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S. GELFAND AND D. KAZHDAN 

O. I n t r o d u c t i o n  

There are several approaches to the construction of invariants of a three- 
dimensional manifold using quantum groups, and, more generally, monoidal 
categories. In this paper  we consider the combinatorial  approach which was 
suggested by Turaev and Viro (see [TV] and later generalizations in [T2], 
[KS], [Po], [Ro] among others) and construct an invariant s tar t ing from a 
monoidal category C without any braiding conditions. 

The star t ing point of a combinatorial  approach is a t r iangulat ion of a 
given three-dimensionai manifold M, and the invariant is constructed using 
the combinatorics of this triangulation. More precisely, fix a monoidal cat- 
egory C (a category with the multiplication fimctor X ® Y on objects) over 
a field k, which is semisimple, has a finite number of isomorphism classes 
of simple objects, and possesses a duali ty X ~-~ X* such tha t  X** is iso- 
morphic to X. To define I c ( M ) ,  we must fix a balancing, i.e. functorial 
isomorphisms X ~ X**, X E Ob C, satisfying certain natura l  conditions. 
On the other hand, we do not assume tha t  C satisfies any kind of braiding 
conditions, i.e. commutat iv i ty  conditions of the form X®Y ~ Y®X. A sim- 
ilar construction, which also does not use braiding, was recently suggested 
by Kuperberg [Ku], who used the la~lguage of Hopf algebras. 

For any three-dimensional manifold M with boundary  S and a trian- 
gulat ion D of M ,  we construct  a finite-dimensional linear space W(S, D ~) 
depending on the restriction D ~ of D to S (a t r iangulat ion of S) and a 
vector It(M, S, D) C W(S, D'). The main  result of the paper  (Theorem 1) 
is tha t  Ic(M,S,D) depends only on D ~ and not on D itself. Taking the 
inductive limit of spaces W(S, D ~) over all t r iangulations D ~ of S, we con- 
struct  a space K(S) and a vector Ic(M, S) C K(S), which is our invariant 
of a three-dimensionM manifold M with boundary S. (See §6 of the  paper,  
where this  is explained in slightly different terms.) In part icular,  when M 
is a closed manifold, S = O, we have K ( O )  = k, and our construction gives 
an invariant I c ( M )  e k. 

The work of the second author was partially supported by an NSF grant. 
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In constructing the invariant I c  of a three-dimensional manifold M using 
a tr iangulation of M, the main problem is, of course, to prove tha t  the 
Ic(M, S, D) depends only on the restriction of the tr iangulat ion D to S. 
Our proof of this fact is parallel, sometimes closely parallel, to the original 
proof of Turaev and Viro [TV], see also [T2]. In particular,  we also use the 
so-called Pachner moves to obtain tr iangulations of M from one another,  
and show how the i n~ r i ance  of I c  under these moves follows from axioms 
of balanced monoidal categories. However, our proof differs from that. in 
IT2] in tha t  we do not use the braiding and also certain other conditions 
in [T2], which allows us to t reat  more general monoidal categories C. To 
make the proof more transparent ,  we develop in §2 a technique of marked 
diagrams, which allows us to prove equalities between composite morphisms 
in balanced categories. 

Let us also mention another approach to the construction of invariants 
using monoidal categories. This approach, first suggested by Reshetikhin 
and Turaev [RT1,2] and later developed and generalized by many authors 
(see bibliography in IT2]), s tarts  with a presentation of a three-dimensional 
manifold as a surgery of the three-dimensional sphere S 3, and the corre- 
sponding invariants are closely related to similar invariants of knots, links, 
and tangles. It would be interesting to find out whether one can also elim- 
inate braiding conditions on C using this approach. 

We would like to thank Thomas Kerler who read the manuscript  and 
made several useful remarks. 

1. Balancing 
Let C = (C, ®, qo) be a strict rigid monoidal category over an algebraically 
closed field k, with unit object  1 and duali ty (X*, ix, ex). The second dual 
5(X) = X** is a functor/~ : C -~ C (for definitions of all these notions see 
[DMi] or [CPr, Ch. 5]). Recall tha t  there exist functorial isomorphisms 

Ax,y : (X ® Y)* ~ Y* ® X* 

tha t  are compatible with morphisms i and e. Denoting ax,y = A x . y .  o 
(Ax,y) , we obta in  functorial isomorphisms 

O~X, Y : ( X  ~ Y)** --~ X** ~ Y** , 

which make 5 a monoidal  functor. 

DEFINITION 1: Balancing in a strict rigid rnonoidal category C is a 
monoidal isomorphism of functors ~ : Id -~ 6. 
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Therefore, a balancing in C is a family of isomorphisms 3x  : X ~ X** 
such that  for any f : X -~ Y the diagram 

f~x 
X " X** 

Y ~ y** 

(1) 

commutes, and for any X, Y E ObC the diagram 
~x®v 

X ® Y  ......... • (X ® Y)** 

i d l  ,0x®/3y i °~x'Y (2)  

X ® Y  , X**®Y** 

commutes. 
A strict rigid monoidal category with fixed balancing is called a balanced 

category. 
Let C be a balanced category. The ring Horn(l, 1) is a commutative 

semisimple algebra over k. For simplicity, we assume that  Horn(l, 1) = k 
and will identify Horn(l, 1) with k. 

DEFINITION 2: (i) For a morphism f : X --~ X in C, its trace tr f E k is 
defined as the element of k corresponding to the the composition 

1 )Y-+ X ® X* f ~ i d  .~ "* /3x®id ** * ' ) A ® A  . . . . . . . . . .  ~X  ® X  e x .  1 .  

(ii) The dimension of an object X E ObC is d i m X  = tr(idx). 

Trace and dimension satisfy the standard properties listed in the follow- 
ing proposition. 

PROPOSITION 1. (i) Additivity. For f l  : X1 ~ X1, f2 : X2 ~ X2 we have 
tr(f~ (9f2) = t r f l  + t r  f2. In particular, dim(Xa (9X2) = dimX1 + dimX2. 

(ii) Multiplicativity. For f l  : X1 ~ X1, f2 : X2 -+ X2 we have 
t r ( f l  ® f2) = t r f l  - t r f2 .  In particular, dim(X1 ® 2(2) = d imX1,  dimX2. 

(iii) If, in addition, C is a semisimpte category, then for f : X --* Y, 
g : Y --* X we have t r ( f9)  = t r (gf ) .  

Proof. (i) This follows from the fact tha t  (X (9 Y)* = X* (9 Y* with 

i x e u  : 1 - .  ( X ( g Y ) ® ( X ( g Y ) *  = ( X ® X * ) e ( X ® Y * ) ( 9 ( Y ® X * ) @ ( Y ® Y * )  

being given by i z s y  = i x  ~ 0 (9 0 • i y  , and similarly for e x $ y .  
(ii) This follows from the fact that i x ® y  : 1 ~ (X @ X*) ® (Y ® Y*) is 

the composition 
i x  1 , X ® x * i d ® i v ® i d x ® y @ Y * ® X  *'d®()~:Y) , ~ , ( X ® Y ) ® ( X ® Y ) * ,  
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with Ax,y as at the beginning of this section, a similar formula for ex®y, 
and the commutativity of the diagram (2). 

