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1. Introduction
A classical problem in the theory of social choice is the determination of the probability of
the occurrence of a Condorcet winner in an election. Consider a committee of n members
to be called voters, faced with the choice between m alternatives. Suppose that each voter
expresses an order of preference for these alternatives. Such a set of n preference orders
is called a profile. An alternative c is said to be the Condorcet winner or, simply, winner
of this profile if for every other alternative a the number of voters who prefer c to a is
strictly larger than the number of voters who prefer a to c. Clearly, the occurrence of
such a winner is a desirable situation in this form of group decision making. However, as
is well known, a Condorcet winner need not exist; not even if the committee has an odd
number of members, each having pronounced preferences. This regrettable fact is known
as the no-winner form of Condorcet’s paradox [Gehrlein 1983, p. 162] after the Marquis de
Condorcet [1785, 1789] who is generally credited with its discovery [Riker, 1961, p. 901;
Black, 1971, Chapter 18; Young, 1988; Van Deemen, 1997, Chapter 3]. See Riker [1961,
p. 901] and Gehrlein [1983, p. 163] for references on the history and (re)discoveries of the
paradox.

The problem to be addressed here is: determine the probability P (n, m) (and, likewise,
P ∗(n, m)) for the occurrence of a Condorcet winner if the voters choose their preference
orders independently and uniformly from the set of all possible linear (or weak) orders of
the alternatives. Here, a weak order is a linear order on a partition of the alternatives
into non-empty blocks, where the alternatives inside a single block are considered equally
eligible by the voter who expresses the weak order in question.

Except for Jones, Radcliff, Taber and Timpone [1995] who study P as well as P ∗, previous
studies of these probabilities only consider P . Examples are: Garman & Kamien, 1968;
Niemi & Weisberg, 1968; DeMeyer & Plott, 1970; May, 1971; Gehrlein &Fishburn, 1976;
Gehrlein, 1983. All of these studies consider profiles of (random) linear orders that result
from independent sampling without replacement of the m alternatives. Here we choose
to assign independent random scores to the alternatives, and take the orders induced by
these scores as (random) linear or weak orders of preference.

A profile can have only one Condorcet winner as here defined. There are two rules in the
literature for designating an alternative c as to be majority preferred to an alternative a.
Let N(ac) denote the number of voters who prefer a to c. For c to be majority preferred
to a, the majority rule (e.g., Sen [1970, p. 23]) requires N(ca) ≥ N(ac) whereas the simple
majority rule (e.g., Fishburn [1973, p. 18]) requires this inequality to be strict. If n is even,
applying the majority rule to all pairs of alternatives does not necessarily yield a unique
Condorcet winner (provided there exists one) since it may happen that N(ac) = N(ca)
for some pairs {a, c}. Accordingly, studies on P and P ∗, such as the ones just mentioned,
only consider profiles with n odd. As our approach holds for odd and even n alike, we will
use the simple majority rule. So, in contrast to, e.g., Kelly [1987, p. 15] and Van Deemen
[1999, p. 172], we do not allow non-unique winners.

By simulating a million elections on a computer for various pairs (n, m), Jones et al. [1995]
obtained a table of estimates of P (n, m) and P ∗(n, m) which to our knowledge is the
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largest made so far. In their simulations they sampled linear orders by the algorithm of
selection without replacement among the m alternatives. For the purpose of sampling weak
orders of the m alternatives they drew up a list of all possible weak orders, and then chose
elements from this list at random. Now, the number of weak orders on m objects behaves
asymptotically as m!/2(log 2)m+1. (See [J.P. Barthelemy, 1980; Bailey, 1998]. The factor
log 2 is the radius of convergence of the generating function F (z) = (2−ez)−1 in (3).) Due
to this fast increase as a function of m, the above listing procedure is only feasible for m
up to about 15.

In this paper we present an algorithm for sampling weak orders on m alternatives which
works for arbitrarily high values of m, and yields all possible weak orders with equal
probabilities. It runs as follows. First we choose a ‘maximum score’ K according to a
certain well-chosen probability distribution πm on the natural numbers. Then we choose for
every alternative independently a score from 1 to K according to the uniform distribution.
The sample order is then the weak order of these scores.

