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◮ Give an account of Quantum Probability and Information from a

categorical perspective;

◮ Rely on the category of unital *-algebras (of finite dimension) with

completely positive unit-preserving maps;

Hilbert spaces play a minor role.

◮ Show that this description duely regards classical information as a special

case of quantum information;

◮ Develop a ‘DIAGRAMMAR’ for this category, unifying Joyal-type

diagrams with Nielsen-Chuang-type diagrams.

◮ Illustrate several features of quantum information.
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Features of quantum information to be discussed

◮ The ‘no cloning’ theorem;

◮ The Heisenberg principle of ‘no information without perturbation’;

◮ A consequence: the equivalence of protection and darkness for Hilbert

subspaces (the Knill-Laflamme condition);

◮ Entanglement assisted teleportation, including the vital classical message.

◮ Quantum trajectories and their asymptotic properties (if time permits).
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We start with the category of finite sets with functions:

f : A → B .

◮ Product: A× B;

◮ Coproduct: A ∪ B;

◮ Terminal object: {∗}.

Let tA denote the unique terminal morphism A → {∗}. We shall identify

A× {∗} with A itself.

Interpretation:

A = set of possible states of a system ;

f : “time evolution” .

If someone tells us in what state the system resides, we learn something. This

information is carried by the object.
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A cloning lemma

Lemma
In Set all information can be copied: for every object A there exists a copier:

a morphism cA : A → A× A such that

(
idA × tA

)
◦ c =

(
tA × idA

)
◦ c = idA .

c c

DIAGRAMMAR:

Lines denote objects (or rather their identity morphisms);

Parallel lines denote (Cartesian) products of objects;

Empty space denotes the terminal object {∗}, also unit element for products;

A cross ending an A-line denotes the unique terminal morphism tA.
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Proof of the cloning lemma

Let c : A → A× A : x 7→ (x , x).

(
idA × tA

)
◦ c(x) =

(
idA × tA

)
(x , x)

=
(
idA(x), tA(x)

)

= (x , ∗)

∼= x .
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Now consider the category of commutative unital (finite dimensional)

*-algebras with unit-preserving positive linear maps.

◮ Object: A finite dimensional vector space over C equipped with

commutative multiplication with unit, and an involution (satisfying the

usual compatibility conditions).

◮ Morphism: T : B → A linear map satisfying

∀b∈B∃a∈A : T (b∗
b) = a

∗
a (i.e.: T (b∗b) ≥ 0);

T (1lB) = 1lA .

◮ Product: A⊕ B;

◮ Coproduct: A⊗ B;

◮ Initial object: C.

Concrete realization: A = F(A), functions on a finite set A.

T : F(B) → F(A) : Tf : x 7→
∑

y∈B

txy f (y) .
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By choosing positive unital maps as morphisms, and not *-homomorphisms, we

have added a probabilistic structure: the morphisms are transition matrices

between finite sets.

◮ Object: State space S(A) of A realized as space M(A) of probability

measures on finite set A;

◮ Morphism: Transition matrices T ∗ (as acting on probability vectors π).

◮ Terminal object: 1 (probability measure on a singleton set {∗}).

We still have a cloning lemma: for all objects A = F(A) in CAlg there is a

cocopier:

C : A⊗A → A : (Cf )(x) = f (x , x) ;

and for all objects M(A) in Prob there is a copier:

C
∗ : M(A) → M(A× A) : π 7→

∑

x∈A
π(x)δx ⊗ δx .

We see here that cocopiers take a simpler form than copiers. This is a general

phenomenon: the ”Heisenberg picture” behaves better.



Time direction: the Schrödinger and Heisenberg pictures



Time direction: the Schrödinger and Heisenberg pictures

The arrows in Set are interpreted forwards in time.



Time direction: the Schrödinger and Heisenberg pictures

The arrows in Set are interpreted forwards in time.

The arrows in CAlg are interpreted backwards in time:



Time direction: the Schrödinger and Heisenberg pictures

The arrows in Set are interpreted forwards in time.

The arrows in CAlg are interpreted backwards in time:

Tf (x)



Time direction: the Schrödinger and Heisenberg pictures

The arrows in Set are interpreted forwards in time.

The arrows in CAlg are interpreted backwards in time:

Tf (x) = expected value of f when starting in x



Time direction: the Schrödinger and Heisenberg pictures

The arrows in Set are interpreted forwards in time.

The arrows in CAlg are interpreted backwards in time:

Tf (x) = expected value of f when starting in x =
∑

y∈B

txy f (y).



Time direction: the Schrödinger and Heisenberg pictures

The arrows in Set are interpreted forwards in time.

The arrows in CAlg are interpreted backwards in time:

Tf (x) = expected value of f when starting in x =
∑

y∈B

txy f (y).

T

A B

Tf f



Time direction: the Schrödinger and Heisenberg pictures

The arrows in Set are interpreted forwards in time.

The arrows in CAlg are interpreted backwards in time:

Tf (x) = expected value of f when starting in x =
∑

y∈B

txy f (y).

T

A B

Tf f

The arrows in Prob = (CAlg)op are again interpreted forwards:



Time direction: the Schrödinger and Heisenberg pictures

The arrows in Set are interpreted forwards in time.

The arrows in CAlg are interpreted backwards in time:

Tf (x) = expected value of f when starting in x =
∑

y∈B

txy f (y).

T

A B

Tf f

The arrows in Prob = (CAlg)op are again interpreted forwards:

T ∗
M(A) M(B)

π T ∗π : x 7→
∑

x∈A
π(x)txy



Time direction: the Schrödinger and Heisenberg pictures

The arrows in Set are interpreted forwards in time.

The arrows in CAlg are interpreted backwards in time:

Tf (x) = expected value of f when starting in x =
∑

y∈B

txy f (y).

