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ABSTRACT. Let G be a reductive p-adic group and let Rep(G)® be a Bernstein
block in the category of smooth complex G-representations. We investigate the
structure of Rep(G)®, by analysing the algebra of G-endomorphisms of a progen-
erator II of that category.

We show that Rep(G)® is “almost” Morita equivalent with a (twisted) affine
Hecke algebra. This statement is made precise in several ways, most importantly
with a family of (twisted) graded algebras. It entails that, as far as finite length
representations are concerned, Rep(G)® and Endg (II)-Mod can be treated as the
module category of a twisted affine Hecke algebra.

We draw two major consequences. Firstly, we show that the equivalence of
categories between Rep(G)® and Endg(IT)-Mod preserves temperedness of finite
length representations. Secondly, we provide a classification of the irreducible
representations in Rep(G)®, in terms of the complex torus and the finite group
canonically associated to Rep(G)®. This proves a version of the ABPS conjecture
and enables us to express the set of irreducible G-representations in terms of the
supercuspidal representations of the Levi subgroups of G.

Our methods are independent of the existence of types, and apply in complete
generality.

In 2023 an appendix was added, to solve a problem with preservation of tem-
peredness in Paragraph 9.1.
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INTRODUCTION

This paper investigates the structure of Bernstein blocks in the representation
theory of reductive p-adic groups. Let G be such a group and let M be a Levi
subgroup. Let (o, F) be a supercuspidal M-representation (over C), and let s be
its inertial equivalence class (for G). To these data Bernstein associated a block
Rep(G)® in the category of smooth G-representations Rep(G), see [BeDel, [Ren].

Several questions about Rep(G)® have been avidly studied, for instance:

e Can one describe Rep(G)*® as the module category of an algebra H with an
explicit presentation?

e Isthere an easy description of temperedness and unitarity of G-representations
in terms of H?

e How to classify the set of irreducible representations Irr(G)*?

e How to classify the discrete series representations in Rep(G)*®?

We note that all these issues have been solved already for M = G. In that case the
real task is to obtain a supercuspidal representation, whereas in this paper we use a
given (o, E') as starting point.

Most of the time, the above questions have been approached with types, follow-
ing [BuKu2|. Given an s-type (K, \), there is always a Hecke algebra H(G, K, \)
whose module category is equivalent with Rep(G)®. This has been exploited very
successfully in many cases, e.g. for GL,(F) [BuKul], for depth zero representations
Mor2], for the principal series of split groups [Rocl], the results on unitarity
from [Ciu] and on temperedness from [Sol5].

However, it is often quite difficult to find a type (K, A), and even if one has it, it
can be hard to find generators and relations for H(G, K, \). For instance, types have
been constructed for all Bernstein components of classical groups [Ste, MiSt], but
so far the Hecke algebras of most of these types have not been worked out. Already
for the principal series of unitary p-adic groups, this is a difficult task [Bad]. At
the moment, it seems unfeasible to carry out the full Bushnell-Kutzko program for
arbitary Bernstein components.
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We follow another approach, which builds more directly on the seminal work of
Bernstein. We consider a progenerator II of Rep(G)*®, and the algebra Endg(II).
There is a natural equivalence from Rep(G)® to the category Endg(I1)-Mod of right
Endg(II)-modules, namely V +— Homg/(IL, V).

Thus all the above questions can in principle be answered by studying the algebra
Endg(II). To avoid superfluous complications, we should use a progenerator with an
easy shape. Fortunately, such an object was already constructed in [BeRu]. Namely,
let M! be subgroup of M generated by all compact subgroups, write B = C[M /M!]
and Ep = F®c B. The latter is an algebraic version of the integral of the representa-
tions o ® x, where x runs through the group X,,(M) of unramified characters of M.
Then the (normalized) parabolic induction I§(Ep) is a progenerator of Rep(G)*. In
particular we have the equivalence of categories

£: Rep(G)* — Endg(I§(Ep))-Mod
1% —  Homg(I§(ER),V)

For classical groups and inner forms of GL,, the algebras Endg(I§(Eg)) were al-
ready analysed by Heiermann [Heill Hei2 Hei4]. It turns out that they are iso-
morphic to affine Hecke algebras (sometimes extended with a finite group). These
results make use of some special properties of representations of classical groups,
which need not hold for other groups.

We want to study Endg(I§(Ep)) in complete generality, for any Bernstein block
of any connected reductive group over any non-archimedean local field F'. This en-
tails that we can only use the abstract properties of the supercuspidal representation
(0, F), which also go into the Bernstein decomposition. A couple of observations
about Endg(I§(Eg)) can be made quickly, based on earlier work.

e The algebra B acts on Eg by M-intertwiners, and I]Cj embeds B as a com-
mutative subalgebra in Endg (1§ (Eg)). As a B-module, Endg(I$(FEp)) has
finite rank [BeRul, Ren].

e Write O = {o® x : x € Xpu(M)} C Irr(M). The group Ng(M)/M acts
naturally on Irr(M), and we denote the stabilizer of O in Ng(M)/M by
W(M,O). By [BeDel, the centre of Endg(I§(Ep)) is isomorphic to
ClO/W (M, 0)] = C[O]WM0),

e Consider the finite group

an(M,O') = {XC S an(M) . O'®Xc [ 0'}

For every x. € X, (M, o) there exists an M-intertwiner o ® x — 0 ® XcX,
which gives rise to an intertwiner ¢, in Endy/(Fp) and in Endg (IS (ER))
[Roc2].

e For every w € W(M, O) there exists an intertwining operator

Lo(x) : I8 (0 ® x) = I (w(o @ X)),
see [Wal|. However, it is rational as a function of y € X,,,(M) and in general
has non-removable singularities, so it does not automatically yield an element
of Endg(I§(Ep)).
Based on this knowledge and on [Hei2], one can expect that Endg(I§(Ep)) has a
B-basis indexed by X (M, o) x W (M, O), and that the elements of this basis behave
somewhat like a group. However, in general things are more subtle than that.
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Main results.
The action of any w € W(M,0) on O = X,,(M)/Xn(M,0) can be lifted to a
transformation w of Xy, (M). Let W (M, o, Xy (M)) be the group of permutations
of Xy (M) generated by X, (M, o) and the to. It satisfies

W(M,o, X (M))/ X (M,0) = W(M,O).

Let K(B) = C(Xn(M)) be the quotient field of B = C[Xy,(M)]. In view of the
rationality of the intertwining operators I,,, it is easier to investigate the algebra

Endg(I§(Ep)) ®p K(B) = Homg (5 (Ep), I5(Ep ©p K(B))).

Theorem A. (see Corollary
There exist a 2-cocycle § : W(M, 0, X (M))* — C* and an algebra isomorphism

Endc(I(Eg)) ©p K(B) = K(B) x CIW (M, 0, Xn:(M)), 1.

Here C[W (M, 0, Xy (M)), 1] is a twisted group algebra, it has basis elements Ty,
that multiply as 7,7 = i(w, w) Ty - The symbol x denotes a crossed product: as
vector space it just means the tensor product, and the multiplication rules on that
are determined by the action of W(M, o, Xy,,(M)) on K(B).

Theoremsuggests alot about Endg(1§(ER)), but the poles of some involved op-
erators make it impossible to already draw many conclusions about representations.
In fact the operators 7, with w € W (M, Q) involve certain parameters, powers of
the cardinality gr of the residue field of F'. If we would manually replace g by 1,
then Endg(I$(FEp)) would become isomorphic to B x C[W (M, o, Xy (M)),t]. Of
course that is an outrageous thing to do, we just mention it to indicate the relation
between these two algebras.

To formulate our results about Endg(I§(Eg)), we introduce more objects. The
set of roots of G' with respect to M contains a root system X¢ ,, namely the set of
roots for which the associated Harish-Chandra p-function has a zero on O [Hei2].
This induces a semi-direct factorization

W(M,0) = W(So,) x R(O),

where R(O) is the stabilizer of the set of positive roots. We may and will assume
throughout that o € Irr(M) is unitary and stabilized by W(Xp ). The Harish-
Chandra p-functions also determine parameter functions A, \* : ¥p ,, — R>g. The
values A\(«) and A\*(a) encode in a simple way for which x € X,;(M) the normal-
ized parabolic induction I Aj\ﬁpm 1, (0 ® X) becomes reducible, see and (9.5).
(Here M, denotes the Levi subgroup of G generated by M and the root subgroups
Ua,U_q.)

To the data O, Yo 4, A, A", q;/ ? one can associate an affine Hecke algebra, which

we denote in this introduction by H ((’), X0 A AT, q;ﬂ). There is a large subalgebra

Endg(If(Ep)) C Enda(I§(Ep))

such that the categories of finite length right modules of ’H((’), X0, A AT, q;ﬂ) and

of End%(I$(Fp)) are equivalent. Suppose that § descends to a 2-cocycle § of R(O).
Then the crossed product

H(O) == H(O, S0, AN, q)%) x CIR(0), 5]
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is a twisted affine Hecke algebra [AMS3, §2.1]. It is reasonable to expect that
Endg(I§(Ep)) is Morita equivalent with H(O). Indeed this is “almost” true, and
in important cases known already.

e The group R(O) is always trivial for GL,(F) [BuKul], for inner forms of
general linear groups [SeStl, [Hei2] and for unipotent representations [Lus2|
Sol6].

e The 2-cocycle § of W (M, o, X (M)) is trivial for symplectic groups and
special orthogonal groups [Hei2] and for principal series representatons of
split groups [Rocl].

In these cases all the involved 2-cocycles are trivial, and there are equivalences of
categories

Rep(G)* = Endg(I§(Eg)) — Mod = H(O, S0, A\ A, 1) x R(O) — Mod.

However, examples with inner forms of SL, |[ABPS3|] suggest that such a Morita
equivalence for Endg (IS (FEp)) might not hold for arbitrary groups. It is conceivable
that the 2-cocycles are always trivial for (quasi-)split reductive F-groups, but we
would not know how to prove that.

In our completely general setting, we shall need to decompose Endg(I$(Eg))-
modules according to their B-weights (which live in Xy, (M)). The existence of
such a decomposition cannot be guaranteed for representations of infinite length,
and therefore we stick to finite length in most of the paper. All the algebras we
consider have a large centre, so that every finite length module actually has finite
dimension. For Rep(G)*® “finite length” is equivalent to “admissible”, and we denote
the corresponding subcategory by Rep;(G)*.

It is known from [Lusll [AMS3| that the category of finite dimensional right
modules H(0) — Mod; can be described with a family of (twisted) graded Hecke
algebras. Write X (M) = Hom(M/M*' R~() and note that its Lie algebra is
ay; = Hom(M/MY R). For a unitary u € Xy (M), there is a graded Hecke al-
gebra H,, built from the following data: the tangent space a}; ®r C of X, (M)
at u, a root subsystem X,g, C Yo, and a parameter function kj induced by A
and \*. Further W (M, O),gy decomposes as W (X,gy) X R(oc @ u), and f induces a
2-cocycle of the local R-group R(o ® u). This yields a twisted graded Hecke algebra
H, % C[R(c ® u), i, [AMS3, §1].

We remark that these algebras depend mainly on the variety O and the group
W(M,Q©). Only the subsidiary data k" and f, take the internal structure of the
representations o ® x € O into account. The parameters k%, depend only on the
poles of the Harish-Chandra p-function (associated to a) on {oc®ux : x € X;;.(M)}.
It is not clear to us whether, for a given o ® u, they can be effectively computed in
that way, further investigations are required there.

We do not know whether a 2-cocycle E as used in 7—2((’)) always exists. Fortunately,
the description of Endg(I§(Ep)) — Mod; found via affine Hecke algebras turns out
to be valid anyway.

Theorem B. (see Corollaries and
For any unitary u € Xp (M) there are equivalences between the following categories:

(i) representations in Repy(G)® with cuspidal support in
W(M,0){o @ux : x € X (M)};
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(ii) modules in Endg(I§(Eg)) — Modg with all their B-weights in
W(M, o, Xux(M))uX(M);
(iii) modules inH(Ry, W (M, O)owu, k", 1u) —Mod; with all their Cla},@rC]-weights
inay;.
These equivalences commute with parabolic induction and Jacquet restriction (which
for (ii) and (iii) are just induction and restriction between the appropriate algebras).
Futhermore, suppose that there exists a 2-cocycle § on R(O) = W (M, 0)/W (20.,.)
which on each subgroup W (M, O)ygu is cohomologous to t,. Then the above equiv-
alences, for all unitary uw € Xy (M), combine to an equivalence of categories

Endg(I§(Eg)) — Mod; — H(O) — Modg.
Via €, the left hand side is always equivalent with Repe(G)®.

We stress that Theorem [B] holds for all Bernstein blocks of all reductive p-adic
groups. It provides a good substitute for types, when those are not available or too
complicated. The use of graded (instead of affine) Hecke algebras is only a small
concession, since the standard approaches to the representation theory of affine
Hecke algebras with unequal parameters run via graded Hecke algebras anyway.

Let us point out that on the Galois side of the local Langlands correspondence,
analogous structures exist. Indeed, in [AMSI1] [AMS2] [AMS3] twisted graded Hecke
algebras and a twisted affine Hecke algebra were associated to every Bernstein com-
ponent in the space of enhanced L-parameters. By comparing twisted graded Hecke
algebras on both sides of the local Langlands correspondence, it might be possible
to establish new cases of that correspondence.

For representations of Endg(I$(Ep)) and H, x C[R(o ® u), ] there are natural
notions of temperedness and essentially discrete series, which mimic those for affine
Hecke algebras [Opd]. The next result generalizes [Hei3).

Theorem C. (see Theorem and Proposition
Choose the parabolic subgroup P with Levi factor M as indicated by Lemma [9.]]
Then all the equivalences of categories in Theorem B preserve temperedness.
Suppose that Yo, has full rank in the set of roots of (G, M). Then these equiva-
lences send essentially square-integrable representations in (i) to essentially discrete
series representations in (ii), and the other way round.
Suppose Yy has full rank in the set of roots of (G, M), for a fixed unitary
u € Xn(M). Then the equivalences in Theorem @ for that u, send essentially
square-integrable representations in (i) to essentially discrete series representations
in (i), and conversely.

Now that we have a good understanding of Endg(I$(FEp)), its finite dimen-
sional representations and their properties, we turn to the remaining pressing is-
sue from page can one classify the involved irreducible representations? This
is indeed possible, because graded Hecke algebras have been studied extensively,
see e.g. [BaMoll, BaMo2, [COT] [Eve, [Solll, [Sol2, [Sol4]. The answer depends in a
well-understood but involved and subtle way on the parameter functions A, \*, k%.

With the methods in this paper, it is difficult to really compute the param-
eter functions A\ and A\*. Whenever a type (K,7) and an associated Hecke al-
gebra H(G, K, 7) for Rep(G)* are known, H(G, K, 7T) is Morita equivalent with

Endg(I$(Fp)). In that case the values q;‘;(a) and q}\;(a) can be read off from
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H(G, K, T), because they only depend on the reducibility of certain parabolically
induced representations and those properties are preserved by a Morita equivalence.
But, that does not cover all cases.

We expect that the functorial properties of the progenerators Ig(EB) enable us
to reduce the computation of A(a), \*(«v) to cases where G is simple and adjoint or
simply connected. Thus it may be possible to prove that the parameter functions
A, A* are integers and of “geometric type”, as Lusztig conjectured in [Lus3]. We
work that out in the sequel [Sol8] to this paper.

The classification of Irr(G)® becomes more tractable if we just want to understand
Irr(End¢(I§(Ep))) and Irr(H, x C[R(0 ® u,f,]) as sets, and allow ourselves to
slightly adjust the weights (with respect to respectively B and Cla}, ®r C]) in the
bookkeeping. Then we can investigate Irr(H, x C[R(c ® u,f,]) via the change of
parameters k% — 0, like in [Sol3| [Sol7]. That replaces

H,, x C[R(0 ® u), §u] by Clays ®r C] x CIW(M, O)ogu, ful,
for which Clifford theory classifies the irreducible representations.

Theorem D. (see Theorem [9.7))
There exists a bijection

(o0& Irr(G)* — Irr(C[ X (M)] x C[W (M, 0, Xy (M)), 1])

such that, for m € Irr(G)* and a unitary u € Xyn(M):
o the cuspidal support of ¢ o E() lies in W (M, O)uX (M) if and only if all
the C[ Xy (M)]-weights of (¢ o E(x)) lie in W (M, o, Xur(M))uX (M),
o 7w is tempered if and only if all the C[Xpn(M)]-weights of (¢ o €)(m) are
unitary.

Notice that on the right hand side the parameter functions A, \* and k" are no
longer involved. Recall that in the important cases mentioned on page [ 1 is trivial.
Then Theorem |[D| and standard Morita equivalences provide bijections

Irr(G)* — Irr (C[ X (M)] x W(M, 0, Xpe(M))) — Irr(C[O] x W (M, O)).
Clifford theory identifies Irr(C[O] x W (M, O)) with the extended quotient
Of/W(M,0) ={(x,p) : x € O,p € rr(W(M,0),)}/W (M, O).

For GL,(F') such a bijection between Irr(G)® and O//W (M, O) was already known
from [BrPl], and for principal series representations of split groups from [ABPSI]
ABPS2]. In general, in the language of [ABPS4],

It (C[ X (M)] % C[W (M, 0, X (M), £])

is a twisted extended quotient (O//W (M, O));. With that interpretation Theorem
@ proves a version of the ABPS conjecture [ABPS4, §2.3] and:

Theorem E. (see Theorem
Theorem [D] (for all possible s = [M, o] together) yields a bijection

Irr(G —>|_| (Irreusp (M) // (N (M) /M),

where M runs over a set of representatives for the conjugacy classes of Levi subgroups
of G and Irr(M)cusp denotes the set of irreducible supercuspidal M -representations.
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It is quite surprising that such a simple relation between the space of irreducible
representations of an arbitrary reductive p-adic group and the supercuspidal repre-
sentations of its Levi subgroups holds.

We note that Theorem [D] is about right modules of the involved algebra. If we
insist on left modules we must use the opposite algebra, which is isomorphic to
C[Xu(M)] x C[W (M, 0, Xpr(M)),571]. Then we would get the twisted extended
quotient (O//W(M,O));-1.

The only noncanonical ingredient in Theorem |D| is the 2-cocycle f. It is trivial
on W(Xo,), but apart from that it depends on some choices of M-isomorphisms
w(c®x) = o®x for w € R(O) and x, Y € X (M). From Theorem [B| we see that
the restrictions g, of fj have a definite effect on the involved module categories.

Moreover, by 0, } must be cohomologous to a 2-cocycle obtained from the
Hecke algebra of an s-type (if such a type exists). This entails that in many cases f,,
must be trivial. At the same time, this argument shows that in some instances, like
[ABPS3, Example 5.5] and Example[2.G] the 2-cocycles §, and § are cohomologically
nontrivial. It would be interesting if fj could be related to the way G is realized as
an inner twist of a quasi-split F-group, like in [HiSa].

Besides I$(Fp), a smaller progenerator of Rep(G)* is available. Namely, let F;
be an irreducible subrepresentation of Res}} (E) and build I§(ind}}. (E1)). We
investigate the Morita equivalent subalgebra

Bnde (1§ (nd}} (B1) © Endo(I§(Ep)

as well, because it should be even closer to an affine Hecke algebra.

Unfortunately this turns out to be difficult, and we unable to make progress
without further assumptions. In the large majority of cases, the restriction of (o, E')
to M decomposes without multiplicities bigger than one. (That does not always
hold though, see Example ) With such multiplicity one as working hypothesis,
we can slightly improve on Theorem

Theorem F. Suppose that the multiplicity of E1 in Res%l(E) 1s one. There exists
a 2-cocycle 7 : W(M,0)? — C[O]* and an algebra isomorphism

EndG (Ilg(lnd%1 (El))) = H(Oa EO,,LM )‘a )‘*7 q;‘/z) A C[R(O)a hJ]

On the right hand side the first factor is a subalgebra but the second factor need not
be. The basis elements J, with r € R(O) have products

VRS hJ(Tv T/)JTT’ € (C[O]XJTT’"

Thus, the price we pay for the smaller progenerator Ig(md%l(El)) consists of
more complicated intertwining operators from the R-group R(Q). In concrete cases
this may be resolved by an explicit analysis of R(Q). In general Theorem could
be useful to say something about the relation between unitarity in Rep(G)® and
unitarity in Ende (1§ (ind}7: (E1))) — Mod.

Structure of the paper.
Most results about endomorphism algebras of progenerators in the cuspidal case
(M = @) are contained in Section [2l A substantial part of this was already shown
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in [Roc2|, we push it further to describe Ends(Ep) better. Section [3|is elementary,
its main purpose is to introduce some useful objects.

Harish-Chandra’s intertwining operators Jp/ p play the main role in Section
We study their poles and devise several auxiliary operators to fit J,p)p into
Homg (I§(Eg), IS (Ep ®p K(B))). The actual analysis of that algebra is carried
out in Section 5| First we express it in terms of operators A, for w € W(M, ),
which are made by composing the Jp/p with suitable auxiliary operators. Next we
adjust the A, to T, and we prove Theorem [A]l Sections are strongly influenced
by [Hei2], where similar results were established in the (simpler) case of classical
groups.

At this point Lemma forces us to admit that in general Endg (IS (FEp)) proba-
bly does not have a nice presentation. To pursue the analysis of this algebra, we lo-
calize it on relatively small subsets U of X,,,(M). In this way we get rid of X, (M, o)
from the intertwining group W (M, o, X;,,(M)), and several issues simplify. For max-
imal effect, we localize with analytic rather than polynomial functions on U — after
checking (in Section[6]) that it does not make a difference as far as finite dimensional
modules are concerned. We show that the localization of Endg(I§(Ep)) at U, ex-
tended with the algebra C™¢(U) of meromorphic functions on U, is isomorphic to a
crossed product C™¢(U) x C[W (M, O)sgu, fu)-

A presentation of the analytic localization of Endg(I$(Ep)) at U is obtained in
Theorem [6.11} it is almost Morita equivalent to an affine Hecke algebra. The only
difference is that the standard large commutative subalgebra of that affine Hecke
algebra must be replaced by the algebra of analytic functions on U.

This presentation makes it possible to relate the localized version of Endg (I (Ep))
to the localized version of a suitable graded Hecke algebra. We do that in Section
thus proving the first half of Theorem [B] In Section [§ we translate that to a classi-
fication of Irr(G)® in terms of graded Hecke algebras. Next we study the change of
parameters k¥ — 0 in graded Hecke algebras, and derive the larger part of Theorem
All considerations about temperedness can be found in Section[0] There we finish
the proofs of Theorems [B] [C] [D] and [E}

Finally, in Section We study the smaller progenerator Ig(md%l (E1)). Varying
on earlier results, we establish Theorem [F}
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1. NOTATIONS

We introduce some of the notations that will be used throughout the paper.
F: a non-archimedean local field
G: a connected reductive F-group
‘P: a parabolic F-subgroup of G
M: a F-Levi factor of P
U: the unipotent radical of P
P: the parabolic subgroup of G that is opposite to P with respect to M
G =G(F) (and M = M(F) etc.): the group of F-rational points of G
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We often abbreviate the above situation to: P = MU is a parabolic subgroup of G

Rep(G): the category of smooth G-representations (always on C-vector spaces)
Rep¢(G): the subcategory of finite length representations

Irr(G): the set of irreducible smooth G-representations up to isomorphism

I§ : Rep(M) — Rep(G): the normalized parabolic induction functor

Xnr(M): the group of unramified characters of M, with its structure as a complex
algebraic torus

M' = Myex,.(ar kerx

Irr (M )cusp subset of supercuspidal representations in Irr(M)
(0,E): an element of Irreysp (M)
O = [M, o] the inertial equivalence class of o for M, that is, the subset of Irr(M)
consisting of the o ® x with x € Xy,,(M)
Rep(M)?: the Bernstein block of Rep(M) associated to O
s = [M,0]g: the inertial equivalence class of (M, o) for G
Rep(G)®: the Bernstein block of Rep(G) associated to s
Irr(G)® = Irr(G) N Rep(G)®

W(G, M) = No(M)/M
Ng(M) acts on Rep(M) by (g - m)(m) = m(g~tmg). This induces an action of
W(G, M) on Irr(M)
Ng(M,0)={g€ Ng(M):g-0 =0 ® x for some xy € X,,(M)}
W(M,0) = Ng(M,0)/M ={we W(G,M):w-o € O}

Xue(M,0) ={x € Xpy(M) : 0 @ x = 0}
= C[Xn(M)]: the ring of regular functions on the complex algebraic torus X, (M)
C(Xnr(M)): the quotient field of B, the field of rational functions on

= @

(B) =
nr (M)
The covering map

S

Xr(M) - O :x—0o®x

induces a bijection X, (M)/Xnr(M,0) — O. In this way we regard O as a complex
algebraic variety. We define C[ X (M )/ Xnr (M, 0)], C[O] and C( Xy (M) / Xne (M, 0)),
C(0O) like B and K(B).

2. ENDOMORPHISM ALGEBRAS FOR CUSPIDAL REPRESENTATIONS

This section relies largely on [Roc2]. Let
ind}?, : Rep(M') — Rep(M)
be the functor of smooth, compactly supported induction. We realize it as
ind, (7, V) = {f: M - V | n(m1) f(m) = f(mim) ¥Ym € M, m; € M*,
supp(f)/M* is compact},

with the M-action by right translation. (Smoothness of f is automatic because M*
is open in M.)
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Regard (o, E) as a representation of M!, by restriction. Bernstein [BeRu, §11.3.3)]
showed that ind%l (0, F) is a progenerator of Rep(M)®. This entails that

V = Homy, (ind}f, (E), V)

is an equivalence between Rep(M)® and the category Endyy (ind%l (0, E)) —Mod of
right modules over the M-endomorphism algebra of ind%l (0, E), see [Roc2, Theorem
1.5.3.1]. We want to analyse the structure of Endy (ind}}. (0, E)).

For m € M, let by, € C[X,,(M)] be the element given by evaluating unramified
characters at m. We let m act on C[Xy,(M)] by

m-b=bnb  beCXn(M).
Then specialization/evaluation at x € Xp (M) is an M-homomorphism
spy, : C[Xur(M)] — (x, C).

Let 6, € ind}}(C) be the function which is 1 on mM?' and zero on the rest of
M. Let C[M/M'] be the group algebra of M/M*, considered as the left regular
representation of M/M?'. There are canonical isomorphisms of M-representations

ClXw(M)] — C[M/M'] — indjp(C)

(2.1) bm — li — 6m—1

We endow E ®c¢ ind%l (C) with the tensor product of the M-representations o and
ind}?, (triv). There is an isomorphism of M-representations

E ®c ind)}1 (C) o ind}f, (E)
(2.2) e® f = [vewy 1 m — f(m)a(m)e] .
Z:mGM/Ml U(mil)v(m) ® Oy, 4 v

Composing (2.1) and (2.2)), we obtain an isomorphism

ind¥, (E) — E ®c C[Xur(M)]
(2.3) v = D men/M a(m)v(m=") @ b, .
Uyt < e® by,
With (2.3, specialization at x € Xy,;(M) becomes a M-homomorphism
(2.4) Py ind, (0, E) — (0 @ x, E).

