
AFFINE HECKE ALGEBRAS FOR CLASSICAL p-ADIC GROUPS

ANNE-MARIE AUBERT, AHMED MOUSSAOUI, AND MAARTEN SOLLEVELD

Abstract. We consider four classes of classical groups over a non-archimedean
local field F : symplectic, (special) orthogonal, general (s)pin and unitary. These
groups need not be quasi-split over F . The main goal of the paper is to obtain a
local Langlands correspondence for any group G of this kind, via Hecke algebras.

To each Bernstein block Rep(G)s in the category of smooth complexG-represen-
tations, an (extended) affine Hecke algebra H(s) can be associated with the

method of Heiermann. On the other hand, to each Bernstein component Φe(G)s
∨

of the space Φe(G) of enhanced L-parameters for G, one can also associate an (ex-
tended) affine Hecke algebra, say H(s∨). For the supercuspidal representations
underlying Rep(G)s, a local Langlands correspondence is available via endoscopy,
due to Mœglin and Arthur. Using that we assign to each Rep(G)s a unique

Φe(G)s
∨

.
Our main new result is an algebra isomorphism H(s)op ∼= H(s∨), canonical

up to inner automorphisms. In combination with earlier work, that provides an
injective local Langlands correspondence Irr(G) → Φe(G) which satisfies Borel’s
desiderata. When F has characteristic zero, this parametrization map is in fact
bijective. When F has positive characteristic it is probably bijective as well, but
we could not show that in all cases.

Our framework is suitable to (re)prove many results about smooth G-represen-
tations (not necessarily reducible), and to relate them to the geometry of a space of
L-parameters. In particular our Langlands parametrization yields an independent
way to classify discrete series G-representations in terms of Jordan blocks and
supercuspidal representations of Levi subgroups. We show that it coincides with
the classification of the discrete series obtained twenty years ago by Mœglin and
Tadić.
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Introduction

In the theory of linear algebraic groups, the classical groups play a special role. As
the stabilizer groups of bilinear/hermitian forms, they can arise from many directions
and have various applications. Within the representation theory of reductive p-adic
groups, the main advantage of classical groups is their explicit structure. It enables
precise, combinatorial methods to study representations, on a level which is hard
to reach for other reductive groups. Such methods have been pursued by many
mathematicians, see for instance [Art, GGP, Hei4, KiMa, MoTa].

In this paper we translate the (smooth, complex) representation theory of classical
p-adic groups to affine Hecke algebras arising from Langlands parameters. This is
part of a long-term program [AMS1, AMS2, AMS3] that applies to all reductive p-
adic groups and aims to establish instances of Langlands correspondences via Hecke
algebras. The method has already proven successful for principal series representa-
tions of split groups [ABPS3] and for unipotent representations [Sol2]. For classical
groups, our Hecke algebra methods provide alternative proofs of many earlier results
(e.g. the classification of discrete series representations) and install a framework in
which one can easily establish many new results that involve categories of smooth
representations.

Let F be any non-archimedean local field (p-adic or a local function field). We
will consider classical F -groups in a broad sense, namely

• symplectic groups;
• (special) orthogonal groups associated to symmetric bilinear forms on a finite

dimensional F -vector space V ;
• general (s)pin groups associated to such bilinear forms;
• unitary groups associated to hermitian forms on vector spaces over a sepa-

rable quadratic extension of F .

We stress that these groups do not have to be quasi-split, we allow pure inner
forms. For G = SO(V ) and G = GSpin(V ) we write, respectively, G+ = O(V ) and
G+ = GPin(V ), otherwise G+ = G. The main advantage of including general spin
groups is that they provide information about all representations of spin groups,
something which one cannot get from studying special orthogonal groups.

General linear groups could also figure in the list, they are very classical (but
note that they do not come from a nondegenerate bilinear form). We excluded
them because for GLn(F ) everything we will discuss has been known for a long time
already, see [HaTa, LRS] for the LLC and [BuKu, AMS1] for the Hecke algebras.

The common feature of all the above groups G is that their Levi subgroups are
isomorphic to G′ × GLn1(F ′) × · · · × GLnk(F ′), where G′ is a group in the same
family as G but of smaller rank, and F ′ = F unless G is a unitary group, then
[F ′ : F ] = 2. It is this structure which enables the aforementioned “combinatorial”
approach to representations of classical groups. In a sense that approach is recursive,
relating G-representations to similar groups of smaller rank and to representations
of GLn(F ), which are understood well already. However, such a reduction strategy
does not say much about supercuspidal G-representations. The crucial technique
to analyse those is endoscopy, as in [Art, Mok, KMSW, MoRe]. From the work of
Arthur and Mœglin, the following version of a local Langlands correspondence (for
the discrete objects) can be destilled.
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Theorem A. (Arthur, Mœglin, see Theorem 2.1)
Let F be a p-adic field and let G be one of the connected classical groups listed above.

(a) Let π be a discrete series representation of G+. Then the L-parameter of π can
be obtained from the set of Jordan blocks of π, by taking the L-parameters of
all GLn(F )-representations in Jord(π) and combining those via block-diagonal
matrices.

(b) Part (a) extends canonically to an injection from the discrete series of G+ to
the set of enhanced bounded discrete L-parameters for G (where the component
groups of L-parameters are computed in the possibly disconnected group G∨+).

(c) When G+ 6= G, it can be described explicitly in terms of Jord(π) whether or not

ResG
+

G (π) is irreducible.

Mœglin has also characterized cuspidality in the context of Theorem A, both for
G-representations and for enhanced L-parameters. We refer to Section 2 for the
notations and more background. For now, we make a couple of remarks to aid the
correct interpretation of Theorem A. Firstly, note that in part (b) no bijectivity
is claimed, although that is known for many of these groups. Secondly, we have
to warn that not all details of the proof of Theorem A have been worked out (we
ourselves did not try, we only provide the relevant references). Further, Theorem A
relies heavily on endoscopy, that is the reason why F needs to have characteristic
zero.

Nevertheless, Theorem A should also hold for classical groups over local function
fields, see [GaVa, GaLo] for some instances. In Paragraph 2.1 we attempt to derive
that with the method of close local fields. We managed to prove that in Proposi-
tion 2.3, under Hypothesis 2.2 on depths of representations in Jordan blocks (the
hypothesis most probably holds always). Unfortunately our arguments do not suffice
to prove surjectivity in Theorem A.b for groups over local function fields, even if we
would know such surjectivity holds for the analogous groups over p-adic fields.

For the purposes of this paper, we only need to know Theorem A for supercuspidal
G+-representations. Indeed, the remainder of Theorem A follows from those cases
with either [Mœ1, MoTa] or with our results discussed below and the detailed knowl-
edge of the discrete series of Hecke algebras from [AMS2, AMS3]. Consequently all
results in paper hold for G and G+ as soon as we know Theorem A for supercuspidal
representations of G+ and the groups of smaller rank in the same family.

Next we discuss our new results, for any classical F -group G. Recall that the
category of smooth complex G-representations admits the Bernstein decomposition

(1) Rep(G) =
∏

s
Rep(G)s,

indexed by the G-conjugacy classes of pairs (L,Xnr(L) ·σ), where σ is an irreducible
supercuspidal representation of a Levi subgroup L of G, and Xnr(L) is the group
of unramified characters of L. Every Bernstein block Rep(G)s is equivalent with
the category of right modules of some finitely generated algebra H(s), often an
affine Hecke algebra. Usually these Hecke algebras arise via types (in the sense of
Bushnell–Kutzko). For classical groups such types are indeed available [MiSt], but it
has turned out to be difficult to analyse the Hecke algebras via those types. Instead
we follow the approach of Heiermann [Hei2, Hei3, Hei4], who constructed H(s) as
the G-endomorphism algebra of a progenerator Πs of Rep(G)s. (For GSpin(V ) we
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use the more general results from [Sol3, Sol4].) We record that by design there is a
canonical equivalence of categories

(2) Rep(G)s ∼= H(s)−Mod = EndG(Πs)−Mod.

These algebras H(s) have been described explicitly in terms of the Jordan blocks of
the underlying supercuspidal representations (of a Levi subgroup of G). That links
them to Theorem A and hence to Langlands parameters. These links were inves-
tigated in [Hei4], where it was shown that each Rep(G)s equivalent to a Bernstein
block of unipotent representations in another group. Unfortunately these equiv-
alences are far from canonical, as most of the comparison steps in [Hei4] involve
arbitrary choices. Also, the back-and-forth between various Langlands parameters
and Hecke algebras entails that in [Hei4] there is no construction of representations
in Rep(G)s with an unambigous relation to Langlands parameters for G.

Fortunately, objects of the above kinds are also available directly for L-parameters.
Indeed, in [AMS1, §8] the space of enhanced L-parameters (of any connected reduc-
tive p-adic group G) is partitioned into Bernstein components:

(3) Φe(G) =
⊔

s∨
Φe(G)s

∨
.

To each such Bernstein component, one can associate a twisted affine Hecke algebra
H(s∨, z) [AMS3]. Here z is an invertible indeterminate, analogous to

√
q for Iwahori–

Hecke algebras. Two important features of H(s∨, z) were established in [AMS2,
AMS3]: a construction of (irreducible) representations in terms of the geometry of
a space of Langlands parameters and for each z ∈ R>0 a canonical bijection

(4) Φe(G)s
∨ ←→ Irr(H(s∨, z)),

where H(s∨, z) denotes the specialization of H(s∨, z) at z = z. Moreover, for z > 1
the bijection (4) sends bounded parameters and discrete parameters to the expected
kind of representations (respectively tempered and essentially discrete series). Later

we will specialize z to q
1/2
F , where qF denotes the cardinality of the residue field of

F . The algebras H(s∨, q
1/2
F ) are crucial, without them it is hardly possible to make

to relations between Φe(G) and Rep(G) canonical.
In Paragraph 1.2 we make the affine Hecke algebras H(s∨, z) completely explicit,

for any Bernstein component of Φe(G) with G a classical F -group. This involves
a description of the underlying root datum and of the labels (equivalently: the q-
parameters) in terms of the relevant Jordan blocks. We refer to Table 2 for an
overview.

Theorem A enables us to associate to each Bernstein block Rep(G)s a unique

Bernstein component of Φe(G) which we call Φe(G)s
∨
, see Theorem 3.1. When

G+ 6= G (so for special orthogonal groups and general spin groups), s∨ is only
canonical up to the action of the two-element group Out(G). Our most important
result is a comparison of Hecke algebras on the two sides of the local Langlands
correspondence:

Theorem B. (see Theorem 3.3, Propositions 3.5 and 4.6)

Let Rep(G)s and Φe(G)s
∨

be matched as in Theorem 3.1. There exists an algebra
isomorphism

H(s)op ∼= H(s∨, q
1/2
F )

with the following properties.
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• On the standard maximal commutative subalgebras O(Ts) ⊂ H(s) and

O(Ts∨) ⊂ H(s∨, q
1/2
F ), the isomorphism is prescribed by the L-parameters of

supercuspidal representations from Theorem A and from the LLC for general
linear groups.
• There is a canonical bijection between the root system associated to s and

the root system associated to s∨.
• The isomorphism is canonical up to conjugation by elements of O(Ts)

× and
(in the cases with G+ 6= G) up to the action of Out(G).

There exists an analogous isomorphism of Hecke algebras for G+, which is canonical
up to conjugation by elements of O(Ts)

×.

We remind the reader that in the case of classical groups over local function fields
we need the mild Hypothesis 2.2 for Theorem B (and hence for most subsequent
results). We note that the canonicity of the above Hecke algebra isomorphism is a
subtle affair, the final steps rely on a normalization of certain intertwining operators
in Paragraph 4.3, which in the end boils down to [Art].

As a direct consequence of Theorem B and (2) we find an equivalence of categories

(5) Rep(G)s ∼= H(s∨, q
1/2
F )−Mod,

which is canonical (up to the action of Out(G) when G+ 6= G). The analogous
equivalence of categories for G+ is entirely canonical. In combination with (4) we
obtain:

Theorem C. (see Theorems 3.7 and 3.9)
Theorems A and B induce an injective local Langlands correspondence

Irr(G) ↪→ Φe(G).

It is canonical (up to the action of Out(G) when G+ 6= G) and it sends supercuspidal/
essentially square-integrable/tempered representations to cuspidal/discrete/bounded
enhanced L-parameters.

There exists an analogous parametrization of Irr(G+), which uses component
groups of L-parameters computed in G∨+ and is entirely canonical.

We note that (5) is much stronger than any results about the parametrization of
Irr(G), in the sense that it deals with an entire category of representations. Indeed,
earlier results about Hecke algebras entail that (5) has various consequences that
involve reducible representations, see Paragraph 3.2. Furthermore the equivalence
of categories (5) makes it possible to relate Rep(G) to the complex geometry of the
space/stack of L-parameters, as in [Sol5].

In Theorem C we do not claim surjectivity of the parametrization map, because
for that we would need surjectivity in Theorem A.b, which we do not know when F
is a local function field. That is in fact the only obstruction: the image of the map
in Theorem C is the union of all Bernstein components of Φe(G) whose underlying
cuspidal L-parameters can be reached via Theorem A. So in all the cases where the
surjectivity of Theorem A.b has been proven, we also get surjectivity in Theorem C.

Theorem C yields in particular a classification of the discrete series of G+, in terms
of the bounded discrete enhanced L-parameters in the image of the parametrization
map. On the other hand, Theorem A also classifies discrete series representations of
G+. For supercuspidal representations these two methods agree, that is a starting
point of our setup. We do obtain two independent ways to classify the discrete series
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in terms of supercuspidal representations of Levi subgroups: with Hecke algebras
via Theorem C and with Jordan blocks as in [Mœ1, MoTa, KiMa].

Moreover both methods can be pushed further, to classify all irreducible smooth
G+-representations. Indeed, in Theorem C that comes at the same time as the dis-
crete series (in the underlying proofs from [AMS2] the discreteness of representations
is actually analysed last). Irreducible tempered G+-representations are classified
with endoscopy and Jordan blocks in [MoTa, MoRe]. The step from tempered rep-
resentations to all irreducible smooth representations via the Langlands classification
is well-known and standard, and with that extension the papers [MoTa, MoRe] also
classify Irr(G+).

Theorem D. (see Theorem 4.11)
The following two ways to parametrize Irr(G+) with enhanced L-parameters coincide:

• with Hecke algebras via Theorem C,
• with endoscopy, Jordan blocks and the Langlands classification.

Because the two strategies are so different, it is quite cumbersome to check that
they agree. We do this step by step in Section 4, in the following order: completely
positive discrete series, all discrete series, irreducible tempered, all irreducible repre-
sentations. The most difficult part concerns the enhancements of L-parameters for
discrete series representations. To match those for the two methods in Theorem D,
we have to impose new conditions on the Hecke algebra isomorphisms in Theorem B.
It turns out that these are precisely the conditions that render Theorem B canonical
(in the sense already stated).

A few words about the setup of the paper are in order. As we mentioned at
the start of the introduction, we consider four classes of classical groups. For all
classes the proofs of our results are extremely similar, yet not entirely the same. For
symplectic and (special) orthogonal groups, almost everything that we show about
Hecke algebras was known already, from [Hei2, Hei3] for p-adic groups and from
[Mou, AMS3] for Langlands parameters.

Instead we focus on general (s)pin groups in Sections 1 and 3. That is a little bit
more involved because the center Z(G) of such a group G is not compact, and it
allows one to recover the proofs for symplectic and (special) orthogonal groups by
dividing Z(G) out and restricting from G∨ to its derived group, where G∨ denotes
the complex reductive group with root datum dual to that of G. Sections 2 and 4
are written so that they apply equally well to symplectic, (special) orthogonal and
general (s)pin groups.

For unitary groups, the necessary changes affect the notations so much that we
only discuss them in the separate Section 5. We check carefully which modifications
are needed to make Sections 1–4 work for unitary groups. It turns out that for un-
ramified unitary groups some calculations in Paragraph 1.2 have different outcomes,
which we record.

1. General spin groups

Let F be a non-archimedean local field with absolute Weil group WF . Consider
a finite dimensional F -vector space V endowed with a symmetric bilinear form.
The associated general pin group is denoted GPin(V ), it contains the general spin
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group GSpin(V ) with index 2. Both are subgroups of the multiplicative group of
the Clifford algebra of V . For the root datum of GSpin(V ) we refer to [AsSh, §2].

Simultaneously we consider the groups GSpin(V ′), where dim(V ′) = dim(V ) and
disc(V ) = disc(V ′). The equivalence classes of such groups are naturally in bijection
with:

• equivalence classes of symmetric bilinear forms of the same dimension and
the same discriminant as V ,
• pure inner twists of SO(V ).

We will refer to these groups as the pure inner twists of GSpin(V ). Let us list all
the possibilities:

• for dim = 2n + 1, the split group GSpin2n+1(F ) of F -rank n and one pure
inner twist GSpin′2n+1(F ) of F -rank n− 1,
• for dim = 2n, the split group GSpin2n(F ) of F -rank n and one pure inner

twist GSpin′2n(F ) of F -rank n− 1,
• for dim = 2n, the quasi-split group GSpin∗2n(F ) of F -rank n − 1 and one

pure inner twist GSpin∗
′

2n+1(F ), which is also quasi-split.

For any of these groups G, we write

(1.1) G+ =

{
GPin(V ) if dimV is even
GSpin(V ) if dimV is odd

.

All (pure) inner twists share the same Langlands dual group, so for that we have
precisely three possibilities:

• GSpin∨2n+1 = GSp2n(C), and since one of the p-adic groups is split we may

take LGSpin2n+1 = GSp2n(C),
• GSpin∨2n = GSO2n(C), and again one of the p-adic groups is split so we take
LGSpin2n = GSO2n(C),
• GSpin∗∨2n = GSO2n(C), and WF acts on it via passing to a quotient WF /WE

of order two and then conjugation by an element of O2n(C) \ SO2n(C).
We may take LGSpin∗2n = GO2n(C), where we remember that every Lang-
lands parameter for GSpin∗2n(F ) sends WE to GSO2n(C) and WF \WE to
GO2n(C) \GSO2n(C).

We write LGn or LG for LGSpin2n+1,
LGSpin2n or LGSpin∗2n. We also write

G∨+ =

{
GO2n(C)
GSp2n(C)

, G∨
+
der =

{
O2n(C) if dimV = 2n
Sp2n(C) if dimV = 2n+ 1

.

Langlands parameters for G+ take values in LG and are considered up to conjugation
by G∨+.

1.1. Properties of Langlands parameters.
Let us investigate when a Langlands parameter φ for G is discrete. The image

of φ is contained in LG, so in GSp2n(C) or in GO2n(C). In the former case φ is
an L-parameter for GSpin2n+1(F ) or GSpin′2n+1(F ), in the latter case for a general
spin group of even size. We can distinguish two subcases:

• when im(φ) ⊂ GSO2n(C), φ is an L-parameter for GSpin2n(F ) or GSpin′2n(F ),
• otherwise there is an index two subgroup WE ⊂ WF such that φ(WE ×

SL2(C)) ⊂ GSO2n(C). Then φ is an L-parameter for a group GSpin∗2n(F ) or

GSpin∗
′

2n(F ) which splits over E.
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We suppose that the bilinear form BJ on C2n from which G∨ is defined is given
by a (skew-)symmetric matrix J ∈ GL2n(C). Let µ∨G : LG → C× be the similitude
character, that is

(1.2) BJ(gv1, gv2) = µ∨G(g)BJ(v1, v2) v1, v2 ∈ C2n, g ∈ LG.

Recall that (1.2) holds for g = φ(w) with w ∈WF × SL2(C). Hence the map

B̃J : C2n → (C2n)∨

v 7→ [v′ 7→ BJ(v′, v)]

provides an isomorphism of WF × SL2(C)-representations

(1.3) φ
∼−−→ φ∨ ⊗ µ∨G ◦ φ or equivalently φ⊗ (µ∨G ◦ φ)−1

∼−−→ φ∨.

Here φ∨ denotes the contragredient of φ. The adjoint map

B̃J
∨

: φ
∼−−→
(
φ⊗ (µ∨G ◦ φ)−1

)∨
= φ∨ ⊗ µ∨G ◦ φ

is also an isomorphism of WF × SL2(C)-representations. Suppose that V1 is an
irreducible subrepresentation of (φ,C2n), on which BJ is nondegenerate. By Schur’s

lemma there exists c1 ∈ C× such that B̃J
∨|V1 = c1B̃J |V1 . Then

B̃J |V1 = B̃J
∨∨|V1 = c1B̃J

∨|V1 = c21B̃J |V1 ,
so c1 ∈ {1,−1}. This says that (V1, BJ) has a well-defined sign c1.

Since LG = C×LGder and LGder = Sp2n(C) or LGder ⊂ O2n(C), the decompo-
sition of (φ,C2n) in irreducible subrepresentations can be carried out just like for
orthogonal or symplectic representations. For those kinds of representations we use
the instructive paper [GGP]. Thus we decompose

(1.4) (φ,C2n) =
⊕

ψ∈Irr(WF×SL2(C))
Nψ ⊗ Vψ,

where Vψ is the space of the representation ψ and Nψ is the multiplicity space (with a
trivial action). By [GGP, Theorem 8.1] the right hand side of (1.4) determines φ up
to G∨-conjugacy, apart from some exceptional cases in which it is up to GO2n(C)-
conjugacy. Further, by [GGP, §4] BJ induces bilinear a form on each of the Nψ

and

ZG∨der(φ) := ZG∨der(φ(WF × SL2(C))) =(1.5)

S
(∏

ψ∈I+
O(Nψ)⊗IdVψ

)
×
∏

ψ∈I−
Sp(Nψ)⊗ IdVψ ×

∏
ψ∈I0

GL(Nψ)⊗ IdVψ⊕V ∨ψ ,

where S(H) denotes the subgroup of elements in H with determinant equal to 1.
Here we abbreviated

I± = {ψ ∈ Irr(WF × SL2(C)) : ψ ∼= ψ∨ ⊗ µ∨G ◦ φ, sgn(ψ) = ±sgn(G∨der)},
I0 = {ψ ∈ Irr(WF × SL2(C)) : ψ 6∼= ψ∨ ⊗ µ∨G ◦ φ}/(ψ ∼ ψ∨ ⊗ µ∨G ◦ φ).

Recall that φ is discrete if and only if ZG∨(φ)/Z(G∨)WF is finite, which is equivalent
to: ZG∨der(φ) is finite. From (1.5) we see that that is the case if and only if

(1.6) Nτ = 0 for τ ∈ I− ∪ I0 and dim(Nτ ) ≤ 1 for τ ∈ I+.
From now on we assume that φ is discrete. Thus each τ ⊗ Pa has multiplicity at
most one in φ.

