AFFINE HECKE ALGEBRAS FOR CLASSICAL p-ADIC GROUPS
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ABSTRACT. We consider four classes of classical groups over a non-archimedean
local field F: symplectic, (special) orthogonal, general (s)pin and unitary. These
groups need not be quasi-split over F. The main goal of the paper is to obtain a
local Langlands correspondence for any group G of this kind, via Hecke algebras.

To each Bernstein block Rep(G)® in the category of smooth complex G-represen-

tations, an (extended) affine Hecke algebra H(s) can be associated with the
method of Heiermann. On the other hand, to each Bernstein component ¢'6(G)5V
of the space ®.(G) of enhanced L-parameters for G, one can also associate an (ex-
tended) affine Hecke algebra, say H(s"). For the supercuspidal representations
underlying Rep(G)®, a local Langlands correspondence is available via endoscopy,
due to Moeeglin and Arthur. Using that we assign to each Rep(G)® a unique
3.(G)°".

Our main new result is an algebra isomorphism #(5)°® = H(s"), canonical
up to inner automorphisms. In combination with earlier work, that provides an
injective local Langlands correspondence Irr(G) — ®.(G) which satisfies Borel’s
desiderata. When F' has characteristic zero, this parametrization map is in fact
bijective. When F' has positive characteristic it is probably bijective as well, but
we could not show that in all cases.

Our framework is suitable to (re)prove many results about smooth G-represen-

tations (not necessarily reducible), and to relate them to the geometry of a space of

L-parameters. In particular our Langlands parametrization yields an independent
way to classify discrete series G-representations in terms of Jordan blocks and
supercuspidal representations of Levi subgroups. We show that it coincides with
the classification of the discrete series obtained twenty years ago by Moeeglin and
Tadié.
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INTRODUCTION

In the theory of linear algebraic groups, the classical groups play a special role. As
the stabilizer groups of bilinear /hermitian forms, they can arise from many directions
and have various applications. Within the representation theory of reductive p-adic
groups, the main advantage of classical groups is their explicit structure. It enables
precise, combinatorial methods to study representations, on a level which is hard
to reach for other reductive groups. Such methods have been pursued by many
mathematicians, see for instance [Artl [GGP. [Heidl [KiMal, MoTal.

In this paper we translate the (smooth, complex) representation theory of classical
p-adic groups to affine Hecke algebras arising from Langlands parameters. This is
part of a long-term program [AMSI] [AMS2] [AMS3] that applies to all reductive p-
adic groups and aims to establish instances of Langlands correspondences via Hecke
algebras. The method has already proven successful for principal series representa-
tions of split groups [ABPS3| and for unipotent representations [Sol2]. For classical
groups, our Hecke algebra methods provide alternative proofs of many earlier results
(e.g. the classification of discrete series representations) and install a framework in
which one can easily establish many new results that involve categories of smooth
representations.

Let F be any non-archimedean local field (p-adic or a local function field). We

will consider classical F-groups in a broad sense, namely

e symplectic groups;

e (special) orthogonal groups associated to symmetric bilinear forms on a finite
dimensional F-vector space V;
general (s)pin groups associated to such bilinear forms;
unitary groups associated to hermitian forms on vector spaces over a sepa-
rable quadratic extension of F'.

We stress that these groups do not have to be quasi-split, we allow pure inner
forms. For G = SO(V') and G = GSpin(V') we write, respectively, G = O(V) and
G+ = GPin(V), otherwise GT = G. The main advantage of including general spin
groups is that they provide information about all representations of spin groups,
something which one cannot get from studying special orthogonal groups.

General linear groups could also figure in the list, they are very classical (but
note that they do not come from a nondegenerate bilinear form). We excluded
them because for GL,,(F') everything we will discuss has been known for a long time
already, see [HaTal, LRS] for the LLC and [BuKu, [AMSI] for the Hecke algebras.