As M/M! is commutative, the M-action on E ®¢ C[Xy(M)] is C[ Xy, (M)]-linear.
Via ([2.3)) we obtain an embedding

(2.5) C[Xne(M)] — Endy (ind}f: (o, E)).

For a basis element by, € C[X,(M)] and any v € ind}}, (E), it works out as
(2.6) (b - v)(m') = o(m™Hv(mm’).

For any x. € X, (M) we can define a linear bijection

ClXm(M)] — ClXnr (M)
b = by e bxxe)]

This provides an M-isomorphism

(2.7) Pxe *

idp ® py. : ind) (o) — inddh (0 @ xe).
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Let (o1, E1) be an irreducible subrepresentation of Res}t: (o, E), such that the sta-

bilizer of the subspace F; C E in M is maximal. We denote the multiplicity of o1 in

o by pig,1. Every other irreducible M L_subrepresentation of ¢ is isomorphic to m - oy

for some m € M, and o(m~1)E} is a space that affords m - o1. Hence p,1 depends

only on ¢ and not on the choice of (o1, E1). (But note that, if u,; > 1, not every

M*-subrepresentation of E isomorphic to o1 equals o(m~!)E; for an m € M.)
Following [Roc2l §1.6] we consider the groups

Mz = ﬂxexm(M,a) kerx,

Mg = {mEMZJ(m)El :El},

M} = {meM:m-o1 =01}
Notice that Xy, (M, o) = Irr(M/M2). There is a sequence of inclusions
(2.8) M'c M?c M3 c M}c M.

Since M! is a normal subgroup of M and M/M" is abelian, all these groups are
normal in M. By this normality, for any m’ € M:
M2 = {meM:o(m)o(m)E =o(m')E},

(2.9) M} = {meM:m-(m'-o1)=m o1}

In other words, M2 consists of the m € M that stabilize the isomorphism class of
one (or equivalently any) irreducible M!-subrepresentation of ¢. In particular M2
and MZ? only depend on o. On the other hand, it seems possible that M2 does
depend on the choice of Fj.

Furthermore [M : M2] equals the number of inequivalent irreducible constituents

of Res}t (o) and, like (2.2),
2
ind} 75 (C) 2 C[ X (M)/ X (M, 0)].
By [Roc2, Lemma 1.6.3.1]
(2.10) (M2 M) = (M2 M) = i,

Example 2.G. Consider the group called G in [HeVil, §4.4]. This is a connected
reductive p-adic group, an extension of a four-dimensional torus (of split rank two)
by the norm one elements in the multiplicative group of a division algebra. Moreover
G is compact modulo centre, it has a unique mazimal compact subgroup K = G' and
K\G/K =G/G' =72

In [HeVi, Proposition 4.4] a particular character x of K is exhibited, and it is proven
that the Hecke algebra H(G, K, x) is not commutative.

Let o be an irreducible quotient of ind%(x). Then o is supercuspidal (by the
compactness of G/Z(G)), and pi51 = 2. The last claim can be checked as follows.

The arguments in [HeVi] entail that H(G, K, x) has a vector space basis {Ty :
g € G/G'} and that the centre of this Hecke algebra is the span of the basis vectors
indexed by a certain subgroup G /G'. By the calculations in [HeVi, Proposition 4.4]
G;( is a proper subgroup of G, which guarantees the noncommutativity of H(G, K, x).
Computations in the same spirit show that G’X/G1 corresponds to

(22)* c 7* = G/G .
Moreover the basis of H(G, K, x) can be chosen so that
Tg ’ Tg/ = h(gvg/)ng/ 979/ € Ga



ENDOMORPHISM ALGEBRAS FOR p-ADIC GROUPS 13

where § : (G/G))? — {£1} is a nontrivial 2-cocycle. Since (G/G)) = (Z/2Z)?,
there is only one such 2-cocycle (up to coboundaries). One checks that, for any one-
dimensional representation T of H(G', K, x), H(G, K, x)/ ker T is a group algebra of
(Z/27)? twisted by a nontrivial 2-cocycle, so isomorphic with Mo(C). It follows that
every irreducible representation o' of H(G, K, x) has dimension two, and restricts
with multiplicity two to H(G', K, x) = C. Hence the irreducible G-representation o
corresponding to o' restricts with multiplicity jiy,1 = 2 to G1. In this example

G=G,, G.=Gi and [Gy:G3=[G):Gi=2.

When ps1 = 1, the groups M2, M2 and M} coincide with the group called M? in
[Hei2, §1.16]. Otherwise all the different m € M2/M? give rise to different subspaces
o(m)E; of E. We denote the representation of M2 (resp. M2) on Ej by o3 (resp.
02). The o;-isotypical component of E is an irreducible representation (o4, Ey) of
M2. More explicitly

~ s M2
(2.11) By = @meMé/Mg o(m)Ey = indy 5 (03, B).
From (2.11)) we see that
(2.12) (0, B) = indjj4 (04, Ba) = indjjs (03, En).

The structure of (o4, F4) can be analysed as in [GeKnl §2]:

Lemma 2.1. (a) In the above setting

4

M4 _
Res )3 (04) = @Xem(Mg/M%) 78X

(b) All the 03 ® x are inequivalent irreducible M32-representations.
(¢) There is a group isomorphism
M}/M3 — Trr(M3/M?)
nMg’ —> X3,n

defined by n - 03 = 03 ® X3,n-

Proof. (a) For any x € Xy,,(M,0) we have 0 ® x = 0, s0 03 ® Resj‘]\ffgx is isomorphic
to an M3-subrepresentation of E. As M '-representation it is just oy, so 03®Res%3X
is even isomorphic to a subrepresentation of Ey. As every character of M3/M?2 can
be extended to a character of M /M2 (that is, to an element of X,,(M,0)), all the
03 ® x with x € Irr(M32/M?2) appear in Ej.

Further, all the M3-subrepresentations (n~!-03,0(n)E}) of (04, E4) are extensions
of the irreducible M2-representation (o9, F1). Hence they differ from each other only

4

by characters of M3/M?2 [GoHel, Lemma 2.14]. This shows that Resﬁ%(ml, E,)is a
direct sum of M3-representations of the form o3 ® x with x € Irr(M3/M2).

By Frobenius reciprocity, for any such x:

4
(2.13) Hom 4 (ind%g (03 ®x),04) = Hom s(03 ® x,04) # 0.

4
Thus there exists a nonzero M2-homomorphism ind%% (03 ® x) — 04. As these two

representations have the same dimension and o4 is irrgducible, they are isomorphic.
Knowing that, (2.13)) also shows that dim Hom s (03 ® x,04) = 1.
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(b) The previous line is equivalent to: every o3 ® x appears exactly once as a M3-
4

subrepresentation of o4. As Res%% (04) has length [MZ2 : M3] = [M2 : M2], that

means that they are mutually inequivalent.

(c) This is a consequence of parts (a), (b) and the Mackey decomposition of

4
Resﬁg (O’4,E4). O

For x € Trr(M/M2) we define an M-isomorphism
(

o,E) — (0c®x,FE)

Poy
(2.14) X s(m)er = x(m)o(m)er e1 € E1,m e M.

This says that ¢, acts as y(m)id on the M2-subrepresentation o(m)E; of E. By
Lemma these ¢,y form a basis of Endys(E). We can extend ¢q, to an M-
isomorphism

(2.15) Oy = box ®py': indjfi(0,E) —  ind}fi(o, E)
€® om = Goy(€) @ x(m)dn

where e € E,m € M and the elements are presented in E ®c ind}}, (C) using (2-2).
Via ([2.3)), this becomes

(2.16) by € Autpr(E @c ClXne(M)]) 1 e®b > doy(e) @ py (),
where e € E,b € C[X,,;(M)]. Given E, ¢, is canonical.

For an arbitrary x € Irr(M/M2) = X, (M,0) we can also construct such M-
homomorphisms, albeit not canonically. Pick n € M2 (unique up to M3) as in
Lemma c, such that x3, = x| az- Choose an M3-isomorphism

Posix t (03, 1) = (07" - 03) @ X, 0(n) BY).
We note that, when x ¢ Irr(M/M2), ¥4, cannot commute with all the ¢, ,/ for

X' € Irr(M/M3) because it does not stabilize Fj.
For compatibility with (2.14])) we may assume that

(2.17) Dosxx! = Dosn  for all X' € Irr(M/M2).
By Schur’s lemma ¢g,,, is unique up to scalars, but we do not know a canonical
choice when M32 ¢ ker x. By (2.12)

Hom /(0,0 ® x) = HomM(ind%g (03),0 @ x) = Homys (03,0 ® X),

while ((n™1-03) ® x, 0(n)E}) is contained in (o ® x, F) as M3-representation. Thus
by, determines a ¢, € Homps(o,0 ® x), which is nonzero and hence bijective.

Then p, from and the formulas and provide

(2.18) by = o @ py " € Auty(ind)fy (E)) = Auta(E @c C[Xu:(M))).
For x. € Xp(M) and x € X (M, 0), we see from that

(2.19) SPy, © Px = Px O SDyx—1-

We also note that, regarding b € C[X,,,(M)] as multiplication operator:
(2.20) bo ¢y = ¢y 0 by € Endy (E ®@¢ C[X(M)]).

For all x,x’ € Irr(M/M2), the uniqueness of ®os,x Up to scalars implies that there
exists a fj(, x’) € C* such that

(2.21) Oy = 106X ) Dy
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In other words, the ¢, span a twisted group algebra C[X,,(M,0),4]. By (2.17) we
have

(2.22) h(x, xX') = 1if x € Ter(M/M2) or X' € Trr(M/M3).

If desired, we can scale the ¢4, so that ‘br;sl,x = (gy,—1- In that case qS;l = Py-1
and f(x,x ') = 1 for all x € Irr(M/M2). When p,1 > 1, not all ¢, commute
and f is nontrivial. Then it is unlikely that all the ¢, with x € X,.(M, o) can be
normalized simultaneously in a canonical way, because they can always be rescaled

by a character of Xy, (M, o).
The next result is a variation on [Hei2l Proposition 3.6].

Proposition 2.2. (a) The set {¢sy : X € Xur(M,0)} is a C-basis of Endyp (F).
(b) With respect to the embedding ([2.5)):

EndM(ind% (0,E)) = @ ClXnr(M)] ¢y = @ PxC[Xne (M)].
XEXnr (M,0) XEXnr(M,0)

Proof. (a) By (2.11)) and Lemma[2.]]
Resils (0, E) = @
and all these summands are mutually inequivalent. Hence

(2.23) Endys(E)= @ Endyp(c(m)BE)= @ Cidygnp,-
meM/M3 meM/M32

The operators ¢y, with x € Irr(M/M3) provide a basis of (2.23)), because they are
linearly independent.
For every 3 € Irr(M3/M2) we choose an extension y3 € Irr(M/M2). Then

{box : x € Ir(M/MJ)} = {05000 X € Iir(M/M7), x3 € Irr(MZ /M7)}.
It follows from (2.11]) that
M —_
Resy (0, E) = @meM/M§

Endyn(E) 2 @ Endyp(c(m)E) = @ o(m)Endyp(Ey)o(m ™).

~1
mEM/Mg(m U7G(m)E1)7

((m - o), o(m)Ey),

meM /M2 meM/M3
In view of the already exhibited basis of ([2.23]), it only remains to show that
(224) {ida(m)El ¢>~(3 ‘E4 }

is a C-basis of End 1 (Ey). Every ¢z, permutes the irreducible M3-subrepresentations
o(m)E; of E4 according to a unique n € M3/M3, so the set (2.24)) is linearly inde-
pendent. As

dim End 1 (Ey) = dim Endyp (0] 7!) = p2 ) = [M7 : M2)[MS - MZ],

equals the cardinality of (2.24]), that set also spans End;i(Ey).
(b) As M' C M is open, Frobenius reciprocity for compact smooth induction holds.
It gives a natural bijection

Endy(ind3f, (E)) — Homy (E,ind}h (E)).
By (2.3)) the right hand side is isomorphic to
Hom 1 (E, E ®@c C[ X (M)]) = Endpi(E) ®@c Cl X (M)],
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where the action of X,,;(M) becomes multiplication on the second tensor factor on
the right hand side. Under these bijections ¢, € Aut M(ind%I(E)) corresponds to

box @1 € Endyn (F) @c C[ X (M)].

We conclude by applying part (a). O
We remark that (2.21)), (2.20) and Proposition [2.2]b mean that
(2.25) Endy (F ®@c C[Xp(M)]) = ClXp(M)] % C[ Xy (M, 0), 1],

the crossed product with respect to the multiplication action of Xy, (M, o) on Xy, (M).
This description confirms that

(2.26) Z(Endy (E ®c C[Xu:(M)])) = C[Xur(M)/Xur(M, 0)] = C[O].

Let us record what happens when we replace regular functions on the involved
complex algebraic tori by rational functions. More generally, consider a group I' and
an integral domain R with quotient field (). Suppose that V is a CI' x R-module,
which is free over R. Then R C Endp(V) and there is a natural isomorphism of
R-modules

(2.27) Homr(V,V ®r Q) = Endr(V) ®@r Q.
Applying this to (2.3)) and Proposition we find
(2.28) Homyy (ind}}: (E), ind}}: (E) ®@cpx,, (v)) C(Xne(M)) =
D . 110y HCHXur(M)) = C(Xir (M) % C[Xoue(M, ), 1],

which generalizes [Hei2, Proposition 3.6].

3. SOME ROOT SYSTEMS AND ASSOCIATED GROUPS

Let Ajps be the maximal F-split torus in Z(M), put Ay = Ap(F) and let
X«(Ap) = X«(Anr) be the cocharacter lattice. We write

ay = Xu(Ay) @z R and  ajyy = X*(Ay) @z R.

Let ¥(G,M) C X*(An) be the set of nonzero weights occurring in the adjoint
representation of Ap; on the Lie algebra of G, and let ¥,.q(Aps) be the set of
indivisible elements therein.

For every a € ¥,04(Ans) there is a Levi subgroup M, of G which contains M and
the root subgroup U,, and whose semisimple rank is one higher than that of M.
Let aV € aps be the unique element which is orthogonal to X*(Ajy,) and satisfies
(a¥,a) = 2.

Recall the Harish-Chandra p-functions from [Sil2l, §1] and [Wal, §V.2]. The re-
striction of u“ to O is a rational, W (M, O)-invariant function on O [Wal, Lemma
V.2.1]. It determines a reduced root system [Hei2l Proposition 1.3]

Yo = {a € Zrea(An) : M (0 @ x) has a zero on O}.

For o € Y,eq(Ays) the function pMe factors through the quotient map Ay —
Anr /A, . The associated system of coroots is

Eé,u = {a¥ € ays : pMo (0 ® x) has a zero on O}.
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By the aforementioned W (M, O)-invariance of u“, W (M, O) acts naturally on Yo,
and 3§ ,. Let sq be the unique nontrivial element of W(M,, M). By [Hei2, Propo-
sition 1.3] the Weyl group W (X0 ,,) can be identified with the subgroup of W (G, M)
generated by the reflections s, with o € ¥ ,, and as such it is a normal subgroup
of W(M, O).

The parabolic subgroup P = MU of G determines a set of positive roots o ,(P)
and a basis Ap,, of Yo . Let fo be the length function on W (X0 ) specified by
Ao - Since W (M, O) acts on Yo ,, Lo extends naturally to W (M, O), by

lo(w) = [w(Xou(P)) N Eo,u(P).
The set of positive roots also determines a subgroup of W (M, O):
R(O) ={w e W(M,0) : w(Xo,,(P)) =Xo,u(P)}

(3.1) ={w e W(M,O) : lp(w) = 0}.

As W (X0,,) C W(M,O), a well-known result from the theory of root systems says:
(3.2 W(M,0) = R(O) x W(Zo,.).
Recall that Xy, (M)/Xn (M, o) is isomorphic to the character group of the lattice
M2/M*. Since M2 depends only on O, it is normalized by Ng(M, O). In particular
the conjugation action of Ng(M, ) on M2/M* induces an action of W (M, O) on
M2/M?.

Let vp : F — Z U {0} be the valuation of F. Let hY be the unique generator of

(M2 M})/M*' =2 Z such that vp(a(hY)) > 0. Recall the injective homomorphism
Hyp: M/M' — ayy defined by

(Hpr(m), ) = vr(y(m)) for m e M,y e X*(M).
In these terms Hys(hY) € RsoaV. Since M2 has finite index in M, Hy(M2/M?) is
a lattice of full rank in ap;. We write
(MZ/M")Y = Homz(MZ2/M",Z).

Composition with Hj; and R-linear extension of maps Hy;(M2/M*') — Z determines
an embedding

Hyp: (M2/MYY = o}y
Then HY,(M2/M') is a lattice of full rank in a},.
Proposition 3.1. Let a € Yo .
(a) Forwe W(M,0): whl) = hX;(a)'
(b) There exists a unique of € (M2/M')V such that HY;(a*) € Ra and (h), o) = 2.
(c) Write
Yo = {Ozﬂ RS E@“LL},
Eé = {hx ToE EO,#}-

Then (S%, M2/M', Yo, (M2/M")V) is a root datum with Weyl group W (Zo0,,,).
(d) The group W (M, O) acts naturally on this root datum, and R(O) is the stabilizer
of the basis determined by P.

Proof. (a) Since M2/M*' and X¢ , are W (M, O)-stable, we have
B(M2? N MM Yo~ = M2 0 ML
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Hence w(hY) is a generator of (M2 N M@©@:1) /M. As w(a)(w(hl)) = a(hY), it
equals hxj(a).

(b) Let a* € Ra C a}; be the unique element which satisfies
(Hu(hy), ") = 2.

The group W(Xp,,) acts naturally on aps by

(3.3) sa(r) =2 — (x,0)a" =2 — (x,a*)Hpr(hY).

This action stabilizes the lattice Hys(M,/M?). By construction h) is indivisible in
M2/M*. Tt follows that for all x € Hps(M2/M') we must have (z,a*) € Z. This
means that o* lies in Hy, (M2/M")V, say o* = Hy(a¥).

(c) By construction the lattices M2/M*' and (M2/M?')V are dual and W (M, O) acts
naturally on them. In view of , the map

M2 /MY — M2/M" o~ m — (m, of)hY
coincides with the action of s,. Hence it stabilizes ¥). Similarly, for y € a};:

y — (Hu(hg), y)Hu (oF) = y — (0¥, y)a = sa(y).
This implies that the map
(Mg /MY)Y = (MZ/MY)Y :y =y — (b, y)o?
coincides with the action of s, and stabilizes Xp. Thus (33, M2/M', Yo, (M2/M")V)
is a root datum and the Weyl groups of X¢ and X} can be identified with W (2p,,).
(d) By part (a) W (M, Q) acts naturally on the root datum, extending the action of

W (X0,,). The characterization of R(O) is obvious from ({3.1)) and the definition of
Yo and . O

We note that ¥p and X, have almost the same type as Yo ,. Indeed, the roots
H}Q(aﬁ) are scalar multiples of the a € ¥¢ ,,, the angles between the elements of X
are the same as the angles between the corresponding elements of ¥ ,. It follows
that every irreducible component of ¥ , has the same type as the corresponding
components of ¥p and X}, except that type B, /C, might be replaced by type
Cp/By.

For a € Yea(M) \ X0, the function pMe is constant on O. In contrast, for
a € Yo, it has both zeros and poles on O. By [Sil2, §5.4.2]

(3.4) So -0 =0’ whenever pMe(o') = 0.

As Ap,, is linearly independent in X*(Ays) and pMe factors through Aps/Ang,,
there exists a 6 € O such that p*«(5) = 0 for all @ € Ap,. In view of [Sil3,
Theorem 1.6] this can even be achieved with a unitary 6. We replace o by &, which
means that from now on we adhere to:

Condition 3.2. (0, E) € Irr(M) is unitary supercuspidal and pMe (o) = 0 for all
o€ AO,M'
By (3.4) the entire Weyl group W (Xp,,) stabilizes the isomorphism class of this

0. However, in general R(O) need not stabilize 0. We identify Xy, (M)/Xn (M, o)
with O via x — ¢ ® x and we define

(3.5) Xy = byy € C[Xue(M)/Xue(M, 0)].
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For any w € W (M, ©) which stabilizes o in Irr(M), Proposition [3.1}a implies
(3.6) w(Xa) = Xy() forall a € Xp .

Let gr be the cardinality of the residue field of F. According to [Sil3] §1] there exist
o, Gax € R>1, ¢, € Ry for a € X, such that

¢, (1= Xo)(1 = X1 (1+Xa)(1+ X1
(1= ga' Xa)(1 = ga' X&) (14 gaw Xa) (1 + gax Xa)
as rational functions on Xy, (M)/Xn(M,0) = O.

We have only little explicit information about the g and the g in general (¢} is

not important). Obviously, knowing them is equivalent to knowing the poles of e,
These are precisely the reducibility points of the normalized parabolic induction
I %;*Ma (o ® x) [Sil2, §5.4]. When these reducibility points are known somehow, one
can recover ¢, and gos from them. In all cases that we are aware of, this method
shows that ¢, and gq. are integers. We refer to [Sol§| for further investigations in
this direction.

We may modify the choice of ¢ in Condition [3.2] so that, as in [Hei2, Remark 1.7]:
(3.8) do > Gax for all @ € Ap .

Comparing (3.7]), Condition and (3.8)), we see that g, > 1 for all @ € ¥p . In
particular the zeros of pMe occur at

{Xoa=1}={0c" € 0: X,(0') =1}

37 pMew)=

and sometimes at

{Xo=-1}={0" € 0: X,(o") = —1}.

Lemma 3.3. Let a € Yo, and suppose that Mo has a zero at both {X, = 1}
and {Xo = —1}. Then the irreducible component of XY, containing hy, has type
By, (n>1) and h) is a short root.

Proof. Consider any hy, € X which is not a short root in a type B, irreducible
component. Then of is not a long root in a type C,, irreducible component of X,
so there exists a z € X)) C M2/M*! with (z,af) = —1. Then

Sa(x) =2 — (a;,au>h>x/ =z+h)€ ]V[g/]\/[1

In X*(Xp(M)/ X0 (M, 0)) this becomes s, (z) = xX,. Assume that there exists a
o’ € O with pMa(¢') = 0 and X,(0') = —1. We compute

2(8 - 0') = (sa2)(0’) = (2X4)(0') = 2(0") Xo(0') = —z(0”).

Asx € X, (Xnr(M)/ X0 (M, 0)), this implies that s, o’ is not isomorphic to o’. But
that contradicts (3.4]), so the assumption cannot hold. O

Consider r € R(O). By the definition of W (M, O) there exists a x, € Xn (M)
such that

(3.9) T-0=0® Xr.

Lemma 3.4. (a) Themapsa— Go, — qax and o — ¢ are constant on W (M, O)-
orbits in X .
(b) For a € Ao,y and r € R(O), either Xo(xr) =1 or Xo(xr) = —1 and go = qax-
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Proof. 1t follows directly from the definitions in [Wal, §V.2] that

(3.10) pMe (b - o) = pMe(o’)  for all w € W (M, O).
Since every W (X0 ,)-orbit in ¥ , meets Ap ,, (3.8)) generalizes to
(3.11) do > Qo Va € Yo .

As W(Xo,,) stabilizes o, (3.10), (3.11) and (3.5 imply that part (a) holds at least

on W(Xp,,-orbits in Xp .

For r € R(O) we work out (3.10):

pte(o@x) = pt @ (F- (0 @x)) = pMre (0@ xr(x)
Gra(l=Xra) A= X70) (A4 X)L+ X
SPrxor()\ 77 _ =1 T Ty -1 1 myp—t R
(1 qTO( XTQ)(l q’f'a XTO( ) (1 + qT(X*XTOZ)(]‘ + qTOC*XTOé )
sp < C;a(l — Xra(xr)Xa)(1 — X;ozl(Xr)Xojl)
X (1- qngra(Xr)Xa)(l - qngFal(Xr)Xojl)
(14 Xra(xr) Xa) (1 + X0 () X3 )
(1+ qg*era(Xr)Xa)(l + q;*IX;al (Xr)Xojl)
Comparing the zero orders along the subvarieties {X, = constant}, we see that
Xra(xr) € {1,—1}. Then we look at the pole orders.
When X,,(x,) = 1, we obtain ¢.o = ¢o and ¢rax = qox-
When X,o(xr) = —1, we find ¢ro = gax and ¢rax = ¢o. Together with (3.11)) that

implies dra = Qax = Qrax = qJa-
Knowing all this, another glance at (3.10]) reveals that ¢, = c]_. O

Of course, x, is in general not unique, only up to X, (M,0). If 7.0 = o, then
we take x, = 1, otherwise we just pick one of eligible x,. We note that then

Flo2oar(g)),
which implies
(3.12) r ()Xt € Xae(M, o).
For r € R(O) of order larger than two, we may take y,—1 = 7~1(x;1).
Lemma 3.5. For allw € W (2o ,,),r € R(O): w(x;)x; ! € Xnr(M,0).
Proof. We abbreviate w’ = r~tw=!r. Since wrw'r=t =1 € W (M, O),
w-F-w 7o 2o e Irr(M).

We can also work out the left hand side stepwise. Recall from Condition [3.2] that
W(Xo,.) stabilizes o € Irr(M). With (3.12]) we compute

w-Fow -7 lo

1%

£
=t

’ U~)/ ) (U ® erl)
' (0@ g )
(e wr (x)

0 (0 ®xe ® ru'r ()
1

e
2 &
R

12

12

o @w(x,) @ wrw'r ' (x; 1) = o @ wlx.)x; . O
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Now we have three collections of transformations of O:

c@x — wlo®yx) Zow(yx) weW(Eou),
cox = rleex)=ocor(x)xr reRO),
oRX o ® XXe Xe € Xnr(M, o).

These give rise to the following transformations of Xy, (M):

w: x —  w(y) we W(Xo,u),
(3.13) t: x —~ r00)xr r € R(O),
Xe: X P XXe Xe € Xnr(M, o).

Let W(M,o0, X, (M)) be the group of transformations of X,,(M) generated by
the t, v and ¢y, from (3.13). Since X, (M,0) is W (M, O)-stable, it constitutes a
normal subgroup of W (M, o, X,,:(M)). Further W(X0,,) embeds as a subgroup in
W(M,o,Xn(M)), and R(O) as the subset {v:r € R(O)}.

By and Lemma the multiplication map

(3.14) Xu(M,0) x R(O) x W(Eo,,) = W(M, o, X (M))
is a bijection (but usually not a group homomorphism). We note that R(O) does
not necessarily normalize W (X0 ) in W(M, o, Xy, (M)):
wor ™! (x) = wo(r = () (0 )
= t(wr™ (Jwr™ (¢ 1) = (ror ) ) (rwr ™) 06 ) xee

Rather, W (M, o, Xn(M)) is a nontrivial extension of W (M, O) by Xy, (M, o).
Via the quotient maps

W(M,o, Xn(M)) = W(M,0) = W(Xo,)
we lift Lo to W (M, o, Xy (M)).