T

A B

Tf f

The arrows in Prob = (CAlg)op are again interpreted forwards:

T ∗
M(A) M(B)

π T ∗π : x 7→
∑

x∈A
π(x)txy

In quantum mechanics one uses the terms Schrödinger picture (forward maps)

and Heisenberg picture (backward maps).
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◮ Initial morphism: ιA : C → A : z 7→ z · 1lA.

Product, coproduct, and initial object remain the same.

We obtain, however, many new elementary objects M2, M3, M4, . . . , where Mn

is the *-algebra of all complex n × n matrices.

QProb is just the opposite category:

◮ Objects: S(A) state space of the *-algebra A;

◮ Morphisms: T ∗ : ρ 7→ ρ ◦ T .

◮ Terminal morphism: ρ 7→ ρ(1lA) = 1.

Product and coproduct are just interchanged.
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The object A is classical (abelian) iff it is composed of C’s (= M1’s) only:

A =
(
C⊕ C⊕ · · · ⊕ C

)

︸ ︷︷ ︸

m×

=: Cm .

A is purely quantum iff only one n(l) 6= 0:

A = Mn , (n ≥ 2) .

The elementary objects are M1,M2,M3, . . ..

All other objects are composed of these.

Z(A) := A ∩A′ is the center of A, having C · 1l in every component.

A morphism T : B → A is central if its range is included in Z(A).
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Preparation and destruction

If B = M1 = C (terminal object of QProb), we omit B and replace T by a

cross:

A

If B = M1 = C, then T is a state ρ, a way of preparing the system B:

ρ
B

Interpretation: there are many ways to prepare a system, but only one way to

destroy (or just ignore) it.

Hence it is a good thing that QProb has a terminal object, but no initial one.
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Interpretation of quantum information

The objects in QProb are quite literally physical objects.

The morphisms are what we can do to them.

A classical object is a thing carrying public information, which can be read off,

copied, published . . . .

A quantum object is a thing carrying private information.

Since the information concerns incompatible observables simultaneously, it

cannot be copied (as we shall see).

By the Kochen-Specker theorem there is not even a consistent way to answer

all the questions that can be asked about them. Yet every bit of it can

(possibly) be checked with information elsewhere (in case of entanglement.)

In this case ANY, but not ALL questions can be answered.
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The Cauchy-Schwarz inequality

Theorem
For any unit preserving completely positive map T : B → A we have:

T (b∗
b) ≥ T (b)∗T (b) .

Theorem
(Multiplication Theorem) If Cauchy-Schwartz holds with equality, then b is

multiplicative: i.e., for all x ∈ B we have:

T (b∗
x) = T (b)∗T (x) .

These results also hold in the commutative case.
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C : A⊗A → A is a cocopier of A if for all a ∈ A:
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Theorem
A possesses a cocopier iff A is abelian.
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Quantum Measurement
Let X be a finite set. An X -valued measurement M on a quantum object A is

a morphism in QProb from the state space S(A) to the space of probability

distributions M(X ).

M⋆

S(A) M(X )
ϕ π

A state ϕ on A is mapped to a probability distribution π on X .

In *-Alg this looks as follows:

M
A C = F(X )

M(f ) =
∑

x∈X

f (x)mx ;

mx ∈ A positive;
∑

x∈X

mx = 1lA .

Positive Operator Valued Measure (POVM)
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von Neumann Measurement

Suppose mx = px , mutually orthogonal projections in A.

��

@@j
A C

Then the operation j : C → A is a *-homomorphism:

j(f )j(g) =

(
∑

x

f (x)px

)(
∑

y

g(y)py

)

=
∑

x

f (x)g(x)px = j(fg) .

We conclude that a von Neumann measurement is a right-invertible morphism

in QProb from an arbitrary object to an abelian object.
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m:
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It would be desirable to have a categorical definition of this notion!
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a
∗
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= (a∗1 , a
∗
2 , · · · , a

∗
k )
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= v
∗(x ⊗ 1lk)v

= V (idn ⊗ ιk)(x ⊗ 1)

∼= V (idn ⊗ ιk)(x)
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Definition
Let V : Mn → B(L) denote a compression to a subspace L ⊂ C

n

Let T : Mn → Mn be an arbitrary morphism.

We say that L is protected against the ”quantum noise” T if there exists a

reconstruction map D : B(L) → Mn such that

V ◦ T ◦ D = idB(L) .

Theorem
A necessary and sufficient condition for the subspace L ⊂ C

n to be protected

against the perturbation

T : x 7→
k∑

i=1

a
∗
i xai

is that for some complex k × k matrix (λij):

pL a
∗
i aj pL = λij pL .
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The last line says that the space L is dark: no information leaks out and only

some random output λ results:

P ◦ V (1ln ⊗ y) = λ(y) · 1lL .
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We note that this is precisely the Knill-Laflamme condition:

P ◦ V (1ln ⊗ y) = p(a∗1 , · · · , a
∗
k )
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=
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i,j=1

pa
∗
i ajp · yij

For all y ∈ Mk this must be equal to

p · λ(y) = p ·

k∑

i,j=1

λjiyij

So

pa
∗
i ajp = λji · p .
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It is not possible to convert the information into (classical) bits, then send the

bits from A to B, for instance over a telephone line, and then recover the initial

quantum object.

Indeed, this would enable one to use the classical message more than once, and

thus to copy the quantum information.

However, “transmitting quantum information over a telephone line” becomes

possible between parties that are intimately related by the possession of

common quantum information (“pre-entangled qubits”).

We shall formulate this well-known fact, which has been experimentally

established, and is described for instance in the book by Nielsen and Chuang,

as a theorem in *-Alg, combining classical and quantum objects.
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