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Motivations

D. Sullivan in Postcript (2004) of "Geometric topology" MIT notes (1970)

Problem 2. Construct an algebraic model of a simply-connected closed
topological manifold as an integral chain complex with a hierarchy of chain
homotopies expressing its structure as an infinitely homotopy associative,
graded commutative, Poincaré duality algebra. (All dimensions).

Conjecture 2. Over Q, there is a construction of the rational characteristic
classes from the models of the rational homotopy type appropriately
enriched with Poincaré duality.

Motivated by computations in string topology and factorization homology.
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Singular cochains and homotopy types Whitehead’s problem

J. H. C. Whitehead (1950)

"The ultimate object of algebraic homotopy is to construct a purely
algebraic theory, which is equivalent to homotopy theory in the same sort
of way that "analytic" is equivalent to "pure" projective geometry."

"Classify the homotopy types of polyhedra X , Y ,..., by algebraic data.
Compute the set of homotopy classes of maps, [X ,Y ], in terms of the
classifying data for X and Y . Moreover, compute the group of homotopy
equivalences, Aut(X )."
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Singular cochains and homotopy types Whitehead’s problem

Categorical formulation
Find an "algebraic" category A and a functor

M : Ho(Top∗)→ A

(1) Faithful, i.e. [X ,Y ]→ [M(X ),M(Y )] is injective,
(2) Full, i.e. [X ,Y ]→ [M(X ),M(Y )] is surjective,
(3) Essentially surjective, i.e. each object A of A is isomorphic to an object
of the formM(X ).

David Chataur (LAMFA, Amiens) Rational homotopy theory and Poincaré dualityEAST, September 2017 4 / 34



Singular cochains and homotopy types Whitehead’s problem

Theorem (J. H. C. Whitehead (1949))

Let f : (X , x)→ (Y , f (x)) be a continuous map between two connected
CW -complexes then f is a homotopy

Corollary

Let f : (X , x)→ (Y , f (x)) be a continuous map between two connected
and 1-connected CW -complexes then f is a homotopy equivalence iff it
induces an isomorphism in singular homology H∗(−;Z).
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Singular cochains and homotopy types Whitehead’s problem

The functors {πk(−)}k≥0 and {Hk(−;Z)}k≥0 are not solution to
Whitehead’s problem.

- They are essentially surjective : Eilenberg-MacLane
spaces K (G , k), Moore spaces M(G , k).
- The functors are not faithful nor full.

Example
Let us consider the continuous map

S1 × S1 × S1 c→ S3 η→ S2

where c is a degree 1 map and η is the Hopf maps is trivial on homotopy
groups, on homology group BUT it is
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Singular cochains and homotopy types Whitehead’s problem

Problem : How to compute [X ,Y ] ?

D. Puppe sequences

Let X → Y → Y /X be a cofibration and F → E → B be a fibration we
have two long exact

. . . [ΣY ,K ]→ [ΣX ,K ]→ [Y /X ,K ]→ [Y ,K ]→ [X ,K ],

. . . [K ,ΩE ]→ [K ,ΩB]→ [K ,F ]→ [K ,E ]→ [K ,B].
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Singular cochains and homotopy types Whitehead’s problem

Example 1 : [S3 × S3, S3]

We use the cofiber sequence : S3 ∨ S3 → S3 × S3 → S6, and we consider
the long exact sequence

[Σ(S3×S3), S3]→ [Σ(S3∨S3),S3]→ [S6,S3]→ [S3×S3,S3]→ [S3∨S3,S3],

[S3 × S3,S3]→ [S3 ∨ S3,S3] is surjective, we have a section
(f , g) 7→ mS3 ◦ (f × g).
[Σ(S3 × S3),S3]→ [Σ(S3 ∨ S3),S3] is also surjective.
Σ(X ∨ Y ) ' ΣX ∨ ΣY and Σ(X × Y ) ' ΣX ∨ ΣY ∨ Σ(X ∧ Y ).
We get a non-trivial extension :

π6(S3) ∼= Z/12Z ↪→ [S3 × S3,S3]� Z⊕ Z ∼= [S3 ∨ S3,S3].
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Singular cochains and homotopy types Whitehead’s problem

Example 2 : [S1 × S1 × S1, S2]

A Postnikov tower for a connected space X is a tower of fibrations :

. . .Xn

pn
� Xn−1

pn−1
� Xn−2 . . .X1

p1
� X0

- πk(Xn) = πk(X ) if k ≤ n,
- πk(Xn) = 0 if k > n,
- the fiber of pn is a K (πn(X ), n).
When the space is 1-connected, we have X ' lim←−Xn.
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Singular cochains and homotopy types Whitehead’s problem

Example 2 : using the Postnikov tower of S2

. . .X3
p3
� X2 = K (Z, 2)

the fiber of p3 is a K (Z, 3).