4. INTERTWINING OPERATORS
We abbreviate
Ep = E®c B = E ®c C[X(M)] = ind}}, (B).

By [BeRu, §111.4.1] or [Ren], the parabolically induced representation I$(Eg) is a
progenerator of Rep(G)?, Hence, as in [Roc2, Theorem 1.8.2.1],

£: Rep(G)* — Endg(I§(Eg))-Mod

(4.1) Vv — Homg(Ig(EB>a V)

is an equivalence of categories. This equivalence commute with parabolic induction,
in the following sense. Let L be a Levi subgroup of G containing L. Then PL
and PL are opposite parabolic subgroups of G with common Levi factor L. The
normalized parabolic induction functor IgL provides a natural injection

(4.2) Endp(Ifn.(Eg)) — Endc(IF (ER)),

which allows us to consider Endy, (15, (Eg)) as a subalgebra of Endg(I$(Eg)). We
write s, = [M, o], and we let £, be the analogue of £ of L.

Proposition 4.1. [Roc2 Proposition 1.8.5.1]
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(a) The following diagram commutes:

Rep(G)* —2—  Endg(I§(Eg)) — Mod
o . Enda(IS(Ep))
T ey Tindg g, 1k, ()

Rep(L)* — s Endy(I%.,(Ep)) — Mod

(b) Let JgL : Rep(G) — Rep(L) be the normalized Jacquet restriction functor and
let pry, : Rep(L) — Rep(L)** be the projection coming from the Bernstein
decomposition. Then the following diagram commutes:

3

Rep(G)* ———  Endg(I§(Ep)) — Mod
a Endg (I5 (Ep))
\ bTs, © JﬁL + ReSEndL(IgﬂL(EB))

Rep(L)* —2 s End(I5., (Ep)) — Mod

We want to find elements of Endg (Ig(EB)) that do not come from End;(Ep).
Harish-Chandra devised by now standard intertwining operators for IS (FE). How-
ever, they arise as a rational functions of ¢ € O, so their images lie in Ig(E ®cC
C(Xyu(M))) and they may have poles. We will exhibit variations which have fewer
singularities.

We denote the M-representation on Ep by op. Similarly we have the M-
representation Ok (B) On

Ex = E®c K(B) = Ep®p K(B) = E ®c C(Xun(M)).
The specialization at x € Xy, (M) from is a M-homomorphism
spy : (0B, EB) = (0 @ X, E).
It extends to the subspace of E (p) consisting of functions that are regular at x.
Let 6p : P — R-¢ be the modular function. We realize I§(E) as
{f:G — E| fis smooth, f(umg)= U(m)éllj/Q(m)f(g) Vge G,me M,uecU}.

As usual I§(0)(g) is right translation by g. With I§, we can regard sp,, also as a
G-homomorphism

I§(op, Ep) = I (0 ® x, B).

Fix a maximal F-split torus Ap in G, contained in M. Let xg be a special vertex in
the apartment of the extended Bruhat-Tits building of (G, F') associated to Ap. Its
isotropy group K = Gy, is a good maximal compact subgroup of G, so it contains
representatives for all elements of the Weyl group W (G, Ag) and G = PK by the
Iwasawa decomposition.

The vector space Ig(E) is naturally in bijection with

IB (E)={f: K — E| f is smooth, f(umk) = o(m)f(k)
Vke Kme MNK,uec UNK}.

Notice that this space is the same for (o, F) and (o0 ® x, E), for any x € X (M).
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4.1. Harish-Chandra’s operators Jp/ p.
Let P’ = MU’ be another parabolic subgroup of G' with Levi factor M. Following
[Wall §IV.1] we consider the G-map
Jpl|p(0') . Ig(E) — I]Cj/(E)
Foo= o= Jonme fWo)du]

The integral does not always converge. Rather, Jp/ p should be considered as a map

XorM) X IE o (B) — 15 (B)
(x: f) = Jpiplc@x)f’
where I, (E) is identified with I§(0 ® x, E) as above. With this interpretation

Jpr|p is rational in the variable x [Wal, Théoreme IV.1.1]. In yet other words, it
defines a map

(4.3)

Ik (E) = Ifing(E) @c C(Xnr (M)

f —  [x— Jpplc®@x)f]
For h € G, let A(h) be the left translation operator on functions on G-
AR g f(R ).

For every w € W (G, M) we choose a representative w € N (M) (that is is possible
because the maximal compact subgroup K is in good position with respect to Ag C
M). Then w(P) := wPw~ ! is a parabolic subgroup of G with Levi factor M and
unipotent radical wUw !, For any m € Rep(M), A() gives a G-isomorphism

A@) : I (m) = 15 py (- 7).

(4.4)

We let w- Ep (resp. w- E(p)) be the vector space Ep (resp. E (p)) endowed with
the representation @ - o (resp. W - 0 (p))-

Using [Wal, Théoreme IV.1.1] we define
JrB)w Ig(EB) - I?(w -Ex()) .

f = [X = )‘(’J])Juﬁl(PHP(J ® X)pr(f)]
It follows from [Wal, Proposition IV.2.2] that Jpp and Jg (g, extend to G-
isomorphisms
(4.6) Jpip . Ig(Exp) — IS(Egmn)
Jk@w @ 15(Exm) — Ip(w- Exs).

The algebra B embeds in Endg(I$(Eg)) and in Endg(Ig,(EK(B))) via (2.5) and

parabolic induction. That makes Jp/p and Jg(py,, B-linear.
The group W (G, M) acts on B = C[Xy;(M)] and K(B) = C(X(M)) by

(4.5)

Wb = bup(m) = bama-1, (W -b)(x) = bw™x),
forw e W(G,M),m € M,b e K(B),x € Xn(M). This determines M-isomorphisms

Tw (w-op,w- Ep) — ((w-0)p, (w-E)p)
(@ ogp),w- Exgpy) — (0-0)km), (0 E)gms)) -
e®b — exQw-b

With functoriality we obtain G-isomorphisms

18(w(Bp)) = I ((w-B)p) and I8 (w(Bxm) — I8 (w - E)xp)),
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which we also denote by 7,,. Composition with (4.5 gives
Tw 0 Jr(Byw : 15 (EB) = I5 ((w - B)g(p))-

In order to associate to w an element of Homg (I§(Ep), Ig(EK(B))), it remains to

construct a suitable G-intertwiner from I ((w - E)g(p)) to IS (Ef(p)). For this we
do not want to use 7,,-10Jg (p) -1, then we would end up with a simple-minded G-
automorphism of I§(E K (B)) (essentially multiplication with an element of K(B)).
We rather employ an idea from [Hei2]: construct a G-intertwiner 1§ (w-E) — I§(E)
and extend it to I§((w- E)g) — I$(Fp) by making it constant on Xy, (M).

With this motivation we analyse the poles of the operators Jp/p and Jg (p) -
They are closely related to zeros of the Harish-Chandra u-functions. Namely, for
Q€ Yied (M ):

constant
(4.7) JPOMalsa(PAMa) (T @ X) s (P PAML (0 @ X) Mo (0@ x)

as rational functions of x € X, (M) [Wal, §IV.3 and V.2|.

Proposition 4.2. Let P' = MU’ be a parabolic subgroup of G with Levi factor M,
and consider Jpi p in the form (4.4).

(a) All the poles of Jpip occur at

., Ma .
UO&EEO’H(P)HEO’#(F){X € an(M) iy (0— (%) X) — 0}

(b) Suppose that x2 € Xn(M) satisfies pMe (o @ x2) = 0 for precisely one a €
You(P)N Yo u(P'). Then Jpip has a pole of order one at x2 and
(Xa(x) = Xa(x2))Jp1p(c @ x) 1 If (0 @ x) = I/ (0 ® X)

is bijective for all x in a certain neighborhood of xo in Xn.(M).
(¢) There exists a neighborhood Vi of 1 in Xp (M) on which

I1 (Xa = DJprip 2 Ipng (B) = Ipng (B) ©c C(Xu(M))
a€¥p,, (P)NEo,,(P)
has no poles. The specialization of this operator to x € V1 is a G-isomorphism
IS(c®x) = IS(0®X).
Proof. As in [Wal, p. 279] we define
d(P,P") = |[{a € Y1eqa(Anr) : a is positive with respect to both P and P’}|.

Choose a sequence of parabolic subgroups P; = MU; such that d(P;, Pit1) = 1,
Py = P and Pyppy = P'. From [Wal, p. 283] we know that

Jpip = ‘]P’\Pd(P,P/)ﬂ oo Jpp ©Jpp-

In this way we reduce the whole proposition to the case d(P, P') = 1. Assume that,
and let o € X,0q(Ans) be the unique element which is positive respect to both P
and P’

When o ¢ Yo ,, [Hei2, Proposition 1.10] says that the specialization of Jpip at
any X € Xnr(M) is regular and bijective. That proves parts (a) and (c) for such a
P’, while (b) is vacuous because e is constant on O [Sil3, Theorem 1.6].
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Suppose now that a € X ,. We have
(UNUNU' 2U_, C M,.

Hence Jp/|p arises by induction from Jpnp, P, and it suffices to consider the
latter operator. We apply [Hei2, Lemme 1.8] with M, in the role of G, that yields
parts (a) and (b) of our proposition. Part (c) follows because X, — 1 has a zero of
order one at {X, = 1}. O

4.2. The auxiliary operators p,,.
With Proposition we define, for w € W(G, M), a G-homomorphism

Powxw = AW)spy [ Xa=DJu1pyplo@x) : 15 (0 @ x) = I§ (@(0 @ X))
a€Xo ,(P)No,, (w1 (P))

We note that p,0'®x,w is not canonical, because it depends on the choice of a repre-

sentative w € N (M) for w.

Lemma 4.3. For w € W(Xo ), pi,, arises by parabolic induction from an M-
isomorphism p, L, : (0, E) = (0 - 0, E).

Proof. We compare pgo, with Harish-Chandra’s operator [Wal, §V.3]

*cpip(w,0 ®x) € HomGXg(EndC(U ® x, E), Endc(w(oc ® X)))

By Proposition and [Wal, Lemme V.3.1] both are rational as functions of y €
Xnr (M), and regular on a neighborhood of 1. For generic x the G-representations
I§(c®x) and I§(w(0 ®)) are irreducible, so there °cp|p(w, o ® X) specializes to a
scalar times conjugation by pf,®x7w. It follows that p'0®,’w equals a rational function
times the intertwining operator associated by Harish-Chandra to w and o.

Let us make this more precise. By Condition there exists an M-isomorphism

¢p: (W-0,F)— (0,F).

For any x € Xy, (M), it gives an M-isomorphism w - 0 ® wy — o ® wy. Consider
the G-homomorphism

(4.8) I5($a) © Prayw : 15 (0 @ X, B) = IE(0 @ wy, E).
By the above, this is equal to a rational function times the operator
(4.9) *epip(w,0 ® X) € Homeg(If (0 ® x), I§ (0 ® wx))

considered in [Silll [Sil2]. By the easier part of the Knapp—Stein theorem for p-

adic groups [Silll p.244], [Sil2l, §5.2.4], the operator (4.9)) specializes at x = 1 to
the identity, while by Proposition the operator (4.8) specializes at x = 1 to an

isomorphism. Hence (4.8)) for x = 1 is a nonzero scalar multiple of the identity
operator and

P = 215 (00) " =I5 (203)
for some z € C*. O
From py,,, and Lemma we obtain an isomorphism of M-B-representations
Py ®idp : (05, E®c B) = (- 0)p, E ®c B).
Applying I, with P/ = MU', this yields an isomorphism of G-B-representations
(4.10) I5(pysy ®1idp) : 15 (E) = If((@ - E)B)
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whose specialization at P’ = P,x = 1 is pl, . (However, its specialization at other
X € Xur(M) need not be equal to pl,, ,,-) To comply with the notation from [Hei2]
we define

(4.11) pp = 18 (o © idp) : I8 (0 - E) ) — I (Ep).

Following the same procedure with K(B) instead of B, we can also regard ppr ,, as
an isomorphism of G-B-representations

15 (pow @ idg(p)) : 15/ (@ - B)ie(m)) — 15/(Bx(p))-

When P’ = P, we often suppress it from the notation. We need a few calculation
rules for the operators pps .

Lemma 4.4. Let w,wi,w2 € W(Z0,,).
(a) Jpp(0 @) 0 ppuw = ppra © Jprp(Wo @) : IG((w - E)g(p)) = 15/ (Ek(B))-
(b) As operators Iiglwl‘l(P)(EK(B)) — IE(EK(B));

pwlTwl)\(wl)pw;1(P)7w27'w2)\(w2) =

M,
pre(o®-) —
Ha (SpX=1 (Xa _ 1)(X071 _ 1)>pw1w27-w1w2)‘(w1w2)

where the product runs over Yo ,(P) N Yo ,(wy ' (P)) N Se . (wy 'wi(P)).
(¢) Forre R(O):

)‘(f)prfl(P),w)‘(F)il = pP,F-U,Twr*1)‘(rwr_lfwilfil)'
Proof. (a) In this setting Jp:|p is invertible (4.6), so we can reformulate the claim
as
Jpp( -0 @) o pp, 0 Jpp(0 @) = ppy,
The left hand side one first transfers everything from Ig to Ig, by means of [ UAUNU
then we apply pp,, = IS, (P, ®idp) and finally we transfer back from IS, to I
(in the opposite fashion). In view of (4.10)), this is just a complicated way to express
P = 18(p} . ®1dB).
(b) The map
Twl)\('Lﬁl)pPng)\(wl)iqu;ll . Igl(P/)((iﬁl’LﬁQ . E)K(B)) — Isl(P')((Ujl . E)K(B))

is denoted simply p,, in [Hei2]. We note that part (a) proves the first formula of
[Hei2l Proposition 2.4] in larger generality, without a condition on w. Knowing this,
the claim can shown in the same way as the second part of [Hei2, Propsition 2.4]
(on page 729).
(c) By definition
P = ASa)spyot [T (Xa(X) = Ddu-1r-1(py-10p) (0 @ X),
ﬂ;i:,a,rqu = )\(Twr_l)sple HB(X,B(X) - 1)er—1r—1(P)|P(f 0 X)'
Here « runs over $p ,(r 'P) N o ,(w™r~1P) and B over

Lou(P)N EO,M(“UAT*IP) = T(EO,u(Tilp) N ZO,u(wilTilﬁ))‘
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It follows that
AP (), MO = AFF )by [T (X500 = Dputoioypl -0 0 %)

1

—— —1
— M1 -1 -
- )\(’I"w?“ rwr )pPi-U,’erfl'

Taking inverses yields the claim. O

Now we associate similar operators to elements of the group R(O) from (3.1)) and
(3.2). We may assume that the representatives w € Ng (M) are chosen so that

(4.12) rwo = Twp for all r € R(O),wo € W(Xo,,).

For r € R(0O), Proposition|2.2{and [Hei2, Proposition 1.10] say that J,.(p)p is rational
and regular on X,,;(M), and that its specialization at any x is a G-isomorphism
IS(c®x) = ITCEP) (0 ® x). For such r we construct an analogue of p,, in a simpler

way. Let x, be as in and pick an M-isomorphism

(4.13) Por i T-0—=0& Xp.

Recall p,, from . It combines with p,, to an M-isomorphism
Por @ pyl: ((F-0), Eg) — (08, EB),

which is not B-linear when x, # 1. With parabolic induction we obtain a G-
isomorphism

ppre = I8/ (por @ p,)) : 1B ((F - 0) B, Ep) = IR/ (05, Bp).

The same works with K (B) instead of B.
We note that Lemma [4.4]a also applies to p,, with the same proof:

(4.14) Jpp(0®-)oppy = pprrodpip(Fo@x, ' @) : I((F-E)k(p)) = I (Ex(n))-

For an arbitrary w € W(M,O), we use (3.2) and (4.12) to write w = Fup with
r € R(O) and wp € W(X0,,). Then we put x., = x,» and

Pow = Po,rPo,we : w-o®x — TR XrX,
ppraw = PP aTeNF)pr=1(pyaweNF) it s TG (w-E)p) — IS (EB).
Let us discuss the multiplication relations between all the operators constructed in
this section and the ¢, with x € Xy,,(M, o) from (2.18). Via Igl, we regard ¢, also

as an element of Homg(I§,(Eg)). We note that
(4.15) Py’ © Py = 8Py © (o y @ pgl) = Qox @ SPyry 1 X € X (M).
From the very definition of Jp/p in (4.3)) we see that
¢;§< o Jp1p(0 @ X'X) © boy = Jpp(0 @ X'),
which quickly implies

(4.16) Jpipr © ¢y = by 0 Jppr € Home (I§ (Ex(p)), I8/ (Ex(m)))-
For any w € W (M, O), we take
(4.17) (bw-a,w(x) € Hompy (0 - 0,0 -0 ® 'U}(X))

equal to ¢, as C-linear map. Next we define

¢$(X) = ¢w-o,w(x) ® pl_u(lx) € El’ldM((’LU ' E)B)a
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and we tacitly extend to an element of Endg(I§(w - E)p) by functoriality. Then
(4~18) Tw)‘(w)(ﬁx = Tw}‘(w)(écnx@/);l) = (‘ﬁw-a,w(x)@P;(lX))Tw/\(w) = ¢$(X)Tw>‘(w)'

By the irreducibility of o there exists a z € C* such that

(419) pU,w¢w~J,w(X) = Z¢U,w(x)p0,w TW-0 =0 ® w(X)
With that we compute

Pw © éﬁ(x) = g((pa,w & idB)(é%-a,w(x) ® P:U(IX)))
(4.20) = I3 (200,000 Poa @ Pyiy)

-1

w(x))I]Cj (pa,w X idB) = Zd’w(x)pw-

= leg (¢a,w(x) @ p
From (4.16])—(4.20)) we deduce that
prw)\(UNJ)Jw—l(P)'P/d)X = quw(x)Tw)\(UNJ)Jw—l(P)‘Pl S HOIHG (Ig, (EB), I]g(EK(B))) .

5. ENDOMORPHISM ALGEBRAS WITH RATIONAL FUNCTIONS

5.1. The operators A,.

Let B and the ¢, with x € X,,,(M, o) from act on I§(Ep) and Ig(EK(B))
by parabolically inducing their actions on Ep and Eg(p). For w € W(M,0O) we
combine the operators Jg(pyw, Tw and py, from Sectionto a G-homomorphism

A = puw o Tw o Jg(Byw I8 (EB) = IE (Ex(p))-

With we can also regard A, as an invertible element of Endg (Ig(EK( B))).
According to [Hei2, Proposition 3.1], A, does not depend on the choice of the
representative w € Ni (M) of w. Hence A, is canonical for w € W (X0 ,), while for
w € R(O) it depends on the choices of x, and p? € Homy(o,7 - 0 ® X, ). Further
[Hei2l Lemme 3.2] says that, for every x € Xpn, (M) such that J,-1(pyp(oc ® x) is
regular:

8P (A (V) = puA(@)Jy1(p) p(0 @ X)spy(v) v € IE(Ep).
Consequently, for any b € B = C[ X, (M)]:
(5:1)  8P(wy ) Aw (0V) = puy 0 A(W) 0 Jy—1(p) p(b(X)5Dy (V)
= b(X)Sp(wx)Xw Ay (U) = SP(wx)xw ((w : b)XalAw (U))

In view of Proposition [{.2la, this holds for x in a nonempty Zariski-open subset of
X (M). Thus

(5.2) Ayob=(w-b), 104, € Homg (I§(Ep), I§ (Ex(p)))-

From (4.16)(4.20) we see that for all w € W(M,O), x € X, (M, o) there exists a
z(w, x) € C* such that

(5.3) Ay 0 ¢y = 2(W, X)Pu(y) © Aw € Homg (Ig(EB), Ig(EK(B))).
Compositions of the operators A, are not as straightforward as one could expect.

Proposition 5.1. Let wi,ws € W(Xo,,).
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(a) As G-endomorphisms of Ig(EK(B)):

M
PR ©) N
Awl ° Aw2 - Ha (SpXZl (Xa - 1)(X071 — 1))'MM (U @ Wy 1wl 1') 1Aw1w2
M
_ pre(o®-) Mo, -1
= Az [, (011 (Xo—1)(Xa' — 1))“ (0%

where the products run over Yo ,(P) N S . (wy H(P)) N Se . (wy 'w (P)).
(b) If Lo(wiwa) = Lo(w1) + Lo(w2), then Ay w, = Aw, © Aw,-
(c) For o€ Apy:

2 4c,
=g )21+ )2t (0 ® )
Proof. The second equality in part (a) is an instance of (5.2)).

Lemma is equivalent to two formulas established in [Hei2, Proposition 2.4] for
classical groups. With those at hand, the parts (a) and (b) can be shown in the
same way as [Hei2, Proposition 3.3 and Corollaire 3.4]. Part (c) is a special case of
part (a), made explicit with (3.7)). O

For r € R(O), Proposition a implies that J.-1(pyp does not have any poles
on O. Hence it maps I§(Ep) to itself, and
(5.4) Ay = pp, A7) -1 (pyp € Endg(I5(Ep)).

The maps A, with » € R(O) behave more multiplicatively than in Proposition
but still they do not form a group homomorphism in general.

Proposition 5.2. Let r,r1,r2 € R(O) and w,w' € W(Xp ).

(a’) Write X(T17T2) = XT1T1(X7‘2)X;117~2 € an(Ma U) and recall ¢X(r1,r2) from "
There exists a fj(r1,m2) € C* such that

Arl o A'I‘Q = h(rl, T2)¢x(r1,r2) © AT1T2'

(b) Aro Ay = Apy.
(¢) There exists a j(w',r) € C* such that

Ay o Ap = f(w', T)wa’(xfl)xr © Ay
If w'(xr) = xr, then f(w',r) =1 and Ay 0 Ay = Ay
Proof. (a) By (ET3)

O @ Xryrg =T1T2 -0 Z 7170 27 - (0@ Xry)

~

1 U®T1(XT2) = U®XT1T1(XT2)'

Hence the unramified characters x,,r, and x,,71(xr,) differ only by an element
Xe € Xnr(M, o) (as already used in the statement). With (4.14) we compute

Arl (¢] ATZ = prlTrlA(fl)Jrfl(P)lp(U (= )pT2Tr2A(f2)JT;1(P)‘P(U & )
= ppmlTTl)\(fl)pT—l(p)mJT1—1(P)|P(7°~2 S0 ® -)Trz)\(fz)Jrgl(P)‘P(O' ® )
= PP T A1) =1 (P) i Tra A (72) Tyt )1 p (0 @ ) oty p (0 @ ).

Now we use that 71,7 € R(O), which by [Hei2, Proposition 1.9] or [Wal, IV.3.(4)]
implies that the J-operators in the previous line compose in the expected way. Hence

(5.5) Ay 0Ay, = pP,rlTrl)\(771)prfl(P),rQTrgA(FQ)Jrglrfl(p)‘P(U ® )
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Comparing with the definition of A, ,,, we see that it remains to relate
(5.6) PP Try ML) P =1 (P ry Tra A(72)
t0 PPr1roTrira A(T172). Both and
By(r1,2) PPr1 2 Trara A(T172)
give G-homomorphisms
L7 1y (0@ %) = I (0@ x 11 (X)) @ i 71067 )X)

that are constant in x € X,,(M), because ; € K. For generic y the involved
G-representations are irreducible, so then

(5'7) SpoP,TlTTl)‘(T‘Nl)pr—l(P),rzTrz)‘(":Q) = h(X)prd)x(m,rg)pP,TlTQTh?"z)‘(?%)

for some f(x) € C*. But then f(x) does not depend on x (for generic x), so it is
a constant f(ry,r2) and in fact already holds without specializing at x. With
(5.5) we find the required expression for A,, o A,,.

(b) Pick any x € Xn(M,0). With Lemma [4.4]a one easily computes

(5.8) sp,Aro Ay =sp, Ary =

PPrAT)Pr1(P) wA (@) Ty 101 Py P (0 @ W 006G ))SPy 1,1 (1
(c) We relate this to part (b) by setting w = r~lw'r. By Lemma becomes
(5.9) pPWij.o—,w)\(’U;,))\(F)walrfl(P)lp(O' ® w_lr_l(er_l))spw_lr_l(xx;l).
A similar computation yields
(5.10) spyy Ay 0 Ar =
PP M) pur—1(p) p AF) Ty 1Py p (0 @™ = ) (067 ))SP 11 (et (o)
Thus it remains to compare
(5.11) PPrPProwsDyy -t and P W)y (py p AW) TSP, s 1y

Lemma (3.5 guarantees that w'(x;')x» € Xnr(M,0). Recall the convention ([£.17).
By Schur’s lemma there exists a fj(w’,r) € C* such that

(5.12) PoProw =W, T) 0y i1y Pot gyt WFT @ XX = 0 @ X

Instead of A,,,—1 o A, we consider ¢, -1y o Ay o Ar. Set X = xw'(x:)x

compose (5.10) on the left with g(w’,r)¢_ W (= )xr and recall (2.19). With (5.12))
we find

Sth(w/,T)(z)w/(xfl)xrAw'Ar = h(w/7r)¢g}w,(x;1)XTSpX/Aw/Ar =

/

pUﬂ’pf'U,w)‘(w ))‘(’F)walrfl(PﬂP(o— ® w_lr_l(Xx;l))spwflrfl(xx:l)'
The last line equals (5.9)) and (5.10]). This holds for every x € Xy, (M), so we obtain
the desired expression for A, o A,.
If in addition w'(x,) = X, then
P;}« © Pow' O Poyrgr = Prow-

In that case the two sides of (5.11]) are equal (with x' = x). O
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With Bernstein’s geometric lemma we can determine the rank of Endg (IS (Eg))
as B-module:

Lemma 5.3. The B-module Endg(I$(Ep)) admits a filtration with successive sub-
quotients isomorphic to Hom(w - Eg, Ep), where w € W (M, Q). This same holds
for Homg (Ig(EB), Ig(EK(B))), with subquotients Homys(w - Ep, Ex(p))-

Proof. This is similar to [Roc2, Proposition 1.8.4.1]. Let r% : Rep(G) — Rep(M)
be the normalized Jacquet restriction functor associated to P = MU. By Frobenius
reciprocity

(5.13) Homg (IS (Ep), IS(ER)) = Homy (r815(ER), EB).

According to Bernstein’s geometric lemma [Ren, Théoreme V1.5.1], rGI1$(FEp) has
a filtration whose successive subquotients are

M M
I(me—le)(MmP) cwo TMﬂwa—l)(MﬂP)EB

with w € W(M, Ag)\W (G, Ag)/W (M, Ap). That induces a filtration of (5.13]) with
subquotients isomorphic to

M M
(5.14) Homyy (I(Mmurle)(MmP) cwo Tmewal)(MmP)EBa EB)-

By the Bernstein decomposition and the definition of W (M, O), (5.14]) is zero unless
w e W(M,0). For w e W(M,O), (5.14) simplifies to Homs(w - Ep, Eg), which
we can analyse further with (2.28). Thus (5.13]) has a filtration with subquotients

(5.15) Homy(w-Ep Ep)= @ ¢B= P By

XGan(M,O') XEan(Mvo')

where w runs through W (M, ©). The same considerations apply to
Home (I§(EB), IS(Ex(p)))- O

Now we can generalize [Hei2, Theorem 3.8] and describe the space of
G-homomorphisms that we are after in this subsection:

Theorem 5.4. As vector spaces over K(B) = C(Xy(M)):

Homa (15 (Bp). I8 (Frep)) = D D K(B)Auox.
weW (M,0) x€Xnr(M,0)

Proof. We need Proposition and . With those, the proof (for classical
groups) in [Hei2, Proposition 3.7] applies and shows that the operators ¢, A, with
w e W(M,O) and x € X, (M, o) are linearly independent over K (B). Further by
, with the second Ep replaced by Er (p), the dimension of

Home (I§(EB), I§(Ek (p))) over K(B) is exactly |Xu:(M,0)| [W(M,O)|. O

Since all elements of K (B)A, ¢y extend naturally to G-endomorphisms of
Ig(EK(B)), Theorem shows that Homg(Ig(EB),Ig(EK(B))) is a subalgebra
of Endg(Ig(EK(B))). The multiplication relations from Proposition become

3.13)

more transparant if we work with the group W (M, o, Xy,,(M)) from ( For
Xe € Xor(M,0),r € R(O) and w € W (X0 ) we define

Ay = by, ArAy € Enda (15 (Ex(s))).
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By ([2.21]) and Propositions and all the A, are invertible in
Endg (I8 (Er(p)))- By (2:20) and (5.2), for b € C(Xn:(M)):

(5.16) Ay DAy = (rw-b) 11 =bo (xetw) !t € C(Xp(M)).

