||x||, ||αx||) =
(

min
{
{x} , 1− {x}

}
,min

{
{αx} , 1− {αx}

})
= [0,

1

2
]2 ∩

⋃
a∈{{x},1−{x}}

⋃
b∈{{αx},1−{αx}}

(a, b),

and now take the union over all x ∈ [0,M). �

In the next lemma expressions similar to (3.4) are derived for A−+, A−− and
A+−.
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Lemma 3.2. Let y−k = 1− α− yk for k = 1, 2, . . . , N . Then

A−+ = (0, 1]× [0, 1) ∩
N⋃
k=1

{(x,−αx+ 1− y−k) : x ∈ R} ,

A−− = (0, 1]2 ∩
N⋃
k=1

{(x, αx+ y−k) : x ∈ R} ,

A+− = [0, 1)× (0, 1] ∩
N⋃
k=1

{(x,−αx+ 1− yk) : x ∈ R} ,

Proof. Define the functions f, g, h : R2 → R2 by f((x, y)) = (1−x, y), g((x, y)) =

(1−x, 1−y) and h((x, y)) = (x, 1−y). Applying these functions to the left hand
side of (3.4), we get f(A++) = A−+, g(A++) = A−− and h(A++) = A+−. On
the other hand,

f({(x, αx+ yk) : x ∈ R}) = {(1− x, αx+ yk) : x ∈ R}
= {(x, α(1− x) + yk) : x ∈ R}
= {(x,−αx+ 1− y−k) : x ∈ R} ,

whence application of f to the right hand side of (3.4) leads to

f
(

[0, 1)2 ∩
N⋃
k=1

{(x, αx+ yk) : x ∈ R}
)

= f
(

[0, 1)2
)
∩ f
( N⋃
k=1

{(x, αx+ yk) : x ∈ R}
)

= (0, 1]× [0, 1) ∩
N⋃
k=1

f
(
{(x, αx+ yk) : x ∈ R}

)
= (0, 1]× [0, 1) ∩

N⋃
k=1

{(x,−αx+ 1− y−k) : x ∈ R} ,
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so for A−+ we established the equality claimed in the lemma. The other two
equalities for A−− and A+− follow from a similar reasoning since

g({(x, αx+ yk) : x ∈ R}) = {(1− x, 1− αx− yk) : x ∈ R}
= {(x, 1− α(1− x)− yk) : x ∈ R}
= {(x, αx+ y−k) : x ∈ R} ,

and

h({(x, αx+ yk) : x ∈ R}) = {(x, 1− αx− yk) : x ∈ R} .

�

The numbers yk and y−k satisfy a nice relation, as is shown in the following
lemma.

Lemma 3.3. Let y0 = −α. Then the numbers y−N , . . . , yN form a rotation orbit on
the interval [−α, 1]. They are given by

yk = (1 + α)

{
kα

1 + α

}
− α for −N ≤ k ≤ N. (3.6)

Proof. The recursion (3.5) can be rewritten as

yk+1 = (yk + 2α mod(1 + α))− α,

and therefore

yk+1 + α

1 + α
=
yk + 2α

1 + α
mod 1 =

{
yk + 2α

1 + α

}
,

Letting ỹk = yk+α
1+α , k = −N, . . . , N and α̃ = α

1+α , this reduces to

ỹk+1 = {ỹk + α̃} .
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Since y1 = 0, we have ỹ1 = α̃, which leads to

ỹk = {kα̃} for k ≥ 1.

On the other hand, for k ≥ 1,

ỹ−k =
y−k + α

1 + α
=

1− α− yk + α

1 + α
=

1 + α

1 + α
− yk + α

1 + α
= 1− ỹk = 1− {kα̃} = {−kα̃} ,

since α̃ is irrational. By definition we have ỹ0 = 0, and hence

ỹk = {kα̃} for −N ≤ k ≤ N.

Solving for yk gives the result. �

In Lemma 3.1 we already derived an expression for Bα[0,M), but this is not so
easy to analyze directly. In the next lemma we describe Bα[0,M ] as the union of
two collections of lines intersected with [0, 1

2 ]2. All lines in the first collection
have slope α and all lines in the second collection have slope −α.

Lemma 3.4. Let l+k (x) = αx+ yk and l−k (x) = −αx+ 1− yk. Then

Bα[0,M ] = [0,
1

2
]2 ∩

⋃
u∈{+,−}

N⋃
k=−N

{(x, luk (x) : x ∈ R)}

Proof. This lemma will be proved by taking closures in the equation in Lemma
3.1.

Bα[0,M) = Bα[0,M ],

since x 7→ (||x||, ||αx||) is a continuous function from R to R2. On the other
hand,

[0,
1

2
]2 ∩

⋃
u,v∈{+,−}

Auv = [0,
1

2
]2 ∩

⋃
u,v∈{+,−}

Auv,
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and since Auv is a finite collection of lines intersected by a ‘half open’ unit
square its closure is the same collection of lines but now intersected by the
closed square [0, 1]2. Therefore,

A++ ∪A−− = [0, 1]2 ∩
N⋃

k = −N
k 6= 0

{
(x, l+k (x)) : x ∈ R

}
(3.7)

Now note that since l+0 (x) = αx− α we have

[0,
1

2
]2 ∩

{
(x, l+0 (x)) : x ∈ R

}
= ∅.

Intersecting both sides of (3.7) with [0, 1
2 ]2 gives

[0,
1

2
]2 ∩

(
A++ ∪A−−

)
= [0,

1

2
]2 ∩

N⋃
k=−N

{
(x, l+k (x)) : x ∈ R

}
(3.8)

Analogously it follows that

[0,
1

2
]2 ∩

(
A+− ∪A−+

)
= [0,

1

2
]2 ∩

N⋃
k=−N

{
(x, l−k (x)) : x ∈ R

}
(3.9)

Combination of the last two equations gives the result. �

3.6 Proof of Theorem 3.2

Lemma 3.4 writes the billiard orbit as an intersection of the square [0, 1
2 ]2 with

a set of lines. Let us concentrate on the lines with positive slope. By Lemma 3.3
the intercepts of these lines form a rotation orbit on the interval [−α, 1]. So by
Property 3.1 they induce a partition of this interval in subintervals of at most
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three different lengths. Denote the set of these lengths by D := {d1, . . . , dn},
where n ≤ 3. For the lines with negative slope, the intercepts are the numbers
1 − yk, −N ≤ k ≤ N . They induce a partition of [0, 1 + α] in subintervals
having lengths in the same setD. It now follows that vertical distances between
adjacent parallel lines are in the set D.

P1

P2

P3

d1

d2

d2

d2

d3

Figure 3.7: Local situation at the boundary where the orbit ends. Polygons of type 2 are
triangular if the endpoint of the orbit is not one of the corners of the polygon (as is the
case with P1). There are only two shapes for which the endpoint of the orbit is one of
the corners. One of them is still triangular (in this example P3), the other is irregular
(P2).

We will distinguish between three types of polygons: those that have no side
which is part of the boundary of [0, 1

2 ]2 (type 1), those that have exactly one
such a side (type 2) and those that have two or more (type 3).

The polygons of type 1 must be parallelograms. The area of such a parallelo-
gram is given by didj/2α for some di, dj ∈ D, and consequently they can have
at most six different areas.

A polygon of type 2 that is triangular must be half of a rhombus of which the
vertical diagonal has length d ∈ D, and therefore its area is d2/4a. There is
at most one non-triangular type 2 polygon, as is explained in Figure 3.7. So
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3. POLYGONS IN BILLIARD ORBITS

polygons of type 2 can have at most four different areas.

Polygons of type 3 must be in one of the corners of [0, 1
2 ]2, but not in (0, 0) since

the orbit starts there. So this gives at most three more areas.

Putting everything together, it turns out that the number of different areas is
bounded by thirteen.

For the number of shapes a similar counting argument holds. The number of
parallelogram shapes is again six, since reflections do not count. The triangles
that are half of a rhombus can have at most six different shapes, since there are
three types of rhombi which can be cut either horizontally or vertically. The
rest of the argument doesn’t change, so there are at most three more differ-
ent shapes than different areas, which establishes the upper bound of at most
sixteen different shapes.

The sharpness of these bounds follows from Example 3.1 in section 3.7. �

Remark 3.1. As the careful reader may have noted, the construction of the
billiard orbit always gives a truncation on the left boundary or on the lower
boundary of the square. So strictly speaking, Theorem 3.2 is not proved in
full generality yet. Suppose we have an orbit truncated at the upper or right
boundary. By removing the last linear part or adding the next linear part, we
can transform this orbit into an orbit truncated at the left or lower boundary.
This means that in the proof above, the rotation orbit on the interval [−α, 1]

contains one element more or one less than the rotation orbit on [0, 1 +α]. Now
Property 3.2 tells us that vertical distances between adjacent parallel lines can
still have at most three different values, completing the proof.
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3.7 Sharpness of the bounds

In this section we present an example in which the upper bounds of Theorem
3.2 are reached. This proves sharpness of the bounds.

y−11 −

y−8 −

y−5 −

y−2 −

y1 = 0

y2 −

y5 −

y8 −

y11 −

0.5

I

II

III

IV

V

V I

V II

V III

IX

X

XI

XII

XIII

V IIa
V IIIa

IXa

d1

d2

d3

Figure 3.8: Thirteen different areas, sixteen different shapes.

Example 3.1. Let α =
√

10
7 and choose N = 11. The corresponding orbit is

shown in Figure 3.8. Use Lemma 3.3 to find the numbers yk and let

d1 = y−2 − y1 ≈ 0.0965, d2 = y11 − y−2 ≈ 0.0658, d3 = y−5 − y11 ≈ 0.0307

denote the three different vertical distances between adjacent parallel lines. The
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3. POLYGONS IN BILLIARD ORBITS

areas of the shapes are of the following form:

Shapes I, II, III, IV, V, V I : didj/2α, i ≤ j ∈ {1, 2, 3}
Shapes V II, V III, IX : d2

i /4α, i ∈ {1, 2, 3}
Shape X : d3d1/2α− d2

3/4α

Shapes XI, XII, XIII : d2
i /8α, i ∈ {1, 2, 3}

(3.10)

Calculating these thirteen areas indeed gives thirteen different values, where
a precision of two decimals suffices. The flakes V II , V III and IX have the
same areas as V IIa, V IIIa and IXa respectively, so the maximal number of
sixteen different shapes is also reached. We checked the calculations by using
the outcomes to determine the area of [0, 1

2 ]2.

�

3.8 Rational angles and a golden exception

Theorem 3.2 gives an upper bound for the number of different areas of shapes
on the billiard table. Some natural questions remain. For example, what hap-
pens if α is rational? Can we prove sharper upper bounds under suitable con-
ditions? In this section we explore these properties.

Obviously, taking α rational gives a special case. The first thing to note is that
the orbit will be periodic: if α = p/q, then for x ∈ R

(||x+ q||, ||α(x+ q)||) = (||x||, ||αx||).

A bit less trivial is the following result.

Proposition 3.1. The best upper bound forAα[0,M ] with α ∈ Q is 13, but for all α ∈ Q
there is an M0 such that 1 ≤ Aα[0,M ] ≤ 3 for M ≥M0. These bounds are sharp.

Proof. Note that the areas of the polygons continuously depend on α. So if we

58



3.8. RATIONAL ANGLES AND A GOLDEN EXCEPTION

have an α̃ and M such that Aα̃[0,M ] = 13, then we can find ε > 0 such that the
upper bound of thirteen is reached for all α ∈ (α̃− ε, α̃+ ε). Since this interval
contains rationals, we see that rationality is not sufficient for a sharper upper
bound.

Since the orbit is periodic, the partition doesn’t change anymore if M is large
enough. Taking α = 1 shows that 1 is a sharp lower bound for the limiting
number of shapes. For the upper bound, suppose that α = p/q. By Lemma 3.3
the intercepts satisfy

yp+q =
(

1 +
p

q

){ (p+ q)p/q

1 + p/q

}
− p

q
= −p

q
= y0.

It follows that the numbers yk form a periodic rotation orbit on [−α, 1] and
therefore the set D as defined in the proof of Theorem 3.2 contains only one
length ifM is large enough. If p and q are relative prime, then this length is 1/q.
Now a type 1 polygon is a rhombus with area 1/2pq. Since there is no endpoint
of the orbit anymore, a type 2 polygon is half of such a rhombus. Polygons in
the corners are also triangular, because the orbit touches all sides of the square
before becoming periodic. These triangles are quarters of the rhombus, thus
having area 1/8pq. This makes at most three different areas in total. To see that
this upper bound is sharp, see Figure 3.9. �

Surprisingly, there exist irrational α for which the upper bound of thirteen dif-
ferent areas is never reached:

Proposition 3.2. Let φ = (
√

5− 1)/2 denote the small golden mean. If α = 1
n+φ for

some n ∈ N, then Aα[0,M ] ≤ 12.