An attractive feature of this algorithm is that the alternatives obtain independent scores.
In fact, also for linear orders there exists an algorithm with this property: instead of
selecting alternatives without replacement, we can allot to each of them independently
a random score, uniformly distributed over the interval [0, 1], and then take the (linear)
order of these real-valued scores as our sample order. Generating preference orders by
independent scores greatly facilitates the analysis of P and P ∗.

A further simplification of the calculation of P and P ∗ results from the observation that
the probability for the occurrence of a Condorcet winner equals m times the probability
that a particular alternative wins. We choose one ‘pivot’ alternative once and for all, and
let the other m− 1 alternatives compete with it independently. This approach enables us
to give expressions for P (n, m) and P ∗(n, m) in which m plays a fairly simple role, so that
the study of asymptotic behavior for large m comes within reach.

2. The number of weak orders
Let R be a binary relation on a finite set A. We recall that R is called connected if for all
a, b ∈ A we have either aRb or bRa, transitive if aRb and bRc imply aRc, and antisymmetric
if aRb and bRa imply that a = b. A weak order on A is a binary relation on A that is both
connected and transitive. A linear order is a weak order which is antisymmetric [Krantz,
Luce, Suppes & Tversky, 1971, p. 14; Roberts 1979, p. 15; Michell, 1990, p. 167].

Interpreting A as comprising m alternatives, we let W be a weak order on A, and let ∼
denote the binary relation on A defined by

a ∼ b iff aWb and bWa .

In the case of a voter’s preference order we interpret a ∼ b as meaning that the voter is
indifferent with respect to a and b. Let ã :=

{
b ∈ A

∣∣ b ∼ a
}

denote the indifference
class of a, and A/∼ the set of indifference classes that W induces on A. Let k denote the
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cardinality of A/∼. Clearly 1 ≤ k ≤ m. The binary relation L on A/∼ given by ãLb̃ iff
aWb, is a linear order [Roberts 1979, p. 31, Theorem 1.2.; Krantz et. al. 1971, p. 16].
Conversely every linear order on a partition of A into k nonempty subsets determines a
unique weak order on A with #(A/∼) = k. Therefore, the number w(m, k) of such weak
orders is given by

w(m, k) = k! S(m, k) :=
k∑

i=0

(−1)i

(
k

i

)
(k − i)m ,

where S(m, k), a Stirling number of the second kind, gives the number of partitions of a
set of m elements into k nonempty subsets [Comtet, 1974, p.204; Van Lint and Wilson,
1993, p. 71, 105-6]. The total number Wm of weak orders on m objects is thus given by

Wm = w(m, 1) + · · ·+ w(m,m) =
m∑

k=1

k! S(m, k) . (1)

The quickest way to find Wm is by use of the recursion

w(m, k) = k
(
w(m− 1, k) + w(m− 1, k − 1)

)
, (2)

which follows from the corresponding recursion for the Stirling numbers [Van Lint and
Wilson, 1993, p. 105]. Equation (2) can be understood directly as follows. A weak order
on {1, . . . ,m} into k blocks can be obtained either by weakly ordering {1, . . . ,m− 1} into
k blocks, and then adding m to one of the k blocks, or by weakly ordering {1, . . . ,m− 1}
into k−1 blocks, and inserting the block {m} in one of k ways. The calculation of w(m, k)
and, from these, Wm is illustrated in Table 1.

– – – – – – – – –

Table 1 here

– – – – – – – – –

For the sequel a second expression for Wm is relevant.

Theorem 1. For all m ∈ N,

Wm =
∞∑

k=0

km

2k+1
.

Proof. Define for k ∈ N and z ∈ C sufficiently small,

Fk(z) :=
∞∑

m=0

w(m, k)
zm

m!
.

Then by (2) we have for k ≥ 1:

F ′
k(z) =

∞∑
m=1

w(m, k)
zm−1

(m− 1)!
=

∞∑
m=0

w(m + 1, k)
zm

m!

=
∞∑

m=0

k
(
w(m, k) + w(m, k − 1)

)zm

m!
= k

(
Fk(z) + Fk−1(z)

)
.
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The unique solution of this system of differential equations with boundary conditions
F0(z) = 1 for all z and Fk(0) = 1 for all k is

Fk(z) = (ez − 1)k
.