Xctio Xc Xr
This implies that we may change the order of the factors in Theorem [5.4] for any
we W(M,0O), xc € Xne(M,0):
(5.17) BAy¢y = Apwdy B and K (B)Awdy = Awdy K (B).

5.2. The operators 7.
To simplify the multiplication relations between the A,,, we will introduce a vari-
ation. For any a € Yo, we write

(1-Xa)(1+ Xa)(1 =g H(1 +g5))

o = € C( X (M)).
I 2(1 - qnga)(l + q;*IXa) ( ( ))
By (3.6) and Lemma [3.4la

(5.18) W+ Jo = Gu(a) a€Xo,we W(M,O).

Our alternative version of Ay, (o € Ap,) is

1—Xo)(1+ Xo)(1— g1+ g5t
(519) 7;a :gaAsa — ( Oé)( —tl Oé)( qa,Z( +qa*)Asa'
2(1 L Xa)(l + Gax Xa)
By Proposition the only poles of A, are those of (u™=)~!, and by Proposition
they are simple. A glance at ([5.19) then reveals that

(5.20) the poles of T, are at { X, = qo} and, if gox > 1, at {Xo = —qas}-

Proposition 5.5. The map s, — Ts, extends to a group homomorphism w — Ty,
from W(Xo0,,) to the multiplicative group of Endg(lg(EK(B))).

Proof. 1t suffices to check that the relations in the standard presentation of the
Coxeter group W(Xp, ) are respected. For the quadratic relations, consider any

a € Ap,,. With (5.2) and Proposition c we compute
7-5?1 = gaAsagaAsa = gag—ocAza
(1-Xo)(1+Xa)(1 - X N1 - X1 _
(1—ga'Xo)(1+ gar Xa)(1 — ga' Xa ") (1 + qar Xa YuMe (0 @ -)
For the braid relations, let o, 8 € Ap,, with sysg of order mqg > 2. Then

SaSBSa " = 835453 " (with mqp factors on both sides),

and this is an element of W (X0 ,) of length mqz. We know from Proposition [5.1}b
that

(5.21) Ao AsyAs, - = Asy Ag, Agy - - - (with myg factors on both sides).
Applying ((5.18|) repeatedly, we find

(5.22)

7;a7;g7;a = ga(sa . gﬁ)(sasﬁ . ga) T AsaAsgAsa = (H'y g’y)AsaASBAsa Tty

where the product runs over {a, sq(3), Sasg(®),...}. Similarly

(523) 7’557;a7;[3 e — (H’y/ g’y’)ASﬁAsaAsﬂ cee
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where 7 runs through {83, sg(), sgsa(5), .. .}.

We claim that {o, s4(8), sasg(a), ...} is precisely the set of positive roots in the
root system spanned by {«a, 8}. To see this, one has to check it for each of the four
reduced root systems of rank 2 (A; x Aj, A, By,G2). In every case, it is an easy
calculation.

Of course this applies also to {3, sg(a), sgsa (), . ..}. Hence the products in
and run over the same set. In combination with that implies

7-5047;[37;(1 = 7-557;a7-5[3 Ty
as required. O

Since Ty, is the product of A,, with an element of K (B), the relation (/5.2)) remains
valid:

(5.24) Twob=(w-b)oTy be K(B),we W(Xo,).
The T, also satisfy analogues of (|5.3)) and Proposition c:

Lemma 5.6. Let w € W (X0 ,),r € R(O) and x. € Xun(M,0).
(a) Arﬁugﬁxc = Z(rw>X6)¢7‘w(XC)AT7:U'
(b) TwAr = fw, T)(st(xgl)XTAr’ﬁ*lwr'

If w(xr) = Xr, then h(w,7) =1 and A7 TuAr = Tr1r-
Proof. (a) In view of (5.3), it suffices to consider » = 1 and w = s, with o € Ap ..
The element X, € C[X(M)] is X (M, o)-invariant, so g, € C(Xp (M)) is also
Xnr(M, o)-invariant. Then (5.3) implies

7;a¢Xc = gOlA5a¢Xc = gaz(saa Xc)¢sa(XC)A5a = Z(Sa, Xc)(bsa(xc)'rs(x'

(b) First we consider the case w = s, with Ap . By Proposition [5.2}c

TsaAr = gaAsa Ar = gau(sfl’ T)¢5a( XTATA

With ((5.18) we obtain
(5.25) Ts,Ar = h(savr)¢sa(Xr—l)XTArgr—l(a)Ar—lsar = h(sa,T)QSSQ(X;l)XTArﬁ—lsar'

For a general w € W (X0,,) we pick a reduced expression w = 54, 8a, - Say,- Then
part (a) enables us to apply repeatedly. Each time we move one 7;%_ over A,
we pick up the same correction factors as we would with A’s instead of T’s. As the
desired formula with just A’s is known from Proposition [5.2]¢, this procedure yields
the correct formula.

X;l) r—lsor

If w(x,) = xr, then the special case of Proposition c applies. O
Let xc € Xne(M,0),7 € R(O),w € W(Xp,,) we write, like we did for Ay iw:
(5.26) Trerw = $x. AT € Enda (I8 (Bre())-
Recall that the ¢, can be normalized so that qb;cl = quc_1. Similarly, we can

normalize the A, so that A~! = A, 1. Then
e xe ) =1 and g(rr7h) =1

Lemma 5.7. Let x¢, X, € Xne(M,0),r,r" € R(O),w,w' € W(Z0,).
(a) There exists a f(x o, xLt'w’) € C* such that

I
Tyetto © 7;(’Ct’m’ = f(xctto, X 10 )ﬁctmxét’m"
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(b) If in addition r = x.. =1 and w(x,") = X, then §(xw, ') = 1.

(¢) The map b : W (M, o, Xn(M))? — C* is a 2-cocycle.

Proof. (a) In the setting of Proposition we write r3 = 7' and w3 = r~lwr. That
gives the following equalities in W (M, o, Xy (M)):

(5.27) o = x(r,7)ry;  and v’ = (w(x')x )Y ;.

Thus the already established Propositions and as well as (2.21)) and Lemma
[5.6] can be regarded as instances of the statement.

We denote equality up to nonzero scalar factors by =. With aforementioned
available instances we compute

Tyeew © Tytem = Oxe Ar Twdyt, Ar Tur
= ¢Xc¢rw(x’c)Ar7;uAr’7;u’
= ¢Xc¢rw(Xé)AT¢w(x;,l)xr,A?"/,];’*lwr’,]:u’

(528) = ¢Xc¢rw(x’c)d)r(w(x:ll)xr,)ArAr’ﬁ’—lwr/w’
= ¢X6¢Tw(xlc)('br(w(x:,l)xr,)¢X(T,r’)Arr’7;’—1wr’w’

= Dxerw()r O ) A Tr=twrrw

In each of the above steps we preserved the underlying element of W (M, o, Xy (M),
so in the notation from ([5.27))

Xerroxer'to’ = xerw(xe)r(w: )xe )X (r, ') e’
(b) When r = x. = 1 and w(x,”) = x,, the second, fifth and sixth steps of ([5.28))

become trivial. Thanks to Propositions [5.1}b and [5.2}¢ the third and fourth steps
become equalities, so the entire calculation consists of equalities.

(c) This follows from the associativity of Endg(Ig(EK( B)))- O
By (5.16) and (5.24)
(5.29) Tyerro b7;<_c,}m = (rw-b) -1, -1 =bo (xet) ™! € C(X (M)).

We embed the twisted group algebra C[W (M, o, Xy, (M)), ] in
Homg(I§(Ep), Ig(EK(B))) with the operators 7y, wp. Then Theoremand Lemma
show that the multiplication map

K(B) ©c CIW (M, 0, Xue(M)), 1] = Home (15 (Ep), IF (Ex(5)))
is bijective. That and (5.29)) can be formulated as:
Corollary 5.8. The algebra Homg (Ig(EB),Ig(EK(B))) is the crossed product
C(Xnr(M)) x CIW(M, 0, Xur(M)), ]
with respect to the canonical action of W (M, o, Xp(M)) on C(Xp(M)) = K(B).

We end this section with some investigations of the structure of Endg(I§(Ep)).
By the theory of the Bernstein centre [BeDe, Théoreme 2.13], its centre is

(5.30) Z(Endg(I§(Ep))) = C[O]WMO) = C[ Xy, (M)]W (Mo Xur (M)

From Lemma and (5.15) we know that Endg(I§(Ep)) is a free B-module of
rank |[W (M, o0, Xn (M))|. The ¢y, with x. € Xu(M,0) and the A, with r € R(O)
belong to Ende(I§(Eg)), but the A, with w € W(Z0,,) \ {1} do not, because they
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have poles. To see whether these poles can be removed in a simple way, we analyse
their residues.

Lemma 5.9. Let o € Apy, and x+ € X (M) with Xo(x+) = £1.
(a) spy, (1 — Xa)As, is a scalar multiple of SPy+ Py s (xT1)-
alXy
If sa(x+) = X+, then sp,, (1 — Xo)As, = +spy, - If x4 € Xu(Mao), then
Py, (1 — Xa)As, =Dy, -
(b) Suppose that qax > 1. Then sp, (1+ Xo)A

SPX—¢x_sa(x:1)' In case so(x—) = x-:
(1+ga")(1~ dan)
(1= ga )1 +ga)

Remark. With a closer analysis of the operators J,  (p)p(c®x), as in [Wal,, §IV.1],
it could be possible to prove that the signs 4+ in this lemma are always +1.

Proof. (a) By Proposition Py, (1 — Xq)As, defines a G-isomorphism
1§(0 @ sa(x+)) = 15(0 ® x+), parabolically induced from an M,-isomorphism

is a scalar multiple of

Sa

spy (1 + Xo)As, = £

Iy (0 ®x4) = I (0@ salx+))-

yrsalx )" Further, I}%’Ma(a ® x+) is irreducible [Sil2l
§4.2]. By Schur’s lemma, these two operators are scalar multiples of each other.
Suppose now that s (x+) = X+. By the above sp, (1 — X,)4;, € Csp, . From
Proposition and we see that in fact spx+(1 — Xo)As, = +sp, ., -
The variety Xp,(M,) C Xp (M) is connected and fixed pointwise by s,. The
sign in £sp, . established above depends algebraically on x, so it is constant on
Xur(My). Therefore it suffices to consider x4 = 1. Let us unravel the definitions:

The same holds for sp,+¢

SPX=1(1 — Xo)As, = przl(l - XOé)psaTsaJK(B),sa
(5.31) = I (po,s0 @ Dy—1) (1 — Xa)Tsu A(Sa) Js, (P p(0 @ -)
= I (Po,sa @ SDy—1)Tsu A(Sa) (1 — X 1) s Py P00 @)
=I5 (Po,s0 )SPy=1 A (Sa) (Xa — 1) Js, (P p(0 ® ).
By construction I§(p,.s,) is the inverse of
SPy=1TsaA(8a) (Xa — 1)Js, (p)p(0 @ ) = 8Py 1 A(Sa)(Xa — 1), (P p(0 @ ),
see and (4.11). We find $Py=1(Xa — 1)As, = 8py—1-

(b) This is analogous to part (a). For the second claim we use that (go,4s,)? = 1
and
(1—qz)(+a5.)
(5.32) sp, (gaAs,) = - “=sp, (14 Xa)As,. O
T g1 - gad) o

Remark 5.10. Lemma shows that some of the poles of As, may occur at
X’s that are not fized by s., so those poles cannot be removed by adding an ele-
ment of C(Xpn(M)) to As,. For instance, suppose that Xo/3 € X*(Xn(M)) and
(Xa/3)(x) = e*™/3. Then Xo(x) =1 but (Xo/3)(sax) = € 2™/3. Similar consider-
ations apply to Ts,,. In particular the method from [Hei2l, §5] does not apply in our
generality.
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This problem is only made worse by the possible nontriviality of i on Xu. (M, 0)?.
Although we expect that there exist |W (M, o, Xne(M))| elements that generate
Endg(Ig(EB)) as B-module, we do not have good candidates. That renders it hard
to find a nice presentation of Endg(I§(Ep)).

6. ANALYTIC LOCALIZATION ON SUBSETS ON X (M)

In this and the upcoming sections, when we talk about modules for an algebra,
we tacitly mean right modules. Each of the algebras H we consider has a large
commutative subalgebra A such that H has finite rank as A-module. For an H-
module V', we denote the set of A-weights by Wt(V).

Every finite dimensional H-module V' decomposes canonically, as A-module, as
the direct sum of the subspaces

Vy={veV:(a—alx)™"(v) =0}

for x € Wt(V). For this reason it is much easier to work with representations
of finite length. We denote the category of finite dimensional right H-modules by
H — Modg. For a subset U C Irr(A), we let H — Modg 7 be the full subcategory of
H — Mody¢ formed by the modules all whose A-weights lie in U.

For Rep(G)?, the role of weights is played by the cuspidal support. When 7 €
Rep(G)® has finite length, we define Sc(7) as the set of ¢/ € O which appear in the
Jacquet restriction J§ (7).

Lemma does not provide enough control over the poles of A, to deal with
all of them in one stroke. Therefore we approach Endg (IS (Eg)) via localization on
suitable subsets of X, (M). Let U be a W (M, o, X,,,(M))-stable subset of X, (M),
open with respect to the analytic topology. Then U is a complex submanifold of
Xnr(M), so we can consider the algebra C**(U) of complex analytic functions on
U. The natural map C[X,,;(M)] — C*(U) is injective because U is Zariski dense
in Xy (M). This and enable us to construct the algebra

Endg(I§(Bp)f = Enda(I§(Ep))  ©  ¢m(m)WeXein)

BW(M,0,Xnr(M))

Its centre is

(6.1) Z(Endg(I§(Ep))er) = O (U)W (Mo Xar (M),
We note that by [Opd, Lemma 4.4]
(6.2) ClXn (M)] ® Can(U)W(M,a,Xm(M)) ~ con(7),

(C[an(M)]W(M,J,an(M))

The subalgebra C**(U) of Endg (IS (Eg))3® plays the same role as B = C[ Xy, (M)]
in Endg(I§(Eg)).

Remark 6.1. The set of C[Xpn,(M)]-weights of any module for Endg (IS (Eg)) or
Endg(I§(Ep))a is stable under the subgroup Xy, (M,o)R(O) C W (M, 0, Xpu(M)),
because Ty, belongs to Endg(IS(Eg)) for all x. € Xu(M,0),7 € R(O) and this
element satisfies ((5.24]).

Lemma 6.2. There are natural equivalences between the following categories:
(i) Endg(I§(Ep))i — Mod;
(ii) Endg(I§(ER)) — Mods 17, or equivalently those V € Endg(I§(Ep)) — Mod;
with all weights of the centre in U/W (M, o, Xn:(M));
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%, whose cuspidal support is contained

(iii) finite length representations in Rep(G)
in{o®@x:xeU}.
These equivalences commute with parabolic induction and Jacquet restriction in the

sense of Proposition [{.1].

Proof. The equivalence between (ii) and (iii) follows from and the way the B-
action on I§(Ep) is constructed in (2.5). We saw in Proposition how it relates
to induction and restriction.

The equivalence between (i) and (ii) is analogous to |Opd), Proposition 4.3]. For
a Levi subgroup L of GG containing M there are analogous algebras

End;, (If(Ep)) C End(Ifn,(ER))i-

The equivalence between (i) and (ii) for these two algebras works in the same way,
basically it only depends on the inclusion C[ Xy (M)] C C**(U). Hence these equiv-
alences of categories commute with induction and restriction between the level of L
and the level of G. g

Now we specialize to very specific submanifolds of X, (M). Let
(6.3)  Xu(M) = Xy (M) x X5 (M) = Hom(M/M*, S*) x Hom(M/M*,Rx)

be the polar decomposition of the complex torus X,,;(M). Fix a unitary unramified
character u € Xy (M). The following condition is a variation on |[Opd, Condition
4.9] and [Sol3, Condition 2.1.1].

Condition 6.3. Let U, be a (small) connected open neighborhood of u in X (M),
such that

o U, is stable under the stabilizer of u in W (M, o, Xy (M)) and under X[, (M);
e W(M,o,Xp,(M))unU, ={u};
o N(Xo(xu™h) >0 for all « € Xogu, X € Uy.

We note that such a neighborhood U, always exists because W (M, o, Xy, (M)) is
finite and its action on X,;(M) preserves the polar decomposition . The first
two bullets of Condition entail that W (M, o, X, (M))U, is homeomorphic to
W (M, o, Xn:(M))u x U,. The last bullet implies that, if (o ® x) = 0 for some
X € U, and o € Yieq(Aps), then pMe(o ® u) = 0. This replaces the conditions on
U, in relation to the functions ¢, in [Opd, [Sol3].

In the remainder of this section we consider

(6.4) U :=W(M, o, Xp(M))Us,

an open neighborhood of W (M, o, Xp,,(M))uX,,(M). By Lemma the family of
algebras End (1§ (Ep))2®, for all possible u € Xyn, (M), suffices to study the entire
category of finite length representations in Rep(G)°.

We want to find a presentation of Endg(I§(Ep))&", as explicit as possible. For
w € W(M, o, Xn(M)) we write Uy = w(Uy,). By Endg(I§(Ep))# contains
the element 1,,, € C**(U) defined by

_ 1 x €Uy
1w"(X)_{o X EUN\ U
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The 1,y with wu € W (M, o, Xpr(M))u form a system of mutually orthogonal idem-
potents in C**(U) and

(6.5)

ly = ZquVV(J\/[,anr(J\/I))u Lwu:

This yields a decomposition of C**(U)-modules

Ende(IS(Ep))™ = D LyuEnde (15 (E))H oy
wu,vu€W (M,0,Xn: (M))u
= D CW)EdGUEER)E O (Un).

wu,vu€W (M,0,Xn: (M))u
Here the submodules with wu = vu are algebras, while those with wu # vu are not.

Lemma 6.4. The inclusion 1,End¢(I§(Ep))i1l, — Endg(I§(ER))M is a Morita
equivalence.

Proof. The Morita bimodules are End¢ (IS (Eg))#1, and 1,End¢(I§(ER))#. Most
of the required properties are automatically fulfilled, it only remains to verify that
1, is a full idempotent in Y := Endg(I§(Eg))3H:

(6.6) Y1,Y should equal Y.

In view of ([6.5)), it suffices to show that 1., € Y'1,Y for all w € W (M, o, X,y (M)).
By (3.14) there exist x. € Xu(M,0),r € R(O) and v € W(Xp,,) such that
w = x.tv. We may and will assume that £o(x.tv) is minimal under the condition

Xctou = wu. By (5.24)
7:111147:;*1 - 1U’U,7;17;]71 - 1vu~
1

We claim that sp,, 7, and sp are regular for all x € U, or equivalently

x v
(6.7) T, does not have poles on U,, and ’7;_1 does not have poles on U,,.

We will prove this with induction to {p(v). The case £p(v) = 0 is trivial. For the
induction step, write v = s,v" with @ € Ap, and lp(v') = lo(v) — 1. By the
minimality of £o(x.tv), v'u # vu. Then

Sa(leu) NUyy = Up NUyry = 0.

By [Lusll, Lemma 3.15] X,(x) # 1 for all x € Uy, and, if X, € 2X*(X,(M)),
also X, (x) # —1 for all x € Uy,. If T5, would have a pole on Uy, then Uy, =
X (M)Uyr,, and (5.20]) entail that

(6.8) Ax € Uy : Xa(x) =1 0r gox > 1 and 3x € Uy, : Xo(x) = —1.

That would contradict the already derived properties of Uy, so Ts, is regular on
Uyy. Notice that v has minimal length for sending u to Xp.(M,o)R(O) 'v'u,
because v has minimal length under the condition vu € Xy (M, o) R(O) wu. Hence
the induction hypothesis applies, and it tells us that 7, is regular on U,. We
conclude that T, = T5_ T, is regular on U,.

If we replay the argument up to with U,, and U, exchanged, we arrive at
the conclusion that 7, is regular on U,,. By the induction hypothesis 7:}71 does
not have poles on U,y,,. Therefore 7,7} = 7:/_17;@ is regular on Uy, affirming .
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From (6.7)) and we obtain 7,1, = 1,,T, € Y and T,-11,, = 1,7, € Y. By
and ([2.15):
Trewlu = ¢ ATl €Y and 1,7, 10,1 = LT, 'A gl €Y.
Then says
Luw = Leoou = TxewluToe1y01 = Oy ATl 1T, A 9 €Y
This confirms . O
For later use we analyse the Morita equivalence from Lemma [6.4] more deeply.

Lemma 6.5. (a) There are equivalences of categories

L,Ende(IE(ER))# 1y — Mod «— Endg(I§(Ep))f — Mod
Vi, i 4 .
v, -V, ® Endc (I3 (Ep))y

1.End¢(I§(Ep))ar 1y

(b) Let V € Endg(I§(Ep))& — Mod. The C[Xpn(M)]-weights of V1, are precisely
the C[Xpn (M)]-weights of V' that lie in U,.

(¢) Let W* be a set of shortest length representatives for
W (M, 0, Xu(M))/W (M, 0, Xn(M))y and let V,, € 1,Ende (IS (Eg))#1,—Mods.

The C[ X (M)]-weights of V,, ® Endg(I5(Ep))if are
LuEnda(I§(Eg))3 lu

{xeto(x) : x is @ C[Xne(M)]-weight of V,,}.
Proof. (a) follows from the explicit form of the bimodules in Lemma
(b) is clear from the definition of 1,,.
(c) Since V,, has finite dimension, we can decompose it according to its C[ Xy, (M)]-

weights (or equivalently its C**(U,)-weights). For every such weight x € U, and
every n € Z>1 we write

VXt ={veV,:v(f—f(x)"=0VfeC*™U,)}.
Then V,, = 3, V", From Corollary 5.8 we see that
st(End(;(Ig(EB))aUn) is spanned by  {sp, (fuwTw) : w € W(M, 0, Xn:(M))},

where fi, x € C[Xyn(M)] is such that sp, (fuw,x7w) is regular and nonzero (or zero if
that is not possible). Hence

V=V, ® Endg (I8 (Ep))
1.End¢(I§(Ep))3P 1y

equals 5 ., " fuwn T Since V" fo, Ty C Vi, for W(M, o, Xpp (M))y,

— ,n —1
V= Zx,n ZwEW” Vux fwil’xlﬁﬂ )
From (6.7) we know that pr’ﬁv_1 is regular for all x € U, and w € W*, so we can
take f, -1, = 1,. For v e VX! we see from (5.24) that
VT f = v(w T )Ty e = flwx)o Tyt Vf e O (U).

Hence vT,, ! is a O3 (U)-weight vector for the weight wy. It remains to see that V'
has no other C*"(U)-weights. Suppose

—1
Zx,nzl ZwGW“ UX»n,w_I% S 14
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is a weight vector not in », >°, cyru Vi 71 where Uy naw-1 € V. Then the

same holds for
.f —1
v Zx,n>1 ZwEW“ Vnxw =t T s

SO Uy -1 € V" \ {0} for some x,n > 1,w. We may assume that n is minimal
for this property. Then direct computation of v(f — f(wy))" ! shows that for some
f € C*(U) it has a nonzero term in » >, cypu V71, Therefore v cannot be
a weight vector, and we indeed found all C[ X, (M )]-weights already. O

Lemma [6.5a is compatible with parabolic induction and restriction, but we have
to be careful with the formulation. Let L be a Levi subgroup of G containing M
and let Wr(M, o, Xp(M)) be the version of W(M, o, Xp (M)) for L. Then

Up :=Wr(M, o, Xu(M))U,

is a union of connected components of U and C**(Uy,) is a subalgebra of C*"(U).
From IgL and (6.2) we obtain a natural injective algebra homomorphism

Endr,(I5.(Ep)), — Ende(IE (Ep))i

We warn that in general this homomorphism is not unital, so naive restriction may
not send unital modules to unital modules. Instead, we define a functor

Resy, : Endg(I§(Ep))f —Mod — Endr(If,,(Ep))f — Mod
4 = Vi, ‘

On the other hand, the restricted homomorphism
1,Endr,(Ifn, (Ep))i 1w — LEnde(I5(Ep))i'l, is unital.

Lemma 6.6. The following diagrams, with horizontal maps from Lemma [6.5 a,
commute:
1,Endc(I§(Ep))#l, —Mod «—  Endg(I$(Eg))i¥ — Mod
1 ind 1 ind
1,Endr, (I (EB))i 1w —Mod  «—  Endr(If,,(EB))i — Mod

1,Endg(I€(Ep))3 1, — Mod  «—  Endg(I$(Ep)) — Mod
J Res 1 Resy,
1,Endr, (I (EB))i 1u —Mod  «—  Endr(If,,(EB))i —Mod

Proof. Consider the first diagram, with horizontal maps from left to right. It
commutes because all arrows are inductions from subalgebras. Next consider the
second diagram with horizontal maps from right to left. It commutes because

1,1,V =1,V.
As the horizontal maps are equivalences, the diagrams remain commutative if we
reverse the directions of one or two horizontal arrows. U

Lemma [6.4] tells us that we should understand the subalgebra 1,Endg (1§ (Ep))i1,
of Endg (I3 (ER)); better. Let C™¢(U) be the ring of meromorphic functions on U.
We proceed via

Homg (Ig(EB), Ig(EK(B))) C
End¢(IS(ER)) ® ome (U)W (Mo Xos(M)) —: End (IS (Eg))Re.

BW(M,o,Xnr(M))

For the same reasons as in (6.2)), C™°(U) embeds in Endg (1§ (Ep))&e.