Recall that SL2(C) has a unique irreducible representation (Pa,Ca) of dimension
a ∈ Z>0, and that it is self-dual with sign (−1)a−1. Let Jord(φ) be the set of
pairs (τ, a) ∈ Irr(WF ) × Z>0 for which τ ⊗ Pa occurs in (φ,C2n). The set Jord(φ)
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describes the Jordan decomposition of the unipotent element uφ = φ(1, ( 1 1
0 1 )): for

each (τ, a) ∈ Jord(φ), uφ has dim τ Jordan blocks of size a. We abbreviate

Jordτ (φ) = {a ∈ Z>0 : (τ, a) ∈ Jord(φ)}.

We define

Irr(WF )±φ = {τ ∈ Irr(WF ) : τ ∼= τ∨ ⊗ µ∨G ◦ φ, sgn(τ) = ±sgn(G∨der)},
Irr(WF )0φ = {τ ∈ Irr(WF ) : τ 6∼= τ∨ ⊗ µ∨G ◦ φ}/(τ ∼ τ∨ ⊗ µ∨G ◦ φ).

Then we can express (1.4) more precisely as
(1.7)

(φ,C2n) =
⊕

τ∈Irr(WF )
+
φ

τ ⊗

 ⊕
a odd:(τ,a)∈Jord(φ)

Pa

⊕ ⊕
τ∈Irr(WF )

−
φ

τ ⊗

 ⊕
a even:(τ,a)∈Jord(φ)

Pa

 .

Our setup with pure inner forms entails that we must take component groups for
L-parameters in G∨der = SO(V )∨, which equals SO2n(C) or Sp2n(C). We put

(1.8) Sφ = π0(ZG∨der(φ)),

and we use the irreducible representations of Sφ as enhancements of φ. From (1.5)
we see that every (τ, a) ∈ Jord(φ) contributes a generator zτ,a of order two to Sφ.
Here zτ,a acts as −1 on τ ⊗Pa and as 1 on the other summands of (1.7). The group
Sφ is abelian and consists of all products of the zτ,a such that the determinant is 1.
Thus every element of Sφ involves an even number of zτ,a with a dim τ odd.

A character ε of Sφ is a G-relevant enhancement of φ if and only if ε restricted to

Z(G∨der)
WF encodes G via the Kottwitz isomorphism, i.e. it is quadratic if G is a

“prime” form (with notation as above (1.1)) and trivial otherwise. Here the image
of Z(G∨der)

WF in Sφ is generated by

(1.9)
∏

(τ,a)∈Jord(φ): a dim τ odd
zτ,a,

which is an element of order ≤ 2.
We want to make explicit which enhancements of φ are cuspidal. Like in (1.7)

(1.10) ZG∨der(φ(WF )) = S
( ∏
τ∈Irr(WF )

+
φ

IdVτ ⊗O
( ⊕
a odd:(τ,a)∈Jord(φ)

Ca
))
×

∏
τ∈Irr(WF )

−
φ

IdVτ ⊗ Sp
( ⊕
a even:(τ,a)∈Jord(φ)

Ca
)
.

This brings us to the setting of [Mœ1, MoTa] and [AMS3, §5.3]. In the latter it is
checked that (φ, ε) is cuspidal if and only if the following conditions are met:

• Jord(φ) does not have holes, that is, if (τ, a) ∈ Jord(φ) and a > 2, then also
(τ, a− 2) ∈ Jord(φ),
• ε is alternated, in the sense that for all (τ, a), (τ, a+ 2), (τ ′, 2) ∈ Jord(φ):

(1.11) επ(zτ,azτ,a+2) = −1 and επ(zτ ′,2) = −1.
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1.2. Hecke algebras for Langlands parameters.
We will work out the Hecke algebras associated in [AMS3, §3] to Bernstein compo-

nents of enhanced L-parameters for G. Although in [AMS3] we used an alternative
group Sφ coming from the simply connected cover of G∨der, the constructions work
equally well with Sφ as above.

It is shown in [AsSh, §2] that every standard Levi subgroup L = L(F ) of G =
GSpin(V ) is of the form

L(F ) = Gn− ×GLn1(F )× · · · ×GLnk(F ),

where n− ∈ N, Gn− = Gn−(F ) = GSpin(V−) with disc(V−) = disc(V ) and

dim(V )− dim(V−) = 2(n1 + · · ·+ nk).

Then LGn− has the same type as LG (but smaller rank) and

(1.12) LL = LGn− ×GLn1(C)× · · · ×GLnk(C).

Assume that the (skew-)symmetric matrix J ∈ GL2n(C) defining the bilinear form
has the following simple shape: the isotropic part is built from matrices ( 0 1

1 0 ) or(
0 1
−1 0

)
placed in rows and columns j, 2n+ 1− j. Then the embedding LL → LG is

given by

(1.13) (h−, h1, . . . , hk) 7→ (h1, . . . , hk, h−, µ
∨
G(h−)Jh−Tk J−1, . . . , µ∨G(h−)Jh−T1 J−1),

where for an invertible matrix m we denote the inverse-transpose by m−T = (m−1)
T

.
Consider a Langlands parameter φ : WF × SL2(C) → LL. With (1.12) and (1.13)
we can write

(1.14) φ =
⊕

j
φj ⊕ φ− ⊕

⊕
j
φ∨j ⊗ µ∨G ◦ φ ∼= φ− ⊕

⊕
j
φj ⊕ (φ∨j ⊗ µ∨G ◦ φ),

where φ− : WF × SL2(C)→ LGn− and φj : WF × SL2(C)→ GLnj (C). Clearly φ is
discrete if and only if φ− and all the φj are discrete. Notice that Sφ = Sφ− because
ZGLnj (C)(φj) is connected. An enhancement

ε ∈ Irr(Sφ) = Irr(Sφ−)

is cuspidal if and only (φ−, ε) and all the (φj , triv) are cuspidal. For (φ−, ε) cusp-
idality was analysed after (1.10), while for (φj , triv) it means that φj is trivial on
SL2(C) and φj is irreducible as representation of WF [AMS1, Example 6.11].

Let Φcusp(L) denote the set of L∨-conjugacy classes of cuspidal enhanced L-
parameters for L. From now on we assume that (φ, ε) ∈ Φcusp(L). Following [AMS1,
§8], this gives a subset

s∨L = (Z(L∨)◦, φ, ε) ⊂ Φcusp(L)

and a Bernstein component Φe(G)s
∨ ⊂ Φe(G). For τ ∈ Irr(WF ), let `τ be the

multiplicity of τ in φ− (regarded as WF -representation via the standard embedding
LGn− → GL2n−) and let eτ be the sum of the multiplicities of τ in the GLnj (C).
Then (1.14) and (1.7) become

φ = φ− ⊕
⊕

τ∈Irr(WF )
±
φ

2eττ ⊕
⊕

τ∈Irr(WF )
0
φ

eτ (τ ⊕ τ∨ ⊗ µ∨G ◦ φ),

φ|WF
=

⊕
τ∈Irr(WF )

±
φ

(2eτ + `τ )τ ⊕
⊕

τ∈Irr(WF )
0
φ

eτ (τ ⊕ τ∨ ⊗ µ∨G ◦ φ)
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From (1.5) we deduce

(1.15) ZG∨der(φ) = S
( ∏
τ∈Irr(WF )

+
φ

O2eτ+`τ (C)⊗ IdVτ

)
×

∏
τ∈Irr(WF )

−
φ

Sp2eτ+`τ (C)⊗ IdVπ ×
∏

τ∈Irr(WF )
0
φ

GLeτ (C)⊗ IdVτ⊕V ∨τ .

Relevant for the determination of Hecke algebras are furthermore

ZG∨der(φ) ∩ LL = S
( ∏
τ∈Irr(WF )

+
φ

O`τ (C)× (C×)eτ ⊗ IdVτ
)
×

∏
τ∈Irr(WF )

−
φ

Sp`τ (C)× (C×)eτ ⊗ IdVπ ×
∏

τ∈Irr(WF )
0
φ

(C×)eτ ⊗ IdVτ⊕V ∨τ ,

G∨φ = ZG∨(φ(WF )) = C×ZG∨der(φ),

M = G∨φ ∩ LL = C×
(
ZG∨der(φ) ∩ LL

)
,

T = Z(M)◦ ∼= C×
( ∏
τ∈Irr(WF )

±
φ

(C×)eτ ×
∏

τ∈Irr(WF )
0
φ

(C×)eτ
)

= Z(LL).

If G∨ = GSO2n(C), we may extend it to G∨+ := GO2n(C). That means omitting
the S from (1.15), which makes the group (at most) a factor 2 bigger, so that it
decomposes naturally as a product over the involved τ ’s:

(1.16) ZG∨+der
(φ(WF )) =

∏
τ∈Irr(WF )

±
φ ∪Irr(WF )

0
φ

G∨φ,τ .

Then the root system R(G∨φ , T ) decomposes canonically as a disjoint union of the
root systems

Rτ := R(G∨φ,τT, T ) = R(G∨φ,τ , T ∩G∨φ,τ ).

In [AMS3, §1] a graded Hecke algebra is attached to the data (G∨φ ,M, uφ, ε). The

maximal commutative subalgebra is O(Lie(T )), the root system is Rτ and the para-
meters of the roots come from [Lus2]. The root system and the parameter functions
c : Rτ → Z≥0 (which are used to construct graded Hecke algebras) were worked out
in [AMS3, §5.3]. To write down the parameters uniformly, we define

(1.17) aτ =


max Jordτ (φ−) Jordτ (φ−) 6= ∅
0 Jordτ (φ−) = ∅, τ ∈ Irr(WF )−φ
−1 Jordτ (φ−) = ∅, τ ∈ Irr(WF )+φ

.

Notice that now aτ is odd for τ ∈ Irr(WF )+φ and even for τ ∈ Irr(WF )−φ . For eτ = 0

the torus T ∩ G∨φ,τ reduces to 1, and there are no roots. Otherwise we denote a

root of length
√

2 by α and a root of length 1 by β. Now the root systems and the
parameter can be expressed as in Table 1. When eτ = 1, we must regard Deτ and
Aeτ−1 as the empty root system. Although β is not a root in Cn or Dn, [AMS3,
§3.2] still allows us to attach a useful parameter c(β).

Recall that the Bernstein component Φe(G)s
∨

has as cuspidal supports precisely
the twists of (φ, ε) by elements of

Xnr(
LL) := Z(LLo IF )◦WF

∼= Xnr(L).
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Table 1. Root systems and graded Hecke algebra parameters for τ

τ ∈ `τ Rτ c(α) c(β)

Irr(WF )+φ = 0 Deτ 2 0 = 1 + aτ
Irr(WF )+φ > 0 Beτ 2 1 + aτ
Irr(WF )−φ = 0 Ceτ 2 c(2β) = 2, c(β) = 1 = 1 + aτ
Irr(WF )−φ > 0 BCeτ 2 1 + aτ
Irr(WF )0φ = 0 Aeτ−1 2 −−

Here WF acts trivially on the type GL factors of LL and on Z(Gn−) ∼= C×, so

(1.18) Xnr(
LL) ∼= Z(Gn−)×

∏
j
C×Id = Z(LL) = T.

Without changing Φe(G)s
∨
, we can bring (φ, ε) in a somewhat better position:

• if φj : WF → GLnj (C) differs from φ∨j ⊗ µ∨G ◦ φ by z ∈ Z(GLnj (C)) ∼=
Xnr(GLnj (F )), then we replace φj by z1/2φj , so that

z1/2φj ∼= z−1/2φ∨j ⊗ µ∨G ◦ φ ∼= (z1/2φj)
∨ ⊗ µ∨G ◦ φ.

• if ni = nj and φi, φj differ by an element of Xnr(GLni(F )), then we adjust
one of them so that actually φi = φj ,
• if φi, φj ∈ Irr(WF )0φ and φi, φ

∨
j ⊗ µ∨G ◦ φ differ by an element of GLni(C),

then we replace φj by φi.

Let τ ′ ∈ Irr(WF )±φ be a twist of τ ∈ Irr(WF )±φ by an unramified character, such

that τ ′ is equivalent with τ
′∨ ⊗ µ∨G ◦ φ but not with τ . By the above assumptions

on φ, eτ ′ = 0 if eτ > 0. Still, `τ , `τ ′ can be nonzero simultaneously. If eτ > 0 and
`τ < `τ ′ (resp. `τ = `τ ′ = 0 and aτ = 0 < aτ ′) then we change φj = τ to φj = τ ′, so
that the roles of `τ and `τ ′ (resp. of aτ and aτ ′) are exchanged.

Let Z(L∨)◦φ ⊂ Z(L∨)◦ = T be the subgroup of elements z such that zφ is equivalent

with φ in Φe(L)s
∨
. It is finite and the map

Z(L∨)◦/Z(L∨)◦φ → Φe(L)s
∨

: z 7→ (zφ, ε)

is a bijection. The affine Hecke algebra we are constructing has the underlying
complex torus

(1.19) Ts∨ := Z(L∨)◦/Z(L∨)◦φ = T
/∏

j
Z(GLnj (C))φj .

Let tτ be the torsion number of τ ∈ Irr(WF ), that is, the order of the group

Z(GLdτ (C))τ . Then tτ is also the number of irreducible constituents θ of ResWF
IF

τ .
We need to distinguish two cases:

(i) θ ∼= θ∨⊗µ∨G ◦φ. Then the same goes for all constituents of ResWF
IF

τ , because

all those are in one orbit for WF . The proof of [Sol4, Proposition 4.10.a]
(which concerns self-dual representations of WF ) applies and shows that τ
and τ ′ have the same sign.

(ii) θ 6∼= θ∨⊗µ∨G ◦φ for all eligible θ. Again the proof of [Sol4, Proposition 4.10.a]
applies, now it shows that τ and τ ′ have different signs.

According to these two cases, we divise a new partition of Irr(WF )±φ :
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• Irr(WF )++ is the set of all τ ∈ Irr(WF )+φ in case (i) above, modulo the

relation τ ∼ τ ′;
• Irr(WF )−− is defined in the same way, only starting from Irr(WF )−φ ;

• Irr(WF )+− is the set of all τ ∈ Irr(WF )±φ in case (ii) above, modulo the

relation τ ∼ τ ′;
• Irr′(WF )±φ = Irr(WF )++ ∪ Irr(WF )−− ∪ Irr(WF )+− = Irr(WF )±φ /(τ ∼ τ

′).

A computation like for (1.15) yields

ZG∨der(φ(IF )) = S
( ∏
τ∈Irr(WF )

++
φ

O2eτ+`τ+`τ ′ (C)tτ
)
×

∏
τ∈Irr(WF )

−−
φ

Sp2eτ+`τ+`τ ′
(C)tτ

×
∏

τ∈Irr(WF )
+−
φ

GL2eτ+`τ+`τ ′ (C)tτ/2 ×
∏

τ∈Irr(WF )
0
φ

GLeτ (C)tτ .(1.20)

Analogous to (1.16) we decompose

ZG∨+der
(φ(IF )) =

∏
τ
G∨φ(IF ),τ ,

Ts∨ = C× ×
{1,−1}

∏
τ
Ts∨,τ = C× ×

{1,−1}

(
C×/Z(GLdτ (C))τ

)eτ ,
X∗(Ts∨) ⊂ Z⊕

⊕
τ
X∗(Ts∨,τ ) ∼= Z⊕

⊕
τ
Zeτ .

(1.21)

In each of the above cases, the product or sum runs over Irr′(WF )±φ ∪ Irr(WF )0φ.

For comparison with [AMS3] we record the group

(1.22) J = ZG∨(φ(IF )) = C×ZG∨der(φ(IF )).

The root system of J◦ with respect to the (possibly non-maximal) torus T splits
naturally as a disjoint union of root systems R(G∨φ(IF ),τT, T ), indexed as in (1.21).

We note that by the above assumptions on τ and τ ′ we have `τ ≥ `τ ′ = 0 and if
`τ = 0, then `τ ′ = 0 and aτ ≥ aτ ′ . With Table 1 at hand, one checks readily that

(1.23) R(G∨φ(IF ),τT, T ) = R(G∨φ,τT, T )

in all cases. (Only the dimensions of the root subspaces for G∨φ(IF ),τ are higher

than for G∨φ,τ , namely tτ times higher in all but ones cases.) In view of [AMS3,

Proposition 3.9], this means that (φ, ε) is a good basepoint of Φe(L)s
∨
.

Now the roots for the Hecke algebra that we are after can be found with [AMS3,
Definition 3.11]. The reduced roots α ∈ R(G∨φ(IF ),τT, T ) need to be scaled by a

certain factor mα ∈ N, which we compute next. Let BJ ⊃ TJ be a φ(FrobF )-stable

Borel subgroup and maximal torus of J◦, such that T
φ(FrobF )
J ⊃ T . A natural choice

for TJ comes from the standard maximal tori TJ,τ in G∨φ(IF ),τ :

(1.24) TJ = C×
( ∏
τ∈Irr(WF )

++
φ ∪Irr(WF )

−−
φ

T tτJ,τ ×
∏

τ∈Irr(WF )
+−
φ

T
tτ/2
J,τ ×

∏
τ∈Irr(WF )

0
φ

T tτJ,τ

)
.

We see that R(G∨φ(IF ),τ , TJ) has tτ irreducible components, unless τ ∈ Irr(WF )+−φ ,

then there are tτ/2. Following [AMS3, Definition 3.11], mα equals tτ (or tτ/2 for

τ ∈ Irr(WF )+−φ ) times a number m′α which is mα for ResWF
WE

φ where E/F is the

unramified extension of degree tτ (or tτ/2 for τ ∈ Irr(WF )+−φ ). By definition m′α is
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the smallest number such that ker(m′αα) contains all t ∈ T for which tResWF
WE

φ is

equivalent with ResWF
WE

φ.
The group of t ∈ T with tφ ∼= φ factors as a product indexed by all possible τ ,

and the contribution from one τ consists of tτ unramified characters of WF . But
this group of unramified characters becomes trivial if we pass from WF to the Weil
group of the degree tτ unramified extension of F . Hence m′α = 1, unless maybe
when τ ∈ Irr(WF )+−φ . In the latter situation we usually have m′α = 2, because

ker(m′αα) has to contain an element t ∈ (1−φ(FrobF )tτ/2)TJ,τ with α(t) = −1. The
only exception occurs when `τ = 0 and α ∈ Ceτ is long, then m′α = 1. We conclude
that mα = tτ in all cases, except when τ ∈ Irr(WF )+−φ , `τ = 0 and α ∈ Ceτ is long,

then mα = tτ/2.
Finally, we are ready to define the root datum for our affine Hecke algebra:

(1.25)
Rs∨ =

(
Rs∨ , X

∗(Ts∨), R∨s∨ , X∗(Ts∨)
)
,

where Rs∨ = {mαα : α ∈ R(G∨φ , T )red}.
Here Rs∨ is the disjoint union of root subsystems

Rs∨,τ = {mαα : α ∈ R(G∨φ,τT, T )red}.

Notice that X∗(Ts∨,τ ) arises from the part of X∗(T ) associated to τ by multiplication
with tτ , where tτ = mα for most α ∈ R(G∨φ,τT, T ). The multiplication rules in our
affine Hecke algebra are determined by parameter functions λ, λ∗ : Rs∨ → Z≥0, which
come from [AMS3, Lemma 3.14]. The outcome of those constructions is summarized
in [AMS3, §5.3]:

• For α ∈ Rτ,red a short root in a type B root system, tτ = mα, c(α) =
aτ + 1, c∗(α) = aτ ′ + 1 and

λ(α) = tτ (aτ + aτ ′ + 2)/2, λ∗(α) = tτ (aτ − aτ ′)/2.
We note that λ∗(α) ≥ 0 because `τ ≥ `τ ′ .
• For α ∈ Rτ,red, τ ∈ Irr(WF )+−φ , `τ = 0, α a long root of a type C root

system: c(α) = 2 and

λ(α) = λ∗(α) = mα = tτ/2.

• For all other α ∈ Rτ,red: c(α) = 2 and

λ(α) = λ∗(α) = mα = tτ .

We note that the operation α 7→ mαα preserves the type of the root systems Rτ,red
from Table 1, except that in the case τ ∈ Irr(WF )+−φ , `τ +`τ ′ = 0 type Ceτ is turned
into Beτ .

We also need to determine Ws∨ , the stabilizer of s∨L in

(1.26) NG∨(L∨ o WF )/L∨ = NG∨(L∨)/L∨.

Recall the embedding LL → LG from (1.13). For each j the group NG∨+(L∨)

possesses an element that exchanges hj and µ∨G(h−)Jh−Tj J−1. In terms of represen-

tations of WF (via φ), this

(1.27) exchanges τ and τ∨ ⊗ µ∨G ◦ φ.
Further NG∨+(L∨) contains elements that permute the factors GLnj (C) of the same
size. It follows that NG∨+(L∨)/L∨ is isomorphic with a direct product of Weyl
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groups of type BeN , where eN counts the number of j’s with nj = N . The group
(1.26) has index at most two in NG∨+(L∨)/L∨, which comes from the difference
between GO2n(C) and GSO2n(C).

The group Ws∨ can be represented with elements that normalize M and T and
centralize φ(IF × SL2(C)), so in particular elements of J . Further Ws∨ contains
W (Rs∨) = W (J◦, T ) as a normal subgroup. Fix a standard Borel subgroup B∨ of
G∨. That determines a Borel subgroup BJ of J◦, and hence a system of positive
roots in R(J◦, T ) and in Rs∨ . Let Γs∨ be the subgroup of Ws∨ that stabilizes this
positive system of roots. By standard results about finite root system and Weyl
groups

(1.28) Ws∨ = W (Rs∨) o Γs∨ .

Let us determine Γs∨ in terms of the action of NG∨(L∨)/L∨ on the type GL factors
of L∨ and on the tensor factors of φ (as described above). The τ ∈ Irr(WF ) with
eτ = 0 do not contribute. If eτ > 0, then eτ⊗χ = 0 for every unramified twist τ ⊗ χ
which is not isomorphic to τ by our normalization of φ. Hence every element of
NG∨+(L∨) that stabilizes s∨L must already stabilize φ. In other words, Ws∨ equals
the stabilizer of φ in NG∨(L∨)/L∨. Thus we can represent Ws∨ with elements of
ZG∨der(φ) that normalize T . Let W+

s∨ and Γ+
s∨ be the versions of Ws∨ and Γs∨ for

G∨+. From (1.15) we see that

(1.29) W+
s∨ =

∏
τ

W+
s∨,τ
∼=

∏
τ∈Irr′(WF )

±
φ

W (Beτ )×
∏

τ∈Irr(WF )
◦
φ

W (Aeτ−1).