Now put

F (z) :=
∞∑

m=0

Wm
zm

m!
. (3)

Then, because of (1) and noting that w(m, k) = 0 for k > m,

F (z) =
∞∑

k=0

Fk(z)

=
1

1− (ez − 1)
=

1
2− ez

=
1
2

1− 1
2ez

=
∞∑

k=0

1
2

(
1
2ez
)k

=
∞∑

k=0

ekz

2k+1
=

∞∑
k=0

1
2k+1

∞∑
m=0

kmzm

m!
=

∞∑
m=0

zm

m!

( ∞∑
k=0

km

2k+1

)
.

The result follows from comparison with (3). We note that the power series for F (z)
has positive coefficients, and radius of convergence log 2, so that on [0, log 2) the above
interchange of summations is justified.

3. Generating random weak orders
From Theorem 1 it follows that the sequence πm(1), πm(2), πm(3), . . . of positive numbers
given by

πm(k) :=
1

Wm
· km

2k+1
(4)

sums up to 1, and hence defines a probability distribution on the natural numbers. This
distribution plays a crucial role in our algorithm. First we need a lemma.

Lemma 2. Let l ∈ N. Then
∞∑

k=l

1
2k+1

(
k

l

)
= 1 .

Proof. In an infinite sequence of tosses with a fair coin the probability that head comes
up for the (l + 1)-th time in the (k + 1)-th toss is

1
2k+1

(
k

l

)
.

The lemma expresses the fact that the (l + 1)-th head is certain to come up eventually.
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Theorem 3. Let A be a set of m elements, m ≥ 1. Let a stochastic weak order R on A
be generated by the following algorithm:
(i) Draw an integer-valued random variable K according to the probability distribution

πm. (See the instruction below).
(ii) To each a ∈ A assign a random score Xa according to the uniform distribution on

{1, . . . ,K}.
(iii) Put aRb iff Xa ≤ Xb.

Then all of the Wm possible weak orders on A are obtained with the same probability
1/Wm.

Proof. Consider a fixed weak order R on A. As indicated in Section 2, R is completely
determined by a number l ≥ 1 and a partition of A into l nonempty disjoint blocks,
B1, B2, . . . , Bl, by the prescription:

aRb iff a ∈ Bi and b ∈ Bj with i ≤ j .

Therefore the score assignment X : A → {1, 2, . . . ,K} : a 7→ Xa induces the weak order R
in step (iii) iff X takes a constant value on each block Bi of R which is a strictly increasing
function of i. Now, any strictly increasing function {1, . . . , l} → {1, . . . ,K} is completely
determined by its range, so for fixed K there are

(
K
l

)
functions which induce the weak

order R on A. (We take
(
K
l

)
to be 0 if K < l.)

Since the number of possible assignments X : A → {1, 2, . . . ,K} is Km, it follows that
a fixed weak order R having l blocks is produced by the algorithm with the following
probability

P[R is produced] =
∞∑

k=l

P[K = k] · P[R is produced|K = k]

=
∞∑

k=l

(
1

Wm
· km

2k+1

)
·
(

1
km

(
k

l

))

=
1

Wm

∞∑
k=l

1
2k+1

(
k

l

)
=

1
Wm

,

where in the last equality sign Lemma 2 is used.

Remark. The above reasoning yields an independent proof of Theorem 1: First define Wm

as the infinite sum in Theorem 1, and then use the proof of Theorem 3 to show that∑
R

1
Wm

= 1 .

It then follows that Wm is the number of weak orders of A.

Instruction. In order to draw repeatedly a random variable K with distribution πm, as
required in step (i), one may proceed as follows.

1. Before the start of the simulations:
(1a.) Calculate Wm using the recursion (2).

– 5 –



(1b.) Choose a small number δ such that 1/δ is of the order of the total number of
weak orders to be generated, and find N ∈ N so large that

Wm −
N∑

k=1

km

2k+1
< δ .

(1c.) Fill an array with the partial sums S0, S1, S2, . . . , SN given by

Sk :=
k∑

j=0

jm

2j+1
, k = 0, 1, . . . , N − 1 ; SN := Wm .

2. For each of the weak orders to be sampled:
(2a.) Let Y := Wm · RND(1), where RND(1) produces a random number uniformly

over [0,1].
(2b.) Let K be the least integer for which SK ≥ Y .

Then for all k ∈ {1, . . . , N − 1}:

P[K = k] = P[Sk−1 < Y ≤ Sk] =
1

Wm
(Sk − Sk−1) =

1
Wm

km

2k+1
= πm(k) .