(iii) Let g be the set of isomorphism classes of simple objects in C. For 
each class c~, select a representative Eo E ObC. Since C is a semisimple 
category, the canonical morphism 

( ~  Hom(E~, X) ® E~ ~ X (3) 
s E E  

is an isomoprhism. Let f : X -~ Y be a morphism in C. For a C g, define 
the linear map 

f~ :  Hom(Ea, X) -~ Hom(E~, Y) 

by the formula f~ : T ~-~ f o ~. Then, under the isomorphism (3) and a 
similar isomorphism for Y, 

f :  ~ Hom(E m X) ® Ea --* ( ~  ttom(E~, Y) ® E~ 
a E g  ~ E E  

is given by 
f = (~( j t~  ® idea) .  

ctEE 

A similar decomposition holds for g : Y -+ X: 

g = ( ~  (ga ® idEa),  
c~E£ 

with the linear maps 

g,~ : Hom(E~, Y) --> Hom(Ea, X) 

given by g~ : ~b ~-* g o ~b. By parts (i) and (ii), 

t r(fg)  = ~ tr(f~g~) dim(Ea) , 
c~ 

where tr(f~g~) is the ordinary trace of the automorphism f,~g~ of the linear 
space Hom(E~, Y). Similarly, 

t r(gf)  = ~ tr(g~f~) dim(E~) . 
Gt 

Therefore, part (iii) follows from the corresponding property of the trace of 
a linear map. 

2. Calculus of  Diagrams 

In this section we describe a technique that allows us to prove equalities of 
composite morphisms in a balanced category C = (C, ®, ~). 
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By a diagram we mean a directed graph G with simple edges, imbedded 
into the coordinate plane R 2 in such a way that  the projection of each edge 
to the x-axis is one-to-one and points in the positive direction. We assume 
that  the graph is located in the strip 0 < x < 1. 

Further,  we assume tha t  each vertex of G located on the line x = 0 has 
exactly one outgoing edge, and, of course, no incoming edges. These edges 
are cMled input edges of G. Similarly, each vertex on the line x = 1 has 
exactly one incoming edge and no outgoing edges. These edges are called 
output  edges of G. 

A marked diagram is a diagram G such tha t  to any edge in G there 
corresponds an object  from C, and to any intermediate vertex in G (that is, 
a vertex with the x-coordinate strictly between 0 and 1) there corresponds 
a certain morphism in C according to the following convention. Let v be 
a vertex in G. Then the corresponding morphism fv acts from X1 ® o.. ® 
Xk to Y1 ® " '  ® Yz, where X 1 , . . . , X k  are the objects corresponding to 
edges entering v, numbered from top to bot tom, and Y1, . . . ,  Yt are objects 
corresponding to objects exiting v, also numbered from top to bot tom (see 
Fig. 1). 

y : l .  

f:XI®X2®X3~YI@Y2 

Figure 1. A morphism fv : XI®. . .®Xk ~ YI®" '®Y~ 

We assume tha t  if one of the numbers k or 1 is 0, then the corresponding 
product  is the unit  object  1 in C. 

On the figures below, we will write the object corresponding to an edge 
in G, and  mark vertices of G by small squares, with the corresponding 
morphism writ ten inside or near this vertex. Two classes of morphisms 
have special notation. If the morphism corresponding to a vertex v is one 
of the morphisms i x  or ex  for X E O b g ,  we will mark this vertex by a 
crossed square and usually omit the name of the corresponding morphism 
in the diagram. If the morphism corresponding to a vertex v is one of the 
isomorphisms fix or (~x)  -1, we will mark  this vertex by a black square 
and also omit the name of the corresponding morphism in the diagram. See 
examples in Fig. 2. 

Let G be a marked diagram. Denote X~ = X~ (G) = X1 ® ' " ® X k ,  where 
X1 , . . . ,  Xk are the  objects  associated to all edges from source vertices of 
G, numbered from top to bot tom,  and Xt  = Xt(G) = ]I1 ® " "  ® Yz, where 
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[] x . x * *  

Figure 2. Morphisms ix,  ex, and fix 

Y1, . . . ,  Yt are objects associated to edges entering target  vertices of G, also 
numbered from top to bottom. We want to associate to G a morphism 
f (G)  : Xs(G) --~ Xt(G) in C. To define such a morphism, we first introduce 
elementary diagrams G and the morphisms associated to them. 

DEFINITION 3: (i) An elementary diagram is a marked diagram of one of 
the following types: 

x 
(a) the diagram of the form o ~o; 
(b) the diagram in Fig. 1. 

In the second case k and/or  l can be 0. 

(ii) The morphism f (G)  associated to an elementary diagram is defined 
as follows: 

If G is a diagram of type (a), then f (G)  = idx .  
If G is a diagram of type (b), then f (G)  = f : Xs ---+ Xt.  

Now we introduce the gluing operations for marked diagrams. 
The first operat ion is defined as follows. Let G, G'  be two marked dia- 

grams with k, k' input  edges and l, 1 ' output  edges respectively. We assume 
that  1 = k ' and that  the marks on output  edges of G coincide with marks of 
input edges of G~: ]/1 = X~, ]/2 = X~ , . . . ,  Yl = X[. The composition G o G ~ 
is the marked diagram with k input  edges and l ~ output  edges obtained by 
put t ing G and G ~ side by side, removing vertices at  l = k' intermediate 
points, and squeezing the resulting diagram into the strip 0 < x < 1 (see 
Fig. 3, where k = 3, 1 = M = 2, 1 / = 1). 

X 1 i 

X 2  * 

X a  • 

I 
I 

Y~ x; 

l 
I 
I 
I 

Figure 3. Composition of two diagrams 
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The second operat ion is defined as follows. Again let G, G t be two 
marked diagrams with k, k ~ input  edges and t, l ~ output  edges, respectively. 
Their product G x G ~ is the  marked diagram with k + k ~ input edges and 
l + l p ou tput  edges obtained by put t ing G ~ on top of G, see Fig. 4. 

X 1  

X2 

: Xl 

G 

G' 

gl 
I 

v; 
i 

v; 

Figure 4. Product of two diagrams 

Any marked diagram G can be represented as the tom- PROPOSITION 2. 
position of  products of eIementary diagrams, i.e. 

G ~-~ ( G l l  x . . -  x G i n , )  o . . .  o ( ~ m I  X - ' -  X Gmnm) , (4) 
where all Gij are elementary diagrams. 

Proof. Clear. 

Now we define composition rules for morphisms f (G) as follows: 

f ( G  o G') = f ( G )  o f ( G ' )  , (5) 
f ( c  x a ')  = f ( c )  ® f ( c ' )  . 

PROPOSITION 3. Formulas (5) determine f (G)  unique/y for any marked 
diagram G. 

Proof. By Proposi t ion 2, we can associate to G a morphism f (G)  using the 
decomposit ion (4) and formulas (5). To prove that  different decompositions 
of a marked diagram G yield equal morphisms, it  suffices to consider the 
ease when G is itself elementary. But in this case the assertion is evident 
since at most one of the morphisms f (Gi j )  is not an identity morphism. 

Now we present the reduction rules of the calculus of diagrams. 
Two internal vertices vl,  v2 with x-coordinates Xl < x2 are called incom- 

patible if there are no oriented pa ths  from vl to v2 in G, and neighboring, 
if there are  no vertices in G with x-coordinate str ict ly between x l  and x2. 

PROPOSITION 4. (i) Let vl and v2 be two incompatible neighboring vertices 
in G. Let G' be the marked diagram obtained from G by moving v2 to the 
right and vl to the/ef t ,  so that their x-coordinates switch, see Fig. 5. Then 
: ( a )  = / ( a ' ) .  
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G G' 

Figure 5. Switching of vertices v 1 and v2 

(ii) For any X e ObC, f ( G )  = idx,  f (G ' )  = idx*, where G is the 
diagram in Fig. 6 and G' is the diagram in Fig. 7. 

X *  a • X *  

: N [] 

Figure 6 Figure 7 

(iii) Let 9~ : X1 ® ""  Xk  -+ II1 ® "'" ® Yz be an arbitrary morphism and 
G, G' be the marked diagrams in Fig. 8. Then f ( G )  = f (G ' ) .  