Let us consider the map S2 → X3 its fiber is 3-connected, by obstruction
theory we get that

[S1 × S1 × S1,S2] ∼= [S1 × S1 × S1,X3].

Let us consider the fibration K (Z, 3)→ X3 → K (Z, 2) we an exact
sequence

[S1 × S1 × S1,K (Z, 3)]→ [S1 × S1 × S1,X3]→ [S1 × S1 × S1,K (Z, 2)]

In fact we get the short exact sequence

H3(S1 × S1 × S1,Z) ↪→ [S1 × S1 × S1,X3]� H2(S1 × S1 × S1,Z).
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Singular cochains and homotopy types Differential graded algebras

Steenrod-Grothendieck’s approach
Go to the derived level and use the multiplicative structure of singular
cochains in order to get an algebraic model.

Consider the singular cochains as a functor :

C ∗(−;Z) : Topop → Ch(Z)

Not enough structure ! Consider the singular cochains as a functor :

C ∗(−;Z) : Topop → dgaZ,

we have taken into account the cup product.
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Singular cochains and homotopy types Differential graded algebras

Adams-Hilton models

We can detect the Hopf map !

[S3, S2]→ [C ∗(S2;Z),C ∗(S3;Z)]dga

we need a cofibrant model for C ∗(S3;Z) one can take :

T (u2, u3 7→ u2 ⊗ u2, . . . ).

In fact
Adams-Hilton+Husemoller-Moore-Stasheff+Félix-Halperin-Thomas : if X is
1-connected of finite type (Hk(X ;Z) is finitely generated), we have

[C ∗(X ;Z),C ∗(Sn;Z)]dga ∼= Hn−1(ΩX ;Z).

up to a sign we get Hurewicz morphism for ΩX :

[Sn,X ] ∼= [Sn−1,ΩX ]→ [C ∗(X ;Z),C ∗(Sn;Z)]dga.
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Singular cochains and homotopy types E∞-algebras and homotopy types

dga is not enough !

We have Steenrod squares acting on H∗(X ;Z/p) they are not encoded
only by the cup product.
Need to take into account the cup-i products.

Solution : Operad theory !

E -algebras
We have a family of cochain complexes of natural multilinear operations
{E (k)}k≥0 acting on the singular cochains

E (k)⊗ C ∗(−)⊗k → C ∗(−).

C ∗(X ) is a E -algebra.

The operad E is resolution of the operad Com i.e. we have a quasi-iso
E → Com.
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Singular cochains and homotopy types E∞-algebras and homotopy types

E -algebras are good !

M. Mandell (2000)

Let X and Y be 1-connected CW -complexes of finite type then :

- they are homotopy equivalent iff their cochain algebras are homotopy
equivalent as E -algebras.
- we have an inclusion [X ,Y ]→ [C ∗(Y ;Z),C ∗(X ;Z)]E−dga.

E -algebras and cdgas
Over a field of F of characteristic zero we have a Quillen adjoint pair :

Com ⊗E − : E − dgas � cdgas : U

it is a Quillen equivalence.
Thus we can replace by singular cochains by X 7→ Com ⊗E FX where FX is
a natural cofibrant resolution of C ∗(X ;F).
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Singular cochains and homotopy types Cochains theories

Thom-Whitney Polynomial forms

Let ∆k be the standard k-simplex we define the algebra polynomial forms
on ∆k as the algebra :

A∗PL(∆k) = S(t0, . . . , tk ; dt0, . . . , dtk)/(
∑

ti = 1,
∑

dti = 0).

This functor gives a contravariant functor :

A∗PL : setsop → cdgas.
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Singular cochains and homotopy types Cochains theories

Thom-Whitney polynomial forms 2

We have H∗(A∗pl(Sing(X ))) ∼= H∗(X ;Q) (iso of graded algebras).

Two ingredients :
- A∗pl(∆n)� A∗pl(∂∆n)
- F→ A∗pl(∆n) is a quasi-iso.
Consequences :
- A∗pl sends cofibrations to fibrations,
- It preserves weak-equivalences.
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Singular cochains and homotopy types Cochains theories

Cochain theory

Definition
A cochain theory is a contravariant functor

F : Topop →M

where (M can be R − dgmod , R − dga, E − dga, cdga) such that :
(1) F preserves weak equivalences,
(2) F sends cofiber sequences X → Y → X/Y to a homotopy pull-back i.e.