The common feature of all the above groups G is that their Levi subgroups are
isomorphic to G’ x GL,, (F') x -+ x GLy, (F'), where G’ is a group in the same
family as G but of smaller rank, and F’ = F unless G is a unitary group, then
[F': F] = 2. Tt is this structure which enables the aforementioned “combinatorial”
approach to representations of classical groups. In a sense that approach is recursive,
relating G-representations to similar groups of smaller rank and to representations
of GL,,(F'), which are understood well already. However, such a reduction strategy
does not say much about supercuspidal G-representations. The crucial technique
to analyse those is endoscopy, as in [Artl Mokl KMSW, [IMoRe]. From the work of
Arthur and Moeglin, the following version of a local Langlands correspondence (for
the discrete objects) can be destilled.
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Theorem A. (Arthur, Mceglin, see Theorem [2.1))
Let F' be a p-adic field and let G be one of the connected classical groups listed above.

(a) Let 7 be a discrete series representation of G*. Then the L-parameter of w can
be obtained from the set of Jordan blocks of w, by taking the L-parameters of
all GLy,(F')-representations in Jord(mw) and combining those via block-diagonal
matrices.

(b) Part (a) extends canonically to an injection from the discrete series of Gt to
the set of enhanced bounded discrete L-parameters for G (where the component
groups of L-parameters are computed in the possibly disconnected group GV ).

(¢) When GT # G, it can be described explicitly in terms of Jord(mw) whether or not

ResgL (m) is irreducible.

Moeeglin has also characterized cuspidality in the context of Theorem [A] both for
G-representations and for enhanced L-parameters. We refer to Section [2| for the
notations and more background. For now, we make a couple of remarks to aid the
correct interpretation of Theorem Firstly, note that in part (b) no bijectivity
is claimed, although that is known for many of these groups. Secondly, we have
to warn that not all details of the proof of Theorem [A| have been worked out (we
ourselves did not try, we only provide the relevant references). Further, Theorem
relies heavily on endoscopy, that is the reason why F' needs to have characteristic
zZero.

Nevertheless, Theorem [A] should also hold for classical groups over local function
fields, see [GaVa, [GaLo] for some instances. In Paragraph we attempt to derive
that with the method of close local fields. We managed to prove that in Proposi-
tion under Hypothesis on depths of representations in Jordan blocks (the
hypothesis most probably holds always). Unfortunately our arguments do not suffice
to prove surjectivity in Theorem [A]b for groups over local function fields, even if we
would know such surjectivity holds for the analogous groups over p-adic fields.

For the purposes of this paper, we only need to know Theorem [A]for supercuspidal
G™T-representations. Indeed, the remainder of Theorem [A| follows from those cases
with either [Moell, IMoTal or with our results discussed below and the detailed knowl-
edge of the discrete series of Hecke algebras from [AMS2], [AMS3]. Consequently all
results in paper hold for G and G as soon as we know Theorem for supercuspidal
representations of G* and the groups of smaller rank in the same family.

Next we discuss our new results, for any classical F-group G. Recall that the
category of smooth complex G-representations admits the Bernstein decomposition

(1) Rep(G) =[] Rep(G)",

indexed by the G-conjugacy classes of pairs (L, Xy, (L) - o), where o is an irreducible
supercuspidal representation of a Levi subgroup L of G, and X, (L) is the group
of unramified characters of L. Every Bernstein block Rep(G)*® is equivalent with
the category of right modules of some finitely generated algebra H(s), often an
affine Hecke algebra. Usually these Hecke algebras arise via types (in the sense of
Bushnell-Kutzko). For classical groups such types are indeed available [MiSt], but it
has turned out to be difficult to analyse the Hecke algebras via those types. Instead
we follow the approach of Heiermann [Hei2, Hei3l [Heid], who constructed H(s) as
the G-endomorphism algebra of a progenerator II, of Rep(G)*®. (For GSpin(V') we
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use the more general results from [Sol3| [Sol4].) We record that by design there is a
canonical equivalence of categories

(2) Rep(G)® = H(s) — Mod = Endg(I1s) — Mod.