(6.9)
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For x. € X\ (M, o) and w € W(M, ), (5.16]) says that

_ 1u¢XcA'w = ¢X6Aw1u XCm(u) =u
(6.10) L@y, Awly = { 0 otherwise

Since Xy, (M, o) acts freely on X, (M), for a given w € W (M, O) there exists at
most one x. = xc(w) € Xp (M, o) such that x.to fixes u. Let W(M,O)y,g, be the
W (M, O)-stabilizer of o ® u € Irr(M). Then

Qy: W(M,0)oeu — WM, o, Xn(M)),

(6.11) w . Xe(w)ro
is a group isomorphism. With Theorem (5.19) and (6.10]) this yields
luEndg(Ig(EB))?}elu = @ Cme(Uu)AQu(w) =
w ] ocQu
(6.12) EW O
b Ow= D O Taw
weW (M,0)s@u weW(M,0)o@u

6.1. Localized endomorphism algebras with meromorphic functions.
Consider the set of roots

20®u = {a € 21red(*AM) : UMOL(O' ® 'LL) - 0}

This is a root system [Silll §1], that can be shown with the same argument as
for Proposition [3.I}c. The parabolic subgroup P = MU of G determines a positive
system Y,g,(P) and a basis Aygy of Xogy. The relevant R-group (the Knapp—Stein
R-group) is

R(o @ u) ={w € W(M,O)ogu : w(Zoeu(P)) = Towu(P)}

Like in ({3.2))

(6.13) W (M, O)sxn =W (Zogu) ¥ R(o @ u).

We note that R(c ® u) need not be contained in R(O), even though W (X,g.) C
W(Xo,u)-

To obtain generators of 1uEndg(Ig(EB))?}11u with nice and simple relations, we
vary on the previous constructions. We follow the setup from Sections but now
with base point o0 ® u of O, root system ¥,g,, Weyl group W (3,g,) and R-group
R(oc ®u). On X, (M) we have new functions X%(x) 1= Xo(u) "' Xa(x). We recall
that by Xao(u) € {1, -1} for all @ € S,z

Further, E is by default endowed with the M-representation o ® u, and we get a
slightly different version J “,| p of Jp/p. Instead of pﬁnw we use

Poouw = ANW)SPy—1 H (Xa = Dy—1(py plo @ ux).

0€Xogu(P)NEsgu(w™1P)

Then Lemmas and [£.4] remain true with obvious small modifications. In partic-
ular, in Lemma [£.4lb we have to replace the product over

a € Xou(P)N EO,u(wgl(P)) N Eo#(w;lwfl(P))
by the analogous product (with ¢ ® u instead of o) over

0 € Sowu(P) N Sosu(wy (P)) N Sesu(wy 'y (P)).
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For r € R(0 ® u) we can now take x, = 1 and
(6.14) Poguyr : T(0Qu) = 0@ u.
With these we define PPr oy and
Al = P © Trw © JE(B) rw € W(M, O)szu-

as before. The superscripts u are meant to distinguish these operators from their
ancestors without u (or rather with v = 1). Then (5.2)) becomes

(6.15) Ay,ob=(rw-b)o Ay, be C(Xn(M)).

Let wi,wy € W(X4gy) and 71,72 € R(0 ® u). By Proposition
(6.16)
At At — /’LM& (U XU ) My -1, —1 —1Au
i oA =1L, (pe e o )P o @ e )T A

where the product runs over
@ € Togu(P) N Sogu(wy ' (P)) N Sogu(wy 'wi(P)).
In particular for o € Asgy:

v 4c
(6.17) (A5,)" = (1 — Xo(u)gah)2(1 + Xo(u)gar ) 2uMo(c @ u® )

Similarly Proposition [5.2] yields the following multiplication rules:
AL o AL = A

1w’

(6.18) At o A" = A"

wary’

Agl ©) A% = hu(’l“l, T‘Q)Au

T1T2"

Here f,, is a two-cocycle R(oc ® u)? — C*. By appropriate normalizations of the
Poou,r We can achieve that

(6.19) fu(l,r) = fu(r,1) =1 and  fu(r,r") =1

for all 7 € R(c®u). In other words, we may assume that A} =1 and (A%)~t = A" ,.

The arguments for Theorem [5.4] apply only partially in the current situation, be-
cause we may have fewer than |W (M, O)| operators A¥,. Rather, [Hei2, Proposition
3.7] shows that in Endg(I§(Ep)) ®5 K(B)

(6.20) {Ar, srw e W(M,O)sgu} is K(B)-linearly independent.

We note that (6.16) and (6.17) mean that, when X, (u) = —1, in effect the roles of
Go. and gqx are exchanged. With that in mind we define

2 ~1 —1
Z — (1 Xa)(l )ffé(u)QOz )(1+Xa(_u1)qoc*) c (C(Xm«(M)),
2(1 = Xo(u)ga Xa)(1 + Xa(uw)qax Xa)
and T := guAY . This gives rise to elements 7' for w € W(X,gy), which satisfy
the analogues of Proposition Lemma and Lemma — with W/(M, O)sgu
instead of W (M, o, Xpr(M)).
To show that the set (6.20) spans as C"¢(U,)-module, we vary on the
proofs of [Hei2, Théoreme 3.8] and of Theorem [5.4

Lemma 6.7. Regard C*"(U),Homg (I (Eg), I§(EK(p))) and C™(U) as subsets
of, respectively, Endg (1§ (E@cC®(U))), Homg (I1§(E@cC™(U)), 1§ (E@cC™(U)))
and Endg(I§(E @c C™e(U))).
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(a) Then 1,Endg(I§(Ep))Hel, equals
span(Cme(Uu)Homg(Ig(EB),Ig(EK(B)))C“”(Uu)>: @ o)A
’LUGW(M,O)mgm

(b) The elements AXT,Y with rw € W(M,O)sgu span a subalgebra isomorphic to
CIW (M, O)osu,u], where t, is the 2-cocycle from (6.18). This provides an
algebra isomorphism

1.Endg(I§(Eg))He1, = C™(U,) x C[W (M, O)sou tul,

where we take the crossed product with respect to the canonical action of

W (M, O)sgn on C™(U,).
Proof. (a) Recall from Lemma and (5.15)) that Homg (Ig(EB),Ig(EK(B))) has

a filtration with successive subquotients isomorphic to
Homps (w - Ep, Ex(py) = @ ox.K(B),

where w runs through W (M, O)sgy. Considering the left hand side as a subset of
Hom (w-(E@cC*™(U)), E®cC™(U)), we can compose it on the left with C™¢(U)
and on the right with C**(U). Using (2.20)) we find

XcE€Xnr (M7U)

span (C™¢(Uy)Homys (w - Ep, Ex ()0 (Uy)) =

@XEan(M,U) Cme(Uu)¢xCan(Uu) anr(Ma U)Uu NU, 7& 0
0 otherwise ’

In view of the construction of U,, the above condition on w is equivalent to w €
W (M, O)sgu. Furthermore C™¢(U,,)¢, C**(U,) = 0 for all x € Xy, (M, o)\ {1}. We
conclude that

(6.21) span (C™*(U,)Homg (Ig(EB),Ig(EK(B)))C“”(Uu))
has a filtration with subquotients isomorphic to
span (C™¢(Uy,)Homys (w - Ep, Bk (p))C™(Uy)) = C™(Uy) w € W(M,O)szu-

In particular has dimension |W (M, O)sgu| over C™¢(U,,) (notice that C™¢(U,,)
is a field because U, is connected). By the Al are C™¢(U,)-linearly indepen-
dent, so D,cw (11,0),5. C (Uu) Ay, is the whole of (6-21).

(b) The properties involving the elements A7 can be shown in the same way as
at the end of Section [Bl O

Remark 6.8. The elements AT from Lemma[6.7.b multiply like the elements of
W(M,O)sgu (up to a 2-cocycle trivial on W(Esg4)), they normalize C™¢(U,,) and
act on it in a prescribed way. Furthermore, our construction consists entirely of
steps needed to achieve those properties. In this sense, these elements AYT. are
canonical up to rescaling the AY.

6.2. Localized endomorphism algebras with analytic functions.

We set out to find a C*(U,)-basis of 1,Endg(I§(Ep))#1,. An element of
1,Endg(I§(Eg))Hel, lies in 1,Endg (IS (Eg))#1, precisely when it does not have
any poles on U,. By the poles of A, (a0 € Aygy) are precisely the zeros
of pMe(0c ® u® -). In view of Condition the only poles on U, are those at
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{X¥ =1} = {X, = Xo(u)}. The intersection of this set with U, is connected and
equals
Use = uXne(My) NU,.
By Lemma [5.9]a, for a € Aggu, x € Uge:
(6.22) spy (1 — X§) A5, = sp,.
For o € ¥, we define

£ = Xg(QaQa* - 1) + Xa(Qa - QCX*) _ Xg(QQQQ* - 1) + Xa(u (qu - QQ*)
: Xa-1 Xo - (x) '
When gq« = 1 (which happens for most roots), f, reduces to

(Xo +1)(ga — 1) Go — 1

Xo—-Xa'  1-XaV
By (3.6) and Lemma [3.4la
(6.23) W fo = fu(a) a € XouweW(M,O).

One checks that, for o € Aygy, x € Uje:

afax — 1+ Xo () (ga — Gox
(6.24) spy (1 — X3) fa) ZSpX<q d _;F_ ()gg;(_ql q ))

= —(ga — Xa(u))(gax + Xa(u))/2.

By (6.22)) and ([6.24)), the element
(90 — Xa(u))(gax + Xa(u))
2
does not have any poles on U,. Therefore
(90 — Xa(u))(gax + Xa(u))
2
belongs to 1,End¢(I§(Ep))&1,. We note that

1+ f, = Xo%thth* — 1+ Xo(qa — Gox) _ (Xoqa — Xo(u)(Xiqax + Xa(u))
“ X2 -1 (X¥)2 —1 ’

As, + fo € Homg (I§(Ep), I§ (Ex(p)))

T:a = 1“ Asa + 1ufa

(6.25)
Tgua = 1u(1 =+ ffa)’]?i + 1ufa = 7?;(1 =+ fa)lu + falu € luEndG(I]g(EB))aUnlu

The quadratic relations for the operators T§! read:
Lemma 6.9. (T, + 1,)(Ty! — qaGaxly) =0 for a € Aygu.
Proof. With and the multiplication rules for 7% in we compute
(6:26) (T2 + L)(TY, — dats 1) =
Lu((1 4 f-a)Too + folu+ 1u) (L4 f-a) Tl + fo — datas) =
L (L o) (L Ja) T+ (L4 o) Tt (fa = Gatlas + J—a+ 1)+ (fa+ 1) (fa = dadas)

= L (14 F-a) T2 (fa+ foa+ 1= Gadar) + (L F fo) (fa + oo+ 1 = atiar)).

By direct calculation fu + f—q + 1 — gagas = 0, so the last line of (6.26)) reduces to
0. O
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With (5.2)) we compute, for b € C™¢(U,):

bTV — (9o — Xa(u))éqa* + Xa(u))

(6.27) =T (sa-b) + fa(b—54-b)
=T (50 b) + (Gabar — 1+ X5 (g — Gax)) (1 = X7%) 7' (b — sq - b).

Any w € W(Z,gu) can be written as a reduced word 5152 - - - 54, (1) in the generators

So With a € Aygy. We pick such a reduced expression and we define

(6.28) Te=TETY - T € 1,BEndg(I§(Ep))ila.

w s1 82 500y (w)

Lemma 6.10. Let w € W (Xsgy) and r € R(o @ u).

(a) The operator (6.28]) does not depend on the choice of the reduced expression
w = 8§182--" Séo(w)'

(b) (A)~'THAY =T

,]er.

AL (5a-b) + fab

Proof. (a) In view of the defining relations in the Coxeter group W (3,gu), it suffices
to show the following statement. Let o, 8 € Ay With s4s5 of order mqz > 1. Then

(6.29) Tg T Ty, - -T;fl/ﬁ =T, 15T, - -TS"B/Q (magp factors on both sides).

Consider the affine Hecke algebra H with root system {hY : o € Y, gy}, torus
X (M), parameter q};,/ ? and labels

A(he) = 108(dadax)/ log(ar), A (hg) = log(dada.)/ log(qr).

By definition H is generated by a subalgebra C[X,,(M)] and elements T, (a €
Aygy) that satisfy:

e the braid relations (6.29) from W (X,xu);

° (Tsa + 1)(Tsa - QQQQ*) = 0;

o VTs, =T, ,(Sq:b)+ fa(b—8a-b) be C[Xn(M)].
Alternatively, H ®@¢ iy W Eoeu) C( Xy (M)W Eoeu) can be generated by
C(Xy(M)) and the elements
(6.30) Tsa = (Tso + 1)1 + fa)_l - L
These elements stem from [Lusll §5.1], where 1 + f, is denoted G(«). By [Lusll
Proposition 5.2] they satisfy the same relations as our 7, namely Proposition
and ((5.24). That gives a new presentation 0f7—[®C[X (M)W Eowu) C( X (M)W Coou)
with defining relations

e the braid relations from W (X,g,) (but now for the 7g_);

° Tfa =1;

® brs, =Ts,(Sa-b) be C(Xn(M)).
We map U, to Xy, (M) by considering u € U, and 1 € X,,,(M) as basepoints, so
x — u~ly. That gives an injection
(6.31) C(Xne (M) — C™(U).
We checked that the 7,, and the 7;* satisfy the same relations. Hence there is a
unique algebra homomorphism

H ®(C[an(M)]W(Eo_®u) (C(an(M))W(Ea®u) N 1uEndG(I§(EB))5lelu
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that extends (6.31) and sends 7, to 7, for w € W(Xsgy). From (6.25) and (6.30))
we see that T, is mapped T for o € Aygy. As the Ty, satisfy the braid relations

(6.29), so do the T} .

(b) From the definition of T and Proposition |5.2\c we obtain

(9o — Xa(u))(gax + Xa(u))
2

Recall from (6.19) that (A¥)~' = A" ,. Applying that and (6.32) repeatedly, we
find

u\—1lpu fu __ u\—1pu pu U
(633) (Ar) TwAr_(Ar) T, T "'Tséo

s1+ 82

(6.32) T A* =1,

AlAg o A A fyr, = ALTY

Sr_la

AT - TT*1517’T7"*1527‘ Trflsgo(w)r'

(w)
Since conjugation by r € R(o ® u) preserves the lengths of elements of W (3,gu),

r~Lwr = (7“71517“)(7“71527“) N (Tﬁlsgo(w)’l”)

is a reduced expression. Now part (a) guarantees that the right hand side of (6.33])
equals T, . O

The arguments from [Hei2l, §5] apply to the operators A and T in
Homg(Ig(EB),Ig(EK(B))), provided that we only look at U, C Xyu,(M). In par-
ticular [Hei2, Proposition 5.9] proves that, for any x € Uy:

(6.34) {sp Ay Ty, - rw € W(M, O)ogu} is C-linearly independent
in Homg (I§(EB), IS (E, 0 ®X)).
Theorem 6.11. The algebra
1,Endg (I5(Ep)) 1y = span(C*(U,)Enda(IF (Ep))C™ (Uy))
can be expressed as
&b b o= P 1A,
reR(o@u) weW (Bogu) wWEW (Eogu) TER(0®U)
Proof. By (6.15)), for all rw € W (M, O)ogu,
LAY = 1, AT, = ArTel,
and it is a nonzero element of 1,Endg(1§(Ep))#1,. Lemma 6.7 tells us that
D CUUIATE C LEUEEDEL ¢ @) CUU)ATE
rweW (M,0) oo rweW (M,0)osu
With that entails, for any yx € U,, the C-vector space
{spy(A4): A€ 1.Endg (IS (Ep))#1,} has a basis {sp AP Ty : rw € W(M, O)ogu}-
Suppose that f.,, € C™¢(U,) and

- uu G an
A= ereW(M,O)f,@u FrwAUTY € 1,Endg (IS (ER))21,.
It remains to show that all the f,, belong to C*"(U,). Consider any x € U,. By

the above there are unique z., € C such that
spy(A4) =

Then fry(X) = zrw. Hence none of the f,,, has a pole at any x € U,. In other
words, they are analytic. O

ZrwSPy AL T .
erEW(M,O)(,@u rwSPy A L
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Theorem and the multiplication rules (6.15)), (6.18), Lemma (6.27)),
(6.28)), Lemma provide a presentation of 1,Endg(I5(Eg))j'1,. We note that

it is quite similar to an affine Hecke algebra (when R(o ® u) = 1) or to a twisted
affine Hecke algebra [AMS3| Proposition 2.2]. The only difference is that the com-
plex torus 7' in the definition of an affine Hecke algebra has been replaced by the
complex manifold U,, and C[T]| by C**(U,,).

This observation enables us to compute the centre of 1,Endg(I$(Eg))y1, with
the methods from [Lusll Proposition 3.11] and [Sol3) §1.2]:

(6.35) Z(1,Endg (I8 (Ep))itly) = C¥ (U)W (M-Oosu

7. LINK WITH GRADED HECKE ALGEBRAS

We will provide an easier presentation of 1, End¢(/ g(E B))vu Ly, which comes from
a graded Hecke algebra [Lusl]. Let us recall the construction of the graded Hecke
algebras that we want to use, starting from the affine Hecke algebra H in the proof
of Lemma We replace the complex torus Xy, (M) = Hom(M/M?',C*) by its
Lie algebra

Lie(Xy(M)) = Hom(M/M",C) = a}; @r C.

The algebra of regular functions C[X,,;(M)] = C[M/M'] is replaced by the algebra
of polynomial functions

C[Lle(an(M))] = C[a}(\/[ ®R (C] = S(GM ®]R C),

where S denotes the symmetric algebra of a vector space. The group W (M, O) acts
naturally on Lie(X,,(M)) and on Cla}; ®r C].

Recall that in Proposition we associated to every a € Y, elements h) €
M/M' C apr,of € ay;. These elements form root systems X; and Y, respectively.
The quadruple

(aM, {hl, a0 € Sogu},aly, {04jj ca € Yoguk, {hl, a € Ag®u})

will be denoted R,, and is sometimes called a degenerate root datum. Let k" :
Yoou — R>0 be the W(M, O),gy-invariant parameter function

w_ [ log(ga) if Xo(u) =1
o = { 10g(qax) if Xo(u) = —1

We also need the 2-cocycle
fu s R(o @ u)? = (W(M, O)ogu/W (Sogu))? = C

from Lemma It gives rise to a twisted group algebra C[W (M, O)sgu, fu] with
basis {Ny, : w € W(M, O)sxy} and multiplication rules

Nw1 ng = uu<w1; w2)Nw1w2 .

Lemma 7.1. Recall the bijection Qy, : W(M,0)pen — W (M, 0, Xyr(M))y from
(6.11)). The 2-cocycles t, and o, of W(M,O)sgu are cohomologous. Further, £,
induces a canonical algebra isomorphism

Qu : CIW (M, O)ggu, bu] — CIW (M, 0, Xy (M), b].
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Proof. By definition

(7.1 5T 0 ARTE = b0, r0) AL T

for rw,r"w’ € W(M,0),gy. For a generic x € Xp (M), I§(0 ® x) and I§(0 ®

Qu(rw)~ty) are irreducible. Both spy Ay T, and sp, Tq, (rw) are G-homomorphisms
I5(0® x) = I5(0 @ Qu(rw) "),

so they differ only by a scalar factor (at least away from their poles). Furthermore
spy ATy and sp, To, (rw) are rational functions of x € Xy (M), so there exists a
unique f¥, € C(Xy(M)) such that

(72> Agm = fgw,]-(lu(rw)'

By (5.20) Tq, (rw) and ApT,' are regular at every unitary x € Xpn, (M), in particular
at u. Specializing ([7.1)) at v and combining it with (7.2), we obtain

St WPy (T (rrawy) Frow (WSPu (T2, (rw)) = 8Pu (A T )sPu (Ar Ty ) =
B (r'w’, rw)spy, (A Ty ) = B (7w 7W0) [, (W)SDy (T (1700 r)) -

On the other hand, by Lemma
Spu(ﬁ)u(r’w’))spu(ﬁlu(rw)) = h(Qu(T,w/)v Qu(rwwspu(%u(ﬂw’rw))'
Comparing the expressions with 7q, 7) we find that
G ('), Qu(rw))  fie ()
B (W', rw) Jh () fi, (u)

By definition, this says that g, and f o €, are cohomologous 2-cocycles. Moreover

(7.3) shows that
ATy = fr(WTo,guwy 7 € Rlo®@u),w € W(Zogu)

(7.3)

defines the algebra isomorphism STU we were looking for. It is canonical because

every fY, is unique. O

The graded Hecke algebra associated to the above data is the vector space
Cla}; ®r C] @c C[W (M, O)sgu, 1) with multiplication rules

(i) Clay; ®@r C] and C[W (M, O)sgu, bu] are embedded as subalgebras;
(ii) for f € Cla}; ®r C] and o € Aygy:
f—8a- T,
Yy
(iii) Npf = (r- f)N, for f € Cla}; ®r C] and r € R(o ® u).
This algebra is denoted
(74) H(’féua W(Mv O)U®U7 kuv hu)

Weights of representations of this algebra are by default with respect to the commu-
tative subalgebra Cla}; ®r C|. An advantage of over Endg(I§(Ep)) is that a
lot is known about its representation theory, even with arbitrary parameters k4. It
is easy to see that the centre of is

Z(H(,ﬁﬁh W(M7 O)U@uv ku7 hu)) = C[Cb}k\l R C]W(M’O)m@“.

sta _Nsa(Sa'f) :kg
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To interpolate between 1,Endg (1§ (Ep))#1, and a graded Hecke algebra, we need a

version of the latter with analytic functions instead of polynomials. Let U C ay QrC
be an open W (M, O),gqy-stable subset. Like in [Sol3l, §1.5] we consider the algebra

H(Ru, W (M, O) g, k", 1) 2 =
H(Ru, W(M, O)oiur b, hu) ® Con(0) WO

Cla},@rC]" M Ooou
As vector space it is
(75)  H(Ry, W(M,0)ogu, k*, 1) % = C**(U) @c CIW (M, O)sgu; b,
compare with Theorem The multiplication relations (ii) and (iii) in the defi-
nition of H(R, W (M, O)sgu, k", ) now hold for all f € C*(U).
Lemma 7.2. (a) The following categories are naturally equivalent:
i H(Rua W(M7 O)G@m kY, hu)a(jn — Modg;
o H(Ry, W(M,O)oxu, k", bu) — Modf’U.
(b) For a Levi subgroup L of G containing M, there is a version of
H(Ry, W (M, O)ogu, K, b)) that uses only those elements of W (M, O)yzy and
Yoeu that come from L. With that as parabolic subalgebra, the above equivalence

of categories commutes with parabolic induction and restriction in the same sense
as Lemmal6.2.

Proof. This can be shown in the same way as [Opd, Proposition 4.3] and Lemmas
O

We can also involve meromorphic functions on U, in an algebra
(7.6) H(”im W(M,O)seu, k", hu)gm =
H(Ru, W (M, O)ogu, k", ) ® Cme(U) W MO,

C[GXI@DRC]W(M’O)”@“

which as vector space equals

C™(U) @c CIW (M, 0)sgus bu)-
As in [Lusl] §5.1] we define, for a € Ay, the following element of (7.6)):
he,

k4 +hy
According to [Lu~sl, Proposition 5.2], so — ’7~;a extends uniquely to a group homo-
morphism w +— Ty, from W(X,g,) to the multiplicative group of , and
Tof =W )T f€C™(U),we W (Segu).
An argument analogous to Lemma [6.10/b shows that
N TN =T, e re Rlo®@u),w e W (E,gu)-

It is easy to see from (7.7) that the C(a%, ®g C)-span of the T,, coincides with the
C(a}; ®r C)-span of the Ny, (w € W(X,g,). With (7.5) that yields

(7.7) Toa = -1+ (N, +1)

(78) H(,}iua W(M7 O)o’@u) kua hu)gle =
span (C™(U)H(Ruy, W (M, O)pgu, k%, 1)) = @rweW(M o N, T C™e(0).

oc@Ru
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In view of the above multiplication relations, ([7.8]) means that the algebra (7.6 is a
crossed product

(7.9) C™(U) » CW(M, O)owus ful;

where the latter factor is spanned by the Nrﬁ,. We note that these elements Nrﬁ,
are canonical in the same sense as Remark 6.8
Now we specialize to a particular U. The analytic map

exp, : a}; ®r C=Hom(M/M',C) — Hom(M/M' C*)= X, (M)
A > uexp(N)

is a W(M, O),gu-equivariant covering. Notice that
exp, (ajy) = uX . (M).

Let log(U,) be the connected component of exp;, ! (U,,) that contains 0. By Condition
exp, : log(U,) — U, is an isomorphism of analytic varieties. In particular
f — foexp, provides W (M, O)yzy-equivariant algebra isomorphisms

c"(u,) — C"(log(Uy,)) and C™(U,) — C™(log(Uy))

From Lemma (7.8) and the multiplication relations in these algebras, we see
that exp,, induces an algebra isomorphism

®,: 1,Ende(I§(Ep))pel, — H(QU,W(M70)0®u,kU,uu){ggwu)
FAYTY = (f oexpy,) Ny Tw '

Proposition 7.3. The algebra homomorphism ®,, is canonical. It restricts to an
algebra isomorphism

LEnda(I8(ER))# 1y — H(Ru, W(M, 0)ggu, K, )0,

For a Levi subgroup L of G containing M, we looked at parabolic subalgebras in
Lemmas and[7.3. For any such L, ®, restricts to an isomorphism between the
respective parabolic subalgebras.

Proof. We note that as linear map ®,, can be expressed in terms of Lemma [6.7b
and as

(7.10)

exp,, ®@id : C"(U) x C[W(M, O)su, tu] — C™¢(log(Uy,)) x CIW (M, O)sou, tul-

As discussed in Remark the basis elements A7, and N, T,, are constructed in
a canonical way, apart from possible renormalizations of the A and the N,. But the
multiplication relations between the N, are defined in terms of the multiplication
rules for the A}, so that automatically works in the same way for the source and
the target of ®,. Hence shows that ®,, is canonical.

By construction ¢, (C**(U,)) = C*"(log(U,)) and ®,(1,AY) = N,, where 1, A¥ €
1uEndg(Ig(EB))?]n1u and N, € H(Ry, W(M,O)sgu, k*,1,). Hence, by Theorem

it suffices to show that

B, (T) € H(Ru, W(M, O)ogu, k", b)) and @, (Ny) € L,Enda(I§(Ep))i L,

for all w € W(¥,gy). The argument for that is a variation on [Lusl, Theorem 9.3]
and [Sol3, Theorem 2.1.4]. By (/6.28)) for the T}, it suffices to consider w = s, with
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a € Asgy- We compute
(bU(lu + T;i,) = (I)u((lu + 1u7;1;)(1 + fa))
= (1+ 7)1+ fa o exp,)

he, X2QaQa* + Xa(qa - qa*) -1
:(NS&“)(kgfhg)( ) XZ-1 ) o exe,
= (N,, +1) hx 62thaQa* + Xa(u)ehx (qa — Qox) — 1

b k& + he e2hd — 1
= (N + 1)( hg‘/ ) ((thqa — Xa(u))(ehxqa* + Xa(“)))
Sa e2hd — 1 k‘g T hx

By Condition for all v € log(Uy,)
(7.11) hl(v) = log(Xa(u' exp,(v))) has imaginary part in (—7/2,7/2).