Proof. Consider the numbers yk that form a rotation orbit on [−α, 1]. The par-
tition of [−α, 1] induced by this orbit gives subintervals with lengths in a set
D. This set D changes if we extend the orbit (i.e. we increase M ): some lengths
will disappear and new lengths will be created. In [11] and [24] it was shown
that the largest length is always the first to disappear. A new length only pops
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3. POLYGONS IN BILLIARD ORBITS

1
5

Figure 3.9: The periodic orbit for α = 3/5. There are three different areas: the rhombi
have area 1/(2 · 3 · 5) = 1/30. The triangles have area 1/60 or 1/120.

up if there are only two lengths in D, and the new length is the difference of
these two existing lengths. Together with the fact that 1 − φ = φ2, this is the
basis of our argument.

Let α = 1/(n+φ). From the way points are added to the rotation orbit it is clear
that we can choose M such that [−α, 1] will be partitioned in n+ 1 intervals of
length α and an interval of length 1+α−(n+1)α = φα. This givesD = {α, φα}.
Extending the orbit with one more point transforms D into

{
α, φα, φ2α

}
and

this is the first time that D contains three lengths. Increasing M further, D will
change into

{
φα, φ2α

}
and then into

{
φα, φ2α, φ3α

}
. An inductive argument

suffices to show that the ratios between the lengths in D are preserved.

Recall that the areas of the parallelograms are determined by a product of two
lengths inD. By the above reasoning, ifD = {d1, d2, d3}, then d1d3 = d2

2, which
implies that the parallelograms can have at most five different areas. Conse-
quently Aα[0,M ] ≤ 12. �
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Chapter 4

Correlated fractal percolation
and the Palis conjecture

4.1 Introduction

In this chapter we consider a natural class (called correlated fractal percola-
tion) of random Cantor sets with dependence, as opposed to the independent
case, which is know as fractal percolation or Mandelbrot percolation. Two- and
three-dimensional versions of both types of sets have occurred before in the lit-
erature, especially as a modeling tool, see e.g., [27], where the dependent case
is called the ‘homogeneous algorithm’, and the independent case the ‘hetero-
geneous algorithm’ (See Figure 4.1 Left, respectively Right for an illustration
of these two processes by two realizations). In [21] they are called ‘constrained
curdling’, respectively ‘canonical curdling’. All this work has its roots in the
seminal paper [20].

Our main goal is to answer the question whether or not an interval occurs
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4. CORRELATED FRACTAL PERCOLATION AND PALIS’ CONJECTURE

in the algebraic difference of two independent random Cantor sets from the
correlated fractal percolation class. A complete answer is given in Theorem 4.3
in Section 4.5.

We also call correlated fractal percolation m out of M percolation (cf. Subsec-
tion 4.2.2), where m is an integer with 1 ≤ m ≤ M . It will appear that the
transition from no interval to interval lies at values of m ≈

√
M . The combi-

natorial Lemma 4.6 lies at the basis for a solution of all cases, except the case
m =

√
M + 1, which is a tough nut to crack (Lemma 4.7).

The key idea to obtain these results is that we introduce a new condition on
the survival distributions, which improves on the condition given in [8]. As a
bonus, this gives a more general and more simple proof of the basic theorem
(Theorem 4.2). It is more simple since we do not need the combinatorial ‘color
lemma’ of [10] and [8], nor the irreducibility condition of [8].

2MICHELDEKKINGANDHENKDON

setsfromthecorrelatedfractalpercolationclass.Acompleteansweris
giveninTheorem3inSection5.
WealsocallcorrelatedfractalpercolationmoutofMpercolation(cf.
Subsection2.2),wheremisanintegerwith1≤m≤M.Itwillappear
thatthetransitionfromnointervaltointervalliesatvaluesofm≈ √
M.ThecombinatorialLemma6liesatthebasisforasolutionof

allcases,exceptthecasem=
√
M+1,whichisatoughnuttocrack

(Lemma7).

Figure1
Right:8outof9correlatedfractalpercolationwithp=8/9.

Left:

2.DifferencesofrandomCantorsets

HerewewillintroduceM-adicrandomCantorsetsandtheirdiffer-
ences,andthemainresult(Theorem1)from[2]regardingthePalis
conjecture,witharoughsketchoftheproof.Finallywedescribehigher
orderCantorsetswhichareparticularlyusefultoobtainamorecom-
pletecharacterizationfromTheorem1.

Figure 4.1: Left: Two-dimensional 7 out of 9 correlated fractal percolation with µ(∅) = 0.
Middle: Two-dimensional 8 out of 9 correlated fractal percolation with µ(∅) = 1

8
. Right:

Ordinary two-dimensional fractal percolation with p = 7/9.
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4.2 Differences of random Cantor sets

Here we will introduce M -adic random Cantor sets and their differences, and
the main result (Theorem 4.1) from [8] regarding the Palis conjecture, with a
rough sketch of the proof. Finally we describe higher order Cantor sets which
are particularly useful to obtain a more complete characterization from Theo-
rem 4.1.

4.2.1 M−adic random Cantor sets

An M−adic random Cantor set F is constructed using the following mecha-
nism: take the unit interval and divide it into M subintervals of equal length.
Each of those subintervals corresponds to a letter in the alphabet

A = {0, . . . ,M − 1} .

It will be convenient to consider A as an Abelian group with addition. So for
instance if M = 6 we have 5 + 3 = 2. Now define a joint survival measure µ on
22A

. It is determined by its values (µ(A)) on the singletons A ⊂ A. According
to this distribution we choose which subintervals are kept and which are dis-
carded. Then in each next construction step, each of the surviving subintervals
is again divided in M subintervals of equal length, of which a subset survives
according to the distribution µ.

More formally, we consider the space of {0, 1}-labeled M -adic trees {0, 1}T ,
where we label each node i1 . . . in ∈ T with Xi1...in ∈ {0, 1}. The root of T is
denoted by ∅.

The probability measure Pµ on this space is defined by letting Pµ (X∅ = 1) = 1,
and requiring that for all i1 . . . in ∈ T the random sets

{
in+1 ∈ A : Xi1...inin+1

= 1
}
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4. CORRELATED FRACTAL PERCOLATION AND PALIS’ CONJECTURE

are independent and identically distributed according to µ. We let Tn denote
the set of nodes at level n, and for any in = i1 . . . in from Tn we define the
associated M -adic interval by

Ii1...in :=

[
i1
M

+ · · ·+ in−1

Mn−1
+

in
Mn

,
i1
M

+ · · ·+ in−1

Mn−1
+
in + 1

Mn

]
.

The n-th level approximation Fn of the random Cantor set is a union of such
n-th level M -adic intervals selected by the sets Sn defined by

Sn = {i1 . . . in : Xi1 = Xi1i2 = · · · = Xi1...in = 1}.

The random Cantor set F is

F =

∞⋂
n=1

Fn =

∞⋂
n=1

⋃
i1...in∈Sn

Ii1...in .

The marginal probabilities pi of µ are defined for i ∈ A by

pi :=
∑

X⊆A:i∈X
µ(X). (4.1)

We start with the definition of the class of random Cantor sets which we will
take into consideration.

4.2.2 Correlated fractal percolation

From now on we will consider one-dimensional fractal percolation.

Definition 4.1. Suppose µ assigns the same positive probability to all subsets of A
with m elements for some fixed integer 1 ≤ m ≤ M , and that µ assigns probabil-
ity zero to all other non-empty subsets of A. If p := (1 − µ(∅))mM then we call this
(m,M, p)-percolation.
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4.2. DIFFERENCES OF RANDOM CANTOR SETS

We can compute the marginal probabilities of (m,M, p)-percolation as follows.
Let X be a subset of A, chosen according to the joint survival distribution µ.
The probability that X is non-empty is 1 − µ(∅). Given that X is non-empty,
the probability that a fixed k ∈ A belongs to X equals m/M . It follows that for
k ∈ A the marginal probability pk is given by

pk = (1− µ(∅))m
M

= p,

which is exactly the reason why we defined (m,M, p)-percolation by requiring
that p = (1 − µ(∅))m/M . Because 0 ≤ µ(∅) ≤ 1, (m,M, p)-percolation is only
defined for 0 ≤ p ≤ m

M . From now on we will assume that p > 0 and m > 0,
since giving the empty set probability one does not yield the most exciting
situation.

4.2.3 Algebraic differences of sets

The algebraic difference F1 − F2 of the sets F1 and F2 is defined by

F1 − F2 = {x− y : x ∈ F1, y ∈ F2}.

The well known Palis conjecture ([23]) states that ‘generically’ dimH(F1) +

dimH(F2) > 1 should imply that the algebraic difference F1 − F2 will contain
an interval.

This question is considered in [10] and [8] for two M -adic random Cantor sets
F1 and F2 with the same M but not necessarily the same joint survival distri-
bution.
One can distinguish between joint survival distributions selecting intervals in-
dependently and joint survival distributions not having this property. In the
independent case, the problem is somewhat less complicated, but still far from
trivial. Intervals are selected and discarded independently if and only if the

65



4. CORRELATED FRACTAL PERCOLATION AND PALIS’ CONJECTURE

joint survival distribution satisfies for all X ⊆ A the equality

µ(X) =
∏
i∈X

pi
∏
i6∈X

(1− pi). (4.2)

An important role in the answer to the main question is played by the cyclic
cross-correlation coefficients (mostly simply called correlation coefficients)

γk :=

M−1∑
i=0

qipi+k, for k ∈ A,

where (pi) and (qi) are the vectors of marginal probabilities of the joint survival
distributions µ, respectively λ.

The result of [8] needs the following condition (which is satisfied in the inde-
pendent case of Equation (4.2)).

Condition 4.1. A joint survival distribution (µ(A))A⊆A satisfies the joint survival
condition (JSC) if it assigns positive probability to the marginal support Suppm(µ)

of µ, which is defined by

Suppm(µ) :=
⋃
{X ⊆ A : µ(X) > 0} = {i ∈ A : pi > 0}.

The following result of [8] generalizes the main theorem of [10].

Theorem 4.1. Consider two independent random Cantor sets F1 and F2 whose joint
survival distributions µ and λ both satisfy Condition 4.1, the (JSC).

1. If γk > 1 for all k ∈ A, then F1−F2 contains an interval a.s. on {F1 − F2 6= ∅}.

2. If γk < 1, γk+1 < 1 for some k ∈ A, then F1 − F2 contains no interval a.s.

Obviously for (m,M, p)-percolation the JSC is not satisfied, unless we are in the
casem = M , giving positive probability only to the full alphabet and the empty
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4.2. DIFFERENCES OF RANDOM CANTOR SETS

set (actually, this is ordinary fractal percolation, where intervals are discarded
independently and the marginal probabilities pk are all equal to p).

4.2.4 The geometry of the algebraic difference

We will give in this subsection the tools and the notation introduced in [10] and
[8].

Let φ : [0, 1]2 → [−1, 1] be given by φ(x, y) = x− y, then F1 − F2 = φ(F1 × F2).
Thus F1 − F2 is defined on the product space of the probability spaces of F1

and F2. We will use P := Pµ×Pλ to denote the corresponding product measure
and E to denote expectations with respect to this probability.

Let F1 and F2 be two independent M -adic random Cantor sets with joint sur-
vival distributions µ and λ, respectively. Denote by Fn1 and Fn2 their nth level
approximations (n ≥ 0) and define the following subsets of the unit square
[0, 1]2:

Λn := Fn1 × Fn2 , n ≥ 0, Λ := F1 × F2 =

∞⋂
n=0

Λn.

Note that as Fn1 ↓ F1 and Fn2 ↓ F2, also Λn ↓ Λ.

The Λn are unions of M -adic squares

Qi1...in,j1...jn := Ii1...in × Ij1...jn ,

with i1 . . . in, j1 . . . jn ∈ Tn and n ≥ 0.

Note that φ acts as a 45◦ projection on the x-axis. Similarly to [10] and [8] we
scale and rotate the unit square over 45◦ counterclockwise, to rather see it as a
90◦ projection on [−1, 1]. See Figure 4.2 for a graphical representation of some of
the squares Q and their φ-images. Here we denote the M -adic intervals Ii1...in
in [0, 1] by IRi1...in (they are projections of squares in the right side of the tilted
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Figure 1: Delta-pairs-2009.pic.
1

Figure 4.2: An illustration for M = 3 of the unit square [0, 1]2, scaled and rotated by
45◦. The shaded squares form a realization of Λ2 for 2 out of 3 fractal percolation. The
vertical projection gives the φ-image [−1, 5/9] of Λ2.

square), and define
ILi1...in = IRi1...in− 1,

for the M -adic intervals Ii1...in in [−1, 0] (they come from the left side). The
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4.2. DIFFERENCES OF RANDOM CANTOR SETS

columns CUk1...kn , where U = L or U = R are defined for each k1 . . . kn ∈ T by

CUk1...kn := φ−1
(
IUk1...kn

)
.

Note that any nth level M -adic square Qi1...in,j1...jn is split into a ‘left’ and a
‘right’ triangle by the M -adic columns. These triangles are called L-triangles
and R-triangles, and will be denoted by Li1...in,j1...jn and Ri1...in,j1...jn respec-
tively, for any i1 . . . in, j1 . . . jn ∈ T.