With probability less than δ the random variable K takes the value N where actually it
should take a larger value.

4. Probabilities of Condorcet winners from profiles pro-
duced by independent scores

As a spin-off from the algorithm in Section 3 we are enriched with a general idea. Ap-
parently we can generate random weak orders from independent random scores (Xa)a∈A

with identical discrete probability distributions. Obviously we can also generate linear
orders in this way if only we take the probability distribution of the scores continuous,
thus excluding indifference.

Proposition 4. Let A be a finite set of m elements, m ≥ 1. Let a stochastic order R on
A be generated by the following algorithm:
(i) To each a ∈ A assign a random score Xa according to the uniform distribution on

[0, 1].
(ii) Put aRb iff Xa ≤ Xb.

Then with probability 1 the order R is a linear order and each of the m! possible linear
orders on A occurs with equal probability 1/m!.
This idea can be used to simulate elections. However, computer simulations to estimate
probabilities are typically run for want of an analytic expression. So, let us first see what
can be done analytically with this insight. We are interested in profiles (R1, R2, · · · , Rn) of
linear or weak orders on the set A of alternatives. We say that a ∈ A is majority preferred
to b ∈ A (and we write aMb) if

#
{

j ≤ n
∣∣ aRjb

}
< #

{
j ≤ n

∣∣ bRja
}

.
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(Note that aRjb stands for ‘voter j prefers b to a’.) An alternative c ∈ A is called the
Condorcet winner of the profile (R1, R2, · · · , Rn) if

∀a∈A\{c} : cMa . (5)

It was observed by Niemi and Weisberg [1968, p. 321] that, since there can be at most
one winner, and the alternatives all have equal probabilities to win, the probability for a
majority winner to occur equals m times the probability that any given alternative wins.
So let us pick out a pivot alternative c ∈ A and consider the probability that (5) is the case.
The different events [cMa] and [cMb] with a 6= b are in general statistically dependent.
Indeed, taking for example n = 1, A = {a, b, c}, and linear preference orders, we find that

P[cMa] = P[cMb] = 1
2 ,

whereas
P[cMa and cMb] = 1

3 6=
1
2 ×

1
2 .

Of course this statistical dependence greatly complicates the calculation of the probability
for (5) to occur. However, when independent scores are used to generate the profile, the
events [cMa] and [cMb] for different a, b and c become independent when conditioned on
the scores X1

c , X2
c , · · · , Xn

c of the pivot (and, in the weak case, also on the maximum scores
K1, K2,..., Kn).

So, considering linear orders, for any (x1, x2, · · · , xn) ∈ [0, 1]n let P(x1,x2,···,xn)(E) denote
the probability of an event E conditioned on X1

c = x1, . . . , X
n
c = xn. Then,

P[∀a∈A\{c} : cMa] =
∫ 1

0

· · ·
∫ 1

0

P(x1,x2,···,xn)

[
∀a∈A\{c} : cMa

]
dx1dx2 · · · dxn ,

=
∫ 1

0

· · ·
∫ 1

0

(
P(x1,x2,···,xn)[cMa]

)m−1

dx1dx2 · · · dxn ,

where a is an arbitrary alternative different from c. So we only have to calculate the
probability P(x1,x2,···,xn)[cMa] for some a 6= c. However, since the preference orders
R1, R2, · · · , Rn are independent, this latter probability is equal to∑

ω∈{1,−1}n∑
j

ω(j)>0

n∏
j=1

P(x1,x2,···,xn)[cR
ω(j)
j a] ,

where [cR1
ja] denotes the event that voter j prefers c to a, and [cR−1

j a] the event that voter
j prefers a to c, and the sum is over all sequences ω of 1’s and −1’s whose sum

∑
j ω(j)

is positive, meaning that there are more voters who prefer c to a (these are indicated by
the 1’s in ω) than there are who prefer a to c (indicated by the −1’s). Now, given that
Xj

c = xj for j = 1, . . . , n, the probability that voter j prefers c to a is P[Xj
a < xj ] = xj ,

while the probability that he prefers a to c is 1− xj .