Proof. Part  (i) follows from the functoriality of ®, part  (ii) expresses prop: 
erties of morphisms e x  and i x ,  and part  (iii) expresses the fact that  /3 is 
an isomorphism of functors. 

3. P a i r i n g  o f  H o m  S p a c e s  

Let C be a semisimple balanced category. For two objects X, Y E C define 
the pairing 

(.,-} : Hom(X,  Y) x Horn(Y, X) -+ k 

by the formula (f, g) = t r (gf) .  

LEMMA 1. The pairing (.,-) is nondegenerate. 
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X1 

, X 2  • G 

G A F A  

X1 

• m : G' 

Figure 8. Balancing 

Proof. Since C is semisimple, we can assume that  X = Y is a simple object  
in C. Since ( i dx , idx}  = d i m X ,  it suffices to prove that  d i m X  ¢ 0 for 
a simple X ¢ ObC. For a simple X,  we have d i m H o m ( 1 , X  ® X*) = 
d imHom(X* ® X, 1) = 1. Since, evidently, i x  ~ O, ex  ~ 0, /3x ¢ 0, the 
lemma follows. 

LEMMA 2. For f : X --* Y ,  g : Y --* X each of the following compositions 

ix  f(~$* ~y~id ey* 
1 ,X  ® X* : ~ Y  ® Y* ,Y** ® Y* ,1 

~y ,®s:  ~x®id x *  ex. 1 ~Y®Y* ~,XQX* ,X**® ,1 
(6) 

is the multiplication by ( f  , g). 

Proof. Let us prove tha t  the  first composition in (6) equals t r ( f9 ) .  We 
must compare morphisms 1 -* 1 corresponding to the diagrams in Figures 
9 and 10. 

[] 
y* 

Figure 9. tr(fg) 
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f Y 

Figure 10. The first morphism in (6) 

By the definition of g*, the diagram in Fig. 10 is equivalent to the dia- 
gram in Fig. 11. Applying to this diagram the reduction rule 1 for X,  we 
get the required diagram for t r ( fg) .  

f 
x G z _. v** [ ]  )> 

g* [] 

Figure 11 
Similarly, the second morphism in (6) equals t r (gf ) .  Now Lemma 2 

follows from Proposit ion l(iii).  

LEMMA 3. Let  Y be an object o f  C, and f : 1 --* Y ,  g : 1 --~ Y* be two 
morphisms. Then the compositions 

g®f , ~v 
1 - - ~ Y  ® Y - - ~ I  

and 
1 f®g~Y ® Y* /~v®id y** ev* @ Y * - - - ~ I  

coincide. 

Proof. As in the proof of Lemma 2, it  is easy to see tha t  the first, composi- 
tion equals f*og : 1 --~ 1, and the second composition equals g'of** : 1 --~ 1. 
Therefore, the lemma follows from the fact that  for any- 0 : 1 -~ 1, we have 
0* = 0. 

4. Spaces  V(X1,...,X,O 
For a family of objects X1, X 2 , . . . ,  Xn in a balanced category C define the 
vector space V(X1 . . . . .  Xn) by 

V(X1 . . . .  , X~) = Horn(l ,  X l  ® . . .  ® X~) . 
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The mapping ( X I , .  • . , Xn)  ~ V ( X I , . . . ,  Xn)  extends to the functor V from 
the category C x ..- × C to the category of vector spaces. 

Define the linear map an = ~rn(X1, X 2 , . . . ,  Xn)  : V(X1 ,  X2 . . . .  , X,~) --~ 
V(X2, . . . ,  Xn, X1) as follows. For f : 1 ~ X1 ® X2 ® . . .  ® Xn,  a n f  is the 
composition 

~x~ ** id ~ f ~ i d  * 
I ~X~®X I ,X 1 ® X I ® X 2 ® . . . ® X n ® X ~ * - - ~  

e x l ~ i d ~ x ~ , X  2 ® . . .  ® Xn ® X l  . 

The family of linear maps a,~ (XI, X 2 , . . . ,  Xn)  defines a morphism of func- 
tors an : V =~ V o s , ,  where Sn is the cyclic shift of factors in the product 
Cx..-xC. 

PROPOSITION 5. (i) an is an isomorphism of  functors. 
(ii) (a~) ~ is the identi ty  morphism o f  the functor V. 
(iii) For (X1 , . . . ,X~ )  E Ob(C x . . .  x C) define c ( X 1 , . . . , X ~ )  : 

V(X1 , . . . ,  X~) @ V(Xn*,. ,-, X~') by the formula c(vx, v2) = (v2, v~>, where 
the (., .) is the pairing from Lemma 1. Then c defines a non-degenerate 
pairing between V ( X I , . . . ,  X~) and V ( X * , . . . ,  X f ) ,  which commutes with 
isomorphisms in C x . . .  × C. 

Proof. The first assertion follows from the second one, which is equiva- 
lent to the statement that for each (X1 ,X2 , . . . ,  X~) E Ob(C x . . .  × C), 
c rn(X1,X2, . . . ,Xn)  is the identity automorphism of the space 
V ( X 1 , X ~ , . . .  ,X~). We give the proof for n = 2, leaving the general case 
to the reader. 

First, we prove the following 

LEMMA 4. Let f : 1 --* X be a morphism in C. The composition 

1 *x ~X* ® X * *  ' d @ / ® ' d ~ x *  ® X ® X * *  ex  ) ** /~x 1 X ,X (7) 

coincides with f . 

Proof of  the lemma. Since 1" is canonically isomorphic to 1, f* is, by 
definition, the composition 

X *  id@f}x* ®X----.leX , 

and f** is the composition 
ix* X * *  id ~ f  id X * * ~ X * *  " 

1 ~X* @ 'X* @ X @ 

It remains to apply the commutativity of the diagram (1) for f : 1 -~ X. 

Now let f : ! --* X1 @ X2. Then (a~)2f : 1 ~ X1 ® X2 is the following 
composition: 
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i x  2 * id ® i x  1 ®id 
• * , * ® x ; ®  **®x~*----÷ 1 ~X 2 ® X 2 X 2 X 1 (8) 

id ® f ® i d  
, z~  ® x ;  ® Xx ® x2 ® x;* ® x~*--+ 

- 1  - 1  

• * *  * *  * *  ~x1®~xl Z 1 e X  1 
~ X 2 N X 2 ® X  1 ®X2 eX2 x l**®X 2 ®X2 

Using the compatibility of morphisms )~X,Y with morphisms i and e and the 
fact that /3 is a monoidal functor (formula (t)), we see that the composition 
(8) coincides with the composition (7) for X = X1 ® )22, i.e. equals f .  

The third assertion of Proposition 5 follows from Lemma 2. 

5. Co lored  Te trahedra  

In this section we introduce the notion of a coloring 7 of the standard tetra- 
hedron A, associate to each coloring 3' a linear space V(^/), and construct a 
functional L(7 ) on this space. The functionals L(7) are the main building 
blocks in constructing invariants I c ( M ,  S) of three-dimensional manifolds 
(see the introduction), and essentially coincide with these invariants when 
M is a tetrahedron with the standard triangulation. 

From now on C = (C, ®, ~) will be a semisimple balanced category over 
a field k with a finite number of isomorphism classes of simple ob~cts.  
Denote by $ the set of these isomorphism classes. Also, denote by C the 
full subcategory of C consisting of all simple objects. Clearly, any nonzero 
morphism in C is an isomorphism. In the category C we have the duality 
a H a* induced by the duality in C. 