\

Hence —¢— is an invertible analytic function on log(Uy,). When X, (u) = 1, (7.11)

V
e2ha —1

entails that e gay+ X (u) is an invertible and analytic on log(U,), and by I'Hopital’s
rule, so is
\% \%2
el gy — Xo(u) B ehagy, —1

kb +hd log(qa) + R
Similarly, when X (u) = —1, €' gy — Xo(u) and

thQOz* + Xa(u) o thch* -1
R Ry 10g(das) T RY
are invertible analytic functions on log(U,). The above computation and these
considerations about invertibility allow us to conclude that

O (1, + T3) = Ly + ©u(T3) € H(Ru, W(M, O) o k", u ),

Applying @, ! to the entire computation and rearranging, we obtain

hay (€' o — Xa(u)) ("4 gas + Xa(U))>—1
(e?ha —1)(kk + hy)

We just argued that the function between the large brackets is invertible and analytic

on log(U,). So its composition with exp,! is invertible and analytic on U,. In

particular ®,1(N,, +1) = &, 1(Ns,) + 1y, lies in 1,Endg(I§(ER))i 1,

On both sides of (7.10)), the parabolic subalgebra (with meromorphic functions)
associated to L is obtained by using only the elements of W (M, O),g, that come
from L. Clearly ®, restricts to an isomorphism between those subalgebras. The
above calculations can be restricted to those subalgebras, and then they show that
®,, also provides an isomorphism between the parabolic subalgebras with analytic
functions. 0

O (N, +1) = (L + 1) oexpy .

8. CLASSIFICATION OF IRREDUCIBLE REPRESENTATIONS

8.1. Description in terms of graded Hecke algebras.
In Sections [6] and [7] we investigated the following algebra homomorphisms:
Endg(I§(Ep)) — Endg(Ig(ER))i < 1,Endg (I8 (ER))i .,

= H(Ruy WM, ) K 1)y ¢ H(Ruy WM, O) gz, kY. ).

(8.1)
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Corollary 8.1. There are equivalences between the following categories:

(i) H(ﬁ'w W(M7 O)U®U7 k", hu) - MOdf,a*M ;

(i1) End (1§ (Ep)) = Mody v (as o 0w (M))yuxih (M)
(iii) {m € Rep(G)* : Sc(w) € W(M,0){oc @ux : x € X, (M)}.
Once the 2-cocycle t, has been fized (by normalizing the elements Al, and N, ), these
equivalences are canonical. The equivalences commute with parabolic induction and
Jacquet restriction, in the sense of Proposition [{.1]

Proof. Since f, is given, we may apply Proposition By Lemmas
and Proposition the homomorphisms provide canonical equivalences
between the categories of finite dimensional modules of the respective algebras, with
the restriction that we only consider modules all whose central weights lie in, re-
spectively U/W (M, o, Xnr(M)) (twice), Uy, /W (M, O)szw and log(Uy,) /W (M, O)sxu
(twice). Restricting from log(U,) to a%, and from U, to uX,} (M), we obtain the
equivalence between (i) and (ii).

The equivalence between (ii) and (iii) can be shown in the same way as in Lemma
[6.4] It is always canonical.

The compatibility with parabolic induction and (Jacquet) restriction was already
checked in all the results we referred to in this proof. O

Sometimes it is more convenient to use left modules instead of right modules. That
could have been achieved by considering the G-endomorphisms of I§(Eg) as acting
from the right. Then we would get the opposite algebra Endg(I§(Ep))°, and item
(ii) of Corollary [8.1| would involve left modules of Endg (1§ (Ep))°. The construc-
tions summarised in relate those to left modules of H(Ry, W (M, O)ggu, k%, 1) %.

Fortunately, with the multiplication rules (i)—(iii) before it is easy to identify
the opposite algebra of a (twisted) graded Hecke algebra. Namely, there is an algebra
isomorphism

H(Roy, W (M, O)ogu, k%, 8)P  — H(Ry, W(M, O)ggu, k¥, 151)
Nrwf — wa—lr—l )

The only subtlety to check in is that the 2-cocycles match up — for that one
needs .

Thus the categories in Corollary are also equivalent with the category of finite
dimensional left HI(R,, W (M, O)sgu, k%, b, ')-modules, all whose C[a%,@rC]-weights
lie in a},;. In other words, for the algebras that we consider it does not make too
much difference whether we use left or right modules.

For x. € Xn (M, o), the M-representations o0 ® u and o ® ux, are equivalent, and
sometimes it is hard to distinguish them. Fortunately, the equivalences of categories
from Corollary are essentially the same for ¢ ® u and ¢ ® uy,.. To make that
precise, we assume that in the choices are made so that

(8.2)

(83> Proyen — ¢U7ch7",cr®u¢;§<c-

Lemma 8.2. Let x. € X\ (M, 0).

(a) The algebras H(Ry, W (M, O)osu, k%, bu) and H(Ryu, W (M, O)ssneus KX, byou)
are equal.

(b) Let V € H(Ry, W(M, O)ssu, k¥, Iu) — Mods oz . Then its image in
Endg(I$(Ep)) — Mod; wvia Corollary coincides with the image of V' as
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H(ﬁxcu, W (M, O)ooyeus KX, Byou)-module in Endg(Ig(EB)) — Modg, obtained
from Corollary[8.1] for x.u.

Proof. (a) The M-representations ¢ ® u and o ® uy. are the same in Irr(M) and
W(M,O) acts on that set, so W(M,O)ogu = W(M,O)ogy.u. By the Xn (M, 0)-
invariance of pMe, R, = ﬁxcu and k% = kXU,

Conjugation with ¢, provides an algebra isomorphism

Ad(¢y,) : 1Enda(I8(Ep))i Ly = 1yuEnde(I5(EB))i 1yeu,

and similarly with meromorphic functions on U. By this isomorphism sends
Te (w € W(M,0)ogu) to T, so the 2-cocycles b, and iy, of W(M,O)sgy
coincide. Furthermore Ad(¢,.) sends f € C*(U,,) to f(xz '), which equals

(exp, © exp;clu)* f. Thus Proposition gives a commutative diagram

H(Ruy, W(M, O)ogu, kY, fu) -  L,Ende(I§(Ep))¥1,
(8.4) ) | L Ad(¢y.)
H(Ryew, W (M, O)oryeus KX, lyeu) — 1xcuEndG(IJCj(EB))%Jnlxcu

(b) Let us retrace what happens in (8.1). First we translate V' to a module for
1,Endg(I§(Eg))21, (on the same vector space). Then we apply the Morita equiv-
alence in Lemma[6.4] That yields a module

V' = Endg(I$(Ep))iP ® V= &y Vs,
L Endg(I§(EB))iP 1y WEW (Mo Xne (M))u

where V,; € 1,,Endg (IS (Eg))#1,, — Mod; has the same dimension as V. This V" is
also the Endg(I§(Eg))-module that results from (8.1]). From the proof of Lemma
6.4 we see that Viy = VT, for a w' € W(M, o, Xn,(M)) which satisfies w'u’ = u
and whose length is minimal for that property. In particular V,,, = ng;cl.

Hence the module of 1,.,Endg(I§(Ep))#1,,, obtained from V' via Lemma
is Ad(qb;cl)*. In view of the commutative diagram ({8.4]), this procedure recovers V/

as module of H(ﬁxcu, W (M, O)ooyeus KX, lyeu). Then Corollary for y.u implies
that V in the latter sense has the same image in Endg(I$(Ep)) — Mod; as V in the
former sense. O

A weaker version of Lemma [8.2| holds for all points in W (M, o, Xpn(M))u.

Lemma 8.3. Let w be an element of W (M, o, Xpr(M)) which is of minimal length
in the coset wW (M, o, Xpr(M))s.

(a) Conjugation by Ty, gives rise to an algebra isomorphism
Ad(Tw) - H(Ruy W (M, 0)ogus K, ) = H(Ruy(u)s W (M, O)gguuy ), )

with Ad(Ty)(CNy) = CNypp-1 forv € W(M, O)ogu and Ad(Ty)(Ny) = Nypw-1
for v e W(Zogu).
(b) Let V € H(Ru, W(M, O)ogu, k*, ) — Modg with WHV') C a},;. Then V and

(
Ad( w_l)*v € H(T‘S’w(u)v W(Mv O)J@w(u)a kw(u)’ hw(u)) — Modg

have the same image in Endg(I§(Eg)) — Mod; (via Corollary for, respec-
tively, o @ u and o @ w(u)).
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Proof. (a) From the proof of Lemma we see that 7,1, € Endg(I$(Eg)) and
Tol Tyt = Ly(u)- Therefore conjugation by 7, gives an algebra isomorphism

Ad(Ty) : LEndg (IS (EB))# 1y — Ly Ende (I8 (Ep)i Luw).,

which on C*(U,) is just f +— fow™!. The elements T, 7,7, with v € W(Z,g4)
satisfy the same multiplication relations as the elements 7% _; and they have the
same specialization at w(u) (namely the identity on I§(E), by Lemma/5.9a). There-

fore Ad(Ty)(T)") = Tw(;j)_l. The same applies to the A¥ with r € R(o ® u), but

wv
for those we can only say that spw(u)%AZfﬁU_l and spy, () Awre-1 are equal up to a

scalar factor. Hence Ad(7y)(AY) is a scalar multiple of A

wrw—1"

Via Proposition Ad(T,) becomes an algebra isomorphism

H(ﬁua W(M, O)o@m ku’ hu)?ong(Uu) — H(ﬁw(u)v W(M’ O)a@w(u)v kw(u)’ hw(u))?urzlog(Uu))'

It restricts to f — fow on C*"(log(U,)) and sends N, to N,,,-1 for v € W(E,eu),
and to a scalar multiple of that for v € W(M, O),gy. Now it is clear that Ad(7y)
restricts to the required isomorphism between (twisted) graded Hecke algebras.

(b) This can be shown in the same way as Lemma [8.2]b. O

Corollary [8.] tells us that there is a surjection from the union of the sets
{r € Irr(H(Ry, W(M, O)ou, k", 1)) : Wt(m) C aly}

with u € Xunr(M) to Irr(End (I8 (Eg))). For uand u’ in different W (M, o, Xy (M))-
orbits, the images in Irr(End(I§(Eg))) are disjoint. For u and u’ in the same
W (M, 0, Xpn(M))-orbit, Lemma [8.3]b tells us precisely which modules of

H(Ray, W(M, O)oou, k% 1) and  H(Ry, W(M, O)pgu, k™, bur)

have the same image — the relation between them comes from an element w €
W (M, o0, Xy (M)) with w(u) = '. If we agree that W (M, o, Xy, (M)),, acts trivially
on Irr(H(fQu, W(M, O)ssu, k*, hu)), it does not matter which w with w(u) = u' we
pick. Thus we obtain a bijection

Uuexm(M){” € Ir (H(Ru, W(M, O)ogu; k. 5u)) : Wt(m) C ajy }/W (M, 0, Xor(M))
(8.5) — Irr(End(I§ (ER))).

Here the group action of W (M, o, X,y (M)) on the disjoint union comes from the
relations described in Lemma [8.3

8.2. Comparison by setting the g-parameters to 1.

It is interesting to investigate what happens when in Corollary we replace the
parameter function k% by 0. It is known that the analogous operation for affine Hecke
algebras gives rise to a bijection on the level of irreducible representations [Sol3l
Sol7]. Replacing all the £* by 0 corresponds to manually setting all the parameters
da and g« to 1. In view of Corollary that transforms Endg(I§(Eg)) into
ClXnr (M) xC[W (M, 0, Xnr(M)), i]. Therefore we start by analysing the irreducible
representations of that simpler crossed product algebra.
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Lemma 8.4. There is a canonical bijection
|_|UEX (M){w € Irr (C[Xne(M)] 3 C[W (M, 0, X (M) ), 1]) : Wt(m) C uX,f (M)}

J/ W(M, 0, Xn:(M))
— Irr (C[ X0 (M)] % C[W (M, 0, X1 (M), 1]).

Here w € W(M, 0, Xn:(M)) acts on the disjoint union by pullback along the algebra
isomorphism Ad(N,1) :
ClXur(M)] x CIW (M, 0, Xr(M)) (), ] = Cl[Xne(M)] x C[W(M, 0, X (M))u, -
Proof. Choose a central extension I' of W (M, o, Xy, (M)) such that f becomes trivial
in H?(T',C*). Then there exists a central idempotent
py € Clker(I' = W(M, 0, Xy, (M)))] such that
(8.6) CIW(M, 0, Xn:(M)), 1] = pyC[I'].

The isomorphism sends CN,, to Cpy N, for any lift w € T of w € W(M, 0, Xy (M)).

Lift the W(M, o, Xy (M))-action on Xy (M) to I' and note that gives rise
to a bijection
(8.7)
Irr (C[ X (M)] X C[W (M, 0, X (M), ]) +— {V € (C[X0e(M)] x C[I]) : pV # 0}.
By Clifford theory every irreducible representation 7 of C[X,,,(M)] x C[I'] is of the
form

. 1C[Xnr (M)]xC[I

(88) indep ety (X © );

where x € X;,;(M) and p € Irr(T'y). Moreover the pair (x, p) is determined by ,
uniquely up to the I'-action

Y(x,p) = (v(x), Ad(N; 1) *p).

When w is the unitary part of x, I', D I'y. Again by Clifford theory, every irreducible
representation of C[X,,(M)] x Ty, is of the form

C[Xnr (M)]xC[Ty]

ind(c[an(M)] N(C[Fu’x] (X b2 p);

where (x, p) is unique up to the action of I',. Hence there is a canonical bijection
|| Tr@y) /Tu — {7 € Ir(C[Xur(M)] x Ty) : Wt(m) C uXf (M)}
XEuXi (M)
Comparing this with Clifford theory for C[ Xy (M)] x C[I'], we deduce a canonical
bijection
| | {7 € Irr (C[Xur (M) xC[TW]) : W(r) € uX, 5 (M)}/T — Irr(C[ Xy (M)] = T).
UEXunr(M)

Now we restrict on both sides to the subsets that are not annihilated by p; and we

use . O

It is possible to vary on Lemma [8:4] by taking on the left hand side a vari-
ety in which uX (M) embeds, for instance a}; ®g C with as embedding exp, ! :
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uX (M) — a};. Then Lemma [8.4] provides a canonical bijection between
Irr (C[ Xy (M)] 3 CIW (M, 0, X1 (M), 1]) and

Uuexum<M){” € Trr(Claj, @r C] x C[W (M, 0, Xur (M), 1]) : Wt(n) C @}
(8.9) /W (M, o, Xn:(M)).
With Lemma we can identify with
U, oy {7 € T (Clads @ €] x CIW (M, O)ou, 1) - We(r) C ajr}
(8.10) / W(M, 0, Xy (M)).
Notice that
C[a*M ®RrR (C] X (C[W(M7 O)O'®'LL7 hu] = H(Ifé’u? W(M7 O)O'@”LL? 07 uu),

a (twisted) graded Hecke algebra with all parameters k, equal to 0. In [Solll [Sol3]
we studied how graded Hecke algebras behave under deformations of the parameters
kq. To formulate that properly, we recall some results from the representation theory
of graded Hecke algebras.

For P C A,gu, we denote the Weyl group generated by the reflections s, with
a € P by Wp. The set Cla}; ®r C]C[Wp] constitutes a parabolic subalgebra H(P, k)

of H(Ru, W(Zowu), k). As algebra, it decomposes as a tensor product
Clspang(P)]C[Wp] @ C[(aj; ®r C)*'],

where the subscript L. P denotes the subspace orthogonal to the set of coroots PV.

The Langlands classification, proven for graded Hecke algebras in [Eve], expresses
irreducible representations in terms of parabolic subalgebras, tempered representa-
tions and parabolic induction. See Definition for temperedness. We need an
extension that includes R-groups like R(oc ® u). Such a version was proven for affine
Hecke algebras in [Sol3| §2.2]. In view of Lusztig’s second reduction theorem [Lusl),
§9], generalized in [Sol3l, Corollary 2.1.5], that extended Langlands classification also
applies to graded Hecke algebras.

Proposition 8.5. [Sol3|, Corollary 2.2.5]

Let ' be a finite group acting linearly in a};, stabilizing Xogy and Aggy-

(a) Suppose that the following data are given: P C Apgu, t € (a},)tF which is
strictly positive with respect to Aygy \ P, a tempered T € Irr(H(P, k)), an irre-
ducible representation p of C[I'pr+, K] (where the 2-cocycle k is determined by
the action of 'pry on 7). Then the H(Ry, W (EXs0u)T, k)-representation

. JH(Ru,W (Zegu)T,k

lndHEP,k)x([(I[FSTi] ((rat)®p)
has a unique irreducible quotient. It is called the Langlands quotient and we
denote it by an L.

(b) For every m € Irt(H(Ry, W(Xogu)L', k)) there exist data as in part (a), unique
up to the action of I, such that

~ . H(ku,w(zd u)T,K)
= L<1ndH(P,k)><1(C[FIST,t] (c®t)® p))'

In Proposition [8:5la we can combine 7 and p in

. JH(Pk)xTp,
(8.11) = indypyyen (T ®p),
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an irreducible tempered representation such that

- AHRLW (Sogu)Tk) o H(RuW (Sogu)l k)
de(ka)NC[F?’,t} (r'et) = de(P,k)xC[Fir,t] (r&t)©p).

Then Proposition holds also with the alternative data P, 7/, t.

Theorem 8.6. There exists a bijection

Cu : {V € It (H(Ru, W(M, O)ogu, k", ) : WE(V) C ajy}
— {V € Irr(Claj; ®r C] x C[W (M, O)ogu, tu]) : WH(V) C ajs}
such that
e 7 is tempered if and only if (,(m) is tempered,

e (, is compatible with the Langlands classification from Proposition [8.5]

Proof. First we get rid of the 2-cocycle f,. Choose a central extension
l1—-Z(oc®u) =T = Rlc®u) —>1

such that f, becomes trivial in H?(I',C*). Let p,, € C[Z(c ® u)] be a central
idempotent such that

5. ClZ (o @ u)] = C[R(0 @ u), fu]-
For both k£ = k" and k£ = 0 that gives a bijection

Irr (H(Ro, W(M, O) g, by b)) — {V € It (H(Ru, W(Eo0u)T, k) ¢ py, V # 0}
Hence it suffices to construct the required bijection with T' instead of R(o ® u),
provided that it does not change the Z (0 ® u)-characters of representations.

Consider 7 € Irr(H(Ruy, W(E4eu)T, k) with Wt(7) C a},. By Proposition
with the modified data from (8.11]), we have

~ 7 [ AH(RYW (Sogu)Tk)
(8.12) ™= L<1ndH(P,k)xC[F§t] (7’ ®t))’

for data (P,7',t) that are unique up to the I'-action. Since both Wt(x) and ¢ lie in
at, and Wt(7') + ¢ consists of weights of 7 [Eve], we must have Wt(7') C a},. By
[Soll, Theorem 6.5.c] the restrictions to C[WpI'p,] of the set

(8.13) {V € Irr(H(P, k) x C[I"py]) is tempered and Wt(V)) C aj,}
form a Q-basis of the representation ring of WpI'p;. As Z(c®u) C I'p;, we can find
a bijection (p; from to Irr(WpI'py), such that (p(V) occurs in V]C[prp’t].
We regard (p:(V) as a Cla}; ®r C] X C[WpI'p;]-representation on which Cla}, @ C]
acts via evaluation at 0 € a},.

Now we define

(8.14) Cul) = L(indggggaféﬁ‘fﬁ)r’o)(CRt(T’) ® t)).

By Proposition .5} this is a well-defined irreducible representation of
H(Ry, W(Esgu)T,0). The only weight of (p4(7') is 0, so by [BaMo2, Theorem 6.4]
Wit (Cu(m)) C W(Esgu)It C a)y.

The analogy between (8.12)) and (8.14) is our compatibility with the extended Lang-
lands classification. The construction of (,, also works in the other direction (with
C;;), so it is bijective. Since (, is built from operations that do not change anything
in Z(o ® u), it preserves the Z(o ® u)-characters of representations. O




58 ENDOMORPHISM ALGEBRAS FOR P-ADIC GROUPS

A canonical choice for the bijection (p; in the above proof is provided by [Sol7,
Theorem 6.2]. By that and [Sol7, Proposition 6.10], the map (, is canonical once the
2-cocycle f, has been fixed. But, there is one caveat. Namely, [Sol7] deals with all
parameter functions k : R — Rx, except for root systems of type Fjy, for those only
certain positive parameter functions are analysed. In the sequel [Sol8] we show that
all the parameter functions k, occurring in this paper are among those investigated
in [Sol7].

For any w € W (M, o, Xy,(M)), conjugation with 7,, in Endg(I$(Eg)) @5 K(B)
defines an isomorphism

Ad(Tw) : CIW (M, 0, Xor(M))u, ] — C[W (M, o, an(M))w(u)7 i

Recall from Lemma [7.1] that C[W (M, O)sgu, ] is embedded in

CIW (M, 0, Xu(M))u, 4] as the span of W(M, o, Xy (M))y. Thus Ad(Ty) can be
transferred to an algebra isomorphism

Ad(Nw) : C[W(M7 O)a@m uu] - C[W(M7 O)O'®w(u)7 uw(u)L

which sends CNgq,(, to CNQw(u)(wvwfl). We denote the differential of w : U, —
Uw(u) also by w, but now from a}, ®r C to itself. For f € Cla}, ®r C] we define
Ad(Ny)f = fow™!. These instances of Ad(NN,,) combine to an algebra isomorphism

Ad(Nw) : H(’}éua W(M, O)J®u7 ku’ hu) — H(,}iw(u)a W<M7 O)a@w(u)7 kw(u)’ uw(u)>

For w € W(M, 0, Xn(M))y, this is just the inner automorphism Ad(Ng, () of
H(Ru, W (M, O)ssu, k, 1u). For other w € W(M, o, Xpr(M)) the notation Ad(N,)
is only suggestive, because we have not defined an element N,,.

With all that set, we define a bijection
(8.15)

AANGY: Ter (H(Royy WM, O) g, k%, 1)) — H(Rur, W(M, O)paur, K, ),
for any w € W (M, o, Xn,(M)) such that w(u) = «'. Since inner automorphisms
act trivially on the set of irreducible representation of an algebra, does not
depend on the choice of w with w(u) = u’. Clearly, the construction of Ad(N,,) also
works with k& = 0 instead of k% and k%),

However, because of the lack of canonicity of (, it is not clear whether

Cuw(w) © Ad(N,1)* = Ad(N, )" 0 (.

To achieve that desirable equality we can enforce it in the following way. For every
W (M, o0, Xn(M))-orbit in Xyn, (M) we fix one representative u. Then we define

(816) Cuuy = Ad(N3Y)* 0,0 Ad(N,)" :
{V € Irr(H(,}éw(u)v W(M7 O)U@uz(u)a kw(U)a hw(u))) : Wt(V) C a’ﬁl}
— {V e Irr((C[a}"\/[ ®@r C] x C[W (M, O)G®w(u), hw(u)]) : Wt(V) C ay}-
When w is of minimal length in wW (M, o, X, (M))y, it sends Aygq to A0®w(u).

Then w(a},), = (a*M);(u), so Ad(N,')* preserves temperedness. That particular

Ad(N;1)* also maps a Langlands datum (P, 7,t') (as in Proposition to another
Langlands datum, so it respects the compatibility with the Langlands classification
from (8.12) and (8.14]).

As (, as defined in , does not depend on the choice of w with w(u) = v/,
this means that ¢,/ always satisfies the requirements of Theorem [8.6]
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Corollary 8.7. There exists a bijection
¢ : Irr(Endg(I§(ER)) — It (C[ X (M)] 3 CIW (M, 0, Xy (M))], 5])

such that Wi(m) C W (M, o, Xn(M))uX (M) if and only if
WH(C(r)) C W (M, 0, Xon(M))u X5 (M).

Proof. With we decompose Irr(Endg (I (Ep))) as a disjoint union over

Xunr (M), modulo an action of W (M, o, Xy, (M)). Notice that the W (M, o, Xpy(M))-
actions in and agree, because both are induced by Ad(7,,). By Theorem
the terms in the disjoint union in are in bijection with

{V € Irr(Cla}; ®r C] x CIW (M, O)pgu, tu]) : WH(V) C ajy}-
By (8.16]) the bijections from Theorem are W (M, o, X, (M))-equivariant. That

brings us to the left hand side of Lemmal[8.4l Applying that lemma, we finally obtain
the required bijection. O

9. TEMPEREDNESS

Like in [Hei3l, [Sol5], we want to show that the equivalence of categories
£ : Rep(G)® — Endg(I§(Ep))-Mod

preserves temperedness. At the moment we have not even defined temperedness for
representations of Endg(I$(Eg)), so we address that first. We also consider (es-
sentially) discrete series representations of Hecke algebras, which correspond, under
some extra conditions, to (essentially) square-integrable representations in Rep(G)°.

Our definition will mimick that for affine Hecke algebras [Opd, §2]. It depends on
the choice of the parabolic subgroup P with Levi factor M. Before we just picked
one, in this section we have to be more careful.

Recall that Ag is a maximal F-split torus of G, contained in M. By the standard
theory of reductive groups [Spr] there are (non-reduced) root systems (M, Ag) and
¥(G, Ap) in X*(Ap). Further (G, M) U {0} is the image of ¥(G, Ag) U {0} in the
quotient X*(Ap) @z R/RX(M, Ayp).

The root system Yo, is contained in Xyeq(Anr) C 3(G, M). We write

EO’M—FE(M,A()) ={a e X(G,Ay) : a+RE(M,Ay) € RZ@,H},
a parabolic root subsystem of 3(G, Ay).

Lemma 9.1. There exists a basis A of (G, Ag) which contains a basis Aprq of
(M, Ag) and a basis AQ; of Lo, +E(M, Ao).
Proof. Choose a linear function ¢ on X*(Ag)®zR such that, for all o € ¥(M, Ag), B €
207M+Z<M,Ao) \ E(M,Ao) and v € E(g,Ao) \ 2(97“—1-2(/\/1,«40):
0 < [t(a)] <[tB)] < [t()].
Now take the system of positive roots
¥(G, Ag)t = {a € X(G, Ag) : t(a) > 0}

and let A be the unique basis of ¥(G, Ap) contained therein. Then A consists of the
positive roots that cannot be written as sums of positive roots with smaller ¢-values.
Hence A consists of a basis of ¥(M, Ap), added to that some roots to create a basis
of X, +X(M, Ag) and completed with other roots (all with ¢-values as small as
possible) to a basis of (G, Ap). O
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Let Py be the "standard” minimal parabolic F-subgroup of G determined by Ag
and A and put P = PpM. Then (G, M) is spanned by A\ Ap and AQ, \ Ay
spans RXp ,. We note that

(aj)tRowm = {z €a}y : (¥, 2) =0Va € Ap,} = {z €a}y: (@¥,z) =0Va € A}

always contains af, = X*(Ag) ®z R, but can be larger (if ¥p , has smaller rank
than ¥(G, M)). Consider the obtuse negative cones with respect to Ao ,:

e
ay, = E T : Lo € Re
M { aEAo,,L o a _0}7

ay = {Zaer,H Tl Ty € R<0}.

Definition 9.2. Let 7 be a finite dimensional Endg(I§(Ep))-representation. Then
m tempered if Wi(r) C Xunr(M)exp(ay,). We say that m is discrete series if
(ah)F20n = 0 and Wi(r) C Xune(M)exp(ay; ). We call m essentially discrete
series if Wi(mr) C exp((ah;)t20n @ C)Xune(M)exp(at; 7).

These definitions also apply to luEndg(Ig(EB))aUnlu, provided that we replace
Aoy by Aggy. This means replacing ay; by

(a)y == {ZQGA TaQ: Ty € Rgo}

ocQ@u

and similarly adjusting ay; ~ to (a%,),~ and (a},) 278w to (a},)tA0ou.