Collecting results we conclude:
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Theorem 5. The probability P (n, m) for the ocurrence of a Condorcet winner when n
voters express linear preference orders on m alternatives is given by

P (n, m) = m

∫ 1

0

· · ·
∫ 1

0

Sn(x1, x2, · · · , xn)m−1dx1dx2 · · · dxn ,

where

Sn(x1, x2, · · · , xn) :=
∑

ω∈{1,−1}n∑
j

ω(j)>0

n∏
j=1

fω(j)(xj) ,

and

f1(x) := x and f−1(x) := 1− x .

In an analogous way we obtain the corresponding theorem for weak orderings.

Theorem 6. The probability P ∗(n, m) for the ocurrence of a Condorcet winner when n
voters express weak preference orders with respect to m alternatives is given by

P ∗(n, m) =
m

Wn
m

∞∑
k1=1

· · ·
∞∑

kn=1

(
1
2

)k1+···+kn+n k1∑
x1=1

· · ·
kn∑

xn=1

S∗n(k1, · · · , kn;x1, · · · , xn)m−1 ,

where

S∗n(k1, k2, · · · , kn;x1, x2, · · · , xn) :=
∑

ω∈{−1,0,1}n∑
j

ω(j)>0

n∏
j=1

gω(j)(kj , xj) ,

and

g1(k, x) := x− 1, g0(k, x) := 1, and g−1(k, x) := k − x .

Proof. We suppose that each voter j determines his preference order by first choosing
Kj according to the distribution πm and, then, for each alternative a ∈ A picks a score
Xj

a ∈ {1, . . . ,Kj} at random. Let k := (k1, k2, · · · , kn) and x := (x1, x2, · · · , xn), and
for an event E let Pk,x(E) denote the probability that E occurs given that K1 = k1,
K2 = k2, . . . ,Kn = kn, and X1

c = x1, X2
c = x2, . . . , X

n
c = xn. We write a >j b or aR1

jb if
voter j prefers a to b, a <j b or aR−1

j b if voter j prefers b to a, and a ∼j b or aR0
jb if voter

j is indifferent with respect to a and b. Then we have for a, c ∈ A with a 6= c,

Pk,x[c >j a] = P[xj > Xj
a|Kj = kj ] =

xj − 1
kj

,

Pk,x[c ∼j a] = P[xj = Xj
a|Kj = kj ] =

1
kj

,

Pk,x[c <j a] = P[xj < Xj
a|Kj = kj ] =

kj − xj

kj
.
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It follows that

Pk,x[cMa] =
∑

ω∈{−1,0,1}n∑
j

ω(j)>0

P[cRω(1)
1 a and cR

ω(2)
2 a and . . . and cRω(n)

n a]

=
∑

ω∈{−1,0,1}n∑
j

ω(j)>0

n∏
j=1

gω(j)(kj , xj)
kj

=
S∗(k, x)
k1 · · · kn

.

Since the scores Xj
a are all independent given K1,K2, · · · ,Kn, we have

P ∗(n, m) = mP[∀a∈A\{c} : cMa]

= m
∞∑

k1=1

· · ·
∞∑

kn=1

πm(k1) · · ·πm(kn)
k1∑

x1=1

· · ·
kn∑

xn=1

1
k1
· · · 1

kn
Pk,x[∀a∈A\{c} : cMa]

=
m

Wn
m

∞∑
k1=1

· · ·
∞∑

kn=1

km
1

2k1+1
· · · km

n

2kn+1

1
k1 · · · kn

k1∑
x1=1

· · ·
kn∑

xn=1

(
S∗(k, x)
k1 · · · kn

)m−1

.

In this expression all the factors kj cancel, and the result is obtained.

5. Some particular cases
In this section we demonstrate the use of the formulas in Theorems 5 and 6 by calculating
P (n, m) and P ∗(n, m) in certain particular cases.

5.1. Single voter case
Obviously P (1,m) = 1 for all m since a single linear order always has a top element. As
S1(x) = x, this is just what Theorem 5 ascertains:

m

∫ 1

0

xm−1dx = xm

∣∣∣∣1
0

= 1 .

For a single weak preference order the situation is already nontrivial: the top cluster may
contain more than one alternative. (The voter hesitates as to which alternative is the
best). It is not difficult to see, however, that

P ∗(1,m) =
mWm−1

Wm
.