For all U, V ∈ {L,R} and kn ∈ T we let

ZUV (kn) := #
{(
in, jn

)
: Qin,jn

⊆ Λn, Vin,jn
⊆ CUkn

}
denote the number of level n V -triangles in Λn ∩ CUkn . We also denote the total
number of V -triangles in columns CLkn and CRkn together by

ZV (kn) := ZLV (kn) + ZRV (kn),

for all kn ∈ T. For example, in Figure 4.2 we have ZR(01) = 1 + 2 = 3.

An important observation is that an M -adic interval IUkn is absent in φ(Λn)

exactly when there are no triangles in the corresponding column CUkn in Λn:

IUkn 6⊆ φ(Λn) ⇐⇒ ZUL(kn) = ZUR(kn) = 0.

The triangle counts ZUV (kn), with k1, k2, . . . a fixed path, constitute a two type
branching process in a varying environment with interaction: the interaction
comes from the dependency between triangles that are aligned, i.e., triangles
contained in respective squares Qi1...in,j1...jn and Qi′1...i′n,j′1...j′n with i1 . . . in =

i′1 . . . i
′
n or j1 . . . jn = j′1 . . . j

′
n. Squares that are not aligned will be called un-

aligned.

The expectation matrices of the two type branching process are for kn ∈ T given
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4. CORRELATED FRACTAL PERCOLATION AND PALIS’ CONJECTURE

by:

M (kn) :=

[
EZLL(kn) EZLR(kn)

EZRL(kn) EZRR(kn)

]
. (4.3)

These matrices satisfy the basic relation

M (k1 . . . kn) =M (k1) · · ·M (kn) , (4.4)

for all k1 . . . kn ∈ T.

Lemma 4.1 shows the importance of the correlation coefficients.

Lemma 4.1. ([10]) For all k ∈ A we have[
1 1

]
M (k) =

[
EZL(k) EZR(k)

]
=
[
γk+1 γk

]
. (4.5)

Proof. As in [10] this follows from some careful bookkeeping and

P(Qi,j⊆ Λ1) = P(Ii⊆ F 1
1 , Ij⊆ F 1

2 ) = Pµ
(
Ii⊆ F 1

1

)
Pλ
(
Ij⊆ F 1

2

)
= piqj .

�

4.2.5 Rough sketch of the proof of Theorem 4.1

The idea of the proof is to pair unaligned left and right triangles that survive
in the same column into what are called ∆-pairs.

Suppose we have a ∆-pair in one of the columns with positive probability. If
we can prove that there is a strictly positive probability that the number of L-
triangles and R-triangles in all subcolumns of this column grows exponentially,
then it can be shown that with positive probability the M -adic interval corre-
sponding to this column is in the projection φ(Λ). The determining quantity for
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4.2. DIFFERENCES OF RANDOM CANTOR SETS

exponential growth is the smallest correlation coefficient

γ := min
k∈A

γk. (4.6)

Now we make use of the fact that conditioned on Λ 6= ∅ the Hausdorff dimen-
sion of Λ is almost surely larger than 1, which is implied by γ > 1.

It can be shown (see [10]) that from this it follows that the number of unaligned
squares grows to infinity. By self-similarity of the process each of the unaligned
squares has positive probability to generate an interval in the projection, and
hence with probability one there will be an interval in the projection.

To show that a ∆-pair occurs somewhere with positive probability it suffices
that γ > 1. So the joint survival condition is only needed to ensure positive
probability of exponential growth in all subcolumns of a ∆-pair. For any level
l ∆-pair (Ll, Rl) that is contained in a level l column C, the distribution of the
number of level l + n V -triangles surviving in Λl+n in the kn-th subcolumn of
(Ll, Rl), conditional on the survival of (Ll, Rl) in Λl, is independent of l, the
particular choice of the column C and the ∆-pair in this column. Therefore, we
can unambigiously denote a random variable having this distribution by

Z̃V (kn) (4.7)

for all V ∈ {L,R} and kn ∈ T . In general Z̃V (kn) does not have the distri-
bution of ZV (kn) because there is possible dependence between the offspring
generation of two level 0 triangles, whereas there is no dependence between
the offspring generation of the L-triangle and the R-triangle of a ∆-pair, be-
cause they are unaligned by definition of a ∆-pair. However, both do have the
same expected value.

In [8] the following lemma on exponential growth of triangles is proved:

Lemma 4.2. If γ > 1, and the joint survival distributions satisfy the joint survival
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4. CORRELATED FRACTAL PERCOLATION AND PALIS’ CONJECTURE

condition, then for all n ≥ 0

P(Z̃L(kl) ≥ γl, Z̃R(kl) ≥ γl for all kl ∈ Tl for all 0 ≤ l ≤ n) > 0.

In Lemma 4.4 in Section 4.4 we obtain this lemma (with a different growth
factor) under weaker conditions than the joint survival condition.

4.2.6 Higher order Cantor sets

The idea of higher order Cantor sets is to collapse n construction steps into one
step. Since Λn ↓ Λ we can for all n ≥ 1 write

Λ =

∞⋂
m=1

Λm =

∞⋂
m=1

Λnm.

The sets (Λnm)∞m=1 are constructed by joint survival distributions which will
be denoted by µ(n) and λ(n). If Theorem 4.2 fails to answer the interval or not
question for the pair (µ, λ), one can hope to get an answer by considering Λ as
generated by (µ(n), λ(n)).

The success of this idea is illustrated by Theorem 6.1 in [8], and by Theorem 4.4.
We will also use it for the proof of Lemma 4.7.

All entities of the nth order random Cantor set will be denoted with a super-
script (n). The alphabet now is A(n) = {0, . . . ,Mn − 1} and µ(n) and λ(n) are
probability measures on the subsets of A(n) which are completely determined
by µ and λ.

Example 4.1. Let M = 2 and define µ by

µ({0, 1}) = µ({1}) = 1/2.
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4.3. THE CRITICAL CASE

For the corresponding second order Cantor set we have A(2) = {0, 1, 2, 3} and

µ(2)({0, 1, 2, 3}) = µ(2)({1, 2, 3}) = µ(2)({0, 1, 3}) = µ(2)({1, 3}) = 1
8 ,

µ(2)({2, 3}) = µ(2)({3}) = 1
4 .

�

4.3 The critical case

What happens in the critical case when γ = 1? This was left open in [10] and
[8]. Here we will give a simple argument, independent of the other results in
this chapter, that under some conditions shows that there is almost surely no
interval in the difference set. In particular this result permits us to give a com-
plete classification in Theorem 4.3. We also can tell what happens for critical
classical fractal percolation: if p = 1/

√
M , then there is almost surely no inter-

val in the difference set.

Definition 4.2. The joint survival distributions µ and λ are called entangled if for
sets X,Y ⊆ A the inequality µ(X)λ(Y ) > 0 implies that X ∩ Y 6= ∅.

Proposition 4.1. Consider two independent random Cantor sets F1 and F2 with joint
survival distributions µ and λ having marginal probabilities (pi) and (qj), such that
γ0 ≤ 1. Then F1−F2 contains no interval a.s., provided that µ and λ are not entangled.

Proof. Let Zn be the number of ‘central’ squares in Λn, i.e.,

Zn = #{i1 . . . in ∈ T : Qi1...in,i1...in ∈ Λn}.

Then Z0 = 1, and since these central squares are unaligned, (Zn) is an ordinary
branching process with mean offspring

E[Z1] = p0q0 + p1q1 + ...+ pM−1qM−1 = γ0 ≤ 1.
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4. CORRELATED FRACTAL PERCOLATION AND PALIS’ CONJECTURE

Now if γ0 = 1, then the offspring distribution is deterministic (Z1 ≡ 1) if and
only if µ and λ are entangled (P(Z1 = 0) ≥ µ(X)λ(Y ) > 0 if X and Y are the
sets with X ∩ Y = ∅ and µ(X)λ(Y ) > 0). Hence, (Zn) will die out a.s., say at
time N . In the sequel we will write the string i1 . . . in = (k, k, . . . , k) for k ∈ A
as kn.

Then, because there are no central squares left, CR0N+n only contains left trian-
gles for all n ≥ 0. Moreover, the number of left triangles in (CR0N+n) is an or-
dinary branching process (Y Rn ) with random initial distribution Y R0 , and mean
offspring

E[Y R1 ] = p0qM−1 ≤ 1.

Similarly, CL(M−1)N+n only contains right triangles for all n ≥ 0. Moreover, the
number of right triangles in (CL(M−1)N+n) is a branching process (Y Ln ) with Y L0 ,
and mean offspring

E[Y L1 ] = pM−1q0 ≤ 1.

If both E[Y R1 ] and E[Y L1 ] would equal 1, then p0qM−1 = pM−1q0 = 1 and con-
sequently p0q0 = pM−1qM−1 = 1 implying that γ0 ≥ 2. Hence either E[Y R1 ] < 1

or E[Y L1 ] < 1, such that at least one of the two branching processes (Y Rn ) and
(Y Ln ) will die out almost surely, implying that F1 − F2 has a ‘gap’ directly left
or right of 0. It then follows from selfsimilarity and the denseness of the points
k1M

−1 + · · ·+ knM
−n that F1 − F2 contains no interval a.s. (cf. [10]) �

That we need at least some restriction on the joint survival distributions in
addition to the requirement γ0 ≤ 1 is shown in the following example: Let
M = 2 and define the joint survival distributions µ and λ by setting µ({0}) =

µ({1}) = 1/2 and λ({0, 1}) = 1. Then γ = γ0 = 1, and there is an interval
of length 1 in the difference set at a random position. Proposition 4.1 does not
hold since µ and λ are entangled.
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4.4. THE DISTRIBUTED GROWTH CONDITION

4.4 The distributed growth condition

In this section we introduce a condition for exponential growth of triangles
which is based on the following idea: if we can find a column C where we
have a sufficient number of ∆-pairs, then under some conditions each of these
∆-pairs can be used to guarantee exponential growth of triangles in a proper
subset of the set of subcolumns of C. In some sense we ‘spread the burden
of proof’, and this gives the condition a flexible nature. This is illustrated by
the fact that with help of this condition, we can completely classify correlated
fractal percolation.

For X,Y ⊆ A and e ∈ A we define γe(X,Y ) to be the eth correlation coefficient
corresponding to the joint survival distributions µ? and λ? assigning probabil-
ity one to X and Y respectively, i.e.,

γe(X,Y ) =
∑
i∈A

1Y (i)1X(i+ e). (4.8)

Condition 4.2. The pair of joint survival distributions (µ, λ) satisfies the distributed
growth condition (DGC) if for all k ∈ A we can find sets Xk, Yk ⊆ A such that

(DG0) µ(Xk) > 0 and λ(Yk) > 0,

(DG1) min
e∈A

γe(Xk, Yk) ≥ 1,

(DG2) γk(Xk, Yk) ≥ 2, γk+1(Xk, Yk) ≥ 2.

Lemma 4.3. Let E denote the event that there exists l ≥ 1, kl ∈ Tl and U ∈ {L,R}
such that CUkl contains at least M left and M right triangles which are all pairwise
unaligned. If the pair of joint survival distributions (µ, λ) satisfies the DGC, then

P(E) > 0.

Proof. Choose X0, Y0 ⊆ A according to the DGC. Define the joint survival dis-
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4. CORRELATED FRACTAL PERCOLATION AND PALIS’ CONJECTURE

tributions µ? and λ? by µ?(X0) = λ?(Y0) = 1. Then by (DG2) both column
sums of the expectation matrixM?(0) are at least 2, implying that

[1 1]M?(0n) ≥ [2n 2n],

elementwise. The first row ofM?(0n) corresponds to CL0n , which can contain
at most one left triangle and no right triangles. Therefore, both numbers in
the second row of M?(0n) are bounded below by 2n − 1. It follows that the
numbers of left and right triangles inCR0n grow arbitrary large if n is sufficiently
large. Since µ and λ assign positive probability to X0 and Y0 respectively, the
statement of the lemma follows. �

We can now formulate our exponential growth lemma.

Lemma 4.4. If the pair of joint survival distributions (µ, λ) satisfies the distributed
growth condition, then there exist l ≥ 1, kl ∈ Tl and η > 1 such that for all n ≥ 0

P(ZL(klkp) ≥ ηp, ZR(klkp) ≥ ηp for all kp ∈ Tp for all 0 ≤ p ≤ n) > 0.

Proof. Choose n ≥ 0 arbitrary. For all k ∈ A choose Xk ⊆ A and Yk ⊆ A such
that these sets satisfy the DGC. Define the joint survival distributions µ?k and
λ?k by requiring that µ?k(Xk) = λ?k(Yk) = 1.