Comparing with Table 1, we find that

(1.30) Γ+
s∨
∼=

∏
τ∈Irr′(WF )

+
φ :`τ=0

W (Beτ )/W (Deτ ) ∼=
∏

τ∈Irr′(WF )
+
φ :`τ=0

π0
(
O2eτ (C)⊗ IdVτ

)
.

In (1.30) every τ contributes a factor

Γ+
s∨,τ = 〈rτ 〉 ∼= Z/2Z

to Γ+
s∨ . For τ not appearing in (1.30), we may put Γ+

s∨,τ = 1.

When dim τ is even, det(rτ ) = 1 and when dim τ is odd, det(rτ ) = −1. Hence
the S in (1.15) does not put any condition on the rτ with dim τ even. If there exists
a τ ∈ Irr(WF )+φ with `τ > 0, then we can use O`τ (C) to make the determinant of

a product of rτ ’s equal to 1. From [Mou, §4.1] we know that this leaves just two
possibilities for Γs∨ :

• Γs∨ =
∏
τ∈Irr′(WF )

+
φ :`τ=0〈rτ 〉,

• if G is a form of GSpin2n and L ∼=
∏
j GLnj with nj ∈ Z>0, then

Γs∨ =
∏

τ∈Irr′(WF )
+
φ :`τ=0,dim τ even

〈rτ 〉 × S
( ∏
τ∈Irr′(WF )

+
φ :`τ=0,dim τ odd

〈rτ 〉
)
,

where S denotes the subgroup of elements with determinant 1.

Conceivably our affine Hecke algebra could contain the span of Γs∨ as a twisted
group algebra. But here the 2-cocycle of Ws∨ involved in the Hecke algebra can be
computed for each τ separately, and 〈rτ 〉 ∼= Z/2Z only has trivial 2-cocycles.

Let us summarise our findings. From (1.21) we know that X∗(Ts∨) has index
two in Z ⊕

⊕
τ Zeτ , where Zeτ ∼= X∗(Ts∨). If we replace X∗(Ts∨) and X∗(Ts∨) in
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Rs∨ by ⊕τZeτ , we get a new root datum Rs∨,der that decomposes naturally. More

precisely, the root datum Rs∨,der, extended with the finite group Γ+
s∨ acting on

it, is a direct sum of such extended root data, where the product is indexed by
τ ∈ Irr′(WF )±φ ∪ Irr(WF )0φ. For each such τ the data are (with α a root of length√

2 and β a root of another length) are collected in Table 2. Recall from (1.17) that
aτ is odd for τ ∈ Irr(WF )+φ and even for τ ∈ Irr(WF )−φ .

Table 2. Data from Rs∨ for each τ

aτ aτ ′ X∗(Ts∨,τ ) Rs∨,τ λ(α) λ(β) λ∗(β) Γ+
s∨

−1 −1 Zeτ Deτ tτ −− −− Out(Deτ )
0 −1 Zeτ Beτ tτ tτ/2 tτ/2 1
0 0 Zeτ Ceτ tτ tτ tτ 1
≥ 1 −1 Zeτ Beτ tτ tτ (aτ + 1)/2 tτ (aτ + 1)/2 1
≥ 1 ≥ 0 Zeτ Beτ tτ tτ (aτ + aτ ′ + 2)/2 tτ (aτ − aτ ′)/2 1
Irr(WF )0φ Zeτ Aeτ−1 tτ −− −− 1

Here the second, third and fourth lines can be regarded as special cases of the
fifth line. We write them down nevertheless, because they arise from different lines
in Table 1. With Table 2 and (1.21) we can finally make the affine Hecke algebra
associated in [AMS3] to s∨ (and a parameter z ∈ C×) explicit:

(1.31) H(s∨, z) = H(Rs∨ , λ, λ
∗, z) o Γs∨ ,

where Γs∨ acts on H(Rs∨ , λ, λ
∗, z) via automorphisms of Rs∨ .

2. Moeglin’s classification of discrete series representations

Arthur famously proved the local Langlands correspondence for symplectic and
quasi-split (special) orthogonal groups over p-adic fields [Art]. An analogue for quasi-
split unitary groups was announced in [Mok] and proven (for all unitary groups) in
[KMSW]. As explained in [Mœ4, MoRe], Arthur’s endoscopic methods can also be
applied to (special) orthogonal groups and general spin groups that are not necessar-
ily quasi-split. In principle that should yield local Langlands correspondences for all
classical groups over p-adic fields. However, not all arguments have been worked out
in detail. For classical groups over local function fields far less is known, the notable
exception being [GaVa]. We address that in Paragraph 2.1. Here we make Moeglin’s
parametrization of discrete series representations [Mœ1, MoTa, Mœ3, Mœ4] more
explicit.

Let G = Gn = G(F ) be a symplectic group, a special orthogonal group or a
general spin group. When G is an even special orthogonal group or an even general
spin group, we denote by G+ the associated orthogonal or general pin group, as
in (1.1). In the other cases G+ means just G. Let Z(G)s be the maximal F -split
central torus in G. It is isomorphic to F× for general spin groups and trivial in the
other cases.

We say that an irreducible smooth G-representation belongs to the discrete series
if it is square-integrable modulo centre. More explicitly, that means that π has a
unitary central character and its restriction to the derived group of G is square-
integrable.



AFFINE HECKE ALGEBRAS FOR CLASSICAL p-ADIC GROUPS 17

The group GLm(F ) × Gn is a Levi subgroup of a group Gn+m of the same kind
as Gn but of rank m higher. There is a parabolic induction functor

× : Rep(GLm(F ))× Rep(Gn)→ Rep(Gn+m),

which up to semisimplification does not depend on the choice of a parabolic subgroup
of Gn+m with Levi factor GLm(F ) × Gn. Similarly there is a parabolic induction
functor

× : Rep(GLm(F ))× Rep(G+
n )→ Rep(G+

n+m).

Let ρ ∈ Irr(GLdρ(F )) be unitary and supercuspidal, for some dρ. For an integer
a ≥ 1 we can form the generalized Steinberg representation δ(ρ, a) ∈ Irr(GLm(F ))
with m = dρa. Take π in the discrete series of G+

n and let νπ be the character by
which Z(G)s acts on π. One says that (ρ, a) lies in the Jordan block of π if δ(ρ, a)×π
is irreducible but there exists a′ ∈ a + 2Z such that δ(ρ, a′) × π is reducible. We
denote the set of all such pairs (ρ, a) by Jord(π). That reducibility is only possible
if the nontrivial element

sα ∈ NG+
n+dρa

(
GLdρa(F )×G+

n

)/(
GLdρa(F )×G+

n

)
,

see (3.1), stabilizes δ(ρ, a′) � π up to an unramified character. That in turn implies
that the version of sα with a = 1 stabilizes ρ, or more explicitly

(2.1) ρ ∼= ρ∨ ⊗ νπ.
To Jord(π) one can associate a finite group Sπ, the F2-vector space with basis
{zρ,a : (ρ, a) ∈ Jord(π)}. A character επ : Sπ → {1,−1} can be defined (almost
entirely) using parabolic induction [Mœ1, p. 147–148]. To complete the definition
of επ, one needs information about the supercuspidal cases from [Art] or [MoRe].

Theorem 2.1. [Mœglin]
Let F be a p-adic field and consider π in the discrete series of G+.

(a) Jord(π) has image in LG, by which we mean that the Langlands parameter of

�(ρ,a)∈Jord(π)δ(ρ, a) ∈ Irr
(∏

(ρ,a)∈Jord(π)
GLdρa(F )

)
factors through LG.

(b) Jord(π) determines precisely the L-packet containing π.
(c) The above provides an injection from the discrete series of G+ to the set of

pairs (Jord, ε) (up to G∨+-conjugacy) for which Jord has image in LG and ε is
G-relevant, as explained around (1.9).

(d) When G 6= G+, the restriction of π to G is reducible if and only if dρa is even
for all (ρ, a) ∈ Jord(π).

In fact there should be a bijection in part (c), but for our purposes an injection
suffices. Theorem 2.1.a entails in particular

(2.2)
∑

(ρ,a)∈Jord(π)
dρa = size of G∨.

Parts (a) and (b) of Theorem 2.1 are in proven in [Mœ3, §2.2–2.5]. When in addition
G is quasi-split, parts (c) and (d) are shown in [Mœ4, §7.1]. Theorem 2.1.c–d is
stated for all our G+ in [Mœ3, §2.5], attributed to Arthur [Art]. Later this was
worked out for non-quasi-split groups in [MoRe]. We note that these sources do
include surjectivity in part (c).
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It was shown in [Mœ3, Theorem 2.5.1] that, in the setting of Theorem 2.1, π is
supercuspidal if and only if Jord(π) does not have holes and επ is alternated in the
sense of (1.11). For the main results in this paper it suffices to know that Theorem
2.1 holds for supercuspidal representations, with Jord and ε of this particular form.

We point that unfortunately the proof of Theorem 2.1 for supercuspidal rep-
resentations is not yet entirely complete (except when G has very small rank).
Namely, while the stabilization of the twisted trace formula has been now estab-
lished in [MoWa], Arthur’s book [Art] still relies on certain papers that are an-
nounced but have not yet appeared. The paper [MoRe] uses [Art], and also leaves
some other details to be worked out. On the other hand, the part of Theorem 2.1
that classifies discrete series representations in terms of supercuspidal representa-
tions is documented much better. Besides the above references, it is also treated in
[Mœ1, MoTa, KiMa, Xu].

2.1. The method of close local fields.
To goal of this paragraph is to deduce instances of Theorem 2.1 for groups over

local function fields (for which very little is in the literature) from Theorem 2.1 for
groups over p-adic fields. To this end we employ the method of close fields, a general
method to transfer statements from a group over one local field to the same group
over an another local field, provided these fields look sufficiently similar. Let F be a
local field of positive characteristic and let F ′ be a local field of characteristic zero.
From the classfication of classical groups we see that we can define any algebraic
group G = Gn as in Section 2 simultaneously over F and over F ′.

Consider π in the discrete series of G(F )+. Let d be the maximum of the depths of
π and of all the ρ that appear in Jord(π). We denote the subcategory of Rep(G(F ))
generated by the representations of depth ≤ d by Rep(G(F ))≤d. Let F ′ be a p-adic
field which is sufficiently close to F , with respect to the depth D := D(p,G, d) and
the groups G,GLm,Gm with m ≤ rk(G). Here F and F ′ are at least D-close, but
usually a lot closer is needed.

By [Gan] the method of close fields yields canonical equivalences of categories

(2.3)

ζG,F,F
′

: Rep(Gn(F ))≤D
∼−−→ Rep(Gn(F ′))≤D,

ζG,F,F
′

: Rep(GLm(F ))≤D
∼−−→ Rep(GLm(F ′))≤D,

ζG,F,F
′

: Rep(Gn+m(F ))≤D
∼−−→ Rep(Gn+m(F ′))≤D,

for all m ≤ rk(G) = n. By [Sol4, Theorem 3.5] these equivalences of categories are
compatible with normalized parabolic induction. Hence the equivalences (2.3) trans-

fer the condition that (ρ, a) belongs to Jord(π) into the condition that ζGLdρ ,F,F
′
(π)

belongs to Jord(ζG,F,F
′
(π)). In other words, (2.3) induces an injection

(2.4) Jord(π)→ Jord(ζG,F,F
′
(π)).

Now the problem arises that Jord(π) could be too small, so that (2.4) would not be
surjective. Then (2.2) fails and Jord(π) would not yield a Langlands parameter for
G(F ). For groups over p-adic fields this used to be a difficult problem [MoTa, p.
727], which has only been solved with the endoscopic methods from [Art]. To carry
out the method of close fields completely, we need the following additional input.

Hypothesis 2.2. Fix G, a prime p and a depth d ∈ N. There exists a bound
D(p,G, d) ∈ Z≥d such that

• for all p-adic fields F ′,
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• for all unitary supercuspidal representations σ ∈ Irr(G(F ′)) of depth ≤ d,
• for all ρ ∈ Irr(GLdρ(F

′)) occurring in Jord(σ),

the depth of ρ is ≤ D(p,G, d).

For symplectic groups and split special orthogonal groups this assumption is
known (for p > 2) from [GaVa, Lemma 8.2.3], in the stronger form D(p,G, d) = d+1.
In fact the main results of [GaVa] imply Theorem 2.1 for these split groups, includ-
ing bijectivity in part (c). For possibly non-split classical groups (with p > 2 but
not general spin groups), it seems likely that Hypothesis 2.2 follows from [KSS].

Proposition 2.3. Fix a prime p and a group G as before. Suppose that Hypothesis
2.2 holds for all d ∈ N. Then Theorem 2.1 holds for G(F ), for any local function
field F .

Proof. Write ζG,F,F
′
(π) as a subquotient of the parabolic induction of a supercuspidal

representation σ � ρ1 � · · · � ρr of a Levi subgroup of G(F ′)+. Since (normalized)
parabolic induction preserves depth [MoPr, Theorem 5.2], σ and all the ρi have

depth ≤ d. The Jordan block of ζG,F,F
′
(π) consists of the Jordan block of σ and some

pairs (ρ, a) where ρ is an unramified twist of ρi. By Hypothesis 2.2 all ρ appearing

in Jord(ζG,F,F
′
(π)) have depth ≤ D(p,G, d). We note that ρ ∈ Irr(GLm(F ′)) where

m ≤ rk(G) by Theorem 2.1.a. Hence every such ρ is in the image of ζGLm,F,F ′ for

the correct m. Then (ζGLm,F,F ′)−1ρ lies in Jord(π), and we can conclude that (2.4)
is in fact a bijection.

The L-parameter φρ of any ρ from Jord(π) has depth ≤ D, because the LLC for
general linear groups preserves depths [ABPS2, Proposition 4.2]. Let Wr

F be the
r-th filtration subgroup of the absolute Galois group of F . Recall from [Del, (3.5.1)]
that the D-closeness of F and F ′ is reflected in a group isomorphism

(2.5) WF /W
D+
F
∼= WF ′/W

D+
F ′ .

Composition with (2.5) transfers φρ to a L-parameter for GLdρ(F
′), say ζ(φρ). When

F and F ′ are very close (for instance 2dρD-close), ζ(φρ) is indeed the L-parameter

of ζGLdρ ,F,F
′
(ρ) [ABPS2, Theorem 6.1]. We note that we really can chose F ′ that

close to F : by [Del] such a field exists and the above works for any choice of F ′ that
is D-close to F . For such an F ′ composition of the L-parameter of

�(ρ′,a)∈Jord(ζG,F,F ′ (π))δ(ρ
′, a)

with (2.5) yields the L-parameter of

�(ρ,a)∈Jord(π)δ(ρ, a).

By Theorem 2.1.a the former parameter has image in LG, hence so does the latter
parameter. We define the latter to be the L-parameter of π, like in (2.9). Then
parts (a) and (b) of Theorem 2.1 hold for G(F ).

The (partially defined) character εζG,F,F ′ (π) is transferred, via (2.4), to a (partially

defined) character επ of Sπ. Moreover επ is G(F )-relevant because εζG,F,F ′ (π) is G(F ′)-

relevant.
Suppose that two discrete series representations π, π̃ of G(F )+ have the same

Jordan block and the same ε. Then their transfers to representations of G(F ′)
also share the same Jordan block and the same ε. With Theorem 2.1.c we find
ζG,F,F

′
(π) ∼= ζG,F,F

′
(π̃). Then (2.3) says that π ∼= π̃.

Similarly (2.3) readily shows that Theorem 2.1.d carries over from G(F ′) to G(F ). �
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2.2. Parametrization of essentially square-integrable representations.
From now on F can be any non-archimedean local field, but we need Hypothesis

2.2 if F has positive characteristic.
We note that Out(G) is trivial except for special orthogonal groups and general

spin groups associated to vector spaces of even dimension 2n. Then (for n 6= 2)

(2.6) Out(G) ∼= G∨+/G∨ ∼= O2n(C)/SO2n(C).

When G is a form of SO4, we ignore its exceptional automorphisms and instead we
use (2.6) as a definition of Out(G). In particular the two-element group (2.6) acts
naturally on Irr(G) and on Φe(G).

Theorem 2.4. Let F be a p-adic field.

(a) Suppose that Out(G) is trivial. There exists a canonical injection
• from the set of discrete series representations of G,
• to the set of discrete bounded parameters in Φe(G).

(b) Suppose that Out(G) is nontrivial. There exists an injection
• from the set of discrete series representations of G,
• to the set of discrete bounded parameters in Φe(G),

which intertwines the actions of Out(G). The induced injection between Out(G)-
orbits in these two sets is canonical.

(c) The injection in parts (a) and (b) send supercuspidal unitary G-representations
to bounded cuspidal L-parameters, and non-supercuspidal representations to non-
cuspidal enhanced L-parameters.

Proof. (a) If we apply the LLC for GLdρ(F ) to a ρ occurring in Jord(π), we obtain
φρ ∈ Irr(WF ). The property (2.1) translates to

(2.7) φρ ∼= φ∨ρ ⊗ φνπ .
From (2.7), (1.3) and Theorem 2.1 we see that

{(φρ, a) : (ρ, a) ∈ Jord(π)}
is the set of Jordan blocks of some φ ∈ Φ(G) with

(2.8) φ∨ ⊗ µ∨G ◦ φ ∼= φ ∼= φ∨ ⊗ φνπ .
Further φ is unique by [GGP, Theorem 8.1], and discrete because Jord(π) does not
have multiplicities. As ρ (from above) was unitary supercuspidal and in particular
tempered, φρ is bounded and therefore φ is also bounded.

Under the correspondence Jord(π) 7→ Jord(φ), the group Sπ becomes Sφ. The
set of G-relevant characters of Sφ is naturally in bijection with the set of partially
defined characters επ of Sπ which figures in Theorem 2.1.c. Thus we can define the
required injection by sending π to (φ, ε) such that the LLC for GLm sends

(2.9) (Jord(π), επ) to (Jord(φ), ε).

(b) The proof of part (a) applies perfectly well to the disconnected reductive group
G+. It provides a canonical injection from the discrete series representations π+ of
G+ to the pairs (φ, ε) with φ ∈ Φ(G)/Out(G) bounded and discrete and ε ∈ S+φ ,

where S+φ is like Sφ but computed in O2n(C). We can distinguish two cases:

• There exists (τ, a) ∈ Jord(φ) with adim τ odd. From (1.5) we see that the
group S+φ contains an element of O2n(C) \ SO2n(C). Hence the preimage of

φ in Φ(G) is just one equivalence class.
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By Theorem 2.1.d, π+ ∈ Irr(G+) restricts to an irreducible representation
π of G. In particular π is stable under Out(G). Clifford theory tells us that
there are precisely two inequivalent irreducible representations of G+ that
restrict to π.

As S+φ ∼= F|Jord(φ)|2 , we find

S+φ ∼= Sφ × F2.

Hence there exist precisely two characters of S+φ that extend ε|Sφ . We decree

that the bijection for the discrete series of G sends π to (φ, ε|Sφ), that is the

only natural possibility and does not disturb the injectivity we had for G+.
• adim τ is even for all (τ, a) ∈ Jord(φ). Now (1.5) shows that S+φ does

not contain any elements from O2n(C) \ SO2n(C), so S+φ = Sφ. By [GGP,

Theorem 8.1] the preimage of φ in Φ(GSpin(V )) consists of two equivalence
classes, say φ′ and φ′′. Then φ′′ is equivalent with Ad(h∨)φ′ for some h∨ ∈
O2n(C) \ SO2n(C) and Sφ′ is canonically isomorphic with Sφ′′ .

By Theorem 2.1.d the restriction of π+ to G is reducible. By Clifford
theory it is the direct sum of two inequivalent irreducible G-representations
say π′ ⊕ π′′, and any element of G+ \G exchanges π′ and π′′.

(2.10) We choose a bijection between {(φ′, ε), (φ′′, ε)} and {π′, π′′},
and we decree that it gives two instances of the injection for the discrete series
of G. Notice that this guarantees Out(G)-equivariance on these objects.

Combining all instances, we obtain the desired injection for the discrete series of G.
Its only noncanonical parts are the choices (2.10), which become invisible when we
pass to Out(G)-orbits.
(c) This is clear from the criteria for cuspidality on pages 9 and 18. �

For the moment G is a general spin group. Since the centre of G is not com-
pact (unlike for the other groups in Section 2), we have to distinguish between
discrete series representations and essentially square-integrable representations. A
G-representation π is called essentially square-integrable if its restriction to Gder is
square-integrable. If π is in addition irreducible, then there exists an unramified
character χ ∈ Xnr(G) such that χ⊗ π has unitary central character, that is, χ⊗ π
belongs to the discrete series. We can even achieve this with χ a real power of the
norm character of F× ∼= G/Gder.

Recall from [Hai] that the group Xnr(G) of unramified characters of G is naturally
isomorphic with (Z(G∨)◦,IF )WF

, which for our G is just Z(G∨)◦ ∼= C×. Similarly
the group Xunr(G) of unitary unramified characters is naturally isomorphic with the
maximal compact subgroup Z(G∨)◦cpt of Z(G∨)◦. The group Xnr(G) acts on Irr(G)

by tensoring and the group Z(G∨)IF = Z(G∨) acts on Φe(G) by

z(φ, ρ) = (zρ, φ), (zφ)|IF×SL2(C) = φ|IF×SL2(C), (zφ)(FrobF ) = z φ(FrobF ).

Theorem 2.5. Let G be a general spin group.

(a) The injection in Theorem 2.4.a is equivariant for the actions of Xunr(G) ∼=
Z(G∨)◦cpt, and by suitable choices the bijection in Theorem 2.4.b can be made
equivariant for these actions.

(b) The injection from part (a) extends canonically to an injection
• from the set of irreducible essentially square-integrable G-representations,
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• to the set of discrete parameters in Φe(G).
(c) The injection in part (b) is equivariant for the actions of Xnr(G) ∼= Z(G∨)◦, and

it respects cuspidality.

Proof. (a) Let π ∈ Irr(G) and (φ, ε) ∈ Φe(G) be as in the proof of Theorem 2.4. For
χ ∈ Xunr(G), χ⊗ π is of the same kind. From the natural isomorphisms

(χ⊗ St(ρ, a))× (χ⊗ π) ∼= χ⊗ (St(ρ, a)× π)

we see that

Jord(χ⊗ π) equals {(χ⊗ ρ, a) : (ρ, a) ∈ Jord(π)} =: χ⊗ Jord(π).

The properties of επ in [Mœ3, §2.5] readily imply that

εχ⊗π(zχ⊗ρ,a) = επ(zρ,a).