Indeed, there are m ways to choose a winning alternative, and then Wm−1 ways to weakly
order the remaining ones below it. As an illustration we calculate this result now from
Theorem 6: since S∗1 (k, x) = x− 1,

P ∗(1,m) =
m

Wm

∞∑
k=1

(
1
2

)k+1 k∑
x=1

(x− 1)m−1 =
m

Wm

∞∑
u=0

um−1
∞∑

k=u+1

(
1
2

)k+1

=
m

Wm

∞∑
u=0

um−1

2u+1
=

mWm−1

Wm
.
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It is of interest to note that P ∗(1,m) is not decreasing in m and that the asymptotic
behavior of Wm is such that

lim
m→∞

P ∗(1,m) = log 2 .

5.2. Two voters
Two voters with linear preference orders yield a Condorcet winner iff they put the same
cadidate on top of their lists. The probability for this to happen is

P (2,m) =
1
m

.

This is obtained from Theorem 5 by realizing that S2(x, y) = xy, so that

P (2,m) = m

(∫ 1

0

xm−1dx

)(∫ 1

0

ym−1dy

)
=

m

m2
=

1
m

.

The weak case is more complicated than this but can still be greatly simplified since
S∗2 (k, x) does not depend on k (see the proof of Lemma 7). For n = 2 we denote k by
(k, l), and x by (x, y).

Lemma 7. For all m ≥ 1:

P ∗(2,m) =
m

W 2
m

(
(−1)m−1 + 4

m−1∑
l=1

(
m− 1

l

)
(−1)m−l−1W 2

l

)
. (6)

Proof. To find S∗2 (k, l;x, y) we must sum over ω ∈ {(1, 1), (1, 0), (0, 1)}. So

S∗2 (k, l;x, y) = (x− 1)(y − 1) + (x− 1) + (y − 1) = xy − 1 .

We calculate:

P ∗(2,m) =
m

W 2
m

∞∑
k=1

∞∑
l=1

(
1
2

)k+l+2 k∑
x=1

l∑
y=1

(xy − 1)m−1

=
m

W 2
m

∞∑
x=1

∞∑
y=1

(xy − 1)m−1

( ∞∑
k=x

(
1
2

)k+1
) ∞∑

l=y

(
1
2

)l+1


=
m

W 2
m

∞∑
x=1

∞∑
y=1

(xy − 1)m−1 1
2x · 2y

=
m

W 2
m

∞∑
x=1

∞∑
y=1

m−1∑
l=0

(
m− 1

l

)
(−1)m−l−1 xlyl

2x2y

=
m

W 2
m

( ∞∑
x=1

∞∑
y=1

(−1)m−1 1
2x2y

+
m−1∑
l=1

∞∑
x=1

∞∑
y=1

(
m− 1

l

)
(−1)m−l−1 xlyl

2x2y

)

.
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The result follows from the fact that
∞∑

x=1

xl

2x
= 2Wl for l ≥ 1 .

Let us check the formula for P ∗(2,m). It is easily verified that b is the winning alternative
in 3 of the W 2

2 = 9 ordered pairs of weak orders on {a, b}. Hence, P ∗(2, 2) = 2×3/9. This
concurs with (6). Examining the W 2

m ordered pairs of weak orders on {a1, . . . , am}, it turns
out that a1 appears as Condorcet winner in 29, 579, 19997 of these pairs for m = 3, 4, 5,
respectively. These frequencies also result from the part within the brackets in (6). So,
P ∗(2, 3) = 3× 29/132 = .515, P ∗(2, 4) = 4× 579/752 = .412, P ∗(2, 5) = 5× 19997/5412 =
.342.

5.3. Three or more voters
Our approach does not permit treatment of large numbers of voters since the polynomials
Sn and S∗n become forbiddingly complicated for large n. So, we confine ourselves to
considering P (n, m) for n = 3, 4, 5, 6, and m = 3, . . . , 10. We first associate to Sn the
functions Tj(x1, . . . , xn) to denote the sum of all j-th order products of the arguments of
Sn, j < n. Now, using Theorem 5 we have, for n = 3,

S3(x, y, z) = xyz + xy(1− z) + xz(1− y) + yz(1− x) = xy + xz + yz − 2xyz

= T2(x, y, z)− 2xyz

so that

P (3,m) = m

∫ 1

0

∫ 1

0

∫ 1

0

(T2(x, y, z)− 2xyz)m−1dxdydz .