Let A be the tetrahedron with vertices numbered {0, 1,2, 3}. Introduce 

the orientation of A by the condition that the basis { 01 ,02 ,  03 } be positive. 
Given an object a = (al, a2, a3, a4, as, a6) E Ob(C) 6, we associate to each 
oriented edge I of A one of the objects aj or a~ as follows: 

03¢==~al , 0 1 ¢ = ~ a 2 ,  1 2 ¢ = ~ a 3 ,  

23~==~ a4 , 02¢==~ a5 , 13~=~ a6 , 

30¢==* a~ , 10¢==* a~ , 21¢=:* a~ , 

3 2 ~ a ~ ,  2 0 ¢ = * a ~ ,  3 1 ~ a ~ ,  

(9) 

so that  to an edge with the opposite orientation corresponds the dual object 
from C. 

Let F1, F2, F3, F4 be the faces of A with the orientation induced from 
the orientation of A (see Fig. 12). For each face Fi, let (ll,i, 12,i, 13,i) be its 
oriented boundary, and a(ll,i), a(12,~), a(/3,~) be tile objects of C associated 
to the edges Ik,~ by (9), so that each a(Ik,i) is either one of the components 
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* Denote aj  of a, or a dual aj .  

V(F,)(a) = Y(a(ll,i), a(/2,~), a(/3,~)) . 

Using the isomorphism a3 from §4, we can identify the spaces Vi correspond- 
ing to three choices of the initial edge ll,i on the boundary of the face Fi, 
and Proposition 5(ii) shows that  this identification is well defined. 

3 

a6 

o~i 

,1 

2 

Faces: 
023, 012 
132, 031 

Figure 12 

For a specific choice of initial edges on faces F~ as in (9), we have 

V(F1)(a) = Horn(l,  a5 ® a4 ® a~) , 

V(F2)(a) = Horn(l,  a2 ® a3 ® a~) , 

V(F3)(a) = Horn(l,  a6 ® a4 ® a3) , 

V(F4)(a) = nom(1,  al  @ a~ ® a~) . 

Define the vector space V(a) by 

4 

V(a) = @ V(F~)(a) . 
i=1 

Now let ~ : a ~  be a morphism in (~)6, so that  ~ - (~t, ~ ,  ~3, t~4, ~5, ~ )  
and each t~i : a~ --* ai is an isomorphism in C. Define the linear map 
V(~) : V(a) ~ V(~) as the product 

4 

= @ 
4=1 

where V(F1)(~) : V(F1)(a) ---* V(F1)('d) is given by 

Y(F1)(~)(v)=- ( ~ 5 ® ~ 4 ® ( ~ ) - 1 ) o v  for v : l - - - * a 5 ® a 4 @ a ~  , 

and similarly for V(F2)(t¢), V(F3)(~), V(F4)(t~). 
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LEMMA 5. With these definitions, V becomes a functor from the category 
(if)6 to the category Vec t  o f  finite-dimensional vector spaces over k. 

Proof. Clear. 

For each a E Ob(ff) 6 we define a linear functional L(a) in the space V(a) 
as follows. For v~ E V(Fi)(a) ,  i -= 1, 2, 3, 4, let L(a)(vl  ®v2 ®v3 ® v4) E k be 
the element corresponding to the morphism 1 --~ 1 given by the composition 

v4®v2®v~ 
1 = 1 ® 1 ® 1 - -  ~az ® a 6. ® a~ ® a2 ® a3 ® a 5. ® a5 ® a4 ® a~ -~  (10) 

~ a  2 , ~ a  5 v 3 

~ a l ® a ~ ® a 3 ®  a4 ® al-----~al* ®a~®a6®a*4®a~®a3®a4®al---->* 
ea 6 ,ea 4 ,ea 3 ~a  1 . ea~ 

>al ®al-----~a I ® a  1 >1 

or using the calculus of diagrams from §2 by the diagram in Fig. 13. 

a l  

; C  ° 

a2) 

Figure 13 

Denote by Triv the  tr ivial  functor (2) 6 ~ Vec t ;  it associates to each 

a C Ob(C) 6 the one-dimensional vector space k, and to each morphism in 
(~)6 the identi ty map k ~ k. 

LEMMA 6. The linear functional L(a) : V(a)  --* k determines a morphism 
of functors L : V ~ Triv. 

In other words, for any morphism n : a -* ~ in (2) 6 we have 

L(a) -- L(~d) o V(n)  . 
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Proof. The proof follows from the fact tha t  for each i, 1 < i < 6, the object  
a~ and its dual a* occur exactly once among the objects associated to edges 
of A. 

Lemma 6 shows that  we can consider the space V(a) and the linear 
functional L(a) on V(a) as depending only on isomorphism classes of simple 
objects ai  in C. More precisely, we give the following definition. 

DEFINITION 4: A coloring of an oriented te t rahedron A is a function V 
tha t  associates an  element 7(t) of the set £ to each oriented edge l of A 
in such a way tha t  if l* is the edge l with the opposite orientation, then 
~ ( r )  = ~(Z)*. 

Let n be a numbering of vertices of a colored te trahedron A by indices 
{0,1, 2, 3} that  is compatible to the orientation of A in the sense described 
at  the beginning of §5. Using Lemma 6, to such a numbering we associate 
a vector space V'~(-y) and a linear functional L•(V) on it as follows. 

Let Wn(^?) = (~V(a),  where the direct sum is taken over all a = 

(a l ,a2 ,  a3, a4, as,  a6) E Ob(C) 6 such tha t  each object  ai corresponding to 
the edge I of A as in (9), belongs to the equivalence class V(/), so that  

a l  E V(03) , a2 C ~(01)  , a2 6 V(12) , 

a4 E 7(23)  , a5 e 7 (02 )  , a6 E ~(13)  . 

Denote Vn(7) ---- W~(v)/R,  where R is the subspace generated by elements 
of the form (Via, Y(n)v[~(a)), where v E Y(a) sits in the position a of the 
direct sum ~ V(a) and V(~)v sits in the posit ion n(a). By Lemma 6, the 
functional L(a) vanishes on R and we get the functional Ln(~/) on V~(V). 

Proposit ion 5(ii, iii) provides canonical isomorphisms of the spaces V n (V) 
corresponding to  different numberings n of the vertices of A. Therefore, we 
can identify all these spaces and denote the resulting space by V(~). The 
next proposit ion shows tha t  the functionals L n ('7) are compatible  with these 
identifications. 

PROPOSITION 6. The linear functional Ln(') ,) does not depend on the ori- 
entation compatible numbering n of vertices of the tetrahedron A. 

Proof. Since the  group of orientation preserving motions of the  te t rahedron 
is generated by  two permutat ions  of vertices, i t  suffices to prove that  

L n ( A , 7 )  = L ' ¢ ( A , v )  = L n " ( A , 7 )  , 

where the numbering n '  is obtained from n by the subst i tut ion 

0 4 0 ,  1 4 2 ,  2 4 3 ,  3 4 1 ,  (11) 
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and n/t is obtained from n by the substitution 

0 - - ~ 1 ,  1---~2, 2 - ~ 0 ,  3---*3. 

We consider the first case in detail, leaving the second to the reader. 
Under the substitution (11), simple objects at ,  a2, aa, a4, as, a6 are re- 

placed by A1, A2, A3, A4, As, A6, where 

A l = a 2 ,  A 2 = a s ,  A 3 = a 4 ,  A 4 = a ~ ,  A 5 = a l  , A 6 = a ~ .  