Let χ̂ ∈ Z(G∨)◦ correspond to χ via Xunr(G) ∼= Z(G∨)◦cpt. Then χ̂φ is still discrete
and bounded, while

Jord(χ̂φ) equals {(χ̂τ, a) : (τ, a) ∈ Jord(φ)} =: χ̂Jord(φ).

The action of χ̂ does not change ε as character of

Sφ = ZG∨der(φ) = ZG∨der(χ̂φ) = Sχ̂φ.

However, the element zτ,a ∈ Sφ is renamed as zχ̂τ,a and to account for that we
rename ε to χ̂ε.

Suppose now that π and (φ, ε) are matched by Theorem 2.4, so (2.9) holds. By
the known equivariance properties of the LLC for GLm,

(χ⊗ Jord(π), εχ⊗π) is sent to (χ̂Jord(φ), χ̂ε).

In the setting of Theorem 2.4.a, this shows that χ ⊗ π is matched with (χ̂φ, χ̂ε),
which is the desired equivariance.

In the setting of Theorem 2.4.b, only the choices in (2.10) could disturb this
equivariance for Xunr(G) ∼= Z(G∨)◦cpt. To prevent that, it suffices to make the
entirety of the choices (2.10) in an equivariant way. This can be done as follows.
Pick a set of representatives for the (φ, ε) with all a dim τ even, modulo the action of
Z(G∨)◦cpt. For each of these φ’s we fix a choice (2.10), say (φ′, ε) 7→ π′. Then decree
that, for each χ ∈ Xunr(G), (χ̂φ′, ε) is matched via χ⊗ π′.
(b) By design, the set of essentially square-integrable irreducible G-representations
can be expressed as

(2.11) discrete series of G×Xunr(G) Xnr(G).

Similarly, it follows from [Hei1, Lemma 5.1] that the set of discrete parameters in
Φe(G) can be constructed as

(2.12) bounded discrete part of Φe(G)×Z(G∨)◦cpt
Z(G∨)◦.

From (2.11), (2.12) and part (a) we deduce an injection from the set of essentially
square-integrable irreducible G-representations to the discrete part of Φe(G), which
is equivariant for Xnr(G) ∼= Z(G∨)◦.
(c) The actions of Xnr(G) on Irr(G) and of Z(G∨)◦ on Φe(G) preserve cuspidality.
Combine that with Theorem 2.4.c and the construction of the injection in part
(b). �
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Now G can again be any group as in Section 2. The set of supercuspidal Bernstein
components of Irr(G) is just Irrcusp(G)/Xnr(G). Recall the notion of a Bernstein
component of enhanced L-parameters from [AMS1, §8]. By definition, the set of
cuspidal Bernstein components of Φe(G) is Φcusp(G)/Z(G∨)◦. If we apply Theorems
2.4 and 2.5 to these sets, we obtain:

Corollary 2.6. Theorems 2.4 and 2.5.b induce an injection

• from the set of supercuspidal Bernstein components of Irr(G),
• to the set of cuspidal Bernstein components of Φe(G).

This injection is Out(G)-equivariant and becomes canonical if we pass to Out(G)-
orbits on both sides.

3. Comparison of Hecke algebras for Bernstein components

In this section G is a general spin group. All our results are also valid for sym-
plectic groups and for (special) orthogonal groups, with slightly simpler proofs, see
[Hei2, Hei3, Hei4] (on the p-adic side) and [Mou] and [AMS3, §5.3] (on the Galois
side). Before we compare Hecke algebras, let us match Bernstein components for
Irr(G) and for Φe(G).

Suppose that the bilinear form on V is given by a symmetric matrix Ĵ , such that
the isotropic part is made from blocks ( 0 1

1 0 ) placed in rows and columns j,dimV +
1 − j. Let µG : G → F× by the spinor norm, so that Spin(V ) = kerµG. The Levi
subgroup L = L(F ) is embedded in G = GSpin(V ) via

Gn−/F
× ×GLn1(F )× · · · ×GLnk(F )→ G/F× ∼= SO(V )

(g−, g1, . . . , gk) 7→
(
g1, . . . , gk, g−, Ĵg

−T
k Ĵ−1, . . . , Ĵg−Tk Ĵ−1

)
It is difficult to write down the actual embedding in such terms, to study that the
root datum from [AsSh] is more useful. The group NGPin(V )(L) contains an element

that exchanges gj and Ĵg−Tj Ĵ−1, and the same time multiplies g− with det(gj). As
automorphism of L , it is given by

(3.1) (g−, g1, . . . , gk) 7→ (det(gj)g−, g1, . . . , gj−1, Ĵg
−T
j Ĵ−1, gj+1, . . . , gk).

We record that the effect of (3.1) on irreducible representations is

σ− � σ1 � · · ·� σk 7→ σ− � σ1 � · · ·� σj−1 � (σ∨j ⊗ νσ− ◦ det) � σj+1 � · · ·� σk,

where νσ− is character by which the central subgroup F× ⊂ Gn− acts on σ−.
Further NG(L) contains elements that act on L by permuting some type GL

factors of the same size. The group NGPin(V )(L)/L is generated by elements of
these two kinds, and is isomorphic to a direct product of Weyl groups of type Be.
For NG(L)/L the only difference is that the elements from (3.1) are subject to a
determinant condition if dim(V ) is even. Notice that these descriptions match those
after (1.26). Thus there are canonical isomorphisms

(3.2) NG(L)/L ∼= NG∨(L∨)/L∨ and NGPin(V )(L)/L ∼= NG∨+(L∨)/L∨.

Theorem 3.1. (a) There exists a injection
• from the set of supercuspidal Bernstein components of Irr(L),
• to the set of cuspidal Bernstein components of Φe(L).

This bijection is equivariant for the natural actions of (3.2) and becomes canon-
ical if we pass to Out(Gn−)-orbits.
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(b) Let L run through a set of representatives for the conjugacy classes of Levi
subgroups of G. The corresponding instances of part (a) provide an injection
• from the set of Bernstein components of Irr(G),
• to the set of Bernstein components of Φe(G).

This injection becomes canonical if we pass to Out(G)-orbits.

Proof. (a) The injection and the canonicity follow from Corollary 2.6, while the
equivariance can be seen from our explicit formulas for the actions of (3.2), namely
(1.13), (1.27) and (3.1).
(b) By definition Bernstein components of Irr(G) are parametrized by supercuspidal
Bernstein components for Levi subgroups of G. Further sL ⊂ Irrcusp(L) and sL′ ⊂
Irrcusp(L′) give the same Bernstein component for Irr(G) if and only if sL and sL′
are G-conjugate. Analogous statements hold for Bernstein components of Φe(G)
[AMS1, §8], which yields the desired bijection. By the equivariance in part (a), this
bijection does not depend on the choice of the representative Levi subgroups. �

With Theorem 2.4 we consider σ = π(φσ, εσ) ∈ Irrcusp(L). Then sL = Xnr(L)σ is
the image of s∨L under Theorem 3.1.b. The injectivity and Xnr(L)-equivariance in
Theorem 2.5 say that this extends to an injection from sL to s∨L. Then the equiv-
ariance in Theorem 3.1.a guarentees that the groups Ws and Ws∨ are canonically
isomorphic.

We may assume that σ has been normalized like φ after (1.18). Then the group
Ws∨ can also be described as the stabilizer of

(3.3) σ = σ− � �ρ ρ
�eρ = σ− � �j ρj

�ej .

in NG(L)/L. The stabilizer W+
s of σ in NGPin(V )(L)/L decomposes as a direct

product of subgroups Ws,ρ. From (3.1) we see that

• if ρ 6∼= ρ∨ ⊗ νσ− ◦ det, then Ws,ρ
∼= Seρ

∼= W (Aeρ−1),
• if ρ ∼= ρ∨ ⊗ νσ− ◦ det, then Ws,ρ

∼= W (Beρ) = W (Ceρ), which can sometimes
be interpreted better as W (Deρ) o Aut(Dn).

In [Sol3, §10] an extended affine Hecke algebra H(s) = EndG(Πs) was attached to
s, where Πs is a particular progenerator of Rep(G)s. We have Πs = IGP ΠsL , where
IGP is the (normalized) parabolic induction functor for P a parabolic subgroup of G

with Levi factor L, and ΠsL := indLL1(σ), with L1 the subgroup of L generated by all
compact subgroups. We note that § 10 of [Sol3] is applicable because the restriction
of σ to L1 is multiplicity-free, which follows from the fact that L is a direct product
of reductive groups with centre of dimension ≤ 1. In this setup Mod(H(s)op) is
naturally equivalent with Rep(G)s so we will show that H(s) is self-opposite and
compare it with H(s∨, z).

The complex torus underlying H(s) is

(3.4) Ts = sL ∼= s∨L = Ts∨ ,

and the action of W+
s on Ts can be identified with the action of W+

s∨ on Ts∨ . Here

Ts ∼= Xnr(L)/Xnr(L, σ),

where Xnr(L, σ) ⊂ Xnr(L) is the stabilizer of σ ∈ Irrcusp(L). Hence

X∗(Ts) ∼= Lσ/L
1 where Lσ =

⋂
χ∈Xnr(L,σ)

kerχ.
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More explicitly, L/L1 ∼= Z×
∏
j Zej and

Lσ/L
1 is the subgroup Z×

∏
j
(tρjZ)ej ,

where the first factor Z comes from Z(G)◦ ∼= GL1. We recall that tρ denotes the
torsion number of ρ, that is, the number of unramified characters of GLdρ(F ) that
stabilize ρ ∈ Irr(GLdρ(F )). We write the root datum for H(s) as

Rs =
(
Σs, X

∗(Ts),Σ
∨
s , X∗(Ts)

)
.

As explained in [Sol3, §3], the root system Σ∨s comes from the roots α ∈ Σred(G,Z(L))
for which the so-called Harish-Chandra µ-function µα has a zero on sL. Then Σs

consists of multiples of some elements of Σred(G,Z(L))∨ ∼= Σred(G∨,Z(L∨)), just like
Rs∨ in (1.25).

The group W+
s acts naturally on Rs and contains W (Σs). Our choice of a Borel

subgroup B∨ of G∨ yields a system of positive roots Σ+
s in Σs. If Γ

(+)
s denotes the

stabilizer of Σ+
s in W

(+)
s , then

(3.5) W+
s = Γ+

s nW (Σs) and Ws = Γs nW (Σs).

To match this decomposition with (1.28), we need to compare the underlying root
systems. In [Sol3, §3] an element

(3.6) h∨α ∈ (Lσ ∩ L1
α)/L1 ⊂ Lσ/L1 = X∗(Ts)

was associated to each α ∈ Σred(G,Z(L)). Here Lα is the Levi subgroup of G which
contains L and the root subgroups Uα′ (for α′ ∈ R(G,S) with α′|Z(L) ∈ Qα) and

whose semisimple rank is one higher than that of L. In fact (Lσ ∩ L1
α)/L1 ∼= Z, h∨α

generates this group and is pinned down by the requirement νF (α(h∨α)) > 0. Then

(3.7) Σs = {h∨α : µα has a zero on sL}.

Recall that Rs∨ is a disjoint union of irreducible root systems

Rs∨,τ = R(G∨φ,τT, T ) = R(G∨φ(IF ),τT, T )

which are given explicitly in Table 2. Similarly, by [Hei3, Proposition 1.13], Σs is
a disjoint union of irreducible root systems Rs,ρ, each one coming from the factors
GLmj (F ) of L with σj = ρ. By [Hei3, Proposition 1.15] (generalized to our setting)

the groups W+
s and Γ+

s decompose canonically as direct products of subgroups W+
s,ρ

and Γ+
s,ρ.

We fix one ρ and we let τ ∈ Irr(WF ) be its image under the LLC for GLmj (F ).

By design eτ = eρ > 0. Recall from (1.29) and (1.30) that W+
s∨ and Γ+

s∨ decompose

canonically as direct products of subgroups W+
s∨,τ and Γ+

s,τ . By Theorem 3.1.a

(3.8) W+
s,ρ
∼= W+

s∨,τ for all τ ∈ Irr(WF ) with eρ > 0.

Since Jord(σ−) and Jord(φ−) correspond via the LLC, `τ > 0 if and only if ρ appears
in Jord(σ−). We write

aρ = max{a : (ρ, a) ∈ Jord(σ−)},

which equals aτ . Let ρ′ correspond to τ ′ via the LLC for GLdρ(F ), so ρ′ is an

unramified twist of ρ which is not isomorphic to ρ, but still ρ′ ∼= ρ
′∨ ⊗ νσ− ◦ det.



26 A.-M. AUBERT, A. MOUSSAOUI, AND M. SOLLEVELD

Proposition 3.2. There is a canonical bijection Rs,ρ → Rτ,red which respects posi-

tivity of roots. In particular W (Rs,ρ) ∼= W (Rτ ) and Γ+
s,ρ
∼= Γ+

s∨,τ .

Proof. The proof of [Hei3, Proposition 1.13] shows that for GLdρ(F )eρ ⊂ L the

roots α : t 7→ tit
−1
j with 1 ≤ i, j ≤ eρ, i 6= j can be treated entirely like roots for

some general linear group. Hence the associated function µα has a zero on sL and
h∨α ∈ Σs. Thus Rs,ρ always contains a root subsystem of type Aeρ−1. In terms of
Rs: the corresponding part of X∗(Ts) can be identified with (tρZ)eρ and Aeρ−1 is
embedded there as the elements h∨α = tρα

∨ with α∨ ∈ Zeρ of the usual form

(0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0).

In view of the description of W+
s∨ following (3.3), Rs,ρ is a Seρ-stable reduced root

subsystem of BCeρ . In other words, it has type Aeρ−1, Beρ , Ceρ or Deρ . We check
all the cases in Table 1.

• τ ∈ Irr(WF )0φ, `τ = 0. Then ρ 6∼= ρ∨ ⊗ νσ− ◦ det and from (3.1) we see that
Rs,ρ

∼= Aeρ−1
∼= Rτ .

• τ ∈ Irr(WF )±φ , `τ > 0. Here ρ ∼= ρ∨ ⊗ νσ− ◦ det and aτ = aρ > 0. Since

(ρ, aρ) ∈ Jord(σ−), ρ⊗ | · |(aρ+1)/2 × σ− is reducible [Mœ4, §3.2]. Hence the
automorphism (3.1) comes from a root α for which µα has a zero on Ts. In
the picture (3.6) that becomes h∨α = tρα

∨ with α∨ a standard basis vector
of Zeρ . In particular Rs,ρ has type Beρ , just like Rτ,red.

• τ ∈ Irr(WF )−φ , `τ = 0. Again ρ ∼= ρ∨ ⊗ νσ− ◦ det, but now ρ does not occur

in Jord(σ−). Still (3.1) fixes ρ, and by [Hei2, p. 1610] ρ ⊗ | · |1/2 o σ− is
reducible. This is like the previous case, only with aτ = aρ = 0. Notice that
`τ ′ = aτ ′ = aρ′ = 0 as well. Again we find Rs,ρ

∼= Beρ , while Rτ ∼= Ceρ .

• τ ∈ Irr(WF )+φ , `τ = 0. Now (3.1) fixes ρ ∼= ρ∨ ⊗ νσ− ◦ det although ρ does

not occur in Jord(σ−). By [Hei2, p. 1610], ρ × σ− is reducible. By our
assumptions on σ, `τ ′ = 0, so ρ′ × σ− is also reducible. Then the shape of
µα [Sol3, (3.7)] entails that µα is constant on Ts, for α associated to (3.1).
Hence Rs,ρ does not contain short roots from Beρ or long roots from Ceρ .

Consider a root in Deρ \Aeρ−1, so of the form

β = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0).

Via a suitable reflection sα with α as before, β is associate to a root β′ ∈
Aeρ−1. Since sα ∈ W+

s , µβ = µβ
′ ◦ sα. As µβ

′
has a zero on Ts, so does µβ.

Therefore Rs,τ contains

h∨β = tρβ
∨ = tρ(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0),

and Rs,ρ
∼= Deρ

∼= Rτ .

In all cases there is indeed a natural bijection Rs,ρ → Rτ,red: the identity on all roots
except the short roots in the second case, those are multiplied by 2. The bijection
preserves positivity of roots, so it induces an isomorphism from the stabilizer Γ+

s,ρ ⊂
W+

s,ρ of R+
s,ρ to the stabilizer Γ+

s∨,τ ⊂W
+
s∨,τ of R+

τ . �

Now we analyse the q-parameters for H(s). In view of the shape of µα [Sol3, (3.7)
and (3.10)], the condition (3.7) on α ∈ Σred(G,Z(L)) is equivalent with qα > 1,
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where qα comes from µα and will also be a q-parameter for H(s). The parameter
functions λ, λ∗ : Σs → R≥0 and the parameters

qα = q
(λ(α)+λ∗(α))/2
F , q∗α = q

(λ(α)−λ∗(α))/2
F

were computed in [Hei2, Hei3]. Although these papers were written for Sp(V ) and
SO(V ), the same arguments apply in our setting, that was checked in [Sol3, Sol4].
The q-parameters on Rs,ρ are expressed in terms of tρ and aρ. More precisely, by
[Hei2, Proposition 3.4] the q-parameters are:

• if Rs,ρ
∼= Beρ and α is a short root, then qα = q

tρ(aρ+1)/2
F and q∗α = q

tρ(aρ′+1)/2

F ,

• otherwise qα = q
tρ
F and q∗α = 1.

With qF as q-base that gives

• λ(α) = tρ(aρ + aρ′ + 2)/2, λ∗(α) = tρ(aρ − aρ′)/2 if α is a short root in Beρ ,
• λ(α) = λ∗(α) = tρ otherwise.

In the case τ, τ ′ ∈ Irr(WF )−φ , `τ + `τ ′ = 0 we find qβ = q∗β = q
tρ/2
F for the short roots

h∨β in Beρ . As explained in [Sol4, proof of Theorem 4.9], we may replace h∨β by a

long root (h∨β )2 = h∨β/2 of Ceρ , and simultaneously put

(3.9) qβ/2 = q
tρ
F , q∗β/2 = 1, λ(β/2) = λ∗(β/2) = tρ.

With that improvement, the bijection Rs,ρ → Rτ,red in Proposition 3.2 becomes
simply the restriction of the canonical bijection X∗(Ts)→ X∗(Ts∨) to reduced roots.
That yields a canonical isomorphism of root data

Rs
∼= Rs∨,red,

where the subscript red means that (for the involved non-reduced root systems BCe)
we take only the indivisible roots and the non-multipliable coroots. Comparing with
page 14, we see that the parameter functions λ, λ∗ for H(s) are the same as those

for H(s∨, z) with z = q
1/2
F . Thus we find a canonical isomorphism of affine Hecke

algebras

(3.10) H(Rs, λ, λ
∗, q

1/2
F ) ∼= H(Rs∨ , λ, λ

∗, q
1/2
F ).

Here we have q
1/2
F instead of qF because in the setup of [AMS3] the indeterminate

z2 was a replacement of the usual q in affine Hecke algebras.
We recall from (1.30) that

Γ+
s∨ =

∏
τ∈Irr(WF )

+
φ ,`τ=0

〈rτ 〉,

where rτ is the nontrivial automorphism of Rs∨,τ
∼= Deτ . With Proposition 3.2 we

deduce that

Γ+
s =

∏
τ∈Irr(WF )

+
φ ,`τ=0

〈rρ〉,

where ρ corresponds to τ via the LLC for GLdim τ (F ) and rρ is the nontrivial au-
tomorphism of Rs,ρ

∼= Deρ . For each such τ we define Jrτ as in [Hei3, §4.6], it is
unique up a factor ±1. Then the arguments from [Hei3] remain valid in our setting
(see [Sol3, §10]) and they show that

(3.11) H(s) ∼= H(Rs, λ, λ
∗, q

1/2
F ) o Γs,
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where Γs acts on H(Rs, λ, λ
∗, q

1/2
F ) via automorphisms of Rs. We note that the

algebra on the right is canonically isomorphic to its own opposite:

(3.12) H(Rs, λ, λ
∗, q

1/2
F ) o Γs

∼−−→
(
H(Rs, λ, λ

∗, q
1/2
F ) o Γs

)op
fT ′w 7→ T ′w−1f f ∈ O(Ts), w ∈Ws.

Here T ′w with w ∈ W (Rs) o Γs denotes a product of a standard generator of

H(Rs, λ, λ
∗, q

1/2
F ) and an element of Γs.

Theorem 3.3. There exists an algebra isomorphism

H(s)op ∼= H(s∨, q
1/2
F )

which extends the isomorphism O(Ts) ∼= O(Ts∨) given by Theorem 2.5. This iso-
morphism is canonically determined up to:

(1) the action of Out(G),
(2) conjugation by elements of O(Ts)

×,
(3) adjusting the image of Γs in H(s) by a character of Γs,
(4) Let β be a short simple root in a root system Beρ, and suppose that Rs,ρ has

type Deρ or that Rs,ρ has type Beρ and q∗β = 1. Then we may replace sβ by

h∨βsβ ∈ X∗(Ts) oW (Rs) and T ′sβ by T ′h∨β sβ
in H(Rs, λ, λ

∗, q
1/2
F ) o Γ+

s∨.

Remark. The condition q∗β = 1 in (4) is equivalent with λ(β) = λ∗(β), and also
with `τ ′ = 0, aτ ′ = −1.

Proof. From (1.31), Theorem 2.5 and Proposition 3.2 we get an algebra isomorphism

(3.13) H(s∨, q
1/2
F ) ∼= H(Rs, λ, λ

∗, q
1/2
F ) o Γs.

It is canonical up to the action of Out(G) on supercuspidal representations, see
Theorem 2.4. We fix a bijection sL → s∨L as in Theorem 2.5, then we do not have
to worry about Out(G) any more.

We compose (3.13) with (3.12) and then with (3.11), where we regard (3.11)
as isomorphism between the opposites of the involved algebras. That yields the
required algebra isomorphism as in the statement.

Any two such isomorphisms differ by an automorphism ψ ofH(Rs, λ, λ
∗, q

1/2
F )oΓs.

We need to investigate the possibilities for ψ. Since the isomorphism

O(Ts∨) ∼= O(Ts) ⊂ H(s)

has been fixed, ψ is the identity on O(Ts). Any such ψ extends naturally to an
automorphism ψe of

C(Ts)
Ws ⊗
O(Ts)Ws

H(Rs, λ, λ
∗, q

1/2
F ) o Γs,

an algebra which by [Lus3] is isomorphic to C(Ts) oWs. As ψe is the identity on
C(Ts) and Ws acts faithfully on Ts, ψe must send any w ∈ Ws to θww for some
θw ∈ C(Ts)

×.
For a simple reflection sα ∈ W (Rs) there are unique f1, f2 ∈ C(Ts) such that

T ′sα = f1sα + f2, see [Lus3]. Then

ψ(T ′sα) = f1ψe(sα) + f2 = f1θsαsα + f2,
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so by the invertibility of ψ we must have

θsα ∈ O(Ts)
× = C× ×X∗(Ts).