Let k : Yogu — R be a W(M,O)sgu-invariant function. We say that V €
H(Ru, W (M, O)osu, ky 1) — Mody is tempered if WH(V') C ia’, + (a%,)s, essentially
discrete series if WH(V') C (a%,)*2®e +ia%, + (a%,),~ and discrete series if it is
essentially discrete series and (a},)+2o@« = 0.

We note that Definition [9.2] also makes sense for localized or completed versions
of Hecke algebras, because those still have a root system and a large commutative
subalgebra with respect to which one can consider weights.

9.1. Preservation of temperedness and discrete series.

We will investigate these aspects of the relation between Rep(G)® and
Endg(I§(Ep)) — Mod via graded Hecke algebras. From Corollary we recall the
equivalence of categories between

* Endg(IF(EB)) — Mod; 1y (ar o x, () yuxih ()
L H(Ru, W(M7 O)U®U7 ku) hu) - MOdf,a}kW~

Proposition 9.3. (a) The above equivalence of categories preserves temperedness.

(b) The above equivalence of categories preserves discrete series.

(¢) Any V € Endg(I(ER)) — Mode/V(]V[’O_,Xm(M))uXrTr(M2 is essentially discrete se-
ries if and only if the corresponding module for H(Ry, W (M, O)sgu, K, i) is
essentially discrete series and Yygy has full rank in Yo .

Proof. We have to consider all the steps in (8.1]), for those give rise to the equivalence
of categories in Corollary [8.1] Pullback along

Endc(I§(Ep)) — Endg(I§(Ep)):
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does not change the C[X (M )]-weights, nor the root system, so that step certainly
preserves everything under consideration. Similarly pullback along

H(ﬁ'ua W(M7 O)U®u7 kuv hu) — H(,ﬁ/u? W(Ma O)o@u, ku) hu)?ong(Uu)

is innocent for our purposes.
The algebra isomorphism

LEnda(I8(Ep))H Ly — H(Ru, W (M, O)ogu, k", )0

from Proposition has the effect exp, on weights. Since the root systems on both
sides are the same,

expy,(iayr + (ahr)y ) = Xune(M) exp((aiy)y, ),

expy(iayy + (@), ™) = Xune(M) exp((air), ),
expy, ((ajy) 2o +ialy + (aig)y ™) = exp ((ai) " 27%) Xunr(M) exp((aiy)y ).

From Definition [9.2] we see that the equivalence of categories coming from this alge-
bra isomorphism preserves temperedness and (essentially) discrete series.
It remains to investigate the Morita equivalent inclusion

(9.1) 1.Endg (IS (Eg))#1, — Endg(I(Ep))®

from Lemmaé@ Notice that here the root system changes from ¥yg, to X . Let
V € Endg(I3(EB)){* — Mod¢ be a module corresponding to V,, €
1uEndg(I§(EB))aUn1u — Mods. The relation between the C[X,,, (M )]-weights of V,,
and V was described in Lemma [6.5, in terms of a set of representatives W for
W(M, o, Xu(M))/W (M, 0, Xny(M))y.

In Definition [9.2] the unitary parts of C[X,,, (M )]-weights are irrelevant, the condi-
tions depend only on the absolute values of C[ Xy, (M )]-weights. Therefore it suffices
to consider these weights as elements of Xy, (M)/Xn(M,0) = O, or equivalently
as characters of C[Xy,(M)/Xn(M,o)]. We indicate this by Wt’ (V') and Wt’(V,,).
Then Lemma [6.5] becomes

Wt/ (V) = W (V)N Xy (M, 0) Uy / X (M, o),
W' (V) = {w(x) :w e W* x € Wt'(V,,)}.

In view of Remark [6.1] Wt'(V') is stable under R(O). Therefore we may replace W*
by R(O)W (X0,.)", where W (Xp,,)" is a set of shortest length representatives for
W(Xo,u)/W(X0,u)u- Since Wt'(V,,) is stable under R(o ® u) and

W(Xo,u)u C R(o @ u)W(Esau),

we may also take for W (3o )" a set of shortest length representatives of
W(Xo,u)/W (Xogu), then still

Wt'(V) = {rw(x) : v € R(O),w € W(Z0,,)", x € Wt'(Va)}.

Now we are in a setting where, under the Morita equivalence from Lemma [6.5
the root systems and C[Xy(M)/Xnr(M,0)]-weights behave exactly as in [AMS3]
Theorem 2.5.c]. That enables us to apply the arguments for [AMS3, Proposition
2.7] (which can easily be rephrased in terms of a root datum and an extended
Weyl group acting on it). The conclusions from [AMS3, §2] about the behaviour
of temperedness and (essentially) discrete series with respect to (9.1]) are exactly as
stated in the proposition. O
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Now we will translate Endg(I§(Eg)) to the module category of an affine Hecke
algebra, as far as possible. Every finite dimensional Endg (I (Fp))-module decom-
poses canonically as a direct sum of submodules, each of which has weights in just
one set W (M, o, X (M))uX,L(M). Combining that with Corollary and Lemma
m we obtain equivalences of categories between Rep(G)®, Endg (15 (EB)) — Mods
and

92 D, HRu WAL, O)oiu, k. 1) = Modyy, /W (M, 0, X (M)).

To make sense of this as category, the action of w € W(M, o, Xn(M)) on the sum-
mands indexed by u with w(u) = w is supposed to be trivial. Hence the quotient
operation only takes place in the index set Xy, (M), and the result can be considered
as a direct sum of module categories, indexed by Xyn (M)/W (M, o, Xp(M)). Un-
fortunately this is not canonical, it depends on the choice of a set of representatives
for the action of Xy, (M, o) on Xyn(M).

With Lemma we can rewrite (9.2)) as

(9-3) ®ueXunr(M)/an(M,a) H(Ru, WM, O)ogu, K, bu) = Modray, /W(M, O).

This is very similar to the module category of an affine Hecke algebra with torus
Xunr(M)/ X (M, o) = Irr(M2/M"). To make that precise, consider the algebra

o G o G
Endg (19(Ep)) = Ende(IF En) 1D, 5.,
Corollary and 7, € End(;(Ilg(EB))X for r € R(O) entail that
Enda(15(Es)) = P

All the calculations in Sections also work with Endg(I§(Eg)), provided we
replace W (M, O) by W(Xo,,) and W(M, o, Xy, (M)) by Xn(M,0) x W (X0,,) ev-
erywhere. (These restrictions only make the computations easier.)

For any u € Xun (M), Lemmas and imply that the 2-cocycle f, of
W (M, O)sgy is trivial on W (20 ,)oeu- The proof of Lemma provides a canon-
ical normalization for the involved 7,7, so that f,, disappears in this setting. In the
end we find that, like (9-3), End%(I§(Ep)) — Modg is equivalent with

C(Xur(M)) Ty

o (1G
rER(O) Endg (15 (EB))T;.

(9.4) H(Ru, W (S0 u)oeu k) — Modgar /W (S0,)-

®u€Xum(M)/an(M,a)
Recall the root datum
(S, MZ/M*, S0, (MZ/M")Y)

from Proposition Endow it with the basis determined by P, parameter gr and
the labels

(9.5) A(he) = 10g(dadax)/ log(ar), A*(he) = 10g(dadan)/ log(ar).
To these data we associate the affine Hecke algebra
(9-6) H(O.G) = H(Sh, M7 /M, So, (M7 /M) A\ N, qr).

From Lusztig’s reduction theorems [Lusl], in the form J[AMS3, Theorems 2.5 and
2.9], we see that H (O, G) —Mod is also equivalent with (9.4)). The group R(O) acts
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on the root system and on the algebra , preserving all the structure. With a
2-cocycle

(9.7) i (W(M,0)/W(20,))? — C*
we build a twisted affine Hecke algebra
1(0,G) x C[R(0), ]

as in [AMS3, Proposition 2.2]. Let g, be the restriction of § to W (M, O)ygy. From
[AMS3, Theorems 2.5 and 2.9] we see that (O, G) x C[R(O), i] — Mod; is equivalent
with
(9.8)
&y H(Ru, W (Zogu), k") % C[R(0 @ u), 5] — Modgq:, /W(M,0).
u€Xunr (M) / Xnr(M,0)

Notice that here we do not see the entire 2-cocycle E, only its restrictions to the
subgroups W (M, O),gy. Let us summarise the above observations:

Corollary 9.4. (a) There exists an equivalence of categories
End% (IS (Ep)) — Mods «+— H(O,G) — Mod.

Thus Endg(I§(ER)) has a subalgebra, over which it is of finite rank, and that
subalgebra is almost Morita equivalent with an affine Hecke algebra.

(b) Suppose that B is cohomologous to u, for each uw € Xyn(M). Then the cate-
gories H(O,G) x C[R(O), ] — Mod; and Endg(I§(E)) — Mod; are equivalent.

Although the equivalences of categories in Corollary [0.4] look like Morita equiv-
alences, they are not quite, because we do not know whether they extend to mod-
ules of infinite length. Let us describe part (b) more explicitly. Start with V' €
Endg(I§(Ep)) — Mod;. Decompose it as

_ +
V= @uexm apy V. where Wt(V,,) C uX,5(M).

Pick a fundamental domain X for the action of X (M, o) on Xyp(M). Then put
V= @D.cx Vu, this is the associated H(O, G) x C[R(O), g-module. The

C[Xne (M) /Xn (M, o)]-action can be read of directly, to reconstruct how the rest
of H(O,G) x C[R(O),f] acts one needs Lemmas and . The effect of this
equivalence on weights is simple. Whenever a module V of H(O,G) x C[R(O), f] has
a weight x X, (M,0) € Xp(M)/Xn(M,0), all elements of x X (M,0) C Xp (M)
are weights of V € Endg(I$(FEp)) — Mody, and conversely.

The problem with Corollary b lies in the existence of a 2-cocycle E with the
mentioned properties. We do not know whether such a 2-cocycle exists in general.
Of course it is easy to fulfill the condition for one given u € Xy, (M), but then it
could fail for different u/ € X, (M). Nevertheless, even if we cannot find such a j,
we can still work in similar spirit.

Recall from the proof of Theorem that there is a central extension I'o of
R(O) such that H(O,G) x C[R(O),4] — Mod is equivalent with the subcategory
of H(O,G) x I'o — Mod determined by the appropriate character of ker(I'o —
R(0O)). That allows us to apply results about extended affine Hecke algebras like
H(O,G) x To to twisted affine Hecke algebras like #(O, G) x C[R(O), 1].



64 ENDOMORPHISM ALGEBRAS FOR P-ADIC GROUPS

It is known from [AMS3], §2.1-2.2] that the equivalence between H(O,G) %
(C[R((’)),E] — Mod; and is compatible with parabolic induction and restric-
tion, temperedness, discrete series and the Langlands classication, and its effect on
weights is also well-understood. All this is analogous to the equivalence between
Endg(I§(Eg)) —Mod; and (9-2), as we worked out in Corollary [8.1|and Proposition
As a consequence, most results about finite dimensional modules of extended
affine Hecke algebras can be interpreted in terms of the category .

That applies in particular to the results of [Sol5] that do not involve infinite
dimensional modules or topological completions of Hecke algebras. In that paper it
is assumed that Rep(G)® is equivalent with the module category of an extended affine
Hecke algebra, and properties of such an equivalence are derived. In fact, all the
proofs and results of [Sol5| outside Paragraphs 1.2, 2.1 and 3.3 can be reformulated
with (9.8) instead of the module category of a twisted affine Hecke algebra, because
they only use properties that are respected by such equivalences of categories. If we
do that, we do not need all of § any more, it suffices to know its restrictions fy,.

Once we realize that, we can generalize [Sol5]. Namely, we can replace i by
a family of 2-cocyles §, of W(M,O)gy, parametrized by X (M)/Xpn(M, o) and
equivariant (up to coboundaries) for W(M, O), but not necessarily constructed from
a single 2-cocycle § on W(M, Q). From Lemmas Ea and .a We know that f, is
such a family of 2-cocycles. Thus, we want to apply [Sol5] with ( instead of an
extended affine Hecke algebra.

To do so, it remains to verify the precise assumptions in [Sold, §4.1] for the
equivalence between (9.3]) and Rep¢(G)®. The results about parabolic induction and
restriction in Corolla take care of [Sol5l Condition 4.1.(i)—(ii)]. Next, [Sol5
Conditions 4.1.(iii) and 4.2.(ii)] are about inclusions of parabolic subalgebras asso-
ciated to Levi subgroups L of G containing M. These are fulfilled by the naturality
of the inclusion and because for graded Hecke algebras we are using standard
parabolic subalgebras anyway.

In [Sol5, Condition 4.2.iii] it is required that E+ lies in the cone Q>0X(G, M)*
and that QXp , has a Q-basis consisting of snnple roots of X(G, M). Both are
guaranteed by Lemma

Let Yo, 1, be the parabolic root subsystem of ¥ , consisting of roots that come
from the action of Ap; on the Lie algebra of L. Then

NL(M,0)/M =W (So.1) x R(O, L), where R(O, L) = R(O) N N(M,0)/M

In [Sol5l, Condition 4.2.iv] it is required firstly that R(O, L) stabilizes ¥ 1 — which
is clear. Secondly, when Y 1, has full rank in ¥(£, M), [Sol5, Condition 2.1] has to
be fulfilled. That says

e R(O,L)Cc R(O,L')if LC L%
e the action of R(O,L) on X,,;(M) stabilizes the subsets exp(CXp ) and
X (M)E = exp((a},)*" @ C), where
(ab)*r ={recal : (aV,2) =0Va € Zor};
e R(O,L) acts on Xp;(M)" by multiplication with elements of X,.(M)* N
exp(CXp.1,).
The first of these bullets is obvious. By the full rank assumption

9.9) (a3t ={zcaly: () =0Yaec XL, M)} =da; = X*(AL) @z R.
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Recall that the action of r € R(O, L) on Xp (M) consists of a part which is linear
on the Lie algebra and a translation by x,. By the R(O, L)-stability of ¥ 1, the
linear part stabilizes exp(CXp, 1). Further the linear part of the action of r fixes
a} pointwise, so by it fixes X, (M)" pointwise. The definition of x, in
shows that it is an unramified character of L which is trivial on Z(L). This means
that X, € Xnr(M)L Nexp(CXp,1). Hence the second and third bullets hold.

We have verified everything needed to make the arguments in [Sol5l §4.2] about
finite length representations work with . Recall that a G-representation (of
finite length) is called essentially square-integrable if its restriction to the derived
group of (G is square-integrable.

S5

Proposition 9.5. Consider the equivalence between Rep¢(G)* and

@ueXunr(M)/an(M,O') H(Ru7 W(M, O)G®u’ k ’ uu) o MOdf’a*J\/I /W(M’ O)

coming from Corollary and Lemma [8.3

(a) This equivalence preserves temperedness.

(b) Suppose that Xyxy has smaller rank than (G, M). Then Repi(G)* contains no
essentially square-integrable representations with cuspidal support in
W(M,0){c®@ux:x € X (M)}.

(¢) Suppose that X,z has full rank in 3(G, M). The equivalence provides a bijec-
tion between the following sets:

o essentially square-integrable objects of Repe(G)® with cuspidal support in
W(M,0){o @ ux : x € XL (M)},
e essentially discrete series objects of H(?éu, W (M, O)ogus kybu) — Mods g -
This remains valid if we add "tempered” and/or "irreducible” on both sides.
(d) When Z(G) is compact, part (c) holds without "essentially”.

Proof. With [AMS3] Proposition 2.7 and Theorem 2.11.d] we translate the notions
of temperedness and (essentially) discrete series for extended affine Hecke algebras
to notions for . Then we apply [Sol5, Theorem 4.9 and Proposition 4.10], as
discussed above. O

With Proposition we can translate Proposition [9.5] into a statement about
Endg (IS (ER)).

Theorem 9.6. (a) The equivalence £ : Rep(G)* — Endg(I$(Eg))—Mod restricts
to an equivalence between the subcategories of finite length tempered representa-
tions on both sides.

(b) If Xo,u has smaller rank than (G, M), then Rep¢(G)* contains no essentially
square-integrable representations.

(c) Suppose that X, has full rank in 3(G, M). Then & provides a bijection between
the following sets:

e essentially square-integrable representations in Reps(G)?,
e essentially discrete series representations in Endg(Ig(EB)) — Mods.
This remains valid if we add "tempered” and/or "irreducible” on both sides.
(d) When Z(G) is compact, part (c) also holds without "essentially”.

9.2. The structure of Irr(G)*.
It is interesting to combine the previous results on temperedness with Corollaries
and
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Theorem 9.7. There exist bijections

Irr(G)* £, Irr(Endg(Ig(EB))) LN Irr (C[ Xy (M)] % CIW (M, 0, Xne (M), 1])
such that, for m € Irr(G)® and u € Xyn (M):
o the cuspidal support Sc(r) lies in W(M,O)uX (M) <
Wi(E(m)) € W(M, o, Xppy(M))uX, (M) =
Wt(¢ o E(m)) C W(M, oy X (M))uX, (M)
o 7 is tempered <= E(7) is tempered <= Wt(C o E(m)) C Xynr(M)
Proof. The bijections and the first bullet come from Corollaries [8.1] and Let
Vo € Irr (C[ Xy (M)] x C[W (M, 0, X3e(M)), ])

with Wt(V) € W(M, o, Xy (M))uX 5. (M). Then Wt(Vp) C Xuyne(M) if and only if
the irreducible representation Vi of C[ Xy (M)] x C[W (M, o, Xy (M)),, ] associated
to it by Lemma [8.4] has u as its only weight. This is the case if and only if the
irreducible representation V5 of Cla},; ®r C| x C[W (M, O)sgu, bu) obtained from V;

as in (8.10) has 0 € a}; as its only weight.
Now V3, a representation of a twisted graded Hecke algebra

H(Ruy, W (M, O)ogu, 0, 1) with Wt(Va) C a}y, is tempered if and only if Wt(V3) =
{0}. To see that, notice that the weights of V5 form full W (X,g,)-orbits. Every
W (Esqu)-orbit in a},, except {0}, contains elements outside the cone (a},), -
By Theorem V5 is tempered if and only if
Cu_l(VQ) € Irr(H(ﬁu, W (M, O)sgu, k", hu))

is tempered. Next Proposition says that ¢;'(V5) is tempered if and only if
its image V3 in Irr(Endg (IS (ER))) is so. Comparing the above with the proof of
Corollary we see that V3 equals ¢(71(Vj). Finally, in Theorem a we showed
that (~1(Vp) is tempered if and only if £~1((~1(V})) is tempered. O

The space Irr (C[ Xy, (M)] x C[W (M, 0, Xpne(M)), 1]) admits an alternative descrip-
tion, which clarifies the geometric structure in Theorem

Lemma 9.8. There is a canonical bijection
e (C[W (M, O)oey, 1y]) /W (M, 0) —

Irr (C[ Xy, (M)] x CIW (M, 0, Xnr (M), 1]).
Here t,, is defined as the restriction of by, to (W (M, O),ey)?, where u is the unitary

part of x.
Proof. Let the central extension I' of W (M, o, Xy,;(M)) and the central idempotent
py be as in the proof of Lemma so that
p,C[I] = C[W (M, 0, Xunr(M)), 1].
By (8.7) and (8.8)), every irreducible representation 7 of
ClXn(M)] x CIW (M, 0, Xn(M)), 1] is of the form

. 1C[Xnr (M) XC[W (M,0,Xnr (M)),H]
lndC[an(M)]EC[W(M,U,XM(M))X,M (x ®p),

where x € Xy,w(M) and p € Irr(C[W (M, o, Xpr(M))y,]). The pair (x, p) is deter-
mined by 7, uniquely up to the action of I' given by

v(x: p) = (v(x), Ad(y ) *p).

|_|X€an (M)/Xnr(M,o)
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Since I' is a central extension of W (M, o, X,y (M)), this action descends to an action
of W(M, o, Xn:(M)) on the collection of such pairs. This yields a bijection

900) | o IE(CIV (M. 0, Xor(M)) . ) /W (M. 0, Xos (M) —

It (C[ X (M)] % C[W (M, 0, Xue (M), £]).

Recall from Lemma [7.1] that C[W (M, 0, X, (M))y, ] is canonically isomorphic with
CIW (M, O)sgy bx)- For xc € Xn(M, o) there are group isomorphisms

(9.11) W(M, O) sy 25 W (M, 0, Xnr(M)), 220,

W (M, 0, Xor (M))yye <225 W (M, O) ooy
It follows from (8.4) that conjugation with ¢, induces an algebra isomorphism
CIW (M, 0, Xne (M), 8] = CIW (M, 0, X (M) o, ]
which via Lemma [7.1] translates to the identity map
C[W(M, O)U®X7 hx] - (C[W(M, O)U®X0X7 hXcX]'

Hence, in (9.10) we can canonically identify all the terms associated to x’s in one
Xnr(M, o)-orbit. If we do that, the action of W(M, o, Xy, (M )) descends to an action
of

W(M,0)=W(M,o, Xn(M))/Xun(M, o)
and the left hand side of (9.10) becomes

L ey (a1, EECCIV (M, O 1) /W (M, O). -

We note that in Lemma Ix is not necessarily equal to o Qy|w (a0, oy Lhese
2-cocycles are merely cohomologous (by Lemma with u the unitary part of x).
An advantage of f, is that it factors via

2~
(W(M,0)o0u/W (Sosu)” = R(o @ u)?.
The action of w € W (M, O) on the left hand side of Lemma comes from isomor-
phisms

(912) C[W(M7 O)U®X7 hx] = C[W(M, g, an(M))X7 h] Ad(Nw)>

C[W(M7 g, an(M))w(X)7 h] = C[W(M7 O)a@w(x)7 hw(x)]
Here the outer automorphisms are described in Lemma [7.1] while the middle iso-
morphism is computed in C[W (M, o, Xp (M)), i]. In particular we still make use of
the entire 2-cocycle f, not just of the g,.
Define the root system ¥,g, like ¥,g,. By Lemma the composed isomor-

phism (9.12)) sends N, to Nyp,-1 for v € W(Xsg,y), and to a scalar multiple of that
for v € W(M, O)sgy. Since

Xoe(M)/ Xny(M,0) = O : x = o0®x
is bijective, we can rewrite the left hand side of Lemma as

(9.13) |_|U,GO Irr(C[W (M, O) g1, 857]) /W (M, O).
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In the terminology of [ABPS4, §2.1], (9.13]) is the twisted extended quotient
(O//W (M, O))h'

Theorem 9.9. (a) There exists a bijection

Co&:Irr(G) — ((’)//W(M, O))h’

such that, for m € Irr(G)® and u € Xyn (M):
e the cuspidal support Sc(r) lies in W(M,0){oc @uyx : x € X, (M)} if and
only if C 0 &(r) has O-coordinate in W (M, O){o @ ux : x € X;-(M)};
o 7 is tempered if and only if 5;/5 (7) has a unitary (or equivalently tempered)
O-coordinate.
(b) This gives rise to bijection

Irr(G) — |_| (Irreusp (M) //W (G, M))

where M runs over a set of representatives for the conjugacy classes of Levi
subgroups of G.

Proof. (a) This follows from Theorem Lemma 9.8 and (9.13).
(b) We write O = O,, so that the space of supercuspidal representations of M
becomes

Irrcusp(M) = |_|51w:[M70—}A4 IIT(M)EM — |_|

Let Irr(G, M) be the subset of Irr(G) with supercuspidal support in Irr(M). Part
(a) gives rise to a bijection

s =[M,o]

(9.14) Irr(G, M) = |—|5:[M,0']G Irr(G)* — |_| (05 /W (M, 0 ))

—

Now we must be careful because o £ is not entirely canonical. We choose a set of
0 € Irreysp(M) representing all possible inertial equivalence classes (for @) in (9.14)),
and (for each such o) a set of representatives w € Ng(M)/M for Ng(M)/Na(M,O,).
For ¢/ € O, and such a w, we define §,,.,» as the push-forward of i, along Ad(N,,)
Then the set in can be enlarged to

(915) |—|o,w |—|U’€(’) II‘I‘(C[W(My Od)w~a’7 hw-U’D

and the action of W (M, O) in (9.13) extends to an action of W(G, M) = Ng(M)/M
on (9.15). As in [ABPS4, (29)], that puts (9.14]) in bijection with

(l—lﬁM:[M,a]M OJ//W(G’ M)>h = (IrrCUSP(M)//W(Gv M))h

When we let M run over a set of representatives for the conjugacy classes of Levi
subgroups of G, Irr(G, M) exhausts Irr(G) and we find the claimed bijection. [

Theorem a reveals some geometry hidden in Irr(G)® and proves a version of
the ABPS conjecture, namely [ABPS4, Conjecture 2].
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10. A SMALLER PROGENERATOR OF Rep(G)*

In our main results we do not obtain an affine Hecke algebra, rather a category
which is almost equivalent to the category of finite length modules of an affine
Hecke algebra. On the other hand, it is known that in many cases Rep(G)® is really
equivalent to the module category of an affine Hecke algebra. To obtain more results
in that direction, we study progenerators of Rep(G)® that are strictly contained in
I (Ep).

10.1. The cuspidal case.
From ({2.22)) we see that x + ¢, yields a group homomorphism

(10.1) Trr(M/M2) — Autyy (ind}f. (F)) 2 Auta (E @c C[Xu(M))).

In other words, the group Irr(M/M?) acts on ind}, (E) and on E ®&¢ C[Xu(M)).
With the isomorphism (2.3)) one can easily express the space of invariants under
Irr(M/M3):

(10.2) (ind, (B)) M) _indM, (),

Recall that every irreducible M !'-subrepresentation of E is 1somorph1(: to (m~1
o1,0(m)E;) for some m € M. More precisely, it follows from and ( - that

Restfs(.5) 2 €D,y 00"

Since o1 and m - o1 have isomorphic induction to M:
(10.3)  ind}h (0, E) = @mGM/W ind, (m - o1)tet 2 indM, (oy, By ) MMl

Notice that
[M = Mglugy = [M : M)
is the length of Res%l (E). From ([10.3]) we see that ind%l (01, En) is, like ind%l (0, E),

a progenerator of Rep(M)© — this was already shown by Bernstein [BeRul. Further
(10.3)) implies

(10.4) Endy (ind}% (o, B)) = Endyy (ind3f, (01, B1)) ®c Miar3(C),

where M;(C) denotes the algebra of d x d complex matrices. For comparison with
[Hei2] we analyse the Morita equivalent subalgebra End(ind}f. (1, F1)) as well.
Now cannot be used in general, because o(m~!) need not preserve Ei. So
we cannot easily embed C[Xpn(M)] = C[M/M'] in Endy(ind}si (o1, B1)). The
formula does still apply when m € M2/M!, which means that provides
a homomorphism

M3/MY — Autp(indih (o1, Er)).