Let k ∈ A be fixed and consider the expectation matrices corresponding to the
triangle growth process defined by (µ?k,λ?k). By (4.5), their column sums are
given by the correlation coefficients corresponding to the pair of joint survival
distributions (µ?k, λ

?
k). So, for all e ∈ A, both column sums of M?

k(e) are at
least 1 and both column sums ofM?

k(k) are at least 2. Let p be an integer with
0 ≤ p ≤ n. Since for kp = k1 . . . kp ∈ Tp we have

M?
k(kp) =M?

k(k1) . . .M?
k(kp),

it follows that a lower bound for the column sums ofM?
k(kp) is determined by
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4.4. THE DISTRIBUTED GROWTH CONDITION

the number of k’s in the string kp. We obtain (omitting the dependence on k,
and writing kj for the jth element in the string kp.)

γ?kp ≥ 2#{0≤j≤p:kj=k}, γ?kp+1 ≥ 2#{0≤j≤p:kj=k}.

From the deterministic nature of µ?k and λ?k, it follows that the expectation of
the number of triangles in some column is simply the number that will occur.
This means that for all 0 ≤ p ≤ n

ZL;?
k (kp) = E[ZL;?

k (kp)] = γ?kp+1 ≥ 2#{0≤j≤p:kj=k},

ZR;?
k (kp) = E[ZR;?

k (kp)] = γ?kp ≥ 2#{0≤j≤p:kj=k}.

Since (µ, λ) satisfies the DGC, we can by Lemma 4.3 find an l-adic column
CUkl

containing with strictly positive probability at least M left- and M right
triangles being all pairwise unaligned. Let this event be denoted by E and ab-
breviate the notation of this column by C and its subcolumns CUklkp by Ckp .

Now suppose we have a ∆-pair (L,R) in C, in which the growth process be-
haves according to the pair of joint survival distributions (µ?k, λ

?
k). Then, for all

p and all subcolumns Ckp of C, both the number of left and the number of right
triangles in Ckp ∩ (L ∪R) is at least 2#{0≤j≤p:kj=k}.

Conditional on the event E, we have M left and right triangles in C. We can
label them by the elements of A such that we have M ∆-pairs. These 2M tri-
angles are all pairwise unaligned (also if they belong to different ∆-pairs) and
hence there is completely no dependence between these triangles. It follows
that it is possible that in each of the ∆-pairs the growth process takes place as
prescribed by µ?k and λ?k, where k is the label of the ∆-pair. Denoting the event
that this happens in the first n construction steps after occurrence of E by En,
we can find a strictly positive lower bound for P(En|E):

P(En|E) ≥
∏
k∈A

µ(Xk)
∑n
j=1 2(#Xk)j−1

λ(Yk)
∑n
j=1 2(#Yk)j−1

> 0.
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4. CORRELATED FRACTAL PERCOLATION AND PALIS’ CONJECTURE

Let 0 ≤ p ≤ n and let Ckp be an arbitrary Mp-adic subcolumn of C. There must
exist a k = k(kp) ∈ A such that # {0 ≤ j ≤ p : kj = k} ≥ d pM e. Hence, given
the event En, for the numbers of left and right triangles in Ckp we have

ZL(klkp) ≥ 2d
p
M e, ZR(klkp) ≥ 2d

p
M e.

Taking η = M
√

2, we obtain

P(ZL(klkp) ≥ ηp, ZR(klkp) ≥ ηp for all kp ∈ Tp for all 0 ≤ p ≤ n)

≥ P(E)P(En|E) > 0.

�

Collecting the results established so far, we can replace the joint survival con-
dition (Condition 4.1) and Lemma 4.2 by the distributed growth condition and
Lemma 4.4 to obtain the following useful variation on Theorem 4.1:

Theorem 4.2. Consider two independent random Cantor sets F1 and F2 whose joint
survival distributions satisfy Condition 4.2, the DGC.

1. If γk > 1 for all k ∈ A, then F1−F2 contains an interval a.s. on {F1 − F2 6= ∅}.

2. If γk < 1, γk+1 < 1 for some k ∈ A, then F1 − F2 contains no interval a.s.

This result is useful since it can be successfully applied to the class of corre-
lated fractal percolation, whilst the JSC is never satisfied for the members of
this class. Actually our new condition can always supersede the JSC.

Lemma 4.5. Suppose that the joint survival distributions µ and λ satisfy the JSC. If
γk > 1 for all k ∈ A, then the pair (µ, λ) satisfies the DGC.

Proof. We take for the sets Xk and Yk in (4.8) the marginal supports of µ and
λ. Then the JSC implies that (DG0) holds. Since qi = 0 if i 6∈ Suppm(λ), and

78



4.5. CLASSIFYING CORRELATED FRACTAL PERCOLATION

similarly for pi, we have for all e ∈ A

γe(Suppm(µ),Suppm(λ)) =
∑
i∈A

1Suppm(λ)(i)1Suppm(µ)(i+ e)

≥
∑
i∈A

qipi+e = γe ≥ 2,

since the number on the left hand side is an integer larger than 1. Therefore Xk

and Yk certainly satisfy (DG1) and (DG2) for all k ∈ A. Thus (µ, λ) satisfies the
DGC. �

4.5 Classifying correlated fractal percolation

With the distributed growth condition at our disposal we can make an attempt
to solve the Palis problem for correlated fractal percolation. To facilitate our
search for sets satisfying the DGC, we introduce an alternative notation for
subsets of the alphabet. A subset S of the alphabet A can be represented as a
string of length M with at the ith position a zero or a one, indicating whether
or not i is contained in S. For (m,M, p)-percolation, all subsets of A to which is
assigned positive probability correspond to a string consisting of m ones and
M − m zeros, where any order of the symbols is allowed. Next we need the
notion of the cyclic shift operator σ. For any string X = x0x1 . . . xM−2xM−1 we
define

σ(X) = x1x2 . . . xM−1x0. (4.9)

For the kth iterate of σ we use the notation σk and for its inverse σ−k. Comput-
ing γk(X,Y ) can be done by writing down the two binary strings correspond-
ing to σk(X) and Y , and then counting in how many positions both strings
have a one (this will be called a coincidence). This procedure is illustrated in
(4.10) for M = 9, k = 4 and the sets X = {3, 5, 7, 8} and Y = {0, 1, 6, 7}, where
we abuse notation by also writing X for the indicator string of X , and similarly
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for Y (this will never cause confusion).

X : 0 0 0 1 0 1 0 1 1

σ4(X) : 0 1 0 1 1 0 0 0 1

Y : 1 1 0 0 0 0 1 1 0

(4.10)

As we see, there is one coincidence, so γ4(X,Y ) = 1. Checking the DGC boils
down to finding binary strings with the right properties as given in (DG0),
(DG1) and (DG2).

Let X and Y be two subsets of the M -adic alphabet A containing m elements
in order to satisfy (DG0). Our strategy is to choose X such that we get a binary
string with all ones at the beginning and Y such that the ones are distributed
evenly over the string in such a way that at mostm−1 consecutive zeros occur.
This pattern will lead to fulfillment of requirement (DG1). If we have sufficient
freedom to choose Y within this framework, then we will also succeed in let-
ting (DG2) be satisfied. The details of this strategy are filled in in the proof of
the lemma below.

Lemma 4.6. For (m,M, p)-percolation the following two assertions hold:

1. If m <
√
M or p <

1√
M

, then F1 − F2 contains no interval a.s.1

2. If m ≥
√
M + 2 and p >

1√
M

, then F1 − F2 contains an interval a.s. on

{F1 − F2 6= ∅}.

Proof. Suppose that p < 1√
M

, then for all k ∈ A we have

γk = Mp2 < M

(
1√
M

)2

= 1,

1Actually, m <
√
M implies that p < 1/

√
M . Hence the statement ”If p < 1/

√
M , then F1−F2

contains no interval a.s.” is equivalent to the first assertion of Lemma 4.6. We formulated the lemma
in this way to emphasize what the bounds on m are.
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and consequently F1−F2 contains no interval a.s. by Theorem 4.2. Ifm <
√
M ,

then p = (1−µ(∅))mM < 1√
M

and consequently the same argument is applicable,
completing the proof of the first part of Lemma 4.6.

For the proof of the second assertion, assume that m ≥
√
M + 2 and define

X,Y ′ ⊆ A by their strings

X = 1m 0M−m

Y ′ = R [1 0m−1]q,

where q = bM/mc,R is a left substring of 1 0m−2 (R is empty when m divides
M ), and [1 0m−1]q denotes the string 1 0m−1, q times repeated. Ignoring the
trivial case M = m = 2 we obtain from m ≥

√
M + 2 that we may assume

m ≥ 3.

Since Y ′ does not contain m consecutive zeros (also cyclically), whereas X be-
gins with m consecutive 1’s, we must have

γe(X,Y
′) ≥ 1 for e = 0, 1, . . . ,M − 1.

So X and Y ′ satisfy (DG1). The set X contains m elements, which means that
µ(X) > 0.

Note that q = bM/mc can not exceed m− 1, since that would imply m ≤
√
M .

Case 1: q ≤ m− 2 or R is empty.
Then Y ′ contains at mostm−1 ones. In order to obtain (DG2), we construct Y ′′

from Y ′ by putting a one in the second position (if there is a zero)—note that
X and Y ′′ will then certainly still satisfy (DG1). Moreover, we now have

γ0(X,Y ′′) ≥ 2, γ1(X,Y ′′) ≥ 2,

since m ≥ 3. Finally Y is obtained by adding 1’s to Y ′′ (if necessary) till Y
contains m ones—and thus µ(Y ) > 0. As an illustration for M = 7 and m = 4,
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X is given by 1111000 and (writing γk(·) for γk(X, ·)):

· String µ(·) > 0 γe(·) ≥ 1 ∀e ∈ A γ0(·), γ1(·) ≥ 2

Y ′ : 1001000 no yes no
Y ′′ : 1101000 no yes yes
Y : 1111000 yes yes yes

Now we have found X0 := X and Y0 := Y satisfying (DG0), (DG1) and (DG2)
for k = 0. By observing that

γk(X,σkY ) = γ0(X,Y ); γk+1(X,σkY ) = γ1(X,Y ), (4.11)

it follows that the DGC holds for any k ∈ A if we take Xk = X en Yk = σkY .

Case 2: q = m− 1 and R 6= ∅.
Since m ≥

√
M + 2, we have (with r the length of R)

M = m2 −m+ r ≥M + 2−m+ r,

so r ≤ m − 2, implying that R does not contain more than m − 3 zero’s. This
gives that γ0(X,Y ) ≥ 2 and γ1(X,Y ) ≥ 2. Now again we can take Xk = X en
Yk = σkY . Summarizing, for all cases of correlated fractal percolation in part
(2) we have shown that (DG0), (DG1) and (DG2) hold. We conclude that the
DGC is satisfied.

Moreover, for all k ∈ A we find

γk =

M−1∑
j=0

pjpj+k = Mp2 > M

(
1√
M

)2

= 1,

and therefore, by Theorem 4.2,F1−F2 contains an interval a.s. on {F1 − F2 6= ∅}.
�

Lemma 4.6 still gives no conclusive answer for some combinations ofm andM
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when p > 1/
√
M , namely, those where m =

√
M + 1. By having a look at the

2nd order sets for (m,M, p)-percolation this can be resolved.

Lemma 4.7. Consider (m,M, p)-percolation. If p >
1√
M

and

m =
√
M + 1, (4.12)

then F1 − F2 contains an interval a.s. on {F1 − F2 6= ∅}.

Proof. First we have a look at the shape of the binary strings corresponding
to 2nd order sets to which is assigned positive probability by the 2nd order
joint survival distribution µ(2) of correlated fractal (m,M, p)-percolation. Such
a string has length M2. It should be regarded as consisting of M blocks of
length M . Each of these blocks contains either exclusively zeros, or it contains
M −m zeros and m ones. Blocks of the latter kind occur exactly m times. Po-
sitions in the binary string can be identified with numbers in A(2): an M2-adic
number represented by k2 = k1k2 corresponds to the (k2 + 1)th position in the
(k1 + 1)th block.

Note that (4.12) implies that M − m(m − 1) = m − 1 and bM/mc = m − 1.
This means that the two strings X and Y ′ defined in the proof of Lemma 4.6
are now equal to (we omit from now on the prime on Y )

X = 1m 0M−m,

Y = [1 0m−2] [1 0m−1]m−1.

The basic idea of the proof is to replace the 0’s in these two strings by blocks
0M , and the 1’s by blocks similar to X or Y to obtain for all k2 ∈ A(2) the
order 2 stringsX(2)

k2
and Y (2)

k2
which will satisfy (DG1) and (DG2)—note that by

construction (DG0) is then obviously satisfied.

Actually we will replace all the m 1’s in X by the string Y . Replacing addition-
ally the M−m 0’s by blocks 0M we obtain X(2)

k2
independent of k2, and hence
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we will denote it by X(2).

The definition of Y (2)
k2

is slightly more involved. We first restrict ourselves to
the case k1 = 0 and define:

Y
(2)
0k2

:= σMs
(

[σk2(X) 0(m−2)M ] [σk2(X) 0(m−1)M ]m−1
)
,

where s is given by

s :=

{
0 if 0 ≤ k2 ≤ m− 2,

1 if m− 1 ≤ k2 ≤M − 1.

So them 1’s in Y are replaced by shifted versions ofX and 0’s by blocks 0M and
finally an additional shift over M positions is applied on the complete string if
k2 is at least m− 1.