Write θsα = zθx with z ∈ C× and x ∈ X∗(Ts). (We write θx to emphasize that we
regard x as an element of O(Ts).) Then

1 = s2α = ψe(sα)2 = (zθxsα)2 = z2θxθsα(x)s
2
α = z2θx+sα(x).

Hence z = ±1 and sα(x) = −x, which implies x ∈ Zh∨α. (Here we do not use (3.9),
in the sense that we do not replace Beτ even when that is possible.) For every
x ∈ Zh∨α, f1θxsα + f2 satisfies the same quadratic equation as T ′sα , that follows from
a computation in C(Ts) which uses that θxsα is a reflection in the same direction
as sα. On the other hand −f1θxsα + f2 does not satisfy that quadratic relation, so
z = 1 and

(3.14) ψe(sα) = θnαh∨αsα for some nα ∈ Z.

Let α] ∈ Rs∨ be the coroot associated to h∨α ∈ Rs. In a slightly larger algebra, (3.14)
can be rewritten as

ψe(sα) = θysαθ−y where 〈y, α]〉 = nα.

Guided by this formula we define y ∈ HomZ(ZRs∨ ,Z) by 〈y, α]〉 = nα for all simple
coroots α]. Embed HomZ(ZRs∨ ,Z) in QRs and form the lattice

Xe := X∗(Ts) + HomZ(ZRs∨ ,Z) ⊂ X∗(Ts)⊗Z Q.
Then ψe extends to the automorphism of C[Xe o W (Rs)], given by conjugation

with θy. Hence ψ is also conjugation with θy, at least on H(Rs, λ, λ
∗, q

1/2
F ). For

y ∈ X∗(Ts) that is simply an inner automorphism, which accounts for (ii).
There are only few other possible y. For each τ with eτ > 0, we have a direct

summand
(Zeτ , Rs,τ ,Zeτ , Rs∨,τ ) of Rs,

where Rs,τ has type Aeτ−1, Beτ or Deτ . For type Aeτ−1, Zeτ surjects onto
HomZ(ZRs∨,τ ,Z). Otherwise HomZ(ZRs∨,τ ,Z) is spanned by Zeτ and
y = (1, 1, . . . , 1)/2. Conjugation by θy on C[Zeτ oW (Beτ )] sends sβ to h∨βsβ and
fixes the other simple reflections. When Rs,τ

∼= Deρ , this gives an automorphism of

H(Deρ , q
1/2
F ) o 〈sβ〉 and of H(s)op.

However, when Rs,τ has type Beρ conjugation by θy only extends to an auto-

morphism of H(Rs, λ, λ
∗, q

1/2
F ) if q∗β = 1, because the q-parameters qβq

∗
β of sβ and

qβ(q∗β)−1 of h∨βsβ need to be equal for such an automorphism. That gives the choices

for ψ described in (iv). Notice that this excludes the cases Ceτ that could arise via
(3.9).

It remains to investigate automorphisms ψ of H(Rs, λ, λ
∗, q

1/2
F )o Γs that restrict

to the identity on H(Rs, λ, λ
∗, q

1/2
F ). As above we deduce that for each γ ∈ Γs there

exist z ∈ {±1} and x ∈ X∗(Ts) such that ψ(γ) = zθxγ. Just like conjugation by γ,
conjugation by ψ(γ) is a product of diagram automorphisms of Deτ on

ψ
(
H(Rs, λ, λ

∗, q
1/2
F )

)
= H(Rs, λ, λ

∗, q
1/2
F ).

Hence zθx must lie in the centre of H(Rs, λ, λ
∗, q

1/2
F ), which means that 〈x, α]〉 = 0

for every coroot α]. Looking at the rank of Rs,τ , we see that x lives only in the Zeτ
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for which Rs,τ
∼= Aeτ−1. The part of x in the associated direct summand of X∗(Ts)

is a multiple of (1, 1, . . . , 1). In particular θx commutes with γ. As γ has finite order
in the finite group Γs:

1 = γordγ = ψ(γ)ordγ = (zθxγ)ordγ = zordγθordγx γordγ = zordγθord(γ)x.

This implies that ord(γ)x = 0 and x = 0, ψ(γ) = ±γ. We deduce that there exists
a character ε : Γs → {±1} such that ψ(γ) = ε(γ)γ. �

3.1. Versions for G+.
There also exists a version of Theorem 3.3 for G+. Let L+ = ZG+(Z(L)◦) be the

Levi subgroup of G+ with identity component L. It has the same shape:

L+ = G+
n− ×GLn1(F )× · · · ×GLnk(F ).

The whole theory behind H(s∨, z) [AMS1, AMS2, AMS3] was written for possibly
disconnected complex reductive groups, so it applies to G+. The set of cuspidal
Bernstein components in Φe(L

+) is

Φcusp(L+)/(Z(L+)IF ,◦)WF
= Φcusp(L+)/Z(L)◦.

An element in there is the same as an element (φ, ε) ∈ Φcusp(L)/Z(L)◦ together
with an extension of ε ∈ Irr(Sφ) to ε+ ∈ Irr(S+φ ). Let s+∨ denote the Bernstein

component determined by (φ, ε+), and similarly without the +. We note that there
is canonical bijection

Φe(L)s
∨ → Φe(L

+)s
+∨

: (zφ, ε) 7→ (zφ, ε+).

The same arguments as in Paragraph 1.2 shows that

(3.15) H(s+∨, z) = H(Rs∨ , λ, λ
∗, z) o Γ+

s∨ .

The arguments in Paragraph 2.2 and for Theorem 3.1 lead to a canonical injection
from the set of Bernstein components of Irr(G+) to the set of Bernstein components

in Φe(G
+), say s+ 7→ s+∨. It relates to Theorem 3.1 by ResG

+

G , as in the proof of
Theorem 2.4. On the level of representations and enhanced L-parameters of L+, by
Theorems 2.4 and 2.5 each instance s+ 7→ s+∨ comes a bijection

(3.16) Irr(L+)s
+
L ∼= Ts −→ Ts∨ ∼= Φe(L

+)s
+∨
L .

As justified by (3.16), we will sometimes write Ts+ for Ts, or Ts+∨ for Ts∨ .
The theory used to construct and analyse H(s) is not known for arbitrary discon-

nected reductive groups. For O(V ) and GPin(V ) (the only disconnected instances

of G+) we can work it out by hand though. First we need a good progenerator Πs+L

for Rep(L+)s
+
L with sL = [L, σ]L. We start from Πs = indLL1(σ), where L1 is the

subgroup of L generated by all compact subgroups. We distinguish two cases.

Suppose first that Out(Gn−) does not stabilize sL. Then indL
+

L (σ) is irreducible
for all σ′ ∈ Irr(L)sL , and

indL
+

L (ΠsL) = indL
+

L1 (σ) =: Πs+L

is a progenerator of Rep(L+)s
+
L for the same reasons as for ΠsL . Since L is normal

in L+,

ResL
+

L indL
+

L (ΠsL) = ΠsL ⊕ l ·ΠsL = ΠsL ⊕Πs′L
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where l ∈ L+ \ L and s′L = l · sL. Further, by Frobenius reciprocity

(3.17) EndL+

(
indL

+

L ΠsL

) ∼= HomL

(
ΠsL , indL

+

L ΠsL

) ∼= HomL

(
ΠsL ,ΠsL ⊕Πs′L

)
.

By the Bernstein decomposition of Rep(L) this equals EndL(ΠsL), which by (3.4) is
naturally isomorphic with O(Ts).

Suppose now that Out(Gn−) stabilizes sL. Since Xnr(Gn−) = {1}, Out(Gn−)
stabilizes every σ′ ∈ Irr(L)sL . Clifford theory tells us that σ extends in two ways to
a representation of L+, say σ+ and σ−. For an unramified character χ ∈ Xnr(L

+) ∼=
Xnr(L) we put

(σ ⊗ χ)+ = σ+ ⊗ χ and (σ ⊗ χ)− = σ− ⊗ χ.

This yields two Bernstein components Irr(L+)s
+
L = Xnr(L

+)σ+ and Irr(L+)s
−
L =

Xnr(L
+)σ−, both naturally in bijection with Irr(L)sL . We note that s+L and s−L are in

different NG+(L+)-orbits, because they are inequivalent on G+
n− and NG+(L+)/G+

n−
only adjusts Irrcusp(L+) on the type GL factors of L+. In this setting

Πs+L
:= indL

+

L+1(σ+)

is a progenerator of Rep(L+)s
+
L and its restriction to L is just indLL1(σ) = ΠsL . All

the elements of O(Ts) determine L+-endomorphisms of indL
+

L+1(σ+), so

O(Ts) = EndL(ΠsL) = EndL+(Πs+L
).

In both above cases we constructed a canonical progenerator Πs+L
of Rep(L+)s

+
L ,

with L+-endomorphism algebra O(Ts). We define

Πs+ = IG
+

P+ (Πs+L
),

where P+ is the semidirect product of L+ and the unipotent radical of P .

Proposition 3.4. The representation Πs+ is a progenerator of Rep(G+)s
+

.
Induction from G to G+ gives an injective algebra homomorphism EndG(Πs) →

EndG+(Πs+), which is bijective when Out(Gn−)sL = sL.

Proof. Suppose first that Out(Gn−)sL 6= sL. Then

(3.18) Πs+ = IG
+

P+

(
indL

+

L (ΠsL)
)

= indG
+

G

(
IGP (ΠsL)

)
= ind

G+

G (Πs).

Now indG
+

G yields an algebra homomorphism

EndG(Πs)→ EndG+(indG
+

G Πs) = EndG+(Πs+),

which is injective because Πs ⊂ Πs+
∣∣
G

. As G is open in G+, indG
+

G preserves

projectivity. Moreover G has finite index in G+, so (3.18) shows that Πs+ is finitely

generated and projective. For any nonzero τ ∈ Rep(G)s
+

, the part of τ |G in Rep(G)s

generates τ so is nonzero. Hence

HomG+(Πs+ , τ) = HomG(Πs, τ) 6= 0,

which shows that Πs+ generates Rep(G+)s
+

.
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Next we suppose that Out(Gn−)sL = sL. Then

Πs+
∣∣
G

= IGP (Πs+L

∣∣
L

) = IGP (ΠsL) = Πs,(3.19)

indG
+

G (Πs) = IG
+

P+

(
indL

+

L (ΠsL)
)

= IG
+

P+

(
Πs+L
⊕ indL

+

L+1(σ−)
)

(3.20)

= IG
+

P+ (Πs+L
)⊕ IG+

P+

(
indL

+

L+1(σ−)
)

= Πs+ ⊕ IG
+

P+ (Πs−L
).

Since s+L and s−L are in different NG+(L+)-orbits, s+ 6= s− = [L+, σ−]G+ . By the

Bernstein decomposition Rep(G+)s
+

and Rep(G+)s− are orthogonal subcategories
of Rep(G+), so

(3.21) EndG+(indG
+

G (Πs) = EndG+

(
Πs+ ⊕Πs−

)
= EndG+(Πs+)⊕ EndG+(Πs−).

From (3.21), indG
+

G and (3.19) we obtain algebra homomorphisms

(3.22) EndG(Πs)→ EndG+(Πs+)→ EndG(Πs+) = EndG(Πs).

The composition of these homomorphisms is the identity and EndG+(Πs+) is nat-
urally a subalgebra of EndG(Πs+), from which we conclude that (3.22) consists of
isomorphisms.

By the same argument as in the first part, indG
+

G (Πs) is finitely generated and
projective. In view of (3.20), so is its direct summand Πs+ . Let τ ∈ Rep(G+)s+ be
nonzero. By (3.20)

HomG+(Πs+ , τ) = HomG+(Πs+ ⊕Πs− , τ) = HomG+

(
indG

+

G Πs, τ) = HomG(Πs, τ).

As we already saw above, the right hand side is nonzero. Therefore Πs+ is indeed a
progenerator of Rep(G+)s+ . �

We define H(s+) = EndG+(Πs+), then Proposition 3.4 shows that there is an
equivalences of categories

(3.23)
Mod(H(s+)op)

∼−−→ Rep(G)s
+

V 7→ V ⊗H(s+) Πs+
.

Proposition 3.5. There exists an algebra isomorphism

H(s+)op ∼= H(s+∨, q
1/2
F ) = H(Rs∨ , λ, λ

∗, q
1/2
F ) o Γ+

s∨ .

It extends the isomorphism O(Ts) ∼= O(Ts∨) induced by (3.16) and is canonical up
to the operations (2),(3),(4) in Theorem 3.3.

Proof. With the progenerators Πs+ at hand, the paper [Sol3] also applies to G+.
Therefore all the arguments in Section 3 remain valid. The only difference with the
proof of Theorem 3.3 is that we do not have to replace W+

s by Ws any more. �

From the above proof we see that in the description of Proposition 3.5 the map
H(s)→ H(s+) from Proposition 3.4 becomes just the inclusion

(3.24) H(Rs∨ , λ, λ
∗, q

1/2
F ) o Γs∨ → H(Rs∨ , λ, λ

∗, q
1/2
F ) o Γ+

s∨ .

Lemma 3.6. (a) Suppose that Out(Gn−)sL = sL. Then the restriction map

Rep(G+)s
+ → Rep(G)s is an equivalence of categories.

(b) Suppose that Out(Gn−)sL 6= sL and that all the direct factors GLm(F ) of L have

m even. Then indG
+

G : Rep(G)s → Rep(G+)s
+

is an equivalence of categories.

(c) In the remaining cases Rep(G)s and Rep(G+)s
+

are not naturally equivalent.
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Proof. (a) Via (3.19) and (3.24), the restriction is induced by the algebra homomor-
phism H(s)→ H(s+). In Proposition 3.4 we saw that it is an isomorphism.
(b) The second condition implies that NG+(L+)/L+ ∼= NG(L)/L. Hence Γ+

s = Γs,
which together with (3.24) means that the map H(s)→ H(s+) from Proposition 3.4
is an algebra isomorphism. That yields equivalences of categories

(3.25)
Rep(G)s ↔ Mod(H(s)op) ↔ Mod(H(s+)op) ↔ Rep(G+)s

+

V ⊗H(s) Πs 7→ V ↔ V + 7→ V + ⊗H(s+) Πs+
.

By the first condition, (3.18) holds. Hence V ⊗H(s) Πs is mapped by (3.25) to

V + ⊗H(s+) Πs+ = V ⊗H(s) indG
+

G (Πs) = indG
+

G

(
V ⊗H(s) Πs

)
.

(c) The assumption says that L has a direct factor GLm(F ) with m odd, and that
Out(Gn−)sL = {sL, s′L} with s′L = l− · sL 6= sL for any l− ∈ G+

n− \ Gn−. Consider

an element sα ∈ NG+(L+) which acts in this factor GLm(F ) by g 7→ Ĵg−T Ĵ−1 and
on L as in (3.1). Then det(sα) = −1 because m is odd, so sαL /∈Ws. On the other
hand sαl

− stabilizes s+L , so sαl
−L+ = sαL

+ ∈ W+
s . Thus Ws 6= W+

s , which by
(3.24) means that the inclusion H(s)→ H(s+) is not an isomorphism. �

3.2. Langlands parameters via Hecke algebras.
Let s = [L, σ]G be an inertial equivalence class for G. Recall the natural equiva-

lence of categories

(3.26)
Rep(G)s

∼−−→ Mod(H(s)op) = Mod(EndG(Πs)
op)

π 7→ HomG(Πs, π)
.

Let us fix an isomorphism as in Theorem 3.3. It induces an equivalence of categories

(3.27) Mod(H(s)op) ∼= Mod(H(s∨, q
1/2
F )).

It was shown in [AMS3, Theorem 3.18] that there is a canonical bijection

(3.28)
Irr
(
H(s∨, q

1/2
F )

)
←→ Φe(G)s

∨

M̄(φ, ε, q
1/2
F ) 7→ (φ, ε)

.

Theorem 3.7. The maps (3.26), (3.27) and (3.28) induce a bijection

Irr(G)s ←→ Φe(G)s
∨

π(φ, ε) 7→ (φ, ε)
.

It satisfies the following properties:

(a) The cuspidal support maps form a commutative diagram

Irr(G)s ←→ Φe(G)s
∨

↓ Sc ↓ Sc

Irr(L)sL/Ws ←→ Φcusp(L)s
∨
/W s∨

.

In particular (φ, ε) is cuspidal if and only if π(φ, ε) is supercuspidal.
(b) π(φ, ε) is essentially square-integrable if and only if φ is discrete.
(c) π(φ, ε) is tempered if and only if φ is bounded.
(d) For any χ ∈ Xnr(G), corresponding to χ̂ ∈ (Z(G∨)IF ,◦)WF

, there is a canonical
isomorphism π(χ̂φ, ε) = χ⊗ π(φ, ε).

(e) The Z(G)s-character of π(φ, ε) equals the character of Z(G)s determined by the
image of φ in Φ(Z(G)s).

All the above statements also hold with G+ instead of G.
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Remark. Surjectivity on the cuspidal level in Theorem 2.1.c would imply that
the parametrization map in Theorem 3.7 is also surjective. That is known when
F is a p-adic field, from [Art] and [MoRe]. When F is a local function field, that
surjectivity has been shown for symplectic and for split special orthogonal groups,
assuming p > 2 [GaVa].

Parts (b)–(e) were already predicted in [Bor, §10]. In fact Borel formulated more
general versions of (d) and (e), which in principle can also be checked in our setup.
We refrain from taking that up here, because it will boil down to properties of
endoscopy which fall outside the scope of this paper.

Proof. (a) The central character of M̄(φ, ε, q
1/2
F ) is described in [AMS3, Theorem

3.18.a]. It lies in Ts∨/Ws∨ and by construction equals Ws∨Sc(φ, ε). Similarly the
central character of HomG(Πs, π(φ, ε)) ∈ Irr(H(s)op) lies in Ts/Ws and by [Sol1,
Condition 4.1 and Lemma 6.1] it equals WsSc(π(φ, ε)).
(b) By [Sol1, Theorem 4.9.a] the map (3.26) respects temperedness. The equivalence
(3.27) does so as well, because by Proposition 3.2 the isomorphism in Theorem 3.3
preserves the notion of positive roots (which determines the conditions for tem-
peredness, see e.g. [Sol1, p. 215]). By [AMS3, Theorem 3.18.c], under the map
(3.28) temperedness of irreducible representations corresponds to boundedness of
(enhanced) L-parameters.
(c) This is similar to part (b), now we use [Sol1, Theorem 4.9 and Proposition 4.10],
Proposition 3.2 and [AMS3, Theorem 3.18.d].
(d) This follows from [Sol1, Lemma 4.3.c] and [AMS3, Theorem 3.18.e].
(e) First we reduce to the cuspidal case. Clearly π(φ, ε) and Sc(π(φ, ε)) have the
same Z(G)-character. Recall that Z(G)s

∨ = G∨/G∨der ∼= C×. The quotient map
G∨ → Z(G)s

∨ is the similitude character µ∨G, so the image of φ in Φ(Z(G)s) is µ∨G◦φ.
The cuspidal support map for enhanced L-parameters only changes things in G∨der
(and modifies the enhancements), so µ∨G ◦ φ = µ∨G ◦ φc where Sc(φ, ε) = (φc, εc). In
view of part (a), (φc, εc) is the enhanced L-parameter of Sc(π(φ, ε)) =: πc.

The GL-factors of L∨ lie in G∨der, so they are contained in the kernel of µ∨G. Hence
µ∨G ◦ φ depends only on the component of φc in G∨n−, let us call the latter φ−. On
the other hand, Z(G)s is contained in the factor Gn− of L, so the Z(G)s-character
of πc depends only on the component of πc in Gn−, say π− ∈ Irrcusp(Gn−).

It remains to compare the Z(G)s-character νπ− of π− with µ∨G ◦ φ−. Those agree
by (2.8), which finishes the proof for G.
The proof for G+ is basically the same. To get the bijection we use (3.23) and
Proposition 3.5 instead of (3.26) and (3.27). Although in [Sol1] the group G is
connected, the parts that we use work just as well for G+. For parts (d) and (e) it
is helpful to note that

Xnr(G) ∼= Xnr(G
+), Z(G+∨) = Z(G∨) and Z(G) = Z(G+). �

Since the map s 7→ s∨ between sets of Bernstein components is injective, the
bijections in Theorem 3.7 combine to injections

(3.29)
Irr(G) → Φe(G),
Irr(G+) → Φe(G

+).

The image of these maps is a union of Bernstein component of enhanced L-parameters.
However, we did not show that the maps (3.29) are bijective. For that we would
need bijectivity in Theorem 2.1, which is unknown when F is a local function field.
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From (3.26) and (3.27) (or (3.23) and Proposition 3.5 for G+) we obtain equiva-
lences of categories

(3.30)
Rep(G)s ∼= Mod

(
H(s∨, q

1/2
F )

)
,

Rep(G+)s
+ ∼= Mod

(
H(s+∨, q

1/2
F )

)
.

From that and [Sol5, §5] (in particular the proof of [Sol5, Theorem 5.4]) we obtain:

Corollary 3.8. The p-adic Kazhdan–Lusztig conjecture [Vog, Conjecture 8.11],
about multiplicities between standard and irreducible representations, holds for G
and G+.

Suppose now that M ⊂ G is a Levi subgroup which contains L. It is a direct
product of a group of the same type as G and of factors GLm(F ), so all the previous
results apply just as well to L. Then H(sM ) = EndM (ΠsM ) embeds in H(s) via

normalized parabolic induction and H(s∨M , q
1/2
F ) embeds naturally in H(s∨, q

1/2
F ).

As isomorphism

(3.31) H(sM )op ∼= H(s∨M , q
1/2
F )

we can simply take the restriction of H(s)op ∼= H(s∨, q
1/2
F ) from Theorem 3.3. The

same works for M+ ⊂ G+, using Paragraph 3.1. In this setting we can compare the
equivalences of categories (3.30) and their analogues for M,M+, using normalized
parabolic induction.