Therefore, we must prove that the morphism 1 --* 1 corresponding to 
the composition (10) coincides with the morphisrn 1 -* 1 corresponding to 
the composition 

v4®v~®vl 
* * * ( l e )  1 = 1 ® 1 ® 1  )a2 ® a3 ® a5 ® aD ® a4 ® a~ ® al ® a6 ® a 2 

e a  5 ~ a  1 V 3 

~a2 N aa ® a4 ® a 6 ® a2------~a2 ® a3 (~ a a ® a6 ® a*4 ® a4 @ a~ ® a e 

~a2®a 3 @ a  3 @ a  6 ® a  4 ® a 4 @ a  6 ® a  2 ~a2®a 2 
¢~2 ** • e.~ 

® a2---~1 ---+a 2 

In the proof we use a pictorial interpretation of compositions (t0) and 
(12), so that  we must compare morphisms 1 --* 1 corresponding to the 
diagrams in Fig. 13 and in Fig. 14. 

a2  

j /  , \  
N 

">o J J 

Figure 14 
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The first step is to move the box v 3 in the diagram in Fig. 13 below the 
box v2. Namely, Lemma 3 implies tha t  the morphism 1 ~ 1 represented 
by the diagram in Fig. 13 coincides with the morphism 1 ~ 1 represented 
by the diagram in Fig. 15. 

a l  

a~ 

a~ 

a2  

a3  

a5  

4 

a~'* 

a * *  . . . .  I 
3 [] I 

a. I 

Figure 15 

Next we see tha t  the diagrams in Fig. 14 and in Fig. 15 have a common 
part  (in the dot ted box), which is a morphism 1 --* a2 ® a6 ® a~. Denoting 
this morphism by w we see that  to prove the proposition it suffices to es- 
tablish the equality of the morphisms 1 --~ 1 represented by the diagrams 
in Fig. 16 and in Fig. 17. 

This equality follows from Lemma 3 above. Proposit ion 6 is proved. 

Hence, for every coloring "~ of the te t rahedron A we constructed a linear 
space V('y) and a functional L('y) on it. 

6.  D e f i n i t i o n  o f  t h e  I n v a r i a n t  

To define the invariant, we first define the space where this invariant lives. 
Let X be a manifold, D a finite t r iangulat ion of X,  and F the set of 

oriented edges of D. A coloring of D is a function 7 : F -~ $ such that  
~(l*) = (V(/))*, where l* is the edge 1 with the opposite orientation. In this 
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a l  

a~ 

a~ 

a2  

a 6  

a~* 

a2  

a 6  

Figure 16 

Figure 17 

paper we consider either oriented three-dimensional manifolds with bound- 
ary, or closed oriented two-dimensional manifolds. We associate a vector 
space W(X, D, "/) to a colored t r iangulated manifold (X, D, V). The defini- 
tion is different for two- and three-dimensional manifolds. 

A.  d i m X  = 3. For each te t rahedron A of D let W(A,~IA ) be the space 
introduced in the previous section, i.e. 

W(ZX, Zla)  = Y(F1)(~l~)* ® V(F2)(VLa)* ® V(F~)(VI~)* ® Y(F4)(Vl~)* , 

where F1, F2, F3, F4 are the faces of A with the orientation induced by the 
orientation of A. 

Next, define 

W(X, D, "y) = ( ~  W(A,  "Ylz~) , 
A 

where the product  is taken over all te t rahedra  A of the t r iangulat ion D. 
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B.  d i m X  --- 2, X is a closed oriented tr iangulated surface. In this case, 
define 

W ( X ,  D, 3`) = @ V(F)(3`IF)* , 
F 

where the product  is taken over all triangles F of the tr iangulat ion D. 
Similarly to Lemma 6, we note that  the r ight-hand side of this formula is 
well-defined since each edge I of D occurs among the sides of faces D twice, 
with opposite orientations. 

Now let (M, D) be a three-dimensional oriented t r iangulated manifold 
with boundary S = OM. We denote by Ds the induced tr iangulat ion of 
S. By Proposit ion 6, for each te trahedron A of D we have an element 
L(~'IA ) C W(A,  3`1~). Denote 

L(M,D,' , /)  = ®L(3`IA ) e W ( M , D ,  3,) • 

Since each inner face F of D belongs to two te t rahedra  of the trian- 
gulation D, it occurs in the tensor product  defining the space W(M,  D, 3`) 
twice, with opposite orientations. By Proposit ion 5(iii), the corresponding 
spaces V(F)(3,1F ) are dual  to each other. Denote by CF : (V(F)(3`IF))* ® 
V(F)(3`IF ) ~ k the corresponding pairing. Since each boundary face of D 
is a face of Ds, the tensor product  CM = @F CF over all inner faces F of D 
is a linear map 

CM : W(M,D,3 , )  ~ W(S,  Ds,3,1s) • 

To define the  invariant associated to the given balanced rigid triangu- 
lated category we must choose, for each a E g, a square root (d ima)  1/2 E k. 
Also, we assume that  ~ a e e ( d i m a ) ( d i m  A*) ¢ 0 and choose a square root 

N = d ima) (d imA*  c k . 
aE~" / 

DEFINITION 5: Let 3,s be a coloring of Ds .  Denote 

I ( M , D ,  Ts) (13) 

: N-2V-v '  ~ ( ~ ( d i m ~ ( l ) ) ) ( ~ ( d i m 3 ` ( l ' ) ) l / 2 ) C M ( L ( M , D , ? ~ ) )  

e W(S ,  Ds, 3,s) • 

In this formula the sum is taken over all coloring 3' of D that  extend ~'s, l' 
runs over all edges on the boundary of M (i.e. edges of Ds), I runs over all 
edges inside M,  v' is the number of vertices on the boundary of M (vertices 
of S), v is the number of vertices inside M. 

Let us note tha t  if M is a closed manifold, then I (M,  D) does not depend 
on the above choices of square roots. 
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The main result of this paper is the following: 

T h e o r e m  1. The element I(M, D, ~/s) does not depend on the extension 
of the triangulation Ds of S to the triangulation D of the manifold M. 

DEFINITION 6: For a three-dimensional manifold M with triangulated 
boundary (S, Ds), a given balanced rigid semisimple monoidal category 
C with the finite number of equivalence classes of simple objects, and a 
coloring 78 of Ds,  we define Ic(M, Ds,Ts) to be the element I(M, D, "/s) 
for arbitrary extension of the triangulation Ds  of S to the triangulation D 
of the manifold M. 

In particular, if M is a closed manifold, OM = O, we obtain a number 
I c  (M) E k that depends only on M. 

Theorem 1 will be proved in §§8-12. In the next section we interpret 
the invariant I c  (M, Ds,  7s) in terms of cobordisms between closed oriented 
surfaces and study what happens when we glue together two manifolds M. 

7. Cobordisms and Gluing 

For a closed oriented triangulated surface (S, D) define the space W(S, D) 
by the formula 

W(S,D) = O W ( S , D , 7 ) ,  

where the sum is taken over all coloring 7 of edges of D. If M is a three- 
dimensional oriented manifold with triangulated boundary (S, D), we de- 
note 

Ic(M,S,D) = ~ I c ( M , D , 7 ) ,  
"7 

where again the sum is taken over all coloring 7 of edges of D. 
Recall that  a cobordism between two closed oriented surfaces $1 and S2 is 

a three-dimensional oriented manifold N with boundary ON = (S1) [2 ( -$2)  
(disjoint union), where -S2  is the surface $2 with the opposite orientation. 
We denote such a cobordism by N : S1 -* 82. In particular, an oriented 
three-dimensional manifold with boundary S can be considered as a cobor- 
dism M : S -~ O. 