Since, for n = 4, a strict majority comprises 4 or 3 voters,

S4(x, y, z, t) = xyzt + xyz(1− t) + xyt(1− z) + xzt(1− y) + yzt(1− x)

so that

P (4,m) = m

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(T3(x, y, z, t)− 3xyzt)m−1dxdydzdt

We similarly obtain, omitting the arguments of the Tj for brevity,

P (5,m) = m

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(T3 − 3T4 + 6xyztu)m−1dxdydzdtdu,

P (6,m) = m

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(T4 − 4T5 + 10xyztuv)m−1dxdydzdtdudv.

The exact calculation of P (n, m) for n = 3, 4, 5, 6, and m up to about 20 is a matter of
seconds for an algebraic program such as Maple. Table 2 gives the results in the exact
form of the rational fractions resulting from these calculations as well as in real numbers.
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Garman & Kamien [1968, p. 314] computed 1 − P (n, m) as multinomial probabilities for
some small and odd n and some small m. The rational fractions they report are the
complements of the corresponding ones in Table 2. The same holds for Gillett [1977] who
computed 1 − P (n, 3) also for some even n. The estimates of P (n, m) that Jones et al
[1995] obtained by simulations are confined to odd n and values of m up to 15. The
estimates they report for n = 3, 5 deviate at most 0.002 from the corresponding ones in
Table 2. Finally, let us check by way of example two of our results for P (n odd, m even)
for the linear dependence on the P (n, j) with j odd and < m as established by Gehrlein &
Fishburn [1976, p. Theorem 2]. Taking the coefficients αm

j from their Table III [o.c., 1976,
p. 24], we find

P (3, 6) = α6
0 + α6

3P (3, 3) + α6
5P (3, 5) = 3− 5 · 17

18
+ 3 · 21

25
=

359
450

,

P (5, 8) = α8
0 + α8

3P (5, 3) + α8
5P (5, 5) + α8

7P (5, 7)

= −17 + 28 · 67
72

− 14 · 32019
40000

+ 4 · 608721061
864360000

=
767419
1152480

,

which agrees with the calculated values in Table 2. Although for large n the polynomials
Sn and S∗n become more and more complicated, asymptotics of P (n, m) and P ∗(n, m)
for large m may well be feasible. Using the above formulas for P (n, m) it can be shown
that P (3,m), and hence P (n, m) for all n, tends to 0 as m tends to ∞, P (3,m) being
strictly decreasing as a function of m. These results were proved before by May [1971] and
Fishburn, Gehrlein & Maskin [1979, Theorem 1], respectively.

– – – – – – – – –

Table 2 here

– – – – – – – – –

We checked the formula for P ∗(n, m) in Theorem 6 only for the case (n = 3,m = 3). An
examination of the 133 ordered triples of weak orders on {a, b, c} shows that 486 of those
triples have c as Condorcet winner. Hence, P ∗(3, 3) = 3 × 486/133 = .664. This concurs
with Jones et al [1995, Table 3], who report the complement. We programmed the formula
for P ∗(3, 3) in Fortran, putting δ = .001 and, thus, N = 23 (see the Instruction in Section
3), and taking 23 as upper limit for ki, i = 1, 2, 3. The summations yield 485.8889 and
tend to 486 in the limit for increasing upper limits for the ki. So, the formula agrees with
the above. However, the number of terms S∗ that were added to obtain 485.8889 was
21,024,576. Clearly, the formula is not very well suited for computational purposes.

6. Discussion
Going by independent scores we obtained an algorithm for generating random weak orders,
and formulas for P (n, m) and P ∗(n, m). We have confined ourselves to profiles that satisfy
the Impartial Culture (IC) condition, an assumption made in almost all studies on this
subject. What progress is in these contributions? We evaluate this question with respect
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to the present state of the study of the development of closed-form expressions for these
probabilities.