Let Ē(φ, ε, q
1/2
F ) be the standardH(s∨, q

1/2
F )-module associated to (φ, ε) in [AMS3,

§2.2 and Theorem 3.18.a]. By definition M̄(φ, ε, q
1/2
F ) is the unique irreducible

quotient (“Langlands quotient”) of Ē(φ, ε, q
1/2
F ). We let πst(φ, ε) be the image of

Ē(φ, ε, q
1/2
F ) under (3.30), and we use analogous notations for G+,M,M+, with

superscripts M or +.
Let us point out that for bounded φ (and in fact for almost all φ):

Ē(φ, ε, q
1/2
F ) = M̄(φ, ε, q

1/2
F ) and πst(φ, ε) = π(φ, ε).

Theorem 3.9. Let (φ, εM ) ∈ Φe(M)sM be bounded, or a twist of a bounded param-
eter by an element of Z(M∨) which is positive with respect to M∨B∨ in the sense
of [AMS2, Appendix A]. Then

IGMU

(
πst(φ, ε

M )
) ∼= ⊕

ε
HomSMφ

(εM , ε)⊗ πst(φ, ε),

where the sum runs over all ε ∈ Irr(Sφ) with Sc(φ, ε) = Sc(φ, εM ). The same holds
for M+ ⊂ G+.

Proof. By [AMS3, Lemma 3.19.a] this holds for Ē(φ, εM , q
1/2
F ) and ind

H(s∨,q
1/2
F )

H(s∨M ,q
1/2
F )

. We

note that the condition in [AMS3, Lemma 3.19.a] is fulfilled by [AMS2, Proposition
A.3] and the assumed properties of φ. Via (3.27) and (3.31) we obtain the corre-
sponding statement for modules of H(s)op and H(sM )op. By [Sol1, Condition 4.1
and Lemma 6.1] the equivalences (3.26) commute with normalized parabolic induc-
tion, which enables us to transfer the statement to representations of G and M . The
same proof works for M+ ⊂ G+. �
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4. Comparison of Langlands parameters

In this section we will compare the enhanced L-parameters for G obtained via
the endoscopic methods of Arthur and Mœglin with the enhanced L-parameters
associated to irreducible G(F )-representations in Theorem 3.7. Although endoscopy
only seems to be available when F is a p-adic field, in Paragraph 2.1 we showed
how the resulting parametrization can be transferred to classical groups over local
function fields. That requires Hypothesis 2.2 (which we hope to lift in the future).
Then Mœglin’s constructions to find enhanced L-parameters make sense for any
classical group over a non-archimedean local field. Since that applies to G+ rather
than G, we will focus on G+-representations in this paragraph.

We will compare them with our method via Hecke algebras, increasing the classes
of representations under consideration step by step. For supercuspidal representa-
tions the enhanced L-parameters in Theorem 3.7 are by definition equal to those
constructed in Theorems 2.1 and 2.4. The relation between the discrete series and
the supercuspidal representations of classical groups is due to Mœglin and Tadić
[Mœ1, MoTa], also proven with different methods by Kim and Matić [KiMa].

4.1. Cuspidal supports of essentially square-integrable representations.
There are cuspidal support maps both for irreducible G-representations and for

Φe(G). Recall from Theorem 3.7.a that these maps commute with the assignment
of enhanced L-parameters via Hecke algebras. We want to check that the same
holds for Moeglin’s parameters of discrete series representations. (Since the cuspidal
support maps commute with tensoring by unramified characters, that implies the
same statement for essentially square-integrable representations.) The initial steps
to determine the cuspidal support of (φ, ε) ∈ Φe(G) are:

• Replace (φ, ε) by φ|WF
and (φ|SL2(C), ε), where φ(SL2(C)) lies in H :=

ZG∨der(φ(WF )) and

Sφ = π0(ZG∨der(φ)) = π0
(
ZH(φ|SL2(C))

)
.

• From (φ|SL2(C), ε) we extract the triple

sφ = φ

(
q
1/2
F 0

0 q
−1/2
F

)
, uφ = φ

(
1 1
0 1

)
, ε ∈ Irr

(
π0(ZH(sφ, uφ))

)
.

Such triples can be regarded as H-valued enhanced L-parameters which are
trivial on WF , and that provides a notion of cuspidal support for such
triples. Up to H-conjugacy the triple (sφ, uφ, ε) contains precisely the same
information as (φ|SL2(C), ε).
• The cuspidal support of (sφ, uφ, ε), in the group H, is another triple (t, v, εc)

with t ∈ H conjugate to sφ, v ∈ H unipotent, tvt−1 = vqF and εc ∈
Irr
(
π0(ZH(t, v))

)
.

• The cuspidal support of (φ, ε) is an enhanced L-parameter (φc, εc) recon-

structed from (φ|WF
, t, v, εc), so with φc ( 1 1

0 1 ) = v and φc
(
w,

(
q
1/2
F 0

0 q
−1/2
F

))
=

φ(w)t for any arithmetic Frobenius element w ∈WF .

We work this out further for discrete enhanced L-parameters of G+. (That is a little
easier than for G, and yields basically the same information.) From (1.10) we know
that H = ZG+∨

der
(φ(WF )) is a direct product of orthogonal and symplectic groups

over C. To complete the above characterization of Sc(φ, ε), it suffices to describe
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the cuspidal support for triples (s, u, ε) in On(C) or Sp2n(C). For that we use the
detailed analysis from [Lus1] and [Mou, §5]. Fortunately, it turns out that there are
only very few possibilities for the cuspidal supports [Lus1, §10].

Symplectic case
Take a Levi subgroup Ld = Spd(d+1)(C) × GL1(C)n−d(d+1)/2 of Sp2n(C) and let

ud ∈ Spd(d+1) be a unipotent element with Jordan blocks of sizes {2, 4, . . . , 2d}. Take

any semisimple element s ∈ Ld with suds
−1 = uqF . Then π0

(
ZSp2n(C)(s, ud)

) ∼= Fd2
with basis {z2, z4, . . . z2d}, and εd(z2j) = (−1)j gives a cuspidal triple (s, ud, εd).

Given a triple (s, u, ε), the only options for Sc(s, u, ε) are (s, ud, εd) with d ∈ Z≥0.
We write

d′ =

{
d+ 1 if d is even,
−d if d is odd.

In [Lus1, §12] the cuspidal support of (u, ε) is computed via this number d′, which
is called the defect of (u, ε). Assume for simplicity that all Jordan blocks of u have
different size i1, i2, . . . , ir which are even (this is the case if (s, u) comes from a
discrete L-parameter). Write π0

(
ZSp2n(C)(s, u)

)
= Fr2 with basis {zi1 , zi2 , . . . , zir}. If

r is even, we define a new ε̃ by adding i0 = 0 with ε′(z0) = 1, apart from that ε′ = ε.
Then the advanced combinatorics in [Lus1, §11] entails that d′ =

∑
j(−1)j+rε′(zij ) ∈

1 + 2Z. Hence

(4.1) d =

{
−1 +

∑
j(−1)j+rε′(zij ) if d′ > 0,

−
∑

j(−1)j+rε′(zij ) if d′ < 0.

Orthogonal case

Take a Levi subgroup Ld = Od2(C)×GL1(C)(n−d
2)/2 of On(C) (so with d ≡ n mod 2)

and let ud ∈ Od2(C) be a unipotent element with Jordan blocks of sizes (1, 3, . . . , 2d−
1). Let s ∈ Ld be semisimple such that suds

−1 = uqFd . Then π0(ZOd2 (C)(s, ud))
∼= Fd2

with basis {z1, z3, . . . , z2d−1} and εd(z2j−1) = (−1)j and −εd give two cuspidal triples
(s, ud,±εd).

Given a triple (s, u, ε) for On(C), the options for Sc(s, u, ε) are (s, ud,±εd) with
d ∈ Z≥0 of the same parity as n. In this case d is the defect of (u, ε) [Lus1, §13].
Suppose that all Jordan blocks of u have different sizes 11, i2, . . . , ir, which are all
odd (as for discrete L-parameters). Then [Lus1, §13] entails that

(4.2) d =
∣∣∑

j
(−1)jε(zij )

∣∣.
By that and [AMS1], Sc(s, u, ε) = (s, ud,±εd) where the sign is determined by
±εd(z) = ε(z) for some z ∈ Od2(C) \ SOd2(C). We embed Od2(C) in On(C) so
that the subgroup O1(C) ⊂ ZOd2 (C)(ud), which comes from the Jordan block of size

1, is contained in a subgroup Oim(C) ⊂ ZOn(C)(u) which comes from a Jordan block
of size im. Then we take z = z1, and we find (using that im is odd)

(4.3) ± εd(z1) = ε(z1) = ε(z1)
im = ε(zim).

This determines the sign, and thus fixes Sc(s, u, ε).

Proposition 4.1. Mœglin’s parametrization of the discrete series of G+ is com-
patible with the cuspidal support maps, in the following sense. For a discrete series
representation π ∈ Irr(G+) with Sc(π) ∈ Irr(L+), Sc(φπ, επ) is NG+∨(L+∨)-conjugate
to (φSc(π), εSc(π)).
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Proof. In [Mœ1] the cuspidal support of π is studied in relation with φπ and επ. The
Mœglin parameter of Sc(π) is obtained via a recursive procedure, whose important
steps are mentioned on [Mœ1, p. 147].

Suppose first that a, a′ ∈ Jordρ(π) are adjacent (that is, no b inbetween a and
a′ belongs to Jordρ(π)) and that επ(ρ, a) = επ(ρ, a′). Then {(ρ, a), (ρ, a′)} can
be removed from Jord(π), and the new (Jord′, ε′) corresponds to a discrete series
representation with the same cuspidal support as π (apart from (a + a′)dρ) extra
factors GL1(C) in the Levi subgroup from Sc(π)). This enables us to reduce to
the cases where επ is alternated in the sense that επ(ρ, a) = −επ(ρ, a′) whenever
a, a′ ∈ Jordρ(π) are adjacent.

Suppose now that επ is alternated.

(i) If Jordρ(π) consists of even numbers a and επ(ρ, a) = −1 for the minimal such
a, then Jordρ(Sc(π)) = {2, 4, . . . , 2d} with d = |Jordρ(π)| and εSc(π)(ρ, 2a) =
(−1)a.

(ii) If Jordρ(π) consists of even numbers a and επ(ρ, a) = −1 for the minimal such a,
Jordρ(Sc(π)) = {2, 4, . . . , 2d} with d = |Jordρ(π)|−1 and εSc(π)(ρ, 2a) = (−1)a.

(iii) If Jordρ(π) consists of odd numbers, then Jordρ(Sc(π)) = {1, 3, . . . , 2d − 1}
where d = |Jordd(π)| and εSc(π)(ρ, 1) = ε(ρ, a) for the minimal a ∈ Jordρ(π).
This last property is implicit on [Mœ1, p. 147], which mentions that here ε
does not change if we pass from π to Sc(π).

If we now compute the above numbers d in terms of the original επ, we recover
precisely (4.1) and (4.2). In case (iii) we can embed Od2(C) in On(C) such that the
part P2a−1 : SL2(C)→ O2a−1(C) of Jordρ(Sc(π)) lands in the subgroup O2ia−1(C) ⊂
On(C) that contains the image of the part P2ia−1 of Jordρ(π). Then the aforemen-
tioned property εSc(π)(ρ, 1) = ε(ρ, a) becomes (4.3). �

4.2. Jordan blocks of discrete series representations.
First we check that the Jordan blocks of a discrete series representation π of

G+ = G+
n can be read off directly from the enhanced L-parameter assigned to it by

Theorem 3.7.

Lemma 4.2. Let (φ, ε) ∈ Φe(G
+) be bounded and discrete, such that π(φ, ε) is

defined in Theorem 3.7. Then Jord(π(φ, ε)) corresponds to Jord(φ) under the LLC
for general linear groups.

Proof. Let ρ ∈ Irrcusp(GLdρ(F )) with ρ ∼= ρ∨ ⊗ νπ(φ,ε), a condition which by (2.1)
is fulfilled by all Jordan blocks of π(φ, ε). Recall that a pair (ρ, a) belongs to
Jord(π(φ, ε)) if and only if

• δ(ρ, a)× π(φ, ε) is irreducible and
• δ(ρ, a′)× π(φ, ε) is reducible for some a′ ∈ a+ 2Z.

Let τ ∈ Irr(WF ) be the L-parameter of ρ. Then τ ∼= τ∨ ⊗ µ∨G ◦ φ by (2.7) and
Theorem 3.7.e, as needed for Jord(φ) by (1.6). We write

ψ = τ ⊗ Pa × φ = (τ ⊕ τ∨ ⊗ µ∨G ◦ φ)⊗ Pa ⊕ φ,

where in the middle we work in GLm(F )×G+
n and on the right in G+

n+m. Theorem
3.9 tells us that

(4.4) δ(ρ, a)× π(φ, ε) =
⊕

η
HomS+φ

(ε, η)⊗ π(ψ, η),
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where the sum runs over all η ∈ S+ψ with Sc(ψ, η) = Sc(ψ, ε). The groups S+φ and

S+ψ can be compared with (1.5).

(i) When sgn(τ ⊗ Pa) 6= sgn(G∨der): S+ψ = S+φ and (4.4) is always reducible.

(ii) When sgn(τ ⊗ Pa) = sgn(G∨der) and (τ, a) ∈ Jord(φ): again S+ψ = S+φ and

(4.4) is reducible.
(iii) When sgn(τ ⊗ Pa) = sgn(G∨der) and (τ, a) /∈ Jord(φ): S+ψ = S+φ × {1, zτ,a}.

Then Sc(ψ, η) = Sc(ψ, ε) for every extension η of ε to S+ψ , because τ⊗Pa occurs

with even multiplicity in ψ and hence does not influence the cuspidal support.
In this case (4.4) is a direct sum of two inequivalent irreducible representations.

We compare this with the aforementioned characterization of Jord(π(φ, ε)). The
reducibility of δ(ρ, a′)×π(φ, ε) rules out case (i), and δ(ρ, a)×π(φ, ε) is reducible in
case (ii) but not in case (iii). We conclude that (ρ, a) ∈ Jord(π(φ, ε)) if and only if
(τ, a) ∈ Jord(φ). �

Recall that the parametrization of the discrete series in Theorem 2.1 involves the
Jordan blocks of φ and a character επ : Sπ → {±1}. To facilitate a comparison with
our Hecke algebra methods, we revisit Mœglin’s construction of επ [Mœ1] and we
show that it shares some properties with the constructions behind Theorem 3.7.

Let (φ, ε) ∈ Φe(G
+)s

+∨
be discrete and bounded, and let π(φ, ε) be the discrete

series representation of G+ = G+
n associated to it by Theorem 3.7. Recall that S+φ

is the F2-vector space with basis {zτ,a : (τ, a) ∈ Jord(φ)}. For such a τ we let ρ be
the corresponding representation of GLdρ(F ) and we write ε(zρ,a) = ε(zτ,a). Here
we use that by Lemma 4.2 the Jordan blocks of φ and of π(φ, ε) are matched via the
LLC for general linear groups.

Proposition 4.3. Let a > a′ ∈ Jordρ(π(φ, ε)) be adjacent.

(a) ε(zρ,a) = ε(zρ,a′) if and only if π(φ, ε) embeds in δ(ρ, (a−1)/2, (1−a′)/2)× π̃ for

some discrete series representation π̃ of G+
n−dρ(a+a′)/2. Moreover, in this case

Jord(π̃) = Jord(π(φ, ε)) \ {(ρ, a), (ρ, a′)}

and π̃ = π(φ̃, ε̃) where ε̃ = ε|Sφ̃.

(b) Suppose that a− is the minimal element of Jordτ (φ) and that it is even. Then
part (a) also holds with a = a−, a

′ = 0, provided we put ε(zρ,0) = 1.

Proof. (a) Suppose that π(φ, ε) is a subrepresentation of δ(ρ, (a−1)/2, (1−a′)/2)×π̃.
We write M = GLdρ(a+a′)/2 × Gn−dρ(a+a′)/2, so that MU is a parabolic subgroup

of Gn with Levi factor M . From Theorem 3.7 we get π̃ = π(φ̃, ε̃) for some discrete

bounded φ̃ ∈ Φ(M+). The L-parameter of

δ(ρ, (a− 1)/2, (1− a′)/2) is τ ⊗ P(a+a′)/2 ⊗ | · |(a−a
′)/4,

and | · |(a−a′)/4 is in positive position with respect to M+U . Thus Theorem 3.9 is
applicable, and it says that

δ(ρ, (a− 1)/2, (1− a′)/2)× π̃ = IG
+

M+Uπ
(
τ ⊗ P(a+a′)/2 ⊗ | · |(a−a

′)/4 × φ̃, ε̃
)

=
⊕

ε′
HomSM+

φ
(ε̃, ε′)⊗ π

(
P(a+a′)/2 ⊗ | · |(a−a

′)/4 × φ̃, ε′
)
,
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where the sum runs over all ε′ ∈ Irr(S+φ ) with

Sc(φ, ε) = Sc
(
τ ⊗ P(a+a′)/2 ⊗ | · |(a−a

′)/4 × φ̃, ε̃
)
.

It follows that φ is G+∨-conjugate to P(a+a′)/2⊗|·|(a−a
′)/4×φ̃ and that HomSM+

φ
(ε̃, ε)

is nonzero. We deduce that

(4.5) S+φ = S+
φ̃
× 〈zτ,a, zτ ′,a〉

and that ε̃ = ε|S+
φ̃

. Our assumption entails that π(φ, ε) and δ(ρ, (a−1)/2, (1−a′)/2)×
π̃ have the same cuspidal support. Now Theorem 3.7.a and the formulas (4.1) and
(4.2) for the cuspidal support of enhanced L-parameters show that ε(zρ,a) = ε(zρ,a′).

Conversely, suppose that ε(zρ,a) = ε(zρ,a′). Write φ as L-parameter φa,a′ × φ̃
for M . Then (4.5) holds and we can take ε̃ = ε|S+

φ̃

. The L-parameter φa,a′ ∈
Φ(GL(a+a′)/2(F )) is discrete and its cuspidal support consists of terms τ | · |r with
r ∈ R. Hence φa,a′ = τ ⊗ P(a+a′)/2 ⊗ | · |r for some r ∈ R. Embedding in Φ(Gn) and
comparing with the shape of φ we find

(4.6) P(a+a′)/2 ⊗ | · |r ⊕ P(a+a′)/2 ⊗ | · |−r = Pa ⊕ Pa′ ,

or at least up to conjugation in GLa+a′(C). That entails r = (a− a′)/4, from which
we deduce that

π(φa,a′) = δ(ρ, (a+ a′)/2)⊗ | · |(a−a′)/4 = δ(ρ, (a− 1)/2, (1− a′)/2).

By Theorem 3.9

(4.7) IG
+

M+Uπ
(
δ(ρ, (a− 1)/2, (1− a′)/2) � π(φ̃, ε̃)

)
=
⊕

ε′
HomSM+

φ
(ε̃, ε′)⊗ π(φ, ε′),

where the sum runs over all ε′ ∈ Irr(S+φ ) with

Sc(φ, ε′) = Sc
(
φa,a′ × φ̃, ε̃

)
. = Sc(φ, ε).

We note that (4.7) we may use irreducible representations instead of the standard

modules from Theorem 3.9, because the latter are irreducible (since φ and φ̃ are
bounded and φa,a′ is a twist of a discrete parameter by an unramified character).

To get a nonzero contribution to (4.7), ε′|S+
φ̃

must equal ε̃ = ε|S+
φ̃

. Then we see

from (4.1) and (4.2) that ε′(zρ,a) = ε′(zρ,a′). In other words, the only nontrivial
contributions to (4.7) come from ε and one other ε′, and it reduces to

(4.8) IG
+

M+Uπ
(
δ(ρ, (a− 1)/2, (1− a′)/2) � π(φ̃, ε̃)

)
= π(φ, ε)⊕ π(φ, ε′).

In particular π(φ, ε) embeds in the left hand side of (4.8), which can be written as

δ(ρ, (a− 1)/2, (1− a′)/2)× π(φ̃, ε̃).

As φ̃ is discrete and bounded, Theorem 3.7.b,c guarantees that π(φ̃, ε̃) belongs to
the discrete series.

That proves the equivalence. The description of Jord(π̃) occurs at various places
in the above arguments, it is seen most clearly from (4.6).
(b) This can be shown in the same way as part (a). Notice that a− needs to be even
to make sense of the SL2(C)-representation Pa−/2. �
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It was shown in [Mœ1, Proposition 5.3 and Lemme 5.4] that the Mœglin param-
eters of discrete series representations also satisfy Proposition 4.3.

Next we zoom in on a particular class defined in [Mœ1, §1], completely positive
discrete series representations. By [Mœ1, Proposition 5.3], among the discrete series
these are precisely the π for which επ is alternated:

(4.9) ε(zρ,a) = −ε(zρ,a′) for adjacent a, a′ ∈ Jordρ(π).

A few useful properties of such representations follows directly from our description
of the cuspidal support maps.

Corollary 4.4. Let π be a completely positive discrete series representation of G+.

(a) π is uniquely determined by Jord(π) and Sc(π).
(b) Jordρ(π) 6= ∅ if and only if Jordρ(Sc(π)) 6= ∅.

Proof. (a) Under the condition (4.9) we see from (4.1), (4.2) and (4.3) that επ is
uniquely determined by φπ and Sc(φπ, επ). Combining that with Theorem 2.1 and
Proposition 4.1, we see that π is uniquely determined by Jord(π) and Sc(π).
(b) This follows from (4.1) and (4.2): under the condition (4.9) these numbers d
cannot be 0. �

Lemma 4.5. Let π be a completely positive discrete series representation of G+

and let (φπ, επ) be its Mœglin parameter. Then the G+-representation π′ attached
to (φπ, επ) by Theorem 3.7 is isomorphic to π.

Proof. By Theorem 3.7.b,c π′ is discrete series and from Lemma 4.2 we know that
Jord(π′) and Jord(π) both correspond to Jord(φπ), so π and π′ have precisely the
same Jordan blocks. By Theorem 3.7.a and Proposition 4.1 both Sc(π) and Sc(π′)
have enhanced L-parameter Sc(φπ, επ), so Sc(π) ∼= Sc(π′).
By (4.9) and Proposition 4.3.a π′ cannot be embedded in δ(ρ, (a−1)/2, (1−a′)/2)×π̃
for adjacent a > a′ ∈ Jordρ(π) = Jordρ(π

′) and a discrete series representation π̃.
Then [Mœ1, §5] entails that π′ is a completely positive discrete series representation.
Now Corollary 4.4.a shows that π ∼= π′. �

4.3. Intertwining operators for discrete series representations.
For general discrete series representations, Proposition 4.3 achieves a kind of re-

duction to the completely positive instances without changing cuspidal supports. In
that process some direct factors of Sφ are removed, so we lose information about
ε. Most values of ε can be reconstructed from data for the associated completely
positive discrete series representation π+, but not all. For the missing one we will
need to study certain normalized intertwining operators.