Now assume that  $1, $2 are triangulated surfaces, with triangulations 
D2 and D2 respectively. Colorings 71 of ($1, D1) and 72 of ($2, D2) define 
the coloring ~/of the triangulated boundary ($1 [2 ( -$2) ,  D1 [2 D2) of the 
manifold N. Definition 6 provides an element I c ( N ,  D1 [2 D2, 7) E W(S1 [2 
( -$2) ,  D1 [2 D2,7). Since $1 and $2 are disjoint, 

W(S1 [2 ( -$2) ,  D1 U D2, 7) = W(S1, Dx, 7,) ® W(S2, D2, 72)* , 
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so that I c ( N ,  D1 U D2, T) gives a linear map 

O:  W(S2 ,D2 ,v2 )  ~ W ( S 1 , D I , ~ I )  • 

By Theorem 1, this map depends (for fixed triangulations and colorings of 
$1 and $2) only on the isotopy class of the cobordism N : $1 --* $2. The 
direct sum of these maps O over all c010rings ~,j and 72 defines a linear map 

O ( N ) :  W(S2,  D2) --+ W(S1,  D1) , 

which again depends only on the isotopy class of N. If M with OM = S is 
considered as a cobordism M : S --* 0 ,  then the image of 1 E k = W(O) in 
W ( S ,  D) under O(M) coincides with I c ( M ,  S, D) E W(S ,  D). 

Now let (S~,D~), i = 1,2,3, be three closed oriented surfaces and N : 
$1 -* $2, N ~ : $2 --+ $3 be two cobordisms. Their composition is defined as 
a eobordism N ~ o N : $1 --* $3, given by the gluing of N and N ~ along $2. 

COROLLARY 1 (from Theorem 1). We have O(N '  o N)  = O(N)  o O(N' ) .  

COROLLARY 2. For any M with OM = S, any cobordism N : S ~ --~ S, and 
any triangulations D and D t o f  S and S ~ respectively, we have 

O ( N ) I c ( M ,  S, D) = I c ( N  o M,  S',  D') . 

The trivial cobordism of a closed oriented surface S is defined by N s  = 
S × I,  where I is the closed unit  interval. Since N z  o N s  = Ns, we have 

C O R O L L A R Y  3 .  O(Ns)  : W(S ,  D) --* W ( S ,  D) is a projection. 

Denote K(S ,  D) = im O(Ns)  c W ( S ,  D). 

COROLLARY 4. For any M with OM = S and any triangulation D of  S we 
have I c ( M ,  S, D) e K ( S ,  D). 

C O R O L L A R Y  5. For any cobordism N : $1 --~ $2 we have 

O ( N ) ( K ( S 1 ,  D1)) C K(S2,  D2) .  

Proof. There exists an isotopy Ns2 o N --+ N identical on O(Ns2 o N)  = 
$1 U ( -$2 )  = ON. Therefore, Corollary 5 follows from Corollary 1. 

In particular, consider the trivial cobordism N8 = S × I : S -+ S 
between (S, D1) and (S, D2) for two triangulations D1 and D2 of S. Since 
N s  o N s  = N s ,  we have 

COROLLARY 6. The restriction of O(N8) to K ( S ,  D2) is an isomorphism 

OtD1D 2 : K ( S ,  D2) ~ K ( S ,  D1) 

with the following properties: 

OZD1D2 o O~D2D3 ~ OID1D3 , OIDD ---= id , 

aDID~ ( I c (M,  S, D2)) = I t ( M ,  S, D1) for any M ,  OM = S . 
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DEFINITION 7: For a closed surface S, denote by K ( S )  the direct limit 
limD K(S ,  D) over all triangulations D of S (with respect to isomorphisms 
0LDID2 )" 

For a three-dimensional manifold M with boundary S denote 

Ic (M,S)  = l ~ ± c ( M , S , D )  e K ( S ) .  

COROLLARY 7. A n y  cobordism N : $1 --~ $2 defines a linear map O(N) : 
K(S2) --* K(S1), such that O ( N  o N ' )  = O(N' )  o O(N)  for N :  $1 --~ Sz, 
N '  : $2 ~ S3; in particular, O ( N ) ( I c ( M ,  S))  = I c ( N  o M, S) for a three- 
dimensional manifold M with OM = S and a cobordism N : S --* S ~. 

The family of spaces K ( S )  and vectors I c  (M, S) is one of the main ingre- 
dients of the Topological Quantum Field Theory associated to the invariant 
Ic  of three-dimensional manifolds. 

In the remaining part of this section we present certain results and con- 
jectures about the spaces K ( S ) .  

The proof of the next two propositions is left to the reader. 

PROPOSITION 7. I f  S is the sphere S 2, then dim K ( S )  = 1. 

Let G be a finite group, ( a 3-coeycle on G, C(G, () the monoidal cate- 
gory associated to (G, () (see [CPr, Example 5.1.6]) with trivial duality and 
balancing. 

PROPOSITION 8. Let C = C(G, 1) be the category associated to the trivial 
3-cocycle on the finite group G and S a closed oriented surface with the 
fundamental group 7c. Then dim K(S) equals the number o f  equivalence 
classes of  homomorphisms ~r -~ G modulo conjugations by elements of  G. 

The following conjecture describes dim K ( T ) ,  where T is the two-dimen- 
sional torus. 

Denote by D(C) the Drinfeld double of the monoidal category C (see 
[M]). 

CONJECTURE 1. Assume that  D(C) is a semisimple category. Then dim K ( T )  
is equM to the number of  equivalence classes of  simple objects in D(C). 

If D(C) is not semisimple, then the number of equivalence classes of 
simple objects in D(C) should, conjeeturally, be replaced by the dimension 
of a certain space introduced by Lyubashenko [L], see also Kerler [Ke]. 

Let us remark that if C = C(G, 1), then D(C) is the category of G- 
equivariant (under the action of G on itself by conjugations) vector bundles 
on G. A simple object of D(C) is a pair (A, p) consisting of a eonjugaey 
class A C G and an irreducible representation p of the centralizer Z(a) of 
an element a E A. Therefore, the number of simple objects in D(C) equals 
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the number of G-conjugacy classes of pairs (gl, g2) of commuting elements 
in G, and the corresponding special case of Conjecture 1 agrees with the 
special case of Proposition 8. 

8. P a c h n e r ' s  T h e o r e m  

Now we proceed with the proof of Theorem 1. For simplicity, we will 
consider only the case of a closed three-dimensional manifold M, so that 
Ic(M, 0) is an element Ic (M)  E k. All arguments can be easily extended 
to manifolds with boundary (see similar arguments in [TV]). 

The proof of Theorem 1 is based on the possibility of passing from 
any triangulation of M to any other triangulation by a sequence of sim- 
ple changes. More precisely, consider the following elementary changes of a 
triangulation D of a closed three-dimensional manifold M. 

(A) Replace two tetrahedra with a common face by three tetrahedra with 
a common edge, as shown in Fig. 18. This change increases the number of 
tetrahedra in the triangulation by 1, the number of faces by 2, the number 
of edges by 1, and does not change the number of vertices. 

a l  

a 4  

F F3 

.: 
" "  !: 

a 8 

F2 

Ft 

• 6 .  " . ° 

(a) (b) 

Figure 18. Pachner's change (A): (a) before the change, (b) after the change 

(B) Replace a tetrahedron A of D by four tetrahedra forming the stellar 
subdivision of A with the center inside A. This change increases the number 
of tetrahedra in the triangulation by 3, the number of faces by 6, the number 
of edges by 4, and the number of vertices by 1. 
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T h e o r e m  2 (Pachner, [P]). Any two finite triangulations of a dosed three- 
dimensionM manifold can be obtained from one another by a sequence of 
changes of types (A), (B) and their inverses. 
REMARK: There is a version of Pachner's theorem for manifolds with bound- 
ary; it allows one to compare trangulations of a given manifold M that agree 
on its boundary OM. 

In view of Pachner's theorem, it suffices to prove that I(M, D) does not 
change under transformations (A) and (B). We begin with case (A). 