Example 4.2. Let M = 8 and m = 3. Then

X = 11100000 and Y = 10100100.

Writing O = 08 and s = 1{n:n≥2}(k2), we have for 0k2 ∈ A(2)

X(2) = Y Y Y O O O O O

Y
(2)
0k2

= σ8s
(
σk2(X) O σk2(X) O O σk2(X) O O

)
.

�

Suppose that X(2) and Y
(2)
0k2

satisfy the DGC. Then it is easy to construct sets
X(2) and Y

(2)
k1k2

satisfying requirements (DG1) and (DG2) for other values of
k1. First observe that all shifted versions of X(2) and Y

(2)
0k2

still satisfy (DG1).

84



4.5. CLASSIFYING CORRELATED FRACTAL PERCOLATION

Furthermore we use the fact that

γ
(2)
k2

(
X(2), σk1M (Y

(2)
0k2

)
)

= γ
(2)
0k2

(X(2), Y
(2)
0k2

) ≥ 2,

γ
(2)
k2+1

(
X(2), σk1M (Y

(2)
0k2

)
)

= γ
(2)
(0k2)+1(X(2), Y

(2)
0k2

) ≥ 2.

Now it follows that we can choose Y (2)
k2

= σk1M (Y
(2)
0k2

).

To complete the proof, it suffices to check that the sets X(2) and Y
(2)
0k2

satisfy
requirements (DG1) and (DG2) of the DGC. Therefore, we consider the corre-
lation coefficients γ(2)

e2 (X(2), Y
(2)
0k2

) where e2 = e1e2 ∈ A(2). We will focus first
on the ‘coarse’ structure, i.e. on those correlation coefficients for which e2 = 0.
Here we will always have a string σk2(X) in Y

(2)
0k2

coinciding with a string Y

in X(2) for the same reason that we always have a coincidence at level 1. This
implies that we also always have a string σk2(X) in Y (2)

0k2
coinciding with a zero

string of length M in X(2) which is followed (cyclically) by a string Y .

It follows that if we will shift on the ‘fine’ level by varying e2, then in all cases
we are in the same situation of one σk2(X) block ‘entering’ an Y block, and one
σk2(X) ‘leaving’ an Y block. Thus we get the same coincidences as in the case
where σk2(X) and Y are compared cyclically, and therefore the second order
correlation coefficients can be related to the first order correlation coefficients
γe(σ

k2(X), Y ):
γ(2)
e2

(X(2), Y
(2)
0k2

) ≥ γe2(Y, σk2(X)) ≥ 1 (4.13)

for all e2 = e1e2 ∈ A(2). As we see, (DG1) holds for all e2 ∈ A(2).

Now we turn to (DG2). If e2 = k2, then in (4.13) we even have by equation
(4.11) that

γ(2)
e2

(X(2), Y
(2)
0k2

) ≥ γe2(Y, σk2(X)) = γ0(Y,X) = 2,

which means that
γ

(2)
0k2

(X(2), Y
(2)
0k2

) ≥ 2. (4.14)

We still have to check that also γ(2)
(0k2)+1(X(2), Y

(2)
0k2

) ≥ 2. First we concentrate
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on the case where both the first and the last Y -block in X(2) coincide with a
σk2(X) block in Y (2)

0k2
. To illustrate this in the terms of Example 4.2, we have:

X(2) = Y Y Y O O O O O

Y
(2)
0k2

= σk2(X) O σk2(X) O O σk2(X) O O.

Keeping k1 fixed to zero and varying k2, the structure of coincidences we obtain
will look like:

Y Y : |1 0 1 0 0 1 0 0| 1 0 1 0 0 1 0 0| k2 ↓ s↓

σk2 (X)σk2 (X) : |1 1 1 0 0 0 0 0| 1 1 1 0 0 0 0 0| 0 0

|1 1 0 0 0 0 0 1| 1 1 0 0 0 0 0 0| 1 0

|0 0 0 0 0 0 1 1 |1 0 0 0 0 0 1 1| 2 1

|0 0 0 0 0 1 1 1 |0 0 0 0 0 1 1 1| 3 1

|0 0 0 0 1 1 1 0 |0 0 0 0 1 1 1 0| 4 1

|0 0 0 1 1 1 0 0 |0 0 0 1 1 1 0 0| 5 1

|0 0 1 1 1 0 0 0 |0 0 1 1 1 0 0 0| 6 1

|0 1 1 1 0 0 0 0 |0 1 1 1 0 0 0 0| 7 1

Each line in the table corresponds to a value of k2 and displays the string
σk2(X)σk2(X). This string is moved over k2 + 1 positions to the right, since
we are interested in γ

(2)
(0k2)+1(X(2), Y

(2)
0k2

). Then, for each value of k2 the corre-
sponding value of s (being either 0 or 1) is computed. If s = 1, then the string
is moved over M = 8 positions back to the left. By construction, the num-
ber of coincidences of Y Y with the k2-line in the table is a lower bound for
γ

(2)
(0k2)+1(X(2), Y

(2)
0k2

). In each of the lines of the table, we have coincidences with
both bold ones in Y Y . Therefore,

γ
(2)
(0k2)+1(X(2), Y

(2)
0k2

) ≥ 2.

Combining this with (4.14), we see that (DG2) holds. Adapting this argument
for other values of M and m is straightforward.

As we have seen in the proof of the previous lemma, it is possible to find suf-
ficient independent left and right triangles. Therefore, we have completed our
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proof that the distributed growth condition is satisfied. We also already saw
p > 1/

√
M implies that γ > 1, and hence we can use Theorem 4.2 to finish the

proof of Lemma 4.7. �

Theorem 4.3. For correlated fractal (m,M, p)-percolation we have

1. If γ > 1 then F1 − F2 contains an interval a.s. on {F1 − F2 6= ∅}.

2. If γ ≤ 1, then F1 − F2 contains no interval a.s.

Proof. This result is the combination of Lemma 4.6, Lemma 4.7 and Proposition
4.1. In the latter case we use that µ(∅) > 0 implies that µ is not entangled with
itself, and that otherwise m =

√
M is for M ≥ 4 smaller or equal to M/2, and

thus is also not entangled with itself. �

We remark here that since these results will also hold if we merely require that
all sets with m elements have positive probability to occur, the theorem will
also be true in this more general case.

4.6 The lower spectral radius in the symmetric case

In this section we show that the distributed growth condition propagates to
higher order Cantor sets. As a consequence, the spectral radius characteriza-
tion obtained in [8] can be extended to joint survival distributions satisfying
the DGC.

Lemma 4.8. (Propagation of the distributed growth condition to higher orders) Sup-
pose the pair of joint survival distributions (µ, λ) satisfies the DGC. Then for all n ≥ 1,
the pair of nth order joint survival distributions (µ(n), λ(n)) satisfies the DGC.

Proof. Choose a string kn ∈ A(n), which we write as kn = kk2 . . . kn, with k ∈ A
and k2 . . . kn ∈ A(n−1). We check that we can find nth order sets satisfying the
DGC for this kn. Since the pair (µ, λ) satisfies the DGC, there exist first order
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sets Xk, Yk ⊆ A satisfying (DG0), (DG1) and (DG2). Define

X
(n)
k :=

{
ln = l1 . . . ln ∈ A(n) : lj ∈ Xk for all j = 1, . . . , n

}
,

Y
(n)
k :=

{
ln = l1 . . . ln ∈ A(n) : lj ∈ Yk for all j = 1, . . . , n

}
.

Obviously, µ(n)(X
(n)
k ) > 0 and λ(n)(Y

(n)
k ) > 0. Define a new pair of nth order

joint survival distributions by µ(n)
k (X

(n)
k ) = λ

(n)
k (Y

(n)
k ) = 1. Also define a first

order deterministic pair of joint survival distributions by µk(Xk) = λk(Yk) = 1.
The expectation matrices belonging to these nth order survival distributions
are related to those belonging to the first order survival distributions by

M(n)
k (kn) =Mk(kn) =Mk(k)Mk(k2) . . .Mk(kn).

Using that Xk and Yk satisfy (DG1) and (DG2), and that the columns sums of
the expectation matrices are equal to the correlation coefficients, we obtain that

[1 1]M(n)
k (kn) = [1 1]Mk(k)

n∏
j=2

Mk(kj) ≥ [2 2]

n∏
j=2

Mk(kj) ≥ [2 2]

elementwise, which means that Z(n);L
k (kn) ≥ 2 and Z

(n);R
k (kn) ≥ 2, or equiva-

lently
γkn(X

(n)
k , Y

(n)
k ) ≥ 2; γkn+1(X

(n)
k , Y

(n)
k ) ≥ 2.

Similarly γln(X
(n)
k , Y

(n)
k ) ≥ 1 for all ln ∈ A(n). It follows that the pair (µ(n), λ(n))

satisfies the DGC. �

This propagation property leads to the theorem below. The lower spectral ra-
dius ρ(Σ) of a set Σ of square matrices is defined by

ρ(Σ) := lim inf
n→∞

min
A1,...,An∈Σ

||A1 . . . An||1/n,

for some matrix norm || · ||. For two M -adic random Cantor sets, let ΣM be the
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corresponding collection of expectation matrices

ΣM := {M(0), . . . ,M(M − 1)} . (4.15)

Then we obtain the following result:

Theorem 4.4. Consider the algebraic difference F1−F2 between twoM -adic indepen-
dent random Cantor sets F1 and F2 with the same joint survival distribution satisfying
the distributed growth condition.

1. If ρ(ΣM ) > 1, then F1 − F2 contains no interval a.s. on {F1 − F2 6= ∅}.

2. If ρ(ΣM ) < 1, then F1 − F2 contains no interval a.s.

Proof. The proof is basically the same as the proof of Theorem 6.1 in [8]. There
is a difference in the fact that here we do not require irreducibility explicitly.
From the symmetry µ = λ it follows that me = m−e for all e ∈ A ∪ −A. Now,
since the DGC holds, we get the irreducibility for free.

After derivation of the same statements concerning the nth order correlation
coefficients as in [8], we apply our Theorem 4.2. This is justified by the fact that
the DGC propagates to higher orders, as was shown in Lemma 4.8. �

89



4. CORRELATED FRACTAL PERCOLATION AND PALIS’ CONJECTURE

90



Chapter 5

New methods to determine
the critical probability in
fractal percolation

5.1 Introduction

Fractal percolation has been introduced by Mandelbrot in 1974 as a model for
turbulence and is discussed in his book The Fractal Geometry of Nature [21]. Sev-
eral equivalent formal definitions of this process can be found in the litera-
ture (see e.g. [4, 7, 14]). Here we only give an informal definition of the two-
dimensional case. Let K0 be the unit square and choose an integer M ≥ 2 and
a parameter p ∈ [0, 1]. To obtain K1, divide K0 into M2 equal subsquares, each
of which survives with probability p and is discarded with probability 1 − p,
independently of all other subsquares. Now do the same procedure in all sur-
viving squares, in order to obtain K2. Iterating this process gives a decreasing
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sequence of sets (Kn)n∈N, see Figure 5.1. Let K =
⋂
n∈NKn be the limit set.

Figure 5.1: Realizations of Kn, n = 1, 2, 3, 5, 7 for M = 3 and p = 0.85.

It was shown in 1988 by Chayes, Chayes and Durrett [4] that there exists a
non-trivial critical value pc(M) such that a.s. the largest connected component
in K is a point for p < pc(M) and with positive probability there is a connected
component intersecting opposite sides of the unit square for p ≥ pc(M).

For all M ≥ 2, the value of pc(M) is unknown. Several attempts have been
made to find bounds for pc(M). It is easy to see thatK is empty a.s. if p ≤ 1/M2,
which implies pc(M) > 1/M2. The argument in [4] is already a bit smarter: any
left-right crossing has to cross the line {1/M}× [0, 1] somewhere. A crossing of
this line in Kn means that there is a pair of adjacent squares on opposite sides
of this line. Such pairs form a branching process with mean offspring p2M and
consequently pc(M) > 1/

√
M . For the case M = 2 this was sharpened by

White in 2001 to pc(2) ≥ 0.810, who used a set that dominates K and has a
simpler structure to study.

Sharp upper bounds are harder to obtain. The first idea to get rigorous upper
bounds for M ≥ 2 was given by Chayes, Chayes and Durrett [4], but (in their
own words) these bounds are ridiculously close to 1. For M = 3, they show
that pc(3) < 0.9999 (although in fact one can prove that pc(3) < 0.993 with their
method), which was improved by Dekking and Meester [9] to pc(3) < 0.991.
Chayes et al only treat M = 3, but they point out that the same idea works for
any M ≥ 3. The case M = 2 can be treated by comparing with M = 4. As is
noted by van der Wal [30], a coupling argument gives pc(2) ≤ 1−(1−

√
pc(4) )4.