That extends C-linearly to an embedding
3
(10.5) indy{(C) = C[MZ/MY] — Endy(indlf(or, )
Om —  omTIMY o3(m)A\m,

where o3(m)\y(v)(m') = a3(m)v(m~tm/) for v € ind}}i (o1, E1). We note that

C[M2/M?] can be regarded as the ring of regular functions on the complex torus

O3 := Irr(M32 /M),
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a degree [ cover of Xy, (M)/X, (M, o). Another way to construct the embedding
(10.5)) uses that (o1, E1) extends to the M3-representation o3. The same reasoning
as in (2.3)) gives an isomorphism of M3-representations
3
ind} 5 (E1) — By ®c C[O3].
Since C[O3] is commutative, the M3-action on E; ®¢ C[O3] is C[O3]-linear. We find
(10.6) ind}7: (E1) = indjfs (Br @c C[Os))

and C[Os] acts on it by M-intertwiners, induced from the action on E; ®c C[O3].
As worked out in [Roc2, Proposition 1.6.3.2], the subalgebra
(10.7) C[M2/M') = C[ Xy (M) X0 (M, 0)]

is the centre of Endp(ind}}: (o1, E1)). In view of ([0.4), C[M2/M"] is also the

centre of End(ind}}, (o, E)) — which can be derived directly from Proposition

Furthermore Endy; (ind}%, (o1, 1)) is free of rank /‘3,1 as a module over its centre.
The commutative subalgebra

C[MZ/M"] = C[0],

embedded in Endy(ind}% (o1, E1)) as in or (10.6)), is free of rank i1 as a
module over C[M2/M']. To find generators for Endys(ind3f, (o1, 1)) as a mod-
ule over C[M3/M'], we consider any m € M2. By definition there exists an M;-
isomorphism

bmoy : (01, E1) = (m™' -0y, Ey).
Regarding the subspace of ind%l (F1) supported on mM?! as the M!-representation

m~- 01, ¢, becomes an element of Homyy, (o1, ind%l (01)). Applying Frobenius

reciprocity, we obtain
(10.8) ¢m € Endp(inddfi (01, E1))y (V) = Gy Am ().
For m € M2 we can take ¢, o, = 03(m), and then (10.8) recovers (10.5).

Lemma 10.1. For every m € M2/M' and for every m € M2/M32 we pick a repre-
sentative m € M.

(a) The set {¢pm :m € M2/M"'} is a C-basis of Endyy(ind3f, (o1, B1)).
(b) With respect to the embedding (10.5)):

EndM(indA]\gl (Ul,El)) = @ ¢mC[M3/M1] = @ (257;1(:[03]
meM2/M3 meM2/M3

Proof. (a) By Frobenius reciprocity
(10.9) Endp(ind3f, (o1, E1)) = Homyy, (01, ind}%, (01))

=~ HOII]]\/[1 (0’17 @MEM/Ml (m*1 . 0'1)) .
By the definition of M2, this reduces to

Homyy, (o1, m™ ' - o
@meMj}/Ml M (01, 1),

where each summand is one-dimensional. For every m € M2, the element ¢, €
EndM(indﬁl(al,El)) comes by construction from the nonzero element ¢, €
Hom 1 (o1, m~! - a1). It follows that, for any m; € M, ¢,, and @, differ only
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by a scalar, and that the ¢z with m € M2/M* form a basis of (10.9).
(b) This follows directly from part (a) and (10.5). O

It is known from [Roc2, (1.6.1.1)] that the operators ¢y, with m € M2 commute up
to scalars. However, by [Roc2} Proposition 1.6.1.2] the algebra End (ind}4 (o1, E1))
is commutative if and only if p51 = 1.

From (2.27)), (10.6)) and Lemma b we obtain

(10.10)  Homy (ind}: (Ey), ind}h (E1) ®cjo,) C(O3)) = @me st s @ C(O3):

The action of Trr(M/M2) on ind}f, (E) from (10.1) extends naturally to an action
on ind}h (B) X (M) C(Xnr(M)). From [Hei2, Proposition 4.3], with the same
proof, we obtain

(10.11) (ind%l (E) OC[Xnr (M) (C(an(M = ind%l (El) Xc[os] C(Og)

Unfortunately, we did not succeed in making the isomorphism (10.4) explicit in
terms of the endomorphisms of ind}}, (E) and ind}}, (E1) exhibited above. Clearly

C[O3] C Endy(ind}f: (E1))
corresponds naturally to a subalgebra of
C[Xu:(M)] € Endy(inddh (E)).

From Lemma and (2.20)) we see that the ¢z with m € MZ2/M? should corre-
spond to linear combinations of the ¢, with x € Xn:(M,0) and x|y = X3,m, but

))Irr(M/Mg)

we did not find a canonical choice. Thus, although the progenerators ind%l (E) and
ind%l(El) of the cuspidal Bernstein component Rep(M)® are equally good, they
look somewhat differently. It seems technically difficult to analyse

Endg (Ig(ind%1 (E1))) in general.

Many complications with the 2-cocycles § stem from the multiplicity ps,1 of the
M*'-subrepresentation F; in Res%l E. In Section [2| we saw that h’ Xoe(M,0) is trivial
if and only if p15,1 = 1. Recall that ;.1 depends on o but not on the choice of FE;.
It is known from [Roc2, Remark 1.6.1.3] that ;1,1 = 1 in many cases:

e when the maximal F-split central torus of M has dimension < 1,

e when M is quasi-split and (o, F') is generic,

e for finite products ([[; M;, M;o;) with each (M;, 0;) as in the above cases.
We note that the first bullet includes semisimple groups, general linear groups,
unitary groups and inner forms of such groups, while the second bullet includes all
tori. On the other hand, in Example we saw that 1,1 = 2 also occurs.

Working hypothesis 10.2. We are given (o, E) € Irreusp(M) such that the re-
striction of o to M is multiplicity free, that is, jy1 = 1.

We stress that this hypothesis does not imply that the restriction of (o, E') to the
derived subgroup Mye, is multiplicity-free. Indeed, a counterexample to that can be
found in [AdPx} §7].

As Working hypothesis constitutes a major difference between the assump-
tions from [Hei2] and from this paper, it should not come as a surprise that it makes
better results possible. We will investigate how far we can get, following [Hei2]
rather closely. So, in the remainder of this section we assume Working hypothesis
10.2| (then it also holds for o ® x with x € X, (M) because M! C ker y).
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From (2.10)) we know that M2, M3 and M2 now coincide to a single group, which
we call M,. Lemma [10.1] reduces to

Endy (ind}f: (01, E1)) = C[M,/M'] = C[O3).
Further X, (M, o) = Irr(M/M,) and ([2.14))—(2.16)) provide a group homomorphism
Xor(M,0) = Auty(EB) @ Xe > Oy

In particular h’ Nan(Mo0) = 1 and (2.25)) simplifies to
Endy (Ep) = C[Xy(M)] X Xy (M, o).

10.2. The non-cuspidal case.
As before, we also write ¢y, for IG(¢,.) € Autg(I$(Eg)). Then (10.2)) implies

(10.12) (1€ (Bp)y X Me) = 18 ((Ep) XM = 16 (ind)l (EY)).

By ([10-3) the progenerator IS (Ep) of Rep(G)* is isomorphic to 1§ (ind}f, (E;))M:Mel,
In particular 1§ (ind}}, (F1)) is also a progenerator of Rep(G)® and

Endc(I§(Ep)) = Endg (I§ (ind}f: (E1))) ®c Miar.ar,(C),
Endg(I§(Eg)) X Mo)Xu(0) — Endq (I (ind) (E1))).

Here we use that X,,.(M, o) embeds in Aute (IS (Eg)), which acts from the left and
from the right on Endg(I§(Eg)).
Under Working hypothesis [Hei2l, §4.1-4.4] holds for G, M, o.

Lemma 10.3. Assume Working hypothesis and let w € W(M, Q).

(a) There exists a my, € M, unique up to M, such that:
4 U(mw)pa,wEl = FE,
o by, Ay stabilizes Ig(EK(B))Xm(M"’).
(b) For sq with a € S, we can take ms, € MNMZ, and then there is a canonical
choice up to M".

Proof. (a) Working hypothesis entails that there is a m,, € M, unique up to
M,, which fulfills the first bullet. The proof of [Hei2, Lemme 4.5] then shows the
second bullet.

(b) The element ms, € M N M} comes from the proof of [Hei2, Lemme 4.5]. As
M N ML/M! = 7, there is a unique choice mg, M* such that vp(a(ms,)) is positive
and minimal. O

(10.13)

As in [Hei2, §4.6] we define J,, = by, As, for a € Ap,, but not for other
w e W(Xo,,). By (5.2) and Proposition c:
4c!
10.14)  JZ =bm,, (Sa - bm,, A2 = A2 = o :
A0 e = b (b J s = e = (T e (0 9 )
Let w € W(20,,), with a reduced expression w = 5152 - - - 5¢(,)- Then [Hei2, Lemme
4.7.i] shows: the operator

(10.15) Juw = Jg Joy e J

Se(w)

depends only on w, not on the chosen reduced expression. For r € R(O) we define

Jow 1= b ArJuy = JyJup.
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By Lemma and (5.4), J, belongs to Endg (I (Eg)*»(M9)). On the other hand,
the J, with w € W(Z0,) \ {1} have poles, just like the A,. The multiplication
rules for these elements are similar to Proposition [5.2}

Lemma 10.4. Assume Working hypothesis let r,ri,m9 € R(O) and w €
W(Xou)-

(a) Write x(rir) = ynm(oa)Xil, € Xax(M.0). There caists a bs(ri.rs) €
ClXnr (M) Xpe(M,0)]* 2 C* x My/M?' such that

Jry 0 Jpy = hJ(T17r2)¢x(r1,r,2) o Jpiry-
(b) There exists a ij(w,r) € C[Xp(M)/Xnr(M,0)]* such that
Jwo Jp = h(war)¢w(
Proof. (a) By (5.2) and Proposition [5.2la
ey Iry = by Arbim,, Ary = by, (11 by, )X:11 A A,
(10.16) = by, (11 by ) (71 - by ) (X, ) Ay Ary
= bmrl bflmrszlbmrg (Tl_lx;ll)h(r17 T2)¢X(7’1 ,T'Q)A7'17"2 .
On the other hand, by ([2.20))
(10.17) ¢x(r1,rz)JT1r2 = ¢x(r1,r2)bmr1r2A7‘1r2
= (bmrlrz)x(rl,rz)—l¢X(T1,T2)A7"1T2 = bmr1r2 X(Tla TQ)_I(mT1T2)¢X(r1,r2)AT1T2'

Inserting (10.17)) into (10.16]), we obtain

— o .
Xr 1)Xr JWT

(10'18) bm'r1 bflmrszl_l b;lilw X(Tl’ T2) (mT1T2)(TI1X7T11) (mTQ)h(T17 T2)¢x(r1,r2)‘]ﬁr2 :

)an(M,O')

This element stabilizes Ig(E K(B) , so by the uniqueness of m,, (up to M,):

m = mnflmrjflm_l lies in M.

T2

The three middle terms in ((10.18]) are nonzero scalars, so (|10.18)) is of the form
b2y (ry ra)Jriry fOr sOme 2 € C*.
(b) This can be derived from Proposition [5.2}c, analogous to part (a). O

It is clear from Theorem that {Jyoy, 1 w € W(M,0),x. € Xor(M,0)} is a
K (B)-basis of Homg (Ig(EB), Ig(EK(B))). Consider the idempotent

A -1 G
PXorit) = XM Ty v € Bndg(IF (Ep)).
It satisfies px,,(v.0) 15 (Ep) = I§(Eg)X»(M) and
(10.19)  px,.v,0yHome (I8 (Eg), I8 (Ex(p)) ) PxXor(M0) =
Homg (1§ (Ep) M) I5 (B ) ¥ M),

Proposition 10.5. Assume Working hypothesis[10.9. As vector spaces over
K(B)Xm(Mo) = C( Xy (M) Xur(M, 0)):

Homa (I§(Es) ), 16 (B ) ™) = @) KB Jups, (a1
weW (M,0)
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Proof. By Lemma @a, each J,, defines an element Jypx, (1r,0) Of
Homg(Ig(EB)an(M"’),Ig(EK(B))XI‘r(M7U)). By Theorem these elements are
linearly independent over K (B) and over K (B)*»(M:2)  This proves the inclusion
D of the proposition.
Further, Lemma a also shows that, for every x. € Xy (M, o),
JwP X (M,0) = PXne(M0) JwP Xy (M,0) = Pxe JwP X (M,0)-

Since Jy, is invertible in Endg(lg(EK(B))), this also equals
(10.20) PXor(M,0)Jw = PXor(M,0) S Pxe-
With Theorem [5.4 we deduce

HomG (Ig(EB)an(Mva')’ Ig(EK(B))an(Mva)) —

Xnr(M,0)X Xnr(M,0)

(@ W (M,0) S €Xue (M )K(B)d)XCJw) -
(10.21) B st e

EBweW(M,o) (pX'"(M’U) @XCEXM(M,U) K (B)gx. prX“r(M"’)> -

@weW(M’O) PX e (M,0) K (B)P X (M) -
From (2.20)) we see that

Pxo (M) K (B)Px, (110) = K(B)Y X" M py 31 0.

Combine that with (10.21)) and (10.20). O

As Homg(Ig(EB),Ig(EK(B)) is an algebra, so the vector space in Proposition
10.5l The multiplication relations between the elements J,, with w € W(Xp ,) are
similar to those in Proposition [5.1}a, but with some extra factors by, inserted. The
relations between the other J,, with w € W(M, ) are given in Lemma [10.4] (al-
though in part (a) we do not need ¢,,, ,,) because it is the identity on Ig(EK(B))).
Like in Paragraph we can simplify these multiplication relations by replacing
the J,, with slightly different operators.

For a € Ap,, we define

(10.22) T! = gaJsa-

Then Proposition holds for these 7, , with the same proof: (10.22)) extends to a
group homomorphism

(10.23) W(S0,) = Aute (I§ (B (p)) ™)) s w s T,

Now we can replay the proof of Lemma b for the 7, J,, using Lemma b as

a substitute for Proposition [5.2lc. That leads to:

(10.24) Todr = b5 (w, 7)1 T 10 we W(Xo,),r € RO),

where f7(w,r) € C[Xn(M)/Xn(M,0)]* is as in Lemma Recall that
Xoe(M)/ Xpr(M,0) > O : x—0o®x

is a bijection and that W (M, Q) acts naturally on O (which induces an action on

ClO]).
Theorem 10.6. Assume Working hypothesis [10.2.
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(a) The set {J, T, :r € R(O),we W (Xp,)} is a C(O)-basis of
Homg (I§(Ep)Xm M) IG(Ere(p)) X)), For any b € C(0):
J-Ta0ob= (rw-b)o J.T,.
(b) There exists a 2-cocycle f; : W(M,0)? — C[O]* (with respect to the action of
W (M, O) on C[O]) such that, for all 11,72 € R(O),wi,ws € W(X0,,):

1 /
Jh w1 7”27;12 hJ(rlwlaTZU)Q)‘]T‘szT Lirrows”

When ro = 1, this simplifies to fy(riwy, we) = 1.
Proof. (a) The expression for J,T.b follows from (5.16) and (5.24). This implies
that
L To(Jedy) ™t €CIO]* Vre R(O),weW(Xo,).
Then Proposition says that the J, 7, just like the J,Jy, form a C(O)-basis.
) With ( m 0 10.24) and Lemma _a we compute

‘]7‘1 w1‘]7‘27Z)2 - Tlh(w17r2)‘]7”27;/2_1 7112 = (Tl ’ hJ(w17r2))JT1JT2T,

7’2_111)17’21112

= (r - hJ(UJl,T2))ﬂJ(Tl7T2)Jr1r27;/2—l

wiTY

wiraws’
This means that we must define
hJ(T1w17T2w2) = (7“1 : ﬂJ(w17T2))hJ(T177“2)-

The above computation with r9 = 1 shows that f;(rjw;,wy) = 1. In view of the
associativity of Endg( (EK( ))Xm(M < )), we can work out the product

JTl 7;1/)1 o J7"2 7;1/}2 © Jr37;1/)3
in two equivalent ways. Comparing the resulting expressions in
(C[O] x ']7‘17‘27‘37;,51 -1

-1
Ty wiTy  w2rzws’

we deduce that fj; is a 2-cocycle. O

Next we aim for a version of Theorem with regular (instead of merely rational)
functions on O. As T] = by, Ts, and by, € C[O]*, the poles of 7] are the same
as the poles of T . We know those from ([5.20)): they are simple and ocecur at

(10.25) {Xa=0qa} and (if gox > 1) at {Xo = —qox}-
Since Xo = byy and hy is indivisible in M, /M?, any set of the form
{0’ € O : X,(0') = constant}

is connected. By Lemma and the same indivisibility of hY, s, pointwise fixes
{o/ € O0: X,\(0 )—1}and(1fqa*>1){0'€(9.X( ):—1}
For ¢’ € O and v € I§(Ep)XnwMo) = 1§ (ind}?, (F1)) we define

5P (v) = | Xax (M, o)1) Py 5Py (V)
for any x € Xy (M, 0) with ¢/ =2 0 ® x. By the invariance property of v, this does
not depend on the choice of x. In view of (2.14)), it is a well-defined map
spys : IS (Ep)XmMe) 5 By

Lemma 10.7. Assume Working hypothesis [10.2. Let a € Do, and 04,0 € O
with Xqo(o4) = 1.

XCEan(M’U)
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(a’) Spa+(1 - XOC)JSQ = Sp0'+7;/a = Spo‘+'
(b) Suppose that qox > 1. There exists €, € {0,1} such that sp, T, = (—=1)%sp,_.

Proof. (a) From 7] = gaJs, and the definition of g, we see that
spﬂﬁla = 8Py, (1 — Xa)Js,-
By Lemma Py, (1—Xa)As, = sp,, forall x4 € Xpr(My). From Lemma b
we see that also sp, (1 — Xq)Js, =sp,, . As
(X € Xur(M) : Xy ()} = {0’ € 0 Xo(o') = 1}

is a covering, there exists a x4+ € Xy (M) with 0 ® x4+ = o4. Consequently
— -1 _
Spo+(1 — Xa)Js, = | X (M, 0)| ZxCeXm(M,a) Py OSPy, = SPy, -
(b) Pick x— € Xpr(M) with 0 ® x— = o_. From Lemma [5.9| we know that
(10.26) sPy_To, = 25Dy _ by o ()

for some z € C*. On Ig(EB)X”(M"’) the operator (,ZinSa(X—l) acts as the identity,

so there reduces to st_’7;’a = zsp,_. Using (’TS’&)2 =1, we deduce z = +1.
By definition, that means

SPy 7;’a = £sp, .
Since {¢’ € O : X,(¢') = —1} is connected and this sign + depends continuously
on o', the sign is a constant (—1)%. O

Recall the elements f, € C(O) for a € Lo, from (6.23)). One readily checks that
1+ f-a)Ts, = (da — Xa)(qax + Xa) s, /2-
For o € Ap,, we take €, as in Lemma m if gox > 1, and €, = 0 if gox = 1. We
define
T;, = 1+ fra)X& TS, + fa= (X&T,, + (1 + fa) — L.
Lemma 10.8. Assume Working hypothesis . For all o € Ao, T,
Endg (I§(Ep)Xm(M:0)).

Proof. By (10.25) the operators (¢o — Xa)(qasx +Xa)Js. /2, fo and T/ can only have
poles at {¢’ € O : X,(0') = £1}. Select o4 € O with X,(0y) = £1. By Lemma

as operators on I§(Fpg)Xu(M0).

lies in
«

Spa+(1 - Xo)(1+ f—a)Xéa’];/a = _Spa+(1 — Xo)fa = Spmr(th —1)(gax +1)/2
sp,_ (1 + Xo)(1+ f—a)cha’];/a = —sp, (1+Xo)fa = s, (qa +1)(qax — 1)/2
Hence sp,, (1 — Xo)T;, = 0 and sp, (1+ Xo)T;, = 0, which means that Ty does
not have any poles and sends 1§ (Eg)Xm(M:9) to itself. O

In view of Theorem [10.6]a, the proof of Lemma [6.9] remains valid in the current

setting, and shows that
(T;a + 1)(Ts/a - QaQa*) =0.

Similarly holds for T} and b € C(O). Next, the proof of Lemma a also
holds in our setting, if we take u = 1 and replace X,,(M) by O. That provides a
consistent definition of 7T}, for w € W(Xp,,). The multiplication relations between
these 77, and the J, with 7 € R(O) are not as nice as in Lemma [6.10/b, because
Lemma [10.4] is weaker than Proposition [5.2]
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Fortunately [Hei2| §5.7-5.12] still works for the elements J, T}, .

Theorem 10.9. Assume Working hypothesis . The set {J, T :r € R(O),w €
W(Zo,u)} is a C[O]-basis of Endg (Ig(E’B)X“r(M’U)). The subalgebra

!
@wGW(E@)M) C[O]Tw
is canonically isomorphic to the affine Hecke algebra H(O,G) from .

Proof. The first claim is [Hei2l Théoréme 5.10] in our generality. The second claim
follows from the proof of Lemma a. It generalizes [Hei2l Proposition 7.4]. O

From Theorem [10.6] we see that conjugation by J, stabilizes the subalgebra
H(G,0). However, it seems that J,'T},J. need not be contained in CT'_, ., or
even in C[O]T/_, . Therefore the main conclusions (§7.6-7.8) of [Hei2] do not
necessarily hold in our setting.

Recall from (4.1) and ((10.13) that
(1027) EndG(Ig(EB)Xm(M,U)) — Mod = EndG (Ig(lnd%1 (El))) — Mod

is naturally equivalent with Rep(G)® and with Endg(I$(Fp)) — Mod. However,
with only the above description available, deriving the representation theory of
Endg (Ig(EB)X“r(M"’)) from that of H(O,G) is quite involved. One problem is
that Clifford theory (as in the proof of Lemma is not available if the values of
hs are not central in H(O,G). A way around that is by localization on subsets of
O, as in Section @ In fact any U, C Xy, (M) satisfying Condition is diffeomor-
phic to its image in O, and the analytic localization of Endg (Ig(EB)X"f(M*’)) on
U, is canonically isomorphic to 1,Endg(I§(Ep))&'1,. In this way the results from
Sections provide an analysis of in terms of a family of (twisted) graded
Hecke algebras.

For aspects of that cannot be translated to graded Hecke algebras, like

those involving modules of infinite length, one must understand the 2-cocycle
17+ W(M, 0)* - C[O]

well. In practice that means one needs either irreducibility of Res}}, (E) (for then we
can take m,, =1 for all w) or an explicit easy description of R(Q), like for classical
groups in [Hei2, Proposition 1.15 and §2.5]. Here we must warn the reader that
exactly this aspect of [Hei2] is incomplete, it was corrected in [Heid, Appendix A].

ApPPENDIX A. CORRECTION (FROM 2023)

In the recent preprint [Ohal, the algebras Endg (IS (Ep)) are compared with simi-
lar endomorphism algebras from [Morl]. The main results of [Oha] made the author
realize that there could be an issue with the preservation of temperedness proven
in Theorem Further investigations revealed that there is indeed a problem, and
that it stems from [Hei3]. In this appendix we explain the problem and we show
how it can be fixed.

By Definition a finite dimensional Endg (1§ (Ep))-module V is tempered if
all its C[ Xy (M)]-weights t € X, (M) satisty the following condition:

(A.1) log|t| € Hom(M2/M?' R) lies in the negative cone { Z cadt ey € R<o}.
auGA@
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Equivalently, |t(m)| < 1 whenever m € M2/M" lies in the positive Weyl chamber
with respect to the simple roots hy, € AY. Here the bases Ap of Lo and A, of %
are determined by P. This is the same notion of temperedness as commonly used
for affine Hecke algebras, e.g. in [Opd, [Sol3].

According to Theorem the equivalence of categories

Rep;(G)® = Endg(If(Ep)) — Mody

preserves temperedness. The proof proceeds by reduction to results of [Sol5]. One
of the conditions needed to apply [Sol5] is that the definition of positivity for roots
in XY, corresponds (via Xy (M) which is present on both sides) to the definition of
positivity for roots in ¥,eq(Aps). This is checked in Lemma and shortly before
Proposition

Unfortunately, the comparison between these two root systems is made in the
wrong way. Namely, for a positive root o € ¥1eq(Anr), vr 0 a € @}, is regarded as
positive. That results in a definition of b/ as element of R~oa" (wwp)NM2/M?!. This
use of vpoa as positive element stems from [Hei2), Hei3], on which Section@ is partly
based. As a consequence Theorem and [Hei3, Théoreme 5| suffer from the same
problem: they do not send tempered G-representations to tempered Endg(I§(Eg))-
representations, but to anti-tempered Endg(I§(Ep))-representations. Here anti-
tempered means that the above condition for temperedness is replaced by

log [t| € Hom(MZ2/M",R) liesin {)_ e da0? :do € Rxq}.
«a o

Let us work out explicitly why this is the case, in contrast to the statements of
Theorem and [Hei3, Théoreme 5]. Consider a root a € Yieq(Aps) which is
positive with respect to P. Then |a|p € X, (M) is an unramified character in
positive position with respect to P, as used in Casselman’s criteria for temperedness
of G-representations [Wal, Proposition III.2.2]. Since |a(a¥(wp))|r < 1, it follows
that |a|r becomes a negative multiple of of in [Hei2] and in Section [3| That is off
by a minus sign from what is needed in [Sol5], and therefore the “preservation of
temperedness” in Theorem and [Hei3, Théoreme 5] relates to the preservation
of temperedness in [Solb, §4.2] by inserting an extra minus sign in the criterion for
temperedness.

For example, consider the Steinberg representation St of G = GLy(F'), with P
the standard Borel subgroup and « the unique positive root of the diagonal torus
T. Then Endg(I§(Fp)) is an affine Hecke algebra of type G Ls [Sol7, §2.5] and

J5(8t) = 02/% = |alz"%.

Let V be the Endg(I§(Ep))-module which corresponds to St under the equivalence

n G
of categories (4.1). By Proposition b, Jg(St) corresponds to Resg[;i((lf)](EB))V
G
under the equivalence of categories (4.1)) for 7". In other words, Resgﬁgi;”)](EB))V is

the map O(Xy(T")) — C coming from evaluation at \a|;1/2 € Xue(T). The element

hY = aV(wg), from Proposition [3.1] and [Hei2], satisfies

lalp () = la(a (@) /2 = wrl5' = ar-
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Thus log |t| = log(qr)at/2 for the unique C[X,(T)]-weight ¢t = \a|;1/2 of V. As
log(qr) > 0, we find that V is an anti-tempered Endg(I§(Eg))-module.

Now that we have seen all this, it is clear how the problem can be fixed: we
replace every hY € M2/M"' by —hY. Equivalently, the requirement

(A.2) ve(a(hyl)) >0 is substituted by |a(h))|F > 1.

It is best to replace Hys by —Hjy at the same time, so that Hjs(hY) does not change.
That leads to a definition of Hjs which is in any case more common:

(A.3) g = y(m)|p me M,y € X(M).

We point out that the specific formulas for Hy; and for h) as element of G are never
actually used in this paper. They only play an implicit role in the part of Paragraph
after Corollary because only that part makes use of [Hei3, [Sol5]. Hence
our entire paper remains valid with and instead of the conventions just
before Proposition With this improvement Proposition and Theorem
really become valid as stated. The same goes for the results that use those two,

namely Theorems [C] D} [E] and

The same improvement could be used in [Hei2 [Hei3], that would leave everything
in [Hei2] valid and would repair the issue for [Hei3].
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