9. I n v a r i a n c e  U n d e r  C h a n g e  (A)  

Let K C M be the body formed by two simptices with a common face 
(see Fig. 18(a)). Since the two triangulations we want to compare coincide 
outside K, it suffices to consider only the part of the sum defining I (M,  D) 
for tetrahedra inside K. Let A1, A2 be the tetrahedra of the triangulation 
(a), and A3, A4, A5 be the tetrahedra of the triangulation (b). Denote by 
F the internal face in the triangulation of K shown in Fig. 18(a). Similarly, 
denote by F1, f½, F3 the three internal faces of the triangulation of K shown 
in Fig. 18(b). Consider colorings 7' of the triangulation (a) of K and 7" 
of the triangulation (b) such that colors corresponding to exterior edges 
(those on the boundary of K) coincide. Denote these colors by a l , . . .  ,ag, 
as in Fig. 18. The colors a l , . . . , a 9  determine ~/ uniquely. Denote by b 
the color corresponding to the internal edge in the triangulation (b). The 
invariance of the number I(M, D) under the change (A) in a consequence 
of the following formula: 

CF (L(A1, ~/) ® L(A2, V')) (14) 

= Z ( d i m  b)(cF1CF2CF3)(L(A3, 7") ® L(A4, ~") @ L(A5, 7")) , 
bEE 

which is sometimes called the Biederharn formula. 
To prove formula (14), we give another interpretation for the functional 

L(A, ~,), which relates it to associativity morphisms in e ,  and show that 
(14) is essentially equivalent to the pentagon axiom in C = (C, @, ~). 

Recall that the associativity morphisms and the pentagon axiom in a 
semisimple monoidal category can be expressed as follows. For any objects 
al, a2, a3, a4, a5 in C, the composition of morphisms defines a linear map 

Hom(al, a5 @ aa) ® Horn(as, a2 ® a3) -+ Hom(al, a2 ® a3 ® aa) • (15) 

Fix al,  a2, a3, a4, and let a5 run over the set C of all isomorphism classes of 
simple objects in C. Since C is a semisimple category, maps (15) combine 
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to an isomorphism 

t ~  Hom(al ,  a5 ® a4) @ Horn(a5, a2 ® a3) -Y~ Hom(al ,  a2 ® a3 ® a4) • 
ahE~ 

Similarly, we have the isomorphism 

( ~  Horn(a1, a2 ® a6) ® Horn(a6, a:3 ® a4) - ~  Horn(a1, a2 ® a3 ® a4) • 
a6E£ 

Therefore, for each 6-tuple of elements a l , . . . ,  a6 C $ we have a linear map 

A : Horn(a1, a s N a 4 ) ® H o m ( a 5 ,  a2®a3) -+ Horn(a1, a2®a6)®Hom(a6 ,  a3®a4),  

which will be denoted A ( a l , a 2 , a 3 , a 4 , a s ,  a6) in the case when we will need 
to specify a l ,  a2, a3, a4, as, a6 E g. 

The invariance of the sum (13) under the Pachner move (B) is a result 
of the pentagon axiom in C,  which, in terms of maps A, is equivalent to the 
following relation. For any a l , . . .  ,a9 C g we have 

A(al, a9, an, a5, a7, as) o )~(al, a2, a3, aT~ a6, a9) 

E A(as, a2, a3, a4, b, ag) o A(al,  a2, b, as, a6, as)  o A(a6, a3, a4, a5, aT, b) . 
bEC 

Here both sides are morphisms: 

Hom(al ,  a2 ® a6) ® Hom(a6, a3 ® aT) ® Horn(aT, a4 ® a5) 

--+ Horn(a1, as ® as) ® Horn(as, a9 ® a4) ® Hom(ag, a2 ® a3) • 

Now we use the duali ty 

(Hom(a l ,  a2 ® a6))* = Horn(a2 ® a6, al)  , (16) 
( Horn(a6, a3 ® a4))* = Hom(aa ® a4, a6) , 

given by the  formula (~, ~} = t r ( ~ )  (see Lemma 1). It allows us to consider 
the map A as a linear functional on the space 

Horn(a1, a5 ® a4) ® Hom(as,  a2 @ aa) ® Hom(a2 ® a6, a l) ®Hom (a3 ® a4~ a6) • 

The next Iemma gives an explicit  formula for this functional. 

LEMMA 7. F o r  

~1 : al  --+ a5 ® a4 , ~2 : a5 -~  a2 ® a3 , (17) 
~ 3  : a3  ® a4  --+ a6 ,  ~ 4  : a2 ® a6 --~ a l  , 

we have  

A(~I ® ~2 ® ~3 ® ~4) = (dim a6) tr(I) , 

where  ~ : a l  ~ a l  is the  c o m p o s i t i o n  
~oi ~o2®id id ®~o3 ~P4 

al  ..... >as ® a4 ,a2 ® a3 ® a4 >a2 ® a6 ~al . (18) 
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Proof. Take arbi t rary  morphisms ~3 : a6 --~ a3 ® a4, ~4 : a l  --~ au ® a6 and 
compare tr(p3~b3) tr(~4~b4) with the trace of the composition 

~4 ~3 ®id ~P3 ®id ~P3 
: al ~a2 ® a6 ~a2 ® a3 ® a4 -~a6 ® a 4 - - - ~ a l  • 

Since a6 is a simple object,  ~3¢3 = # ida6 for some number #, and tr(~3~3) = 
# dim a6. Therefore, 

and 
tr  0 = # tr(~4~b4) = tr((f13%b3) tr(~4~b4)/dim a6 • 

Lemma 7 immediately follows from this formula. 

The canonical isomorphisms Horn(X, Y) = Horn(l ,  Y ® X*),  X,  Y E 
ObC, yield isomorphisms of linear spaces 

Hom(ai ,  a5 ® a4) = V(a5, a4, a~) , 

Horn(as, a2 ® a3) = V(a2, a3, a~) , (19) 
Horn(a2 ® a6, a l )  : V(al ,  a~, a~) , 

Horn(a3 ® a4, a6) : V(a6, a~, a~) . 

This enables us to consider A as a linear functional on the space 

V(as,  a4, a~) ® V(a2, a3, a~) ® V(a6, a~, a~) ® V(al ,  a~, a~) , 

i.e. on the same space as the functional L(A, ~/). 

LEMMA 8. In the above notation, 

A = (dim a6)L(A, 7) • 

Proof. Select F1 ,~2 ,~3 ,~4 .  We must prove that  L(A, '7) (~1 ,T2,~3 ,Ta)  = 
tr  ¢,  where ep : a l  ~ a l  is defined by (18). The proof is shown in Fig. 19. 

To complete the proof of formula (14), we note that  the duali ty (16) 
is compatible with the duali ty between the spaces V in Proposit ion 5(iii) 
under the isomorphisms (19). Therefore, after the identification (14) the 
pentagon axiom becomes the required formula (14). 

Before proving the invarianee of the sum (13) under the stellar transfor- 
mation (B), we establish two propert ies of functionals L(A, 7), normaliza- 
tion and orthogonality. 

10 .  N o r m a l i z a t i o n  P r o p e r t y  

The normalization proper ty  determines the functional L(A,  7) for a degen- 
erate coloring F, i.e. such a coloring that  one of the objects ~y(l) is the 
object 1. By Proposi t ion 6, it suffices to consider the case al  = 1 (we use 
the notat ion in (9)). 
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t I 
1 ~ [ 3  I _ . 

: : \ 

--~ / L ( A '  ~/)(~1'  ~2 '  ~3 '  ~4)  

t r  

Figure 19. Proof of Lemma 8 

PROPOSITION 9 (normalizat ion) .  Let "7 be a coloring of the tetrahedron A 

such that a l  = "~(01) = 1. Then 
(i) The space V(A,  ~/) is zero unless a4 ---- a~ and a6 = a~. 