Following this approach gives pc(4) < 0.998 and pc(2) < 1− 10−12.
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In this chapter we present ideas to find significantly sharper lower and upper
bounds. To find lower bounds, we compare fractal percolation with site perco-
lation. A fundamentally new result is that for all M we construct an increasing
computable sequence that converges to pc(M). The terms in the sequence can
in principle be calculated algorithmically. To actually obtain numerical results
we bound them from below. These ideas lead to (computer aided) proofs that
pc(2) > 0.881 and pc(3) > 0.784.

For the upper bounds, we map all possible realizations of Kn to a finite al-
phabet A . The choice of the alphabet A is inspired by van der Wal’s work
[30]. The fractal percolation iteration process now induces an iterative random
process on A , which is easier to analyze than the original process. This theoret-
ical framework is the basis of computer aided proofs for the following upper
bounds: pc(2) < 0.993, pc(3) < 0.940 and pc(4) < 0.972.

5.2 Lower bounds for pc(M)

In this section we develop methods to calculate lower bounds for the criti-
cal value of two-dimensional fractal percolation. First we briefly introduce site
percolation and then we prove a coupling with fractal percolation that allows
us to find lower bounds for pc(M). In particular, we construct an increasing se-
quence of lower bounds and we prove that this sequence converges to pc(M).
At the end of this section we show how to use these insights to obtain numeri-
cal results.

5.2.1 Site percolation

Consider the infinite two-dimensional square lattice in which each vertex is
open with probability p and closed otherwise. In this model the percolation
probability ζ(p) is defined as the probability that the origin belongs to an infi-
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nite open cluster. The critical probability is given by

psitec := inf {p : ζ(p) > 0} .

It has been shown by van den Berg and Ermakov [3] that psitec > 0.556. Now
consider the probability that a box of n×n vertices is crossed by an open cluster.
It is a classical result that in the subcritical regime, this probability converges
to zero as n increases. This property will be used to couple site percolation to
fractal percolation.

Property 5.1. Take a box of n × n vertices. Suppose p < psitec . Then the probability
that there is an open cluster intersecting opposite sides of the box converges to 0 as
n→∞.

5.2.2 Coupling site percolation and fractal percolation

In fractal percolation, a set in the unit square is said to percolate if it contains a
connected component intersecting opposite sides of the square. Let

θn(p,M) = P(Kn(p,M) percolates), θ(p,M) = P(K(p,M) percolates).

Then pc(M) := inf {p : θ(p,M) > 0}. We will often suppress some of the de-
pendence on M and p. It is well known (see [22]) that

lim
n→∞

θn(p) = θ(p) = P(

∞⋂
n=0

{Kn(p) percolates}).

To obtain a proper coupling, we have to deal with diagonal connections. For
example, the set [0, 1/2]2 ∪ [1/2, 1]2 percolates. We would like to ignore such
diagonal connections, since in site percolation diagonal connections do not ex-
ist. Therefore we redefine percolation as follows. We say Kn percolates if there
is a left-right crossing of the square that does not use diagonal connections.
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Since diagonal connections break down almost surely, this does not change the
limiting percolation probability. Also from now on connections, crossings and
connected components in Kn are similarly redefined.

Theorem 5.1. Let πn(p,M) = P(at least two sides are connected in Kn(p,M)). If
πn(p) < psitec for some n, then p < pc(M).

Proof. First define delayed fractal percolation: Fm,n is constructed in the same
way as Km+n, the only difference being that we do not discard any squares
in the first m construction steps. So we first divide the unit square into Mm ×
Mm subsquares and only then we start the fractal percolation process in each
of these squares. Delayed fractal percolation stochastically dominates fractal
percolation.

Figure 5.2: Three coupled realizations to illustrate (5.1). Left:K5 forM = 2 and p = 2/3.
Middle: F2,3 for M = 2 and p = 2/3. Right: K1 for M = 4 and p = π3(2/3, 2).

Then we have the following inequalities (illustrated for M = m = 2 and n = 3

in Figure 5.2):

θm+n(p,M) ≤ P(Fm,n(p,M) percolates) ≤ θ1(πn(p),Mm). (5.1)

The first inequality follows from the fact that Fm,n is stochastically larger than
Km+n. The second inequality can be explained as follows. Suppose we have
two types of squares: realizations of Kn(p,M) in which at least two sides are
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connected (type 1) and realizations in which no side is connected to any other
side (type 2). Suppose we tile a larger square with M2m independent realiza-
tions of Kn(p,M). So the probability on a type 1 square is πn(p). This larger
square is a (scaled) realization of Fm,n(p,M). Now replace all type 1 squares
by a full square and discard all type 2 squares. This gives a realization of
K1(π(p),Mm). Moreover, this replacement procedure can not destroy percola-
tion. To see this, suppose we have a left-right crossing in Fm,n(p,M). All parts
of this crossing that are in type 1 squares are preserved. If the crossing uses a
type 2 square S, then it enters and leaves S at the same side of S. At this side
the neighboring square T must be of type 1. So if we remove S and replace T
by a full square, there still is a left-right crossing.

A first level fractal percolation set can be seen as site percolation in a finite
box. Suppose πn(p) < psitec for some n and let the box size Mm tend to∞. By
Property 5.1 we arrive at

lim
m→∞

θ1(πn(p),Mm) = 0. (5.2)

Therefore, if πn(p) < psitec , by (5.1) we find that

θ(p) = lim
m→∞

θm+n(p) = 0,

which in turn implies p < pc(M). �

5.2.3 A convergent sequence of lower bounds for pc(M)

In this section we define a sequence of lower bounds for pc(M). We prove that
this sequence converges to the pc(M). Let

pnc (M) = sup
{
p : πn(p,M) < psitec

}
. (5.3)
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Note that πn(pnc ) ≤ psitec for all n, since πn(p) is continuous in p. Theorem 5.1
requires a strict inequality, but this does not give any problem since πn(p) is
strictly decreasing in n, so πn+1(pnc ) < psitec for all n and hence indeed pnc (M) <

pc(M) for all n. The strict monotonicity in n also implies that (pnc (M))∞n=0 is
increasing. The obvious question now is whether (pnc (M))∞n=0 converges to
pc(M). We will show that this is indeed the case. First we need that πn(p) goes
to zero if the fractal percolation is subcritical:

Lemma 5.1. If p < pc(M), then limn→∞ πn(p,M) = 0.

Proof. Suppose p < pc(M), so θ(p) = 0. Note that a.s. there is an n such that in
Kn the two squares in the top left and bottom left corner are discarded already.
Conditioned on this event, a connection in the limiting set from the left side
to any other side can only occur if it horizontally crosses the vertical strip S

consisting of the squares [0,M−n]× [jM−n, (j + 1)M−1] for j = 1, . . . ,Mn− 2.
From selfsimilarity and subcriticality it follows that in the limit each of these
squares has zero probability to contain a component connecting opposite sides
(horizontally and vertically). So in K a horizontal crossing of S can only oc-
cur if it crosses a block of two vertically adjacent squares. But as Dekking and
Meester showed (Lemma 5.1 in [9]), θ(p) = 0 implies that such a block crossing
has zero probability as well. It follows that connections from the left side to any
other side have zero probability to occur. If this holds for the left side, then it
holds for all sides, and so limn→∞ πn(p) = 0. �

The previous lemma makes it easy to prove convergence:

Theorem 5.2. The sequence (pnc (M))∞n=0 converges to pc(M) if n→∞.

Proof. Let ε > 0 and suppose p = pc(M) − ε. Then by Lemma 5.1, there exists
an N such that πn(p) < psitec for all n ≥ N . Therefore, pnc (M) > p for all n ≥ N .

�

The theory developed so far gives us an algorithmic tool to calculate an in-
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creasing and converging sequence of lower bounds for pc(M). Still, it is not so
easy to actually obtain sharp bounds. For example, a little thought gives

π1(p, 2) = 1− (1− p)4,

π1(p, 3) = 1 + (1− p)4(p5 + 4p4(1− p) + 6p3(1− p)2 − 1),

so using the bound of van den Berg and Ermakov for psitec , we find p1
c(2) >

0.183 and p1
c(3) > 0.178. Of course, we want to find a bit sharper bounds, so

we should take larger values of n. However, for large n, the functions πn(p) are
very complicated polynomials, and it is not clear how to find them in reason-
able time. In the next section we will discuss a way to avoid this problem.

5.3 Classifying realizations

In this section we introduce the idea to map realizations ofKn to a finite alpha-
bet A that does not depend on n. Such a map will be called a classification. In
this way, we can simplify the substitution process without losing too much es-
sential information on the connectivity structure inKn. The construction of the
random sets (Kn)∞n=0 now induces a sequence of probability measures on A .
These ideas can be used to obtain both lower and upper bounds for pc(M). For
the lower bounds we choose the classification in such a way that we can calcu-
late upper estimates for πn(p) and then we can approximate terms of (pnc )∞n=0

using the van den Berg and Ermakov bound for psitec . For the upper bounds we
will construct a classification that permits us to bound θ(p) away from 0 for p
sufficiently large.

Let Kn be the set of all possible realizations of Kn. We will define a partially
ordered alphabet A and the classification will actually be a sequence of maps
C = (Cn)∞n=0, where Cn is a map from Kn to A . The alphabet will have a
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unique minimum and maximum, with the property that

Cn(∅) = min(A ) and Cn([0, 1]2) = max(A ). (5.4)

Realizations of Kn can be mapped in a natural way to words in A M×M . A
realization ofKn is obtained by first generating a realization ofK1 and then re-
placing all squares that survived by independent scaled realizations of Kn−1.
Given Cn−1, this induces a map Wn from Kn to A M×M . If Cn(Kn) only de-
pends on the word Wn(Kn) and not on n, we say the classification is regular:

Definition 5.1. Let φ be a map from A M×M to A . Define C = (Cn)∞n=0 by letting

Cn = φ ◦Wn, n ≥ 1. (5.5)

Then we say C is a regular classification and φ is called the word code of C .

Example 5.1. Let M = 2 and take the alphabet A = { , }, where min A =

and max A = . For a 2× 2 word w over A let φ(w) = if and only if at least
one of the letters in w equals . Let C = (Cn)∞n=0 be regular with word code φ.
Then C0 is determined by (5.4):

C0(K0(p)) = C0([0, 1]2) = .

For n ≥ 1,Cn = φ ◦Wn. For instance

C1([
1

2
, 1]2) = φ(W1([

1

2
, 1]2)) = φ

(
C0(∅) C0([0, 1]2)

C0(∅) C0(∅)

)
= φ

( )
= .

�

We now want to analyze the probabilities P(C (Kn(p)) = a), where a ∈ A .
Suppose C is a regular classification with word code φ. Let x ∈ [0, 1]|A | be a
probability vector on A , and suppose we construct anM×M wordw in which
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all letters are chosen independently according to x. Define FC (x) ∈ [0, 1]|A | by

(FC (x))a = Px(φ(w) = a), a ∈ A .

The function FC : [0, 1]|A | → [0, 1]|A | will be the key to calculate the probabil-
ities P(C (Kn(p)) = a) in an iterative way, as is shown in the next lemma. Let
τn(p) be a vector indexed by the elements of A such that

τna (p) = P(C (Kn(p)) = a).

Let τ and τ be the vectors that assign full probability to min(A ) and max(A )

respectively.

Lemma 5.2. If the classification C is regular, then

τn+1(p) = FC (pτn(p) + (1− p)τ ) with initial condition τ0(p) = τ .

Proof. The letters in Wn+1(Kn+1(p)) are independent. With probability p a let-
ter corresponds to a scaled realization of Kn(p), with probability 1− p it corre-
sponds to an empty square. So each letter occurs according to the probability
vector pτn(p)+(1−p)τ . This gives the recursion. The initial condition follows
from (5.4). �

This recursion formula is essentially a generalization of the recursion given in
[9].

5.3.1 Strategy for lower bounds

The strategy to find lower bounds for pc now is as follows. Define an alphabet
A with subset Aπ and define a classification C (by choosing φ) in such a way
that P(C (Kn(p)) ∈ Aπ) ≥ πn(p) for all n. Now search for the largest p for which
this probability is smaller than 0.556. We will give an example to illustrate this
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procedure. In this example (which only gives a very moderate bound) A only
has two elements, and therefore exactly the same recursion as in [9] pops up.

Example 5.2. (A lower bound for M = 2) Let C be the classification of Ex-
ample 5.1. By induction it follows that if two sides are connected in Kn, then
Cn(Kn) = . Consequently τn(p) ≥ πn(p). From the definition of φ it follows
that in this case

τn+1(p) = 1− (1− pτn(p))4 = τ1(pτn(p)).

The function Gp(x) := τ1(px) is increasing and τn(p) decreases to the largest
fixed point of Gp(·). Choosing p = 0.33, we find π50(p) ≤ τ50(p) ≈ 0.554 <

0.556 ≤ psitec , and consequently p50
c (2) > 0.33 and therefore also pc(2) > 0.33.

�

5.3.2 Strategy for upper bounds

Our recipe to find upper bounds for pc(M) is a bit more involved. We already
have a partial ordering on A , but to find upper bounds it will also be conve-
nient to partially order the probability vectors on A . A set S ⊆ A will be called
increasing if a ∈ S implies b ∈ S for all b � a. For probability vectors x and y,
we now write x � y if x assigns larger probabilities to all increasing subsets of
A . We say the function FC is increasing if FC (x) � FC (y) for x � y.