F (X/Y ) ' hofiber(F (Y )→ F (X ))

(3) F (
∐

α)Xα
∼→

∏
α F (Xα).

(4) H∗(F (pt)) = R iff ∗ = 0 and 0 if ∗ 6= 0.
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Singular cochains and homotopy types Cochains theories

Cochain theory 2

M. Mandell
Any cochain theory F : Topop → E − dgas is naturally weakly equivalent as
a E − dga to the singular cochain functor.

Any cochain theory F : Topop → cdgas is naturally weakly equivalent as a
cdga to the A∗pl -functor.

Cochains vs forms
We have a zig-zag of quasi-isos of E -dgas :

C ∗(−;F)← T ∗ → A∗pl .

Just set T ∗(∆n) = C ∗(∆n;F)⊗ A∗pl(∆n) and extend T ∗ to simplicial sets
and then
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Sullivan models Realization functors

Realization functors

Let us start with a complete category C and a functor

F : ∆op → C

using limits we extend it to a functor

F : Ssetsop → C .

This functor has an adjoint :

| − | : C op → Ssets

given by |b|k = C (F (∆k), b). We get the adjunction formula :

Ssets(X , |b|) ∼= C (b,F (X )).
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Sullivan models Realization functors

Application : computation of [X ,Y ]

Using singular cochains and simplicial realization we get a pair of adjoint
functors

C ∗(−;Z) : Ssetsop � dgas : | − |.

It is a Quillen pair
[X , |b|] ∼= [b,C ∗(X ;Z)]dgas .

Now use the fact that |T (un)| ∼ K (Z, n) and that | − | sends cofibration to
fibration to prove

|T (u2, u3 7→ u2 ⊗ u2)| ∼ X3

where X3 is the third stage of the Postnikov tower of S2.
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Sullivan models Realization functors

Application : computation of [X ,Y ]

We get that

[X ,X3] = [T (u2, u3 7→ u2 ⊗ u2),C ∗(X ;Z)]dgas

Let us suppose that C ∗(X ;Z) is formal then we get that

[X ,X3] = {(a, b) ∈ H2(X ;Z)× H3(X ;Z) : a ∪ a = 0}.
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Sullivan models Realization functors

cdgas vs simplicial sets

In the case of the functor A∗pl we have an adjunction

A∗pl : Ssetsop � cdgas : | − |

Pb : understand the map
X → |A∗pl(X )|.

Take X = K (Z, n) then we know that

H∗(K (Z, n),Q) ∼= S(un)

proof : use Serre spectral sequences. Use formality, and the fact that
|S(un)| ∼ K (Q, n) to deduce that this map is rationalization.
In general : tensor the Postinok tower with Q !
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Sullivan models Realization functors

D. Sullivan
Let us suppose that X is a 1-connected space of Q-finite type then the map

X → |A∗pl(X )|

is the rationalization of X .

Ingredients :
1) Realizations of free objects are rational Eilenberg-MacLane spaces,
2) Realization is a Quillen functor, in particular it sends cofibrations on
fibrations and homotopy cofibers on fibers.
3) On the other side if we start with a continuous map f : X → Y , if Y is
1-connected the homotopy cofiber of the

A∗pl(Y )→ A∗pl(X )

is weakly-equivalent to A∗pl(Hofiber(f )).
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Sullivan models Minimal models

Minimal model

Any cdga A has a cofibrant replacement :

MA � A

when we forget the differential, we can chooseMA
∼= S(V ). The cofibrant

model is determined by the

Minimality
When A is 1-connected one can construct a cofibrant resolution such that
the differential ofMA satisfies a
- for any v ∈ V we have dv ∈ S(V )+.S+(V ).
A minimal model is unique up to isomorphisms of cdgas.
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Sullivan models Minimal models

Examples

- Spheres,
- Complex projective spaces,
- S4 ∨ S4 :

S(a4, b4; a7 7→ a2
4, b7 7→ b2

4, c7 7→ a4.b4;

d10 7→ a7.b4 − a4.c7, e10 7→ a4.b7 − c7.b4;

f13 7→ a4.d10 − a7.b7, g13 7→ b4.e10 − c7.b7

h13 7→ a7.b7 − a4.e10 + b4.d10, . . . )
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Sullivan models Homotopy groups

Indecomposable elements

Let A be an augmented cdga a decomposable elements is an element in
A+.A+.
We have a functor Ind : A 7→ A+/A+.A+ we can derive this functor

LInd : Ho(cdga)→ Ho(dg −Q− evs)

We define
HQ
∗ (A) = H∗(LInd(A)).