(ii) I f  a4 = a~ and  a6 = a~, then  the spaces 

v1 (1 *) = H o r n  , a s ® a s  , 

V4 = Horn( l ,  a6 ® a~) 

are one-dimensional with generators ia~ and ia6 respectively, while 
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the spaces 

V2 -- Horn(l, a2 ® a3 ® a4) , 

V3 = Horn(l, a~ ® a~ ® a~) -- Uom(1, a~ ® a~ @ a~) 

are dual to each other. 

(iii) The functional L(A, 9') is given by the following formula: 

L(A, 9')(ia~, v2, v3, ia6) = {v2, v3) , 

where (., .) is the pairing between V2 and V3 from (ii). 

Proof. Part  (i) and the first statement in part (ii) follow from the formula 

Horn(l, X ® Y*) = Hom(X, Y) . 

The second statement in (ii) follow from Proposition 6 and Proposition 5(iii). 
The proof of part (iii) is clear from the diagram in Fig. 20. 

I I 

t []  

k 

Figure 20. Proof of part (iii) of Proposition 9 

11.  O r t h o g o n a l i t y  P r o p e r t y  

Let A1, A2 be two tetrahedra glued together along two adjacent faces on 
each of them. The resulting body B has 4 vertices, 7 edges, 6 faces, and 
2 tetrahedra. Of these 6 faces, two are adjacent to both tetrahedra A and 
A t, and each of the four others is adjacent to only one tetrahedron. 

Let 9' be a coloring of B, i.e. a function that  sends 7 edges of B to el- 
ements of C. Equivalently, we can think of 9" as a pair of colorings 9'1 of 
A1 and 9'2 of A2, such that 9'1 and 9'2 take equal values on corresponding 
edges. More precisely, denote vertices of A 1 b y  01, 11 ,21 ,31  and those of A1 
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by 02, 12, 22, 32 (see Fig. 21). Then 71 and 72 should satisfy the conditions: 

71(0111)=~2(0212) (----al) ,  ------+ 
71(1121)=72(1222) ( = a 2 ) ,  -------+ 
71(0121)=72(0222) (= a 3 ) ,  

71(1131) ---- 72(1232)(= an ) ,  

71(2131)=7~(2232) ( = a 5 ) .  

3 3~ 

~ i  1 ¢ ~  
0 0' 

2 
Figure 21. 

Denote ___+ ___+ 
bl = 71(0131), b2 = ")'2(0232). 

To a coloring 7 = (71,72) of B we associate the space 

v ( A t , 7 1 )  ® v(A2,72)  • 

On this space, consider the functional 

L(A1,71) ® L(A2, ")'2) - 

Note tha t  the space V(A1,71) ® V(A2,72) is the product  of 8 spaces of the 
form V(a, b, c), a, b, c C $, and among these spaces there are two pairs of dual  
spaces corresponding to faces F = (011121) = (221202), F ~ = (112131) = 
(322212). Hence we can define the functional 

L( B, 7 ~) = CFCF, (L(A1,71) ~ L(A2,72))  

on the space 

= * b a* a* * * V(B,7)  V(a3,as, b l )®V( 2, 5, 3)®V(bl,a4,al)®V(al,a4,b~) • (20) 
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The space V(B,"7) does not depend on a2. Therefore, we can consider 

L = E ( d i m  a2)L(B, y ) .  
a 2  

PROPOSITION 10 (orthogonality). (i) I f  bl ¢ b2, then L = O. 
(ii) I f  bl = b2, so that four factors in the tensor product V(B,~,) (see 

(20)) are pairwise duaI, 

= (V(b2,a s, a3) ) , V(aa,as,b~) * * * 

• b*"  \ *  V(bl,a4,a~) = (V(al ,a4,  2)) , 

then 
L(~t ® ~2 @ ~3 @ ~4) = (dimb)-I  (~1,~2>(~3, ~4> . (21) 

Sketch of the proof. This proposition can be proved in two different ways. 
The first proof, which is short and formal, goes as follows. 

First of all, let V be an arbitrary finite-dimensional linear space V, 
i E V ® V* the canonical Casimir element, and cv : V ® V* -~ k the 
canonical pairing; then 

cy(i)  = dim V . (22) 

Now in the Biederharn formula (14) take a4 (or a5, or a6) to be 1. Then 
the normalization property, together with (22), implies (21). 

The second proof consists in writing down the definition 

L(B,  7) = CFCF, (L(A1, ~/1) ® L(A2,72)) , 

drawing the corresponding diagram in the spirit of Fig. 13, and playing with 
this diagram to get the required expression. We strongly recommend the 
reader to carry out this proof in detail. In particular, this might give the 
feeling of what can be done with diagrams representing morphisms in rigid 
monoidal categories. 

12. Invariance Under Change (B) 

Now we prove the invariance of the sum (16) under change (B) of the tri- 
angulation of our closed manifold M. 

Let A be a tetrahedron with vertices 0, 1, 2, 3, and A be a point inside 
A. The transformation (B) replaces A with four tetrahedra A~, 0 < i < 3, 
where Ai is the tetrahedron opposite the vertex i (see Fig. 22). Denote by 
F~j, 0 < i , j  _< 3, the six inner faces of the obtained subdivision (Fij has 
vertices { i jA})  and by Fi, 0 < i < 3, the four outer faces, which are faces 
of A (Fi is the face opposite the vertex i). 
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a l  ~4 g6  

0 

2 

Figure 22 

Let "7 be a coloring of A, and "/ be an extension of 7 to a subdivided 
tetrahedron, so that  to specify 7'  we must define 

"~'(OA) = bo , "~'(1A) = bl , -y'(2A) = b2 , 9/(A3) = b3 

(the choice of directions of edges from A will become clear later). 
The invariance of I(M, D) under the change (B) is equivalent to the 

following statement. 

PROPOSITION 11. We have 
3 

(A,7)  = N -2 E ~I(dimbi)(CFoCFlCF2CF~) ( @  L(Ai, 71)) . (23) 
bo,bt ,b2,b3E~ i = 0  

Proof. Rewrite the right-hand side of (23) in the form 

N-2 E (dimb°dimbldimb2)cFa{ L(Aa'~I) 
bo,bl ,b2EE 

~ [b~E(diIb3)(CFoCFICF2)L(/ko,"/') ~ L(/XI,'T') ~ L(A2,"H)] } • 

We see that  for fixed bo,bl,b2, the sum over b3 has the same form as the 
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sum in the Biederharn formula (14). Applying this formula, we replace 
the expression in brackets by the convolution of the tensor product of two 
functionals of the form L, say 

cFL(A' ,  7') ® L(A",  7') , 

with one of the functionals, say L(A' ,  3/') being just L(A,-~) for our initial 
tetrahedron A and the initial coloring % while the other, L ( A ' ,  ,~), together 
with L(A3, -y~) forms a setting for applying the orthogonality relation. Using 
this relation together with the formula 

(dim i)(dim j)  dim V(i, j,  k*) : N ~ dim k ,  
i,jEE 

which follows from Lemma 9 below, we complete the proof of Theorem 1. 

LEMMA 9. For i, j ,  k C 8 denote by 

k = d imHom(k, i  ® j )  mij 

the multiplicity of  k in i ® j .  Then for any k E g we have 

(dim i)(dimj)ra~j = N 2 dim k .  (24) 
i,jEC. 

Proof. First of all, since the dimension in C is additive and multiplicative 
(see Proposition l(i,ii)) and the category C is semisimple, we have, for any 
k, j E g ,  

dim k dim j* = ~ rn~j. dim i .  (25) 
i 

Next, from 
Hom(k ® j*, i) = Hom(k, i ® j)  , 

k Substituting into (25), multiplying both parts by dim j ,  we get m*kj. = mij .  
and summing by j over g, we get (24). 
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