Suppose that (ρ, a) ∈ Jord(π) with a odd and that Jordρ(π
+) is empty. Such

ρ provide the only parts of επ that cannot be recovered from επ+ . We note the
L-parameters of such ρ are precisely the τ ∈ Irr(WF )+φ for which `τ = 0 < eτ .

By Corollary 4.4.b we may equally well assume that Jordρ(Sc(π)) is empty. Then
Proposition 4.3 leaves two possibilities for επ on Jordρ(π), distinguished by επ(zρ,a−)
where a− = min(Jordρ(π)). The characterization of επ(zρ,a−) ∈ {±1} from [Mœ1,
§6.1.1] involves several steps, which we recall next. Write

Sc(π) = σ1 � · · ·� σd � σ− ∈ Irr(L+),
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where σi ∈ Irr(GLni(F )) and σ− ∈ Irr(G+
n−). Then σ− is the partial cuspidal support

of π, as used in [Mœ1, (1)]. We choose an intertwining operator

(4.10) J(sβ, ρ× σ−) ∈ EndG+
n−+dρ

(ρ× σ−)

which squares to the identity. There are two possibilities, we normalize it as in
[Mœ1, §6.1.2] and [Art]. It is a member of a holomorphic family of intertwining
operators

(4.11) J(sβ, ρν
b × σ−) ∈ HomG+

n−+dρ

(ρνb × σ−, ρν−b × σ−),

where b ∈ C and ν(g) = |det(g)|F . This gives rise to a family of intertwining
operators

(4.12) J(sβ × sβ, ρνb1 × ρνb2 × σ−) : ρνb1 × ρνb2 × σ− → ρν−b1 × ρν−b2 × σ−,

which reduces to (4.11) (tensored with the identity on one of the ρνbi) upon applying
normalized Jacquet restriction. The same works with more factors ρνbi .

In GL2dρ(F ), the element s12 that exchanges the two blocks of GLdρ(F )×GLdρ(F )
induces an intertwining operator

(4.13) J(s12, ρν
b1 × ρνb2 × σ−) ∈ HomG+

n−+2dρ

(ρνb1 × ρνb2 × σ−, ρνb2 × ρνb1 × σ−),

where b1, b2 ∈ C. We normalize it so that it depends holomorphically on b1− b2 and
becomes the identity when b1 = b2.

Let e ∈ N be odd and let b1, b2, . . . , b(e−1)/2 ∈ C. The order two permutation

we := (sβ, sβ, . . . , sβ) ◦ (1 a)(2 e−1) · · · ((e−1)/2 (e+3)/2)

belongs to the Weyl group W (Be). The composition of the corresponding operators
(4.12) and (4.13) yields an intertwining operator

(4.14) J(we, ρν
b1 × · · · × ρνb(e−1)/2 × ρ× ρν−b(e−1)/2 × · · · × ρν−b1 × σ−),

from the indicated G+
n−+edρ

-representation to itself. The upshot of [Mœ1, p. 176] is

that the holomorphic family (with variables bi) of intertwining operators (4.14) can
be normalized so that each operator (4.14) squares to the identity and they reduce
to (4.12) in the special case bi = 0 for all i. All these intertwining operators are
unique up to scalars, so our conditions leave just the choice of a sign, which in turn
is determined by J(sβ, ρ× σ−).

Pick a ∈ Jordρ(π) \ {a−} with ε(zρ,a) = ε(zρ,a−), and embed π in

(4.15) δ(ρ, (a−1)/2, (1−a−)/2)× π̃ ⊂ δ(ρ, (a−1)/2, (1+a−)/2)×δ(ρ, a−)× π̃
for a discrete series representation π̃ of G+

n−(a+a−)/2. Embed the right hand side in

(4.16) δ(ρ, (a− 1)/2, (1 + a−)/2)× Ind Sc(δ(ρ, a−))× Ind Sc(π̃),

where Ind stands for normalized parabolic induction. We note that σ− is a factor
of Sc(π̃) and that

Ind Sc(δ(ρ, a−)) = ρν(a−−1)/2 × · · · × ρν × ρ× ρν−1 × · · · × ρν(1−a−)/2,
which fits with (4.14). Then (4.14) and the identity on the other factors of (4.16)
induce a self-intertwining operator of (4.16). That operator can be restricted to
(4.15) and thus yields a normalized intertwining operator

N(ρ, a−) ∈ EndG+

(
δ(ρ, (a− 1)/2, (1 + a−)/2)× δ(ρ, a−)× π̃

)
.
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Then επ(zρ,a−) is the scalar by which N(ρ, a−) acts on π, or equivalently

(4.17) π is fixed pointwise by επ(ρ, a−)N(ρ, a−).

We emphasize that the one choice of J(sβ, ρ × σ−) determines a normalization for
(potentially) many instances of (4.17).

In the Hecke algebras H(s∨, q
1/2
F ) and H(s+∨, q

1/2
F ) we also have intertwining op-

erators, they come from the underlying geometric setup [AMS2]. In the general
setting of Theorem 3.7, the way an enhancement ε of φ helps to find the irreducible
representation π(φ, ε) is by applying HomSφ(ε, ?) to a standard module π(φ, s∨)
constructed from φ and the cuspidal support.

In the case at hand, for π = π(φ, ε) we have

HomS+
φ̃

(ε, π(φ, s+∨)) = δ(ρ, (a− 1)/2, (1− a−)/2)× π̃,

where S+
φ̃

comes from π̃. When τ is the L-parameter of ρ, the geometric setup

provides a canonical action of {1, zτ,a−} on this representation, by a G+-intertwining
operator that we denote N(τ, a−). That means

π = π(φ, ε) = HomS+φ
(ε, π(φ, s+∨)) = Hom〈zτ,a− 〉(ε, δ(ρ, (a− 1)/2, (1− a−)/2)× π̃)

= {fixed points of ε(zτ,a−)N(τ, a−) in δ(ρ, (a− 1)/2, (1− a−)/2)× π̃}.(4.18)

In contrast with J(sβ, ρ × σ−), these intertwining operators for Hecke algebra rep-
resentations do not have to be normalized, they arise naturally. The only freedom
we have is that from Theorem 3.7, which we will use next. Let J(sβ, τ × φ−) be
the canonical intertwining operator associated to sβ and the Hecke algebra repre-
sentation corresponding to ρ× σ− via Proposition 3.5. (We suppress εσ− from this
notation.)

Proposition 4.6. Let s+ = [L+, σ]G+ be an arbitrary inertial equivalence class for

G+. The isomorphism H(s+)op ∼= H(s+∨, q
1/2
F ) from Proposition 3.5 can be chosen

such that the following holds.
For every τ ∈ Irr(WF )+φσ with eτ > 0 = `τ , the intertwining operators J(sβ, ρ ×

σ−) and J(sβ, τ×φ−) agree via the appropriate equivalences of categories from (3.30)
induced by the chosen Hecke algebra isomorphism.

A Hecke algebra isomorphism with these properties is unique up to conjugation by
elements of O(Ts+)×.

Proof. Let ρ′ be an unramified twist of ρ such that ρ′ ∼= ρ
′∨ ⊗ νπ and ρ′ 6∼= ρ. Be-

cause ρ′ influences the structure of H(s+∨, q
1/2
F ) in the part coming from the same

irreducible root system as ρ, we have to consider ρ and ρ′ simultaneously. Let τ and
τ ′ be the L-parameters of respectively ρ and ρ′.

The case `τ ′ > 0.

From (1.12) we know that the relevant tensor factor of H(Rs∨,der, λ, λ
∗, q

1/2
F )oΓ+

s∨ is
an affine Hecke algebra Hρ′ with underlying root datum (Zeρ′ , Beρ′ ,Z

eρ′ , Ceρ′ ). The

base point of Ts∨,ρ for Hρ′ comes from ρ′, and ρ�eρ′ is related to this basepoint by
an order two element of the associated complex torus. The condition eτ > 0 = `τ
entails that `ρ = 0, aρ = −1 and q∗β = 1 for the short roots β of Beρ .
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Then Proposition 3.5 allows us to replace sβ by h∨βsβ in the isomorphism

H(s+)op ∼= H(s+∨, q
1/2
F ).

The representation ρ×σ− does not appear directly in this framework, but it does so
via a short detour. Pick χ ∈ Irr(Zeρ′ ) such that the values χi := χ(ei) ∈ C× are in
generic position, except that χeρ′ = −1. We identify χi with an unramified character

of GLdρ(F ), unique up to Xnr(GLdρ(F ), ρ). The Hρ′-representation ind
Hρ′
C[Zeρ′ ]

Cχ
corresponds to

(4.19) ρ′ ⊗ χ1 × · · · × ρ′ ⊗ χeρ′−1 × ρ× σ−.

The decomposition of this representation in irreducibles is governed by the compo-
nent group Sχ of the L-parameter, which in this case is just 〈sβ〉, acting on the last
coordinate.

Things become more transparent if we localize the centre of Hρ′ around χ, as
in [Lus3]. Localization achieves that Hρ′ can be replaced by the simpler (extended
affine Hecke) algebra C[Zeρ′ ] o Sχ, and then our induced representation becomes

(4.20) ind
C[Zeρ′ ]o〈sβ〉
C[Zeρ′ ]

Cχ.

Since χ(h∨β ) = −1, the automorphism which exchanges sβ and h∨βsβ affects the

action of sβ on (4.20) by mutliplication with -1. As a consequence the canonical

intertwining operator from sβ on (4.20), or equivalently on ind
Hρ′
C[Zeρ′ ]

Cχ or (4.19), is

adjusted by a factor by -1 by the replacement sβ 7→ h∨βsβ.

The intertwining operator on (4.20) associated with sβ is induced by the inter-
twining operator from sβ on the representation

ind
C[Z]o〈sβ〉
C[Z] C−1

of the smaller algebra C[Z] o 〈sβ〉. That algebra can be identified naturally with

the localization (at the central character -1) of H(s
′∨, q

1/2
F ), where (τ × φ−, εσ−) ∈

Φ(G+
n−+dρ

)s
′∨

. In this way the intertwining operator for sβ on (4.20) is related to

the intertwining operator J(sβ, τ × φ−), and multiplying the former by -1 entails
that the latter is also multiplied by -1.

As J(sβ, ρ× σ−) is a priori unique up to a factor -1, it follows that we can match
it with J(sβ, τ × φ−) under the appropriate Hecke algebra isomorphism by making

the (unique) correct choice for the image of Tsβ ∈ H(s+∨, q
1/2
F ) in H(s+)op.

The case `τ ′ = 0.
Here we need to take both J(sβ, τ × σ−) and J(sβ, τ

′ × σ−) into account. The

relevant tensor factor of H(Rs∨,der, λ, λ
∗, q

1/2
F ) o Γ+

s∨ is of the form

Hρ = H(RDρ , q
1/2
F ) o Out(Deρ),

where RDm = (Zm, Dm,Zm, Dm). As basepoint of the underlying torus we take

ρ�eρ . We can modify the isomorphism H(s+)op ∼= H(s+∨, q
1/2
F ) in four ways on this

tensor factor. Namely, write Out(Deρ) = 〈sβ〉 with β a short root in Beρ ⊃ Deρ . As
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the image of sβ ∈ H(s+∨, q
1/2
F ) in H(s+)op we may take −sβ, h∨βsβ,−h∨βsβ or just

sβ.
Like in the previous case, we can study the representations of Hρ induced from

characters χ of Zeρ . We pick the first eρ− 1 coordinates of χ generically in C×, and
take χeρ = ±1. That corresponds to

ρ⊗ χ1 × · · · × ρ⊗ χeρ′−1 × ρ⊗±1× σ−,

where ρ ⊗ 1 = ρ and ρ ⊗ −1 = ρ′. For such χ the localization of Hρ around the
central character W (Beρ)χ produces the simpler algebra C[Zeρ′ ] o 〈sβ〉.

When χeρ = 1, the intertwining operator for sβ on

(4.21) ind
C[Zeρ ]o〈sβ〉
C[Zeρ ] Cχ

is induced from the intertwining operator on ind
C[Z]o〈sβ〉
C[Z] C1. The algebra C[Z]o〈sβ〉

is naturally isomorphic with the localization at 1 (corresponding to the basepoint
τ) of the affine Hecke algebra for the Bernstein component containing (τ × φ−, σ−).
Thus the intertwining operator on (4.21) is essentially J(sβ, τ × φ−). Via an in-

stance of (3.30) for a Bernstein component of Irr(G+
n−+dρ), the latter corresponds

to ±J(sβ, ρ × σ−). Possibly adjusting the isomorphism H(s+)op ∼= H(s+∨, q
1/2
F ) so

that sβ goes to −sβ, we can match J(sβ, τ × φ−) and J(sβ, ρ× σ−).
When χeρ = −1, the situation is similar, but now (4.21) is induced from

ind
C[Z]o〈sβ〉
C[Z] C−1, which comes from (τ ′ × φ−, εσ−). Here the intertwining operator

from sβ on (4.21) is essentially J(sβ, τ
′ × φ−). Via the same instance of (3.30)

as above, this operator corresponds to ±J(sβ, ρ
′ × σ−). We can still adjust the

isomorphism H(s+)op ∼= H(s+∨, q
1/2
F ) by composition with the automorphism that

sends sβ to h∨βsβ. That multiplies J(sβ, τ
′×φ−) with -1, while not changing J(sβ, τ×

φ−). Thus, by a suitable choice we can arrange that J(sβ, τ
′ × φ−) corresponds to

J(sβ, ρ
′ × σ−), without disturbing the previous normalization. In total we have a

unique choice (out of four) for the image of sβ under the algebra isomorphism, such
that both relevant pairs of intertwining operators match up.

With the above choices, for all relevant ρ, we managed to fulfill all the conditions
imposed in the statement. To this end we exploited the freedom provided by the
points (3) and (4) of Theorem 3.7 and Proposition 3.5. From Table 2 we see that in
fact we had to make a choice for the image of sβ in all possible instances of (3) and
(4). In view of Proposition 3.5, this renders our Hecke algebra isomorphism unique
up to conjugation by elements of O(T∫+)×. �

Applying Proposition 4.6, we can match many more intertwining operators be-

tweenG+-representations with intertwining operators betweenH(s+∨, q
1/2
F )-modules.

Lemma 4.7. Choose an isomorphism H(s+)op ∼= H(s+∨, q
1/2
F ) as in Proposition

4.6. For every discrete series representation π ∈ Irr(G+)s
+

and every (ρ, a−) ∈
Jord(π) with a− minimal and odd and Jordρ(Sc(π)) empty, the intertwining opera-
tors N(ρ, a−) and N(τ, a−) from (4.17) and (4.18) coincide on the representation
δ(ρ, (a− 1)/2, (1− a−)/2)× π̃ from (4.15).
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Proof. After (4.10) we described how J(sβ, ρ×σ−) determines N(ρ, a−). By Propo-
sition 4.6, J(sβ, ρ × σ−) corresponds to J(sβ, τ × φ−), so it remains to check that
the latter determines N(τ, a−) in the same way.

The constructions around (4.15) and (4.16) work analogously for modules of Hecke
algebras, which reduces our task to comparing

(4.22) J(we, ρν
b1 × · · · × ρνb(e−1)/2 × ρ× ρν−b(e−1)/2 × · · · × ρν−b1 × σ−)

from (4.14) with its version for the appropriate Hecke algebra H(s
′∨, q

1/2
F ). Recall

that νb ∈ Xnr(GLdρ(F )) corresponds to the central element qbF ∈ GLdρ(C), and then

ρνb corresponds to qbF τ . In the geometric setup from [AMS2], given we there is a
canonical intertwining operator

(4.23) J
(
we, ind

H(s
′∨,q

1/2
F )

O(T
s
′∨ )

π
(
qb1F τ × · · · × q

b(e−1)/2

F τ × τ × · · · × q−b1F τ × φ−, εσ−
))
,

from the indicated module to itself. (Here the symbols × refer to an L-parameter
with values in a direct product of groups, not to parabolic induction.) This operator
has order 2, and it comes as a member of an algebraic family parametrized by bi ∈ R.
When all bi are equal to 0, the permutation (1 a)(2 e−1) · · · ((e−1)/2 (e+3)/2) lies
in the connected component of the centralizer group of the L-parameter in (4.23),
and the canonical intertwining operator associated to that permutation is just the
identity. Hence for bi = 0 the operator (4.23) reduces to

(4.24) J
(
sβ × · · · × sβ, ind

H(s
′∨,q

1/2
F )

O(T
s
′∨ )

π
(
τ × · · · × τ × φ−, εσ−

))
.

This operator is induced by J(sβ, τ × φ−) on each of the e = eρ coordinates, in the

following sense. Upon localization of H(s
′∨, q

1/2
F ) at the central character associated

to τ × · · · × τ × φ−, we obtain an e-fold tensor product of modules

ind
C[Z]o〈sβ〉
C[Z] π(τ × φ−).

Then (4.24) can be identified with the e-fold tensor product of the operators J(sβ, τ×
φ−) on these modules. This is the same procedure as in (4.12), so Proposition 4.6
guarantees that (4.24) agrees with (4.12) for bi = 0 and the correct number of
factors. Since all instances of (4.23) square to the identity and they are part of
a continuous family, all these instances are fixed when we know (4.24). That is
completely analogous to the situation in (4.14). Therefore (4.22) and (4.23) agree
via a Hecke algebra isomorphism as in Proposition 4.6. �

After all these preparations, we are ready to compare the two parametrizations
of arbitrary discrete series representations of G+.

Proposition 4.8. Let (φ, ε) ∈ Φe(G
+)s

+∨
be discrete and choose a Hecke algebra

isomorphism H(s+)op ∼= H(s+∨, q
1/2
F ) as in Proposition 4.6. Then π(φ, ε) is isomor-

phic with the representation π ∈ Irr(G+) associated with (φ, ε) in Theorems 2.1 and
2.5.

Proof. Write φ as zφφb with zφ ∈ Z(G∨) and φb ∈ Φ(G) bounded and discrete. Let
χφ ∈ Xnr(G

+) correspond to zφ. By Theorem 2.5 π = χφ⊗πb where πb corresponds
to (φb, ε). On the other hand Theorem 3.7.d says that

π(φ, ε) = π(zφφb, ε) = χφ ⊗ π(φb, ε).
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Therefore it suffices to prove the proposition under the additional assumption that
φ is bounded.

Applying Proposition 4.3 repeatedly, we find that π(φ, ε) embeds in

(4.25)
∏

ρ,a,a′
δ(ρ, (a− 1)/2, (1− a′)/2)× π(φ̃, ε̃),

where Jord(φ̃) ⊂ Jord(φ) and ε̃ = ε|S+
φ̃

is alternated in the sense of (4.9). Here the

product runs over some triples with ε(zρ,a) = ε(zρ,a′), not necessarily all such triples.
Similarly, by [Mœ1, §5] π embeds in

(4.26)
∏

ρ,a,a′
δ(ρ, (a− 1)/2, (1− a′)/2)× π̃

with Jord(π̃) ⊂ Jord(π) and επ̃ = ε|S+π̃ alternated. By Lemma 4.5 both π(φ̃, ε̃) and

π̃ are completely positive discrete series representations. Further π̃ and π(φ̃, ε̃) have
the same Jordan blocks, because both are obtained from Jord(π) = Jord(π(φ, ε)) by
removing the pairs (ρ, a), (ρ, a′) that appear in the product. By Theorem 3.7.a and
Proposition 4.1, π(φ, ε) and π have the same supercuspidal support. From (4.25)

and (4.26) we see that π(φ̃, ε̃) and π̃ also have the same supercuspidal support. With

Corollary 4.4 we deduce that π̃ ∼= π(φ̃, ε̃).
Thus both π(φ, ε) and π are subrepresentations of (4.25), which is isomorphic to

(4.26). By Theorem 3.9, (4.25) is a direct sum of precisely [Sφ : Sφ̃]1/2 subrepre-

sentations, which are mutually inequivalent. Every factor δ(ρ, (a− 1)/2, (1− a′)/2)
doubles the number of constituents, because

(4.27) δ(ρ, (a− 1)/2, (1− a′)/2)× π(φ̃, ε̃)

has length two. We can distinguish three classes of ρ’s:

(1) When Jordρ(π̃) is nonempty, Proposition 4.3.a determines which summands
must be picked to get π. (This works also for Mœglin’s parametrization, by
[Mœ1, §5].) Namely, start with (ρ, b) ∈ Jord(π̃) and an adjacent (ρ, a) ∈
Jord(π) \ Jord(π̃). Then Proposition 4.3.a imposes a condition (recall that ε
was given). Next, take (ρ, a′) ∈ Jord(π) \ Jord(π̃) adjacent to (ρ, a). Of the
two choices for a subrepresentation of (4.27), one fulfills the previous con-
dition and one does not (that is another consequence of Proposition 4.3.a).

Proceeding in this way, now with φ̃ \ {(ρ, a), (ρ, a′)} in the role of φ̃, we
discover step by step how to pick the right constituent of

(4.28) δ(ρ, (a′′ − 1)/2, (1− a′′′)/2)× π(φ̃, ε̃)

for other a′′, a′′′ ∈ Jord(π) \ Jord(π̃) as well.
(2) Suppose that Jordρ(π̃) is empty and that Jordρ(π) consists of even numbers.

In this case we may take a′ = 0, set ε(ρ, 0) = 1 and use Proposition 4.3.b.
As in the previous case, ε determines which constituents of (4.27) and (4.5)
must chosen to enable an embedding of π.

(3) Suppose that Jordρ(π̃) is empty and that Jordρ(π) consists of odd numbers.
By Proposition 4.6 and Lemma 4.7, our two parametrizations involve the
same constituent of δ(ρ, (b−1)/2, (1−a−)/2)×π(φ̃, ε̃), where b is the smallest
a ∈ Jordρ(π) \ {a−} such that ε(zρ,a) = ε(zρ,a−). Once we know that, the
method from the previous cases tells us which constituent of (4.28) we have
to take, for any adjacent a′′, a′′′ ∈ Jordρ(π).
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Hence π and π(φ, ε) are obtained from (4.25) by taking the same constituents of
(4.28) in all cases, so π ∼= π(φ, ε). �

4.4. Tempered representations.
Consider a bounded L-parameter φ ∈ Φ(G). Recall from (1.4) and (1.5) that we

can decompose (φ,C2n) as

(4.29)
⊕

ψ∈I±
Nψ ⊗ Vψ ⊕

⊕
ψ∈I0

Nψ ⊗ (Vψ ⊕ V ∨ψ ),

where Nψ is a multiplicity space and V ∨ψ is endowed with the representation ψ∨ ⊗
µ∨G ◦ φ. There exists a Levi subgroup L of G, unique up to conjugation, such that φ
factors through Φ(L) and defines a discrete L-parameter for L. Every factor GLm(F )
of L appears in G as

{(A,B) ∈ GLm(F )×GLm(F ) : B = JA−TJ−1}.