For a fixed order of the m! possible linear orders of m alternatives, let n = (n1, . . . , nm!)
characterize a profile with nj voters expressing the j-th linear order of preference, and let
p = (p1, . . . , pm!) comprise the probabilities of a voter expressing the j-th linear order,
j = 1, . . . ,m!. Listing the closed-form expressions of P (n, m) in the literature, Gehrlein
[1983, p. 170] finds the most tractable, essentially multinomial, representation of P (n, 3|p)
and P (n, 4|p) in Gehrlein & Fishburn [1976]. Taking p = (1/m!, . . . , 1/m!) in accord
with IC, and determining the constraints on n for which a profile of linear orders enjoys
a Condorcet winner, these latter authors obtained computable expressions for P (n, 3)
and P (n, 4) which they were able to evaluate for odd n up to 49. Gehrlein & Fishburn
[1976] concentrated on P (n, m) with m odd since they showed [o.c., 1976, Theorem 2]
that, for all even m ≥ 4 and n odd, P (n, m) can be written as a linear combination
of the P (n, j) with j odd and less than m, and with coefficients being independent of
n. In developing their expression of P (n, 4), they made use of the remark of Niemi &
Weisberg [1968, p. 213] that P (n, m) equals m times the probability that any particular
alternative wins. Using this remark they also obtained an expression for P (n, 5), and
noted [o.c., p. 25] that, more generally, expressions for P (n, 7), P (n, 9), . . . can similarly
be obtained. Gehrlein & Fishburn [1979] obtained computable expressions for P (n, 7)
and P (n, 9). These expressions are growingly complex for increasing m, and increasingly
difficult to evaluate for larger n. In fact, Gehrlein [1983, Table 1] evaluates these formulas
for the (odd n, odd m) pairs (≤ 49, 3), (≤ 35, 5), (≤ 9, 7), (≤ 9, 9), (≤ 7, 11), . . . ,
(≤ 7, 17), (≤ 5, 19), . . . , (≤ 5, 25), and uses an approximation for evaluations in the pairs
where m or n exceeds a limit as here indicated.

In the approach taken here, these roles of n and m have in a sense been reversed. The
expression of P (n, m) in Theorem 5 is hardly more difficult to evaluate for larger m, even
allows study of asymptotic behavior as m → ∞, but increases in complication quickly
for larger n, to become intractable for values of n from about 11 onwards. On the other
hand, it is valid for odd and even values of n and m alike. To the best of our knowledge,
calculations of P (4,m) and P (6,m) [Table 2] are not in the literature.

As regards weak orders, our expression in Theorem 6 for P ∗(n, m) is mainly of theoretical
interest. It is hardly computable except for the smallest values of n and m, and even in
these cases its evaluation is more involved than a direct check of the Wn

m possible profiles
for a Condorcet winner. We can only point to the small progress on the case n = 2 in
Section 5.2.

We regard as main contributions of this essay (i) the algorithm for generating random weak
orders, and (ii) the approach by independent scores. The algorithm facilitates simulations
of weak orders and, thereby, numerical estimates of P ∗(n, m). For instance, the algorithm
takes less than one second for generating 1001 random weak orders of 6 alternatives and,
thus, considerably improves the procedure of Jones et al. [1995] who needed quite some
computer time for simulating an election with n = 1001 and m = 6 [o.c., 1995, footnote
10]. Also, the algorithm almost naturally prompts the approach by independent scores

– 13 –



that leads to new expressions for P (n, m) and P ∗(n, m). Unfortunately, all of these de-
velopments only pertain to profiles that satisfy the condition of IC from which we did not
escape.
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Table 1

w(m, k) and Wm

m ↓ k →
1 2 3 4 5 6 7 Wm

1 1 0 0 0 0 0 0 1
2 1 2 0 0 0 0 0 3
3 1 6 6 0 0 0 0 13
4 1 14 36 24 0 0 0 75
5 1 30 150 240 120 0 0 541
6 1 62 540 1560 1800 720 0 4683
7 1 126 1806 8400 16800 15120 5040 47293
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Table 2

P (n, m)

n ↓ m →

3 4 5 6 7 8 9 10

3 17
18

8
9

21
25

359
450

33569
44100

536
735

13913
19845

67079
99225

.944 .889 .840 .798 .761 .729 .701 .676

4 4
9

197
576

1107
4000

1043
4500

15359
77175

91745
526848

5499323
35562240

705967
5080320

.444 .342 .277 .232 .199 .174 .155 .139

5 67
72

31
36

32019
40000

269513
360000

608721061
864360000

767419
1152480

1574336347
2489356800

37525387727
62233920000

.931 .861 .800 .749 .704 .666 .632 .603

6 989
1944

1037
2592

472549
1440000

1078499
3888000

13057391131
54454680000

1837328467
8712748800

9553049400803
50812751001600

23921196935141
141146530560000

.509 .400 .328 .277 .240 .211 .188 .169
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