When A has a minimal model S(V ) we get that HQ
∗ (S(V )) ∼= V .
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Sullivan models Homotopy groups

Rational homotopy groups

When X is 1-connected of Q-finite type we have that

[Sn,X ]⊗Q ∼= [Sn, |A∗pl(X )|]

by adjunction, we get

[Sn,X ]⊗Q ∼= [A∗pl(X ),A∗pl(Sn)] ∼= [A∗pl(X ),H∗(Sn;Q)]

replace A∗pl(X ) by its minimal model S(V )

[Sn,X ]⊗Q ∼= [S(V ),H∗(Sn;Q)] ∼= Hom(Vn;Q) ∼= Hom(HQ
n (A∗pl(X )),Q).
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Sullivan models Homotopy groups

Koszul duality

sHQ
∗ (A) is a coLie coalgebra,

HQ
k−1(A)→ ⊕l+m=kHQ

l (A)⊗ HQ
m (A)

it comes from Koszul duality of operads. Better think of Hom(sHQ
∗ (A),Q)

as a graded Lie algebra. The bracket are determined by the quadratic part
of the differential.

For example in the minimal model of S4 ∨ S4 we have

a7 7→ a2
4, b7 7→ b2

4, c7 7→ a4.b4

we view the differential as a cobracket and we dualize everything :

a7 ! [α3, α3], b7 ! [β3, β3], c7 ! [α3, β3].
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Sullivan models Homotopy groups

More examples

- Odd spheres,
- Even spheres : L(vn−1)/(L(vn)+)≥3

- Complex projective spaces CPn with n > 1 : L(v1, v2n−2).

David Chataur (LAMFA, Amiens) Rational homotopy theory and Poincaré dualityEAST, September 2017 29 / 34



Sullivan models Homotopy groups

More examples

- Odd spheres,
- Even spheres : L(vn−1)/(L(vn)+)≥3

- Complex projective spaces CPn with n > 1 : L(v1, v2n−2).

David Chataur (LAMFA, Amiens) Rational homotopy theory and Poincaré dualityEAST, September 2017 29 / 34



Sullivan models Homotopy groups

Whitehead product

On πk(ΩX )⊗Q = πk+1(X )⊗Q we have a graded Lie algebra structure
given

Sk+l−1 → Sk ∨ S l → Sk × S l .

We set [f , g ] via the composition :

Sk+l−1 → Sk ∨ S l f ∨g−→ X .
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Sullivan models Homotopy groups

Baues-Lemaire conjecture

M. Majewski

The two graded Lie algebras Hom(sHQ
∗ (A∗pl(X )),Q) and π∗(Ω(X ))⊗Q are
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Sullivan models Homotopy groups

Dichotomy

Elliptic vs hyperbolic spaces
Let X be a 1-connected compact CW-complex, then we have the following
alternative :
- dim(⊕kπk(X )⊗Q) <∞ (elliptic space),
- dimk(πk(X )⊗Q) grows exponentially ( hyperbolic space), i.e. ∃N such
that for n > N

n∑
k=1

dimk(πk(X )⊗Q) ≥ Cn

- Elliptic spaces satisfy Poincaré duality.

The connected sum CP2 � CP2 is hyperbolic. Because when X is an
elliptic space of dim(X ) = n then dim(H∗(X ;Q)) ≤ 2n.
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Sullivan models Formality

DGMS

A Kähler manifold is a complex manifold X with a Hermitian metric h
whose associated 2-form ω is closed. Where the 2-form is given by

ω(u, v) = Reh(iu, v)

Symplectic+Complex+Riemannian.

Deligne-Griffiths-Morgan-Sullivan
Let M be a compact Kähler manifold, then it is formal.

They prove formality over R. We can always go down to Q.
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Sullivan models Formality

Formality of Poincaré duality spaces

Let X be a (p − 1)-connected space, p ≥ 2, of dimension ≤ 3p − 2. Then
X is formal.

Let X be a (p − 1)-connected PD space, p ≥ 2, of dimension ≤ 4p − 2.
Then X is formal.
Examples in dimension 7 :
1) pull-back of

S2 × S2 → S4 ← S7

2) (S2 × S5)� (S2 × S5).
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