The same goes for L∨ and G∨. Hence every ψ ∈ I± which appears with multiplicity
µ in φ|GLm(C), accounts for multiplicity 2µ in (4.29). In view of (1.7), the part of φ
with image in the factor G∨n− of L∨ is precisely

∏
ψ∈I+:dimNψodd

ψ, while the part of

φ in the type GL factors of L∨ is⊕
ψ∈I±

bdim(Nψ)/2cψ ⊕
⊕

ψ∈I0
dim(Nψ)ψ.

For ψ ∈ I0 this involves a choice of ψ or ψ∨ ⊗ µ∨G ◦ φ, but that hardly matters
because both will appear equally often when we pass to G∨. For the component
groups of φ it is a bit easier to work with G+ and L+, so we consider φ as element
of Φ(G+) and as φL ∈ Φ(L+). By these we mean just Φ(G) and Φ(L), only with
component groups of φ or φL computed in G∨+ or L∨+. In the description of Sφ
following (1.5), passing to G+ replaces Sφ by S+φ , which means that we forget the

determinant condition “S” on ZG∨der(φ). Thus

ZL+∨
der

(φL) ∼=
∏

ψ∈I+:dimNψ odd

O1(C)×
∏
ψ∈I±

GLbdim(Nψ)/2c(C)×
∏
ψ∈I0

GL(Nψ),

S+φL
∼=

∏
ψ∈I+:dimNψ odd

〈zψ〉,

S+φ =
∏

ψ∈I+:Nψ 6=0

〈zψ〉 = S+φL ×
∏

ψ∈I+:dim(Nψ)∈2Z>0

〈zψ〉 =: S+φL × S
+
φ/φL

.

Let us fix εL ∈ Irr(S+φL) such that (φL, εL) belongs to the image in of the parametriza-

tion map in Theorem 3.7 for L+. It gives a discrete series representation π(φL, εL) ∈
Irr(L+), which by Proposition 4.8 is the same for the endoscopic method as for

the Hecke algebra method. By Theorem 3.9, IG
+

L+Uπ(φL, εL) has precisely |S+φ/φL |
irreducible direct summands, which are mutually inequivalent and indexed by{

ε ∈ Irr(S+φ ) : ε|S+φL
= εL

} ∼= Irr(S+φ/φL).

The same conclusion was obtained in [MoTa, Theorem 13.1]. One part of the con-
structions behind Theorem 3.7 in [AMS2, AMS3] is

(4.30) π(φ, ε) = HomS+
φ/φL

(
ε|S+

φ/φL

, IG
+

L+Uπ(φL, εL)
)
.
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Here the action of S+φ/φL comes from intertwining operators

N(zψ, φL, εL) ∈ EndG+

(
IG

+

L+Uπ(φL, εL)
)
,

one for each generator zψ of S+φ/φL .

On the other hand, an irreducible tempered G+-representation π(φ)ε is con-

structed with endoscopy in [MoRe, §3.6], and it is checked that IG
+

L+Uπ(φL, εL) (called
σ in [MoRe]) decomposes as⊕

ε∈Irr(S+φ ) : ε|S+
φL

=εL
π(φ)ε.

This decomposition can be achieved with suitable intertwining operators that make

S+φ/φL act on IG
+

L+Uπ(φL, εL) and are normalized in a way that is compatible with

the endoscopic methods in [MoRe]. The appropriate normalization stems from [Art,
§2.3] and involves L-functions and ε-factors. Unfortunately, it becomes untractable
in the setting of Hecke algebras. Nevertheless, we can say more concretely that,
for every ψ ∈ I+ with dimNψ ∈ 2Z>0 and π(ψ) = δ(ρ, a), there is a normalized
intertwining operator

N
(
zρ,a, π(φL, εL)

)
∈ EndG+

(
IG

+

L+Uπ(φL, εL)
)

which squares to the identity. From [MoRe, §2] we see that

(4.31) π(φ)ε =
(
ε|S+

φ/φL

⊗ IG+

L+Uπ(φL, εL)
)S+

φ/φL =

{fixed points of the operators ε(zψ)N(zψ, π(φL, εL)) with dimNψ ∈ 2Z>0}.

Lemma 4.9. Pick an inertial equivalence class s+ for G+ and choose an isomor-

phism H(s+)op ∼= H(s+∨, q
1/2
F ) as in Proposition 4.6.

For every bounded (φ, ε) ∈ Φe(G
+)s

+∨
and every ψ ∈ I+ ∩ Jord(φ) with π(ψ) =

(ρ, a), the intertwining operators

N
(
zρ,a, π(φL, εL)

)
and N(zψ, φL, εL)

agree via the Hecke algebra isomorphism.

Proof. We need to distinguish a few cases.
First we suppose that dimNψ is odd. Then ψ appears in the factor G+∨

n− of L+,
and the two intertwining operators of G+-representations under consideration are
induced by the analogous intertwining operators of G+

n−-representations. The latter
two agree by Lemma 4.7.

Now we suppose dimNψ that is even and that ψ = τ ⊗ Pa with τ ∈ Irr(WF )+φ .

Here a is odd because ψ ∈ I+. The same arguments as for Lemma 4.7 show that
N
(
zρ,a, π(φL, εL)

)
and N(zψ, φL, εL) agree because N(sβ, ρ×σ−) and N(sβ, τ ×φ−)

agree.
Finally we suppose that dimNψ is even and that ψ = τ ⊗Pa with τ ∈ Irr(WF )−φ .

Now a is even because ψ ∈ I+. In this case we do not know whether N(sβ, ρ× σ−)
and N(sβ, τ × φ−) match via the Hecke algebra isomorphism. But both are unique
up to scalars and square to the identity, so the agree up to a factor ±1.

Write e = adρ. Motivated by (4.16), we want to compare the operators

(4.32) N
(
we, IndSc(δ(ρ, a))× σ−

)
and N(we,Sc(τ ⊗ Pa)× φ−),
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where the right hand side is an abbreviation of (4.23). From the remarks after
(4.14) we know that the former is determined (via a continuous deformation) by the
intertwining operator

(4.33) N((sβ × · · · × sβ), ρ× · · · × ρ× σ−),

where sβ and ρ both appear a times. For each such factor ρ, we get a contribution
which is induced by N(sβ, ρ× σ−).

Similarly, in the proof of Lemma 4.7 we saw that N(we,Sc(τ ⊗ Pa) × φ−) is
determined in the same way by (4.24) and N(sβ, τ × φ−). It follows that, via the
appropriate Hecke algebra isomorphism, (4.33) and (4.24) agree up to a factor (±1)a.
Since a is even they really agree, and so do the two sides of (4.32). We note that

N
(
zρ,a, π(φL, εL)

)
and N(zψ, φL, εL)

are induced by (4.32), on both sides in the same way as in (4.16), so with the identity
on factors not involved in (4.32). We combine that with the above analysis of (4.32)
to establish the lemma in this case. �

From Proposition 4.8, Lemma 4.9, (4.30) and (4.31) we conclude:

Corollary 4.10. In the setting of Proposition 4.6, let (φ, ε) ∈ Φe(G
+)s

+
be bounded.

Then π(φ, ε) ∈ Irr(G+) from Theorem 3.7 is isomorphic with the tempered represen-
tation π(φ)ε from [MoRe].

Together with Theorem 3.7.d, Corollary 4.10 implies that

(4.34) π(χ̂φ)ε ∼= χ⊗ π(φ)ε

for all bounded (φ, ε) ∈ Φe(G
+) and all unitary χ ∈ Xnr(G

+).
We recall that with the Langlands classification [Ren] one can construct and

parametrize all irreducible smooth representations of a reductive p-adic group in
terms of the irreducible tempered representations of its Levi subgroups. (Although
[Ren] works in a setting of connected reductive F -groups, the same arguments apply
just as well to G+.)

There also exists a Langlands classification for (enhanced) L-parameters [SiZi],
which is analogous. With (4.34) and these two versions of the Langlands classi-
fication, one can canonically extend the parametrization of irreducible tempered
G+-representations in [MoRe] to a parametrization of Irr(G+). The same extension
was also obtained in [ABPS1], with different methods.

Theorem 4.11. Let s+ be an inertial equivalence class for G+. There exists an

algebra isomorphism H(s+)op ∼= H(s+∨, q
1/2
F ), unique up to conjugation by elements

of O(Ts+)×, such that the following holds.

For each (φ, ε) ∈ Φe(G
+)s

+∨
, the G+-representation π(φ, ε) constructed via Hecke

algebras in Theorem 3.7 is isomorphic with the G+-representation associated to (φ, ε)
by [MoRe] and the Langlands classification.

Proof. As before, the Hecke algebra isomorphism comes from Propositions 3.5 and
4.6. By [SiZi] there exist a Levi subgroup L∨ of G∨, a bounded φb ∈ Φ(L) and
χ̂ ∈ Z(G∨)◦, strictly positive with respect to the Borel subgroup B∨ of G∨, such
that φ = χ̂φb in Φ(G). Moreover, this expression for φ is unique up to conjugation,

and S(+)
φ is canonically isomorphic with S(+)

φb
(computed in L+∨

der). The aforemen-

tioned extension of [MoRe] via the Langlands classification sends (φ, ε) to the unique
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irreducible quotient of IG
+

L+U

(
χ ⊗ π(φb)ε

)
. On the other hand, by [AMS2, Proposi-

tion A.3] and Theorem 3.7.d the G+-representation π(φ, ε) is the unique irreducible
quotient of

IG
+

L+U

(
π(χ̂φb, ε)

)
= IG

+

L+U

(
χ⊗ π(φb, ε)

)
.

Finally, we use that π(φb)ε ∼= π(φb, ε) by Corollary 4.10 applied to L+. �

5. Unitary groups

In this section we discuss how the setup and the statements in Sections 1–4 can be
adjusted, so that the arguments and the results hold for unitary groups. Most of this
can be found in [Mœ2] and [Hei4, §C]. We prefer to use the convenient description
of L-parameters for unitary groups from [GGP].

Let E/F be a separable quadratic extension. Let V be a finite dimensional E-
vector space endowed with an Hermitian form. Recall that the unitary group U(V )
is a reductive algebraic F -group, an outer form of GLdimV . The classification of
pure inner twists reads:

• When dimV = 2n, there is one quasi-split group U2n(E/F ) and one pure
inner twist U′2n(E/F ), which is not quasi-split.
• When dimV = 2n+ 1, there is a quasi-split group U2n+1(E/F ), associated

to a Hermitian form with discriminant 1. There is an isomorphic but dif-
ferent form U′2n+1(E/F ), which is associated to an Hermitian form whose
discriminant is nontrivial in F×/NE/F (E×).

The complex dual group of Um(E/F ) and U′m(E/F ) is GLm(C). The group
WF /WE = Gal(E/F ) acts on GLm(C) by the outer automorphism

A 7→ JmA
−TJ−1m ,

where −T denotes inverse transpose and Jm is the anti-diagonal m×m-matrix whose
with on the anti-diagonal alternating 1 and -1. We use a compressed form of the
Langlands dual group:

LUm(E/F ) = LU′m(E/F ) = GLm(C) o WF /WE .

Modifications in Paragraph 1.1.
According to [GGP, Theorem 8.1], any L-parameter φ for U(V ) is determined (up
to U(V )∨-conjugacy) by its restriction to WE ×SL2(C), which we denote φE . This
φE is a conjugate-dual representation, which means that φ∨E is isomorphic to s · φE
for any s ∈WF \WE . Moreover φE is conjugate-orthogonal (sign +1) if dimV is
odd and conjugate-symplectic (sign -1) if dimV is even. That provides a bijection
from Φ(U(V )) to the isomorphism classes of conjugate-dual representations of WE

with sign (−1)dimV−1. For consistency we define sgn(U(V )∨) = (−1)dimV−1.
Conversely, let a conjugate-dualm-dimensional representation φE of WE×SL2(C)

with sign (−1)m−1 be given. Then one can determine

(5.1) φ : WF × SL2(C)→ GLm(C) o WF /WE

up to conjugacy by requiring that φ(WF \WE) consists of elements s (in the non-
identity component) such that s · φE is equivalent with φ∨E . We abbreviate this

operation to φE 7→ indWF
WE

φE .

It is natural to relate the centralizer group of φ (computed in U(V )∨) to a suitable
centralizer group of φE . To this end we recall from [GGP] that φ determines an
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explicit bilinear form Bφ on Cm, with respect to which φE is conjugate-dual. By
[GGP, Theorem 8.1.iii]

ZU(V )∨(φ) = ZAut(Bφ)(φE),

Aut(Bφ) =
{
g ∈ GLm(C) : Bφ(gv, gv′) = Bφ(v, v′) ∀v, v′ ∈ Cm

}
.

From [GGP, §4] one sees that ZAut(Bφ)(φE) behaves exactly like ZG∨+der
(φ) in the

case of general spin groups. More explicitly, ZU(V )∨(φ) and ZAut(Bφ)(φ) are given

by (1.5) and (1.10), we only have to omit the S (for det = 1) from those formulas.

Modifications in Paragraph 1.2.
The standard Levi subgroups of Gn = U(V ) are of the form

L(F ) = Gn− ×GLn1(E)× · · · ×GLnk(E)

with Gn− = U(V ′) of the same type as Gn and dimV − dimV ′ = 2(n1 + · · ·+ nk).
Similarly

LL = LGn− × indWF
WE

(
GLn1(C)× · · · ×GLnk(C)

)
.

By Shapiro’s lemma, Φ(L(F )) is naturally in bijection with

Φ(Gn−)× Φ(GLn1(E)× · · · ×GLnk(E)),

which by [GGP, Theorem 8.1] can be regarded as a set of conjugacy classes of
homomorphisms with domain WE × SL2(C). Accordingly, the centralizer of φ ∈
Φ(L(F )) can be computed as the centralizer of φE in

L∨E := Aut(Bφ)×GLn1(C)× · · · ×GLnk(C).

We write
Sφ = SφE = π0

(
ZL∨(φ)

)
= π0

(
ZL∨E (φE)

)
.

The cuspidal support [AMS1] of (φ, ε) ∈ Φ(G) can be computed via

ZG∨(φ(WF )) = ZAut(Bφ)(φE(WE)).

This implies that

Sc(φ, ε) = Sc
(
indWF

WE
φE , ε

)
= indWF

WE

(
Sc(φ, ε)

)
,

where indWF
WE

does not change the enhancements.
As a consequence, everything in Paragraph 1.2 can be carried out for unitary

groups, with φE and L∨E instead of φ and L∨. However, the results are not always
precisely as before. We have to distinguish two cases, depending on the ramification
of U(V ), that is, the ramification of E/F .

Suppose first that E/F is ramified. We take a Frobenius element of WE also as
Frobenius element of WF , and we pick a representative for WF /WE in IF . Then

ResWE
IE

and ResWF
IF

are compatible with φ 7→ φE and indWF
WE

. Hence the calculations

in Paragraph 1.2 produce the correct results for U(V ). We only have to remember
to omit the centre C× of GSpin(V )∨ and the S for det = 1, like we needed to do for
symplectic groups.

Next we suppose that E/F is unramified. Then IE = IF and as Frobenius element
of WF we take the square of a Frobenius element of WE . In contrast to the ramified
case, the impact on Paragraph 1.2 is substantial.

For τ ∈ Irr(WE)±φ , there is still a unique (up to isomorphism) unramified twist

τ ′ = τ ⊗ χ which is conjugate-dual and not isomorphic to τ . However, in contrast
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to before τ ′ and τ always have different signs [Sol4, Proposition 4.10.b]. We order
τ, τ ′ so that `τ ≥ `τ ′ and if `τ = `τ ′ = 0 then aτ ≥ aτ ′ .

The next change occurs in (1.19), there

Ts∨ = T
/(∏

j
Z(GLnj (C))

ind
WF
WE

φj

)
=
∏

τ

(
C×/Z(GLnj (C))

ind
WF
WE

φj

)eτ =
∏

τ
Ts∨,τ ,

with the latter two products running over Irr′(WE)±φ ∪ Irr(WE)0φ. We note that∣∣Z(GLnj (C))
ind

WF
WE

φj

∣∣ = 2 |Z(GLdτ (C))τ | = 2tτ .

In particular
X∗(Ts∨,τ ) = 2tτ

(
X∗(T ) ∩QX∗(Ts∨,τ )

)
.

Further (1.20) becomes

J = ZG∨(φ(IF )) =
∏

τ
G∨φ(IE),τ

=
∏

τ∈Irr′(WE)
±
φ

GL2eτ+`τ+`τ ′ (C)tτ ×
∏

τ∈Irr(WE)
0
φ

GLeτ (C)2tτ .

As a consequence (1.23) has to be modified in the cases τ ∈ Irr(WE)+φ , now it reads

R(G∨φ(IE),τT, T ) =

{
Ceτ `τ + `τ ′ = 0
BCeτ `τ + `τ ′ > 0

.

In view of the new shape of J , its maximal torus given in (1.24) becomes

TJ =
∏
τ

T tτJ,τ =
∏

τ∈Irr′(WE)
±
φ

(
(C×)2eτ+`τ+`τ ′

)tτ × ∏
τ∈Irr(WE)

0
φ

(
(C×)eτ

)2tτ .
The computation of mα for α ∈ R(J, T )red after (1.19) also changes for unramified
unitary groups. For τ ∈ Irr(WE)0φ, the root system R(G∨φ(IE),τT, T ) has 2tτ irre-

ducible components, all of type Aeτ−1 and permuted cyclically by FrobF . Hence mα

equals 2tτm
′
α, and the same argument as before shows that m′α = 1.

When τ ∈ Irr′(WE)±φ , the root system R(G∨φ(IE),τT, T ) has tτ irreducible com-

ponents. They are of type A2eτ+`τ+`τ ′ and FrobF permutes them cyclically, so
mα = tτm

′
α. Here the computation of m′α proceeds analogously to in Paragraph 1.2

for the cases τ ∈ Irr(WF )+−φ . We conclude that mα = 2tτ unless `τ + `τ ′ = 0 and

α ∈ Ceτ is long, then mα = tτ .
From this we obtain the root systems Rs∨,τ whose union is Rs∨ . For τ ∈ Irr(WE)0φ

we obtain Aeτ−1 ⊂ X∗(Ts∨,τ ) as before. For τ ∈ Irr′(WE)±φ with `τ + `τ ′ > 0

we get 2tτBeτ ⊂ 2tτX
∗(T ), which can be identified with Beτ in X∗(Ts∨,τ ). For

τ ∈ Irr′(WE)±φ with `τ + `τ ′ = 0 we obtain 2tτDeτ ∪ tτ (Ceτ \ Deτ ) in 2tτX
∗(T ),

which identifies with Beτ in X∗(Ts∨,τ ).
The root datum for the affine Hecke algebra decomposes nicely:

Rs∨ =
⊕

τ
Rs∨,τ =

⊕
τ

(
X∗(Ts∨,τ ), Rs∨,τ , X∗(Ts∨,τ ), R∨s∨

)
.

The calculation of the parameter functions λ, λ∗ (following the method in [AMS3,
§3.3]) leads to the following modified version of Table 2:
Here the first line is an instance of the second line, we mention it separately because
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Table 3. Data from Rs∨ for each τ

aτ aτ ′ X∗(Ts∨,τ ) Rs∨,τ λ(α) λ(β) λ∗(β)
0 −1 Zeτ Beτ 2tτ tτ tτ
≥ 1 ≥ −1 Zeτ Beτ 2tτ tτ (aτ + aτ ′ + 2) tτ (aτ − aτ ′)
Irr(WE)0φ Zeτ Aeτ−1 2tτ −− −−

it comes from the exceptional case `τ + `τ ′ = 0 discussed above. We note that in all

lines of Table 3 W (Rs∨,τ ) is the full group Ws∨ , so Γ
(+)
s∨ is trivial and can be omitted

from the table.

Modifications in Section 2.
Most of the necessary adjustments, as well as a proof of Theorem 2.1.c,d for unitary
groups, can be found in [Mœ2]. Let us spell out the significant changes.

The Jordan blocks of a discrete series representation π of G = U(V ) are based
on unitary supercuspidal representations ρ of GLm(E). Instead of (2.1), they have
to be conjugate-dual: ρ ∼= ρ̄∨, where the bar indicates composing a representation
with the natural action of Gal(E/F ) on U(V ).

Although there exist outer automorphisms of unitary groups, we should not in-
volve them like for SO(V ) and GSpin(V ), because here G+ = G. Rather, we should
just replace Out(G) by the trivial group everywhere. Then all results in Section
2 hold for unitary groups (except Theorem 2.5 which is specific for general spin
groups).

Modifications in Section 3.
No further adjustments are needed, everything works in the above setup. The groups
Γs,Γ

+
s ,Γs∨ ,Γ

+
s∨ are trivial, so all considerations about those are superfluous for uni-

tary groups. Also, as G+ = G the material in Paragraph 3.1 becomes trivial.

Modifications in Section 4.
There is only one small change, when U(V ) is unramified. In the proof of Proposition
4.6 the case `τ ′ = 0 can be treated just as `τ ′ > 0, because by Table 3 the relevant
Hecke algebra has a root datum of type Beτ with parameters such that λ(β) =
λ∗(β) > 0.
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réductif p-adique - le cas des groupes classiques”, Selecta Math. 17.3 (2011), 713–756

[Hei4] , “Local Langlands correspondence for classical groups and affine Hecke algebras”,
Math. Z. 287 (2017), 1029–1052

[KMSW] T. Kaletha, A. Minguez, S.-W. Shin, P.-J. White, “Endoscopic Classification of Repre-
sentations: Inner Forms of Unitary Groups”, arXiv:1409.3731v3, 2014

[KiMa] Y. Kim, I. Matić, “Discrete series of odd general spin groups”, arXiv:1706.01111v2, 2022
[KSS] R. Kurinczuk, D. Skodlerack, S. Stevens, “Endo-parameters for p-adic classical groups”,

Invent. Math. 223.2 (2021), 597–723
[LRS] G. Laumon, M. Rapoport, U. Stuhler, “D-elliptic sheaves and the Langlands correspon-

dence”, Invent. Math. 113 (1993), 217–238
[Lus1] G. Lusztig, “Intersection cohomology complexes on a reductive group”, Invent. Math. 75.2

(1984), 205–272
[Lus2] , “Cuspidal local systems and graded Hecke algebras”, Publ. Math. Inst. Hautes
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