Lemma 5.3. Let C be a regular classification for which FC is increasing. Then the
sequence (τn(p))∞n=0 is decreasing and τ∞(p) := limn→∞ τn(p) exists. If FC (px +

(1− p)τ ) � x for some probability vector x ∈ [0, 1]|A | and p ∈ (0, 1], then τ∞(p) �
x.

Proof. Since τ0(p) = τ , we have τ0(p) � τ1(p). Suppose τn(p) � τn+1(p).
Then τn+1(p) = FC (pτn(p) + (1− p)τ ) � FC (pτn+1(p) + (1− p)τ ) = τn+2(p)

since FC is increasing. So (τn(p))∞n=0 is decreasing. If S ⊆ A is an increasing
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set, then
τnS (p) := P(C (Kn) ∈ S)

decreases in n and is bounded from below by 0, so limn→∞ τnS (p) exists. There
are only finitely many increasing subsets of A and their limiting probabilities
uniquely determine τ∞(p).

For the second statement, τ0(p) = τ � x. Now suppose τn(p) � x for some n.
Then

τn+1(p) = FC (pτn(p) + (1− p)τ ) � FC (px+ (1− p)τ ) � x.

and therefore τn(p) � x for all n ∈ N. Hence τ∞(p) � x. �

Corollary 5.1. Let C be a regular classification for which FC is increasing. Suppose
x ∈ [0, 1]|A | is a probability vector for which xmax(A ) > 0. If θn(p) ≥ τnmax(A )(p) for
all n, and FC (px+ (1− p)τ ) � x for some p ∈ (0, 1], then

θ(p) = lim
n→∞

θn(p) ≥ lim
n→∞

τnmax(A )(p) ≥ xmax(A ) > 0,

and consequently p > pc.

Before we give an example of the procedure to find upper bounds for pc(M),
we will first construct suitable alphabets in the next section.

5.4 Construction of the alphabet and word codes

Our alphabets will be defined by means of non-crossing equivalence relations.
Figure 5.3 displays all equivalence relations on an ordered set of 5 elements, of
which 42 are non-crossing.
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Figure 5.3: Equivalence rela-
tions on 5 elements

Let E = {e1, . . . , en} be a collection of line seg-
ments that together form the boundary of the unit
square, numbered clockwise, starting from (0, 0).
We define the alphabet AE as the set of all non-
crossing equivalence relations on E. The size of
AE is given by the Catalan number 1

n+1

(
2n
n

)
.

On the alphabet AE , we can naturally define a par-
tial ordering. For a, b ∈ AE we say a � b if all
equivalences that hold in b also hold in a. The equiv-
alences (denoted by ∼) represent connections be-
tween the elements. The letters can be represented
as pictures in a square. For example, if E is the set
containing the four sides of the square (so n = 4),
then AE can be represented as

AE = { , , , , , , , , , , , , , } .

The alphabet has a unique maximum and mini-
mum, max(AE) = and min(AE) = . From now
on we will denote the alphabet that corresponds to
dividing each side in Mn elements of equal size by AM,n.

Now that we have letters, we can start making words. We only allow square
words, obtained by tiling [0,M ]2 byM2 letters. An example of a 3×3 word over
A3,0 is given in the right panel of Figure 5.4. A word w also has a boundary
element set Ew. We enumerate clockwise, starting from (0, 0), as follows: Ew ={
ew1 , . . . , e

w
M |E|

}
.
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5

Figure 5.4: Left: A realization of K2 for M = 3. Right: A 3 × 3 word w over A3,0. If we
use the word code Ψ3,0, then this word corresponds to the realization on the left.

5.4.1 Weak and strong connectivity

Suppose we partition Ew into subsets E1
w, . . . , E

k
w for some integer k ≥ 2. If

e ∼ f for some e ∈ Eiw and f ∈ Ejw, we say Eiw and Ejw are connected. If
Ei1w , . . . , E

im
w form a chain of pairwise connected sets, we say Ei1w and Eimw are

weakly connected. If strictly more than half of the elements in Eiw and strictly
more than half of Ejw are in the same equivalence class, we say Eiw and Ejw are
strongly connected. Observe that weak and strong connectivity are equivalence
relations on

{
E1
w, . . . , E

k
w

}
.

Choose the alphabet AM,n, then |E| = 4Mn, so words of size M × M have
4Mn+1 boundary elements. Partition Ew in the subsets

Eiw =
{
ewM(i−1)+j : 1 ≤ j ≤M

}
, 1 ≤ i ≤ 4Mn.

This gives a tool to define word codes: a word defines an equivalence relation
on
{
E1
w, . . . , E

4Mn

w

}
that obviously can be mapped to an equivalence relation
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on E = {e1, . . . , e4Mn}, which is just a letter in AE . In this way, define word
codes

ΦM,n : A M×M
M,n → AM,n and ΨM,n : A M×M

M,n → AM,n

based on weak and strong connectivity respectively. The corresponding classi-
fications are increasing.

Example 5.3. Let w be the word in Figure 5.4. This word has 12 boundary el-
ements that will be grouped into four partition sets. For instance, E3

w contains
the three elements at the right side. Then E1

w, E2
w and E4

w are all pairwise con-
nected andE3

w is connected toE4
w. ConsequentlyEiw is weakly connected toEjw

for all i and j. Therefore Φ3,0(w) = . The only partition sets that are strongly
connected are E1

w and E2
w. Therefore Ψ3,0(w) = . �

The idea behind the definitions of ΦM,n and ΨM,n is that they guarantee the
following key properties:

Property 5.2. Using the alphabet AM,k and word code ΦM,k, the following implica-
tion holds: if ei, ej ∈ E are connected in Kn, then ei ∼ ej in C (Kn).

Property 5.3. Using the alphabet AM,k and word code ΨM,k, the reversed implication
holds: if ei ∼ ej in C (Kn), then ei and ej are connected in Kn.

These properties are not hard to prove. Therefore we do not give a fully de-
tailed proof. For Property 5.2 a straightforward inductive argument suffices.

For Property 5.3, one should note that we actually have a stronger implication,
namely that ei and ej are connected in a special way that we will explain using
the realization in Figure 5.4. In this realization the left side and the top side are
connected. At both these sides there are two (strictly more than M/2) first level
squares each of which contains two second level squares that survived. These
second level squares are all in the same connected component. This property
is easily generalized to higher level realizations and other values of M . If two
neighbouring squares both have such connection from their joint side to an
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other side, then these two connections are in the same connected component.

The following lemma shows that these alphabets and word codes are suitable
for our purposes, see the discussion in Section 5.3.

Lemma 5.4. Using the word codes ΦM,k and ΨM,k leads to two inequalities:

1. Take the alphabet AM,k and define a classification C by the word code ΦM,k.
Let Aπ ⊆ AM,k be the set of all letters in which at least two of the sides are
connected. Then τnπ (p) := P(C (Kn(p)) ∈ Aπ) ≥ πn(p) for all n.

2. Take the alphabet AM,k and define a classification C by the word code ΨM,k.
Then τnmax(A )(p) ≤ θn(p) for all n.

Proof. These statements follow from Property 5.2 and 5.3 respectively. �

Now we are ready to give an example illustrating how to find upper bounds.
We will keep the example as simple as possible, so that it can be checked by
hand. Therefore our alphabet will contain only two letters and we will use a
word code that is even simpler than Ψ3,0. Nevertheless, it leads to a bound that
already improves upon the best bound known so far.

Example 5.4. (An upper bound for M = 3) Let A = {max(A3,0),min(A3,0)} =

{ , }. A 3 × 3 word w has twelve boundary elements that we partition into
four sets as before. Define a classification C by letting φ(w) = if and only if
all sets E1

w, . . . , E
4
w are strongly connected. This classification is increasing and

satisfies Property 5.3, so τnmax(A )(p) ≤ θn(p) for all n. The recursion of Lemma
5.2 reduces to τn+1(p) = τ1(pτn(p)), where

τ1(p) = p9 + 9p8(1− p) + 20p7(1− p)2.

This function is the first component of FC (pτ + (1 − p)τ ) = FC ((p, 1 − p)).
Now choose p = 0.984 and x = 0.9720. Then τ1(px) ≈ 0.9721 > x. Therefore
the probability vector (x, 1−x) satisfies the requirement of Corollary 5.1. Hence
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pc(3) < 0.984. �

5.4.2 Monotonicity and convergence

So far we developed some tools to find bounds for pc(M). One would expect
that taking larger alphabets results in sharper bounds, since we can approxi-
mate the connectivity structure in Kn more accurately. In this section we show
that this is indeed the case and that the lower bounds even convergence to
pc(M). Unfortunately, we do not know if the upper bounds also converge to
pc(M).

For the word code ΦM,k over AM,k, define the corresponding classification and
let τnπ (p) be defined as before. Then define a critical value as follows:

pc(ΦM,k) := sup
{
p : τ∞π (p) < psitec

}
.

Let A = AM,k and define C by the word code ΨM,k. Also here we define a
critical value:

pc(ΨM,k) := inf {p : τ∞max A (p) > 0} .

Now we have the following proposition:

Proposition 5.1. The sequence (pc(ΦM,k))∞k=0 is increasing and (pc(ΨM,k))∞k=0 is
decreasing. Moreover,

lim
k→∞

pc(ΦM,k) = pc(M).

Proof. The alphabet AM,k contains equivalence relations on an element set
EM,k. The element set EM,k+1 of AM,k+1 can be obtained by dividing each
element e ∈ EM,k into M equal pieces. These pieces will be called children of
e, and e will be called the parent of its children. Define classifications C k and
C k+1 by the word codes ΦM,k and ΦM,k+1. Denote the corresponding proba-
bility vectors by kτ and k+1τ . By induction it follows that if two elements are
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connected in C k+1(Kn), then their parents are connected in C k(Kn). Conse-
quently, kτnπ (p) ≥ k+1τnπ (p) and so

pc(Φ(M,k + 1)) ≥ pc(Φ(M,k)).

Now define C k and C k+1 by the word codes ΨM,k and ΨM,k+1. If two ele-
ments are connected in C k(Kn), then two of their children are connected in
C k+1(Kn). Henceforth, kτnmax A (p) ≤ k+1τnmax A (p), so

pc(Ψ(M,k + 1)) ≤ pc(Ψ(M,k)).

Take the alphabet AM,k and define C k by the word code ΦM,k. A realization
of Kn consists of Mn ×Mn squares, and letters in AM,k have Mk boundary
elements at each side. This means that for n ≤ k the classification describes the
connectivity structure exactly: two elements in C k(Kn) are connected if and
only if they are connected in Kn. So πn(p) = kτnπ (p) if n ≤ k. This implies that
for n ≤ k we can rewrite (5.3):

pnc (M) = sup
{
p : kτnπ (p) < psitec

}
≤ sup

{
p : kτ∞π (p) < psitec

}
= pc(ΦM,k) ≤ pc(M),

where we used that kτnπ (p) decreases in n by Lemma 5.3. Theorem 5.2 states
that pnc (M) converges to pc(M), so we conclude that limk→∞ pc(ΦM,k) = pc(M).

�

5.5 Numerical results

In this section we present our numerical results. Our principal goal was to com-
pute bounds using the alphabets AM,k which were constructed in the previ-
ous section. In these calculations we encountered the problem of accumulating
rounding errors, disturbing the convergence. Therefore we had to normalize
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the probability vector in each step. We did the rounding and normalization in
such a way that our conclusions are not violated. For example to show that
τnπ (p) < psitec , we made sure that we computed an upper estimate for τnπ (p).
Our implementation in Matlab (everything available from the author on re-
quest) gives the following results:

Proposition 5.2. Take the alphabet AM,k and define a classification C by the word
code ΦM,k. Let n = 1000 and define τnπ (p) as before. Then

- For M = 2 and k = 0, we have τnπ (0.785) < psitec .

- For M = 2 and k = 1, we have τnπ (0.859) < psitec .

- For M = 3 and k = 0, we have τnπ (0.715) < psitec .

Corollary 5.2. pc(2) > 0.859 and pc(3) > 0.715.

Proof. This follows from Lemma 5.4 and Theorem 5.1. �

Figure 5.5 illustrates for the case M = 2 and k = 0 how τnπ (p) behaves as
a function of n for some values of p. The values of τnπ (p) were calculated by
iterating the recursion of Lemma 5.2.

For larger values of k the computations were too complicated to perform in a
reasonable computation time. For example, the alphabet A2,2 already contains
35357670 letters. Nevertheless we will show that it is possible to improve the
bounds of Corollary 5.2 by taking other alphabets or word codes.

For M = 2, define the element set E by dividing the left and right side of
the unit square into 4 equal pieces and the bottom and top side into 2 equal
pieces. This leads to an alphabet AE that is in some sense in between A2,1

and A2,2. Analogous to our previous approach, we define a classification by
choosing a word code based on weak connectivity. For this classification we
find τ50

π (0.876) < psitec , which implies pc(2) > 0.876.

One can improve this even a bit more by taking the alphabet A2,2 and defining
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Figure 5.5: Plot of τnπ (p) for p = 0.7 + 0.01k where k = 0, . . . , 9 as functions of n. Note
that there is a kind of phase transition between p = 0.78 and p = 0.79.

a word code Φ̃2,2 that is a bit simpler than Φ2,2 as follows. If at least one of
the letters in a 2 × 2 word w equals min(A2,2), then Φ̃2,2(w) = Φ2,2(w). Other-
wise, define Φ̃2,2(w) by first mapping each of the four letters to AE and then
mapping the new word to A2,2, in both steps using weak connectivity. This
simplifies the required calculations a lot, and leads to pc(2) > 0.881, in 200

iterations.

For M = 3 we improved the lower bound by using an alphabet that divides
the left and right side of the unit square into 3 equal pieces. The bottom and
top side still consist of one element. This leads to pc(3) > 0.784, using 100

iterations.

These calculations have been checked by Arthur Bik, a mathematics student at
Delft University of Technology. He independently implemented the algorithms
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and reproduced all results, except the bound pc(2) > 0.881. This was due to the
fact that his program was not fast enough to perform the calculations in a rea-
sonable time. Concluding, the best lower bounds we found are

Theorem 5.3. pc(2) > 0.881 and pc(3) > 0.784.

Now let us turn to the upper bounds. Here we want to make use of Corol-
lary 5.1. We already know τnmax(A )(p) ≤ θn(p) for all n (Lemma 5.4) and that
the classification is increasing. That means, we only have to find a probability
vector x ∈ [0, 1]|A | for which xmax(A ) > 0 and p ∈ (0, 1] such that FC (px +

(1 − p)τ ) � x. The trick we use here is to take a value of p, and to search for
the fixed point τ∞ by iterating the recursion of Lemma 5.2. Assume that the
numerical results suggest that τ∞max(A ) > 0. Letting x = τn(p) for n large, we
have a combination of x and p for which FC (px + (1 − p)τ ) ≈ x. Taking p

slightly larger gives a combination for which the desired inequality FC (px +

(1− p)τ ) � x holds. This strategy leads to the following results:

Proposition 5.3. Take the alphabet AM,k and define a classification C by the word
code ΨM,k. Let n = 1000. The conditions FC (px+ (1− p)τ ) � x and xmax(A ) > 0

hold if x and p are chosen as follows:

- For M = 3 and k = 0, choose p = 0.958 and x = τn(0.9579).

- For M = 4 and k = 0, choose p = 0.972 and x = τn(0.9719).

Corollary 5.3. pc(3) < 0.958 and pc(4) < 0.972.

Proof. This follows from Lemma 5.4 and Corollary 5.1. �

For M = 3, the result can be sharpened by using the same alphabet that was
used to improve the lower bound. The classification is again defined by a word
code based on strong connectivity. In that case the choice p = 0.940 and x =

τ1000(0.9399) satisfies all conditions, so pc(3) < 0.940.

The algorithm for M = 4 can be slightly adapted to find a bound for M =
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2. Each realization of Kn for M = 4 can be seen as a realization of K2n for
M = 2. So the only thing that changes is the iteration function FC . Given a
probability vector on A , the probability on each 4× 4 word can be calculated.
The word code is still the same function Ψ4,0. These ingredients are sufficient
to determine FC . Performing the calculations we find that the conditions are
satisfied for p = 0.993 and x = τ1000(0.9929), henceforth pc(2) < 0.993.

Also for the upper bounds Arthur Bik checked our results. He independently
reproduced our bounds, except for the bound pc(3) < 0.940 (for similar reasons
as before). Summarizing, our best upper bounds are

Theorem 5.4. pc(2) < 0.993, pc(3) < 0.940 and pc(4) < 0.972.
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Summary

The Three Gap Theorem of Steinhaus states that given an irrational number α
and a natural number n, the fractional parts

{α} , {2α} , {3α} , . . . , {nα}

divide [0, 1] into subintervals of at least two and at most three different lengths.
In Chapter 2 we prove a variation stating that the partition of [0, 1] defined by

{±α} , {±2α} , {±3α} , . . . , {±nα}

also yields at most three different interval lengths. If there are three, then the
longest one is the sum of the other two. From this theorem we then deduce an
analogous “Four Gap Theorem” for the distance to the nearest integer, denoted
by || · ||. Namely, this theorem states that the distances

||α||, ||2α||, ||3α||, . . . , ||nα||

divide the interval [0, 1/2] into subintervals of at least two and at most four dif-
ferent lengths. Four is the sharpest possible bound. In addition, other proper-
ties of the lengths are determined. For example, the rightmost length is unique,
there are two different lengths if and only if ||α|| < 1/2n, and if there are three
or four lengths, then all relations among them are found.
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SUMMARY

In Chapter 3, we consider the orbit of a point representing an idealized billiard
ball which starts from a corner of a rectangular table. If one truncates the orbit
when the ball is at some boundary point, then a partition of the rectangle into
a finite number of polygons is obtained. The main result of this chapter is that,
for a fixed initial shooting angle and boundary stopping point, the number of
different shapes these polygons can have (up to translation, rotation or reflec-
tion) is at most 16, and the number of different areas is at most 13. An example
is constructed which shows that these bounds are sharp.

In addition, we consider two special cases. If the shooting angle has a rational
slope, then the orbit is periodic and eventually the partition into polygons re-
mains fixed. This fixed partition can have at most 3 different areas, although the
upper bound of 13 is still sharp before reaching this limiting partition. On the
other hand, if the shooting slope α has the form 1/(n+φ) where φ = (

√
5−1)/2

is the small golden mean, then the total number of possible areas is at most 12.

Chapter 4 deals with algebraic differences of random Cantor sets. Let F1 and F2

be independent copies of one-dimensional correlated fractal percolation, with
almost sure Hausdorff dimensions dimH(F1) and dimH(F2). We study the fol-
lowing question: does dimH(F1) + dimH(F2) > 1 imply that their algebraic dif-
ference F1−F2 will contain an interval? The well known Palis conjecture states
that ‘generically’ this should be true. Recent work by Dekking and Kuijven-
hoven [8] on random Cantor sets can not answer this question as their condi-
tion on the joint survival distributions of the generating process is not satisfied
by correlated fractal percolation. We develop a new condition which permits
us to solve the problem, and we prove that the condition of [8] implies our
condition. Independently of this we give a solution to the critical case, yielding
that a strong version of the Palis conjecture holds for fractal percolation and
correlated fractal percolation: the algebraic difference contains an interval al-
most surely if and only if the sum of the Hausdorff dimensions of the random
Cantor sets exceeds one.

In Chapter 5, we investigate the critical probability pc(M) in two-dimensional
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M -adic fractal percolation. To find lower bounds, we compare fractal percola-
tion with site percolation. Fundamentally new is the construction of an increas-
ing principally computable sequence that converges to pc(M). Unfortunately,
these computations are too complicated to perform in reasonable time, so to
obtain sharp numerical results we need some additional ideas.

We introduce the idea to classify realizations: they are mapped to a finite al-
phabet A . This induces a sequence of probability measures on A . We show
that these probability measures converge to a fixed point. Choosing the alpha-
bet and the classification rule in a proper way allows us to prove the following
lower bounds for the critical probability: pc(2) > 0.881 and pc(3) > 0.784. For
the upper bounds a similar approach gives pc(2) < 0.993, pc(3) < 0.940 and
pc(4) < 0.972.
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Samenvatting

De Drie Gaten Stelling van Steinhaus zegt dat voor een gegeven irrationaal
getal α en een natuurlijk getal n, de breukdelen

{α} , {2α} , {3α} , . . . , {nα}

het interval [0, 1] in deelintervallen met ten minste twee en ten hoogste drie ver-
schillende lengtes verdelen. In Hoofdstuk 2 wordt een variant hierop bewezen,
namelijk dat de partitie van [0, 1] die gedefinieerd wordt door

{±α} , {±2α} , {±3α} , . . . , {±nα}

eveneens ten hoogste drie verschillende intervallengtes geeft. Als er drie zijn,
dan is de langste de som van de andere twee. Uit dit resultaat wordt een
analoge “Vier Gaten Stelling” afgeleid voor de afstanden tot het dichtstbij-
zijnde gehele getal, genoteerd als || · ||. Deze stelling zegt dat de afstanden

||α||, ||2α||, ||3α||, . . . , ||nα||

het interval [0, 1/2] verdelen in subintervallen van ten minste twee en ten hoog-
ste vier verschillende lengtes. Vier is de scherpst mogelijke bovengrens. Boven-
dien worden andere eigenschappen van de lengtes bewezen. De lengte van het
meest rechtse interval is bijvoorbeeld uniek, en er zijn precies twee verschil-
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lende lengtes dan en slechts dan als ||α|| < 1/2n. Voor de gevallen dat er drie
of vier lengtes zijn worden alle mogelijk relaties tussen deze lengtes opgesomd.

In Hoofdstuk 3 bestuderen we de baan van een geı̈dealiseerde biljartbal die
vertrekt vanuit een van de hoeken van een rechthoekige tafel. Door de baan
te stoppen als de bal in een randpunt is, kan een verdeling van de rechthoek
in een eindig aantal veelhoeken verkregen worden. Het belangrijkste resultaat
in dit hoofdstuk is dat (voor een vaste lanceringshoek en een gegeven eind-
punt) het aantal verschillende vormen van deze veelhoeken maximaal zestien
is. Hierbij tellen translaties, rotaties en spiegelingen maar een keer mee. Het
aantal mogelijke oppervlaktes van de veelhoeken is ten hoogste dertien. We
construeren bovendien een voorbeeld dat aantoont dat deze bovengrenzen
scherp zijn.

Verder worden twee bijzondere gevallen bekeken. Als de schiethoek rationaal
is, dan is de baan periodiek en uiteindelijk krijgen we dan een partitie die
niet meer verandert. Deze vaste partitie geeft maximaal drie verschillende op-
pervlaktes, hoewel de bovengrens van dertien nog steeds bereikt kan worden
voordat het periodieke gedrag zich laat zien. Anderzijds zijn er ook irrationale
getallen waarvoor de bovengrens nooit bereikt wordt. Als de schiethoek α van
de vorm 1/(n+ φ) is, waarbij φ = (

√
5− 1)/2 de kleine gulden snede is, dan is

het aantal verschillende oppervlaktes maximaal twaalf.

Hoofstuk 4 behandelt algebraı̈sche verschillen van stochastische Cantor verza-
melingen. Stel dat F1 en F2 onafhankelijke realisaties van eendimensionale
gecorreleerde fractale percolatie zijn, waarvan de bijna zekere Hausdorff di-
mensies gegeven worden door dimH(F1) en dimH(F2). Onze centrale vraag is
dan: volgt uit dimH(F1) + dimH(F2) > 1 dat het algebraı̈sch verschil F1 − F2

een interval bevat? Het welbekende vermoeden van Palis zegt dat dit in het
algemeen waar zou moeten zijn. Recent werk van Dekking en Kuijvenhoven
[8] blijft het antwoord op deze vraag schuldig, aangezien aan hun voorwaarde
op de gezamenlijke kansverdelingen van het genererende proces niet voldaan
is in het geval van gecorreleerde fractale percolatie. In dit proefschrift wordt
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een nieuwe voorwaarde ontwikkeld, die hier wel uitkomst biedt en waarvan
we aantonen dat hij zwakker is dan de conditie in [8].

Onafhankelijk hiervan wordt het kritieke geval opgelost, waarmee we laten
zien dat een sterke versie van het vermoeden van Palis geldt voor fractale per-
colatie en gecorreleerde fractale percolatie: het algebraı̈sch verschil bevat met
kans 1 een interval dan en slechts dan als de som van de Hausdorff dimensies
van de Cantor verzamelingen strikt groter is dan 1.

In Hoofdstuk 5 richten we onze aandacht op de kritieke kans pc(M) in twee-
dimensionale M -adische fractale percolatie. Om ondergrenzen te vinden, ver-
gelijken we fractale percolatie met percolatie op de roosterpunten in het Eu-
clidische vlak. We construeren voor alle M een stijgende rij die convergeert
naar pc(M ). De termen in deze rij zijn in principe algoritmisch te berekenen,
maar aangezien dat zeer tijdrovend is leidt dit nog niet tot goede numerieke
resultaten.

Om dit probleem te omzeilen gaan we realisaties classificeren: alle mogelijke
realisaties worden afgebeeld naar een letter uit een eindig alfabet A . De kans-
verdeling op mogelijke realisaties wordt hierdoor vereenvoudigd tot een kans-
verdeling op A . We bewijzen dat deze kansverdelingen convergeren naar een
dekpunt. Door nu het alfabet en de classificatieregel goed te kiezen kunnen we
ondergrenzen voor de kritieke kans afleiden: pc(2) > 0.881 and pc(3) > 0.784.
Een vergelijkbare aanpak voor de bovengrenzen geeft pc(2) < 0.993, pc(3) <

0.940 and pc(4) < 0.972.
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