These algebras 7 (s) have been described explicitly in terms of the Jordan blocks of
the underlying supercuspidal representations (of a Levi subgroup of G). That links
them to Theorem [A] and hence to Langlands parameters. These links were inves-
tigated in [Heid], where it was shown that each Rep(G)® equivalent to a Bernstein
block of unipotent representations in another group. Unfortunately these equiv-
alences are far from canonical, as most of the comparison steps in [Heid] involve
arbitrary choices. Also, the back-and-forth between various Langlands parameters
and Hecke algebras entails that in [Heid] there is no construction of representations
in Rep(G)*® with an unambigous relation to Langlands parameters for G.
Fortunately, objects of the above kinds are also available directly for L-parameters.
Indeed, in [AMSI] §8] the space of enhanced L-parameters (of any connected reduc-
tive p-adic group G) is partitioned into Bernstein components:
(3) o.(G) = I_Lv d.(G)* .
To each such Bernstein component, one can associate a twisted affine Hecke algebra
H(s",z) [AMS3]. Here z is an invertible indeterminate, analogous to ,/q for Iwahori-
Hecke algebras. Two important features of H(s",z) were established in [AMS2]
AMS3]: a construction of (irreducible) representations in terms of the geometry of
a space of Langlands parameters and for each z € R+ a canonical bijection

(4) D.(G)F +— Irr(H(sY, 2)),

where H (s, z) denotes the specialization of H(s",z) at z = z. Moreover, for z > 1
the bijection sends bounded parameters and discrete parameters to the expected
kind of representations (respectively tempered and essentially discrete series). Later

we will specialize z to qllm/ 2, where qr denotes the cardinality of the residue field of

F. The algebras H(s", qflj,/ 2) are crucial, without them it is hardly possible to make
to relations between ®.(G) and Rep(G) canonical.

In Paragraph we make the affine Hecke algebras H(s",z) completely explicit,
for any Bernstein component of ®.(G) with G a classical F-group. This involves
a description of the underlying root datum and of the labels (equivalently: the g-
parameters) in terms of the relevant Jordan blocks. We refer to Table 2| for an
overview.

Theorem |A| enables us to associate to each Bernstein block Rep(G)® a unique
Bernstein component of ®,(G) which we call ®.(G)¢, see Theorem [3.1 When
Gt # G (so for special orthogonal groups and general spin groups), s* is only
canonical up to the action of the two-element group Out(G). Our most important
result is a comparison of Hecke algebras on the two sides of the local Langlands
correspondence:

Theorem B. (see Theorem [3.3] Propositions and 4.6|)
Let Rep(G)* and ®.(G)*" be matched as in Theorem [3.1. There exists an algebra
1somorphism
H(s)P = H(s", qil")
with the following properties.
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e On the standard maximal commutative subalgebras O(T) C H(s) and
O(Ty) C H(sY, q}p/Q), the isomorphism is prescribed by the L-parameters of
supercuspidal representations from Theorem[A] and from the LLC for general
linear groups.

e There is a canonical bijection between the root system associated to s and
the root system associated to 5" .

e The isomorphism is canonical up to conjugation by elements of O(T,)* and
(in the cases with GT # G) up to the action of Out(G).

There exists an analogous isomorphism of Hecke algebras for G, which is canonical
up to conjugation by elements of O(Ts)*.

We remind the reader that in the case of classical groups over local function fields
we need the mild Hypothesis for Theorem [B| (and hence for most subsequent
results). We note that the canonicity of the above Hecke algebra isomorphism is a
subtle affair, the final steps rely on a normalization of certain intertwining operators
in Paragraph which in the end boils down to [Art].

As a direct consequence of Theorem [Bland ([2)) we find an equivalence of categories

(5) Rep(G)® = H(s", ¢}/>) — Mod,

which is canonical (up to the action of Out(G) when G* # G). The analogous
equivalence of categories for G is entirely canonical. In combination with we
obtain:

Theorem C. (see Theorems and
Theorems [A] and [B induce an injective local Langlands correspondence

Irr(G) < @.(G).

It is canonical (up to the action of Out(G) when GT # G ) and it sends supercuspidal/
essentially square-integrable/tempered representations to cuspidal/discrete/bounded
enhanced L-parameters.

There exists an analogous parametrization of Irr(G™), which uses component
groups of L-parameters computed in GV and is entirely canonical.

We note that is much stronger than any results about the parametrization of
Irr(G), in the sense that it deals with an entire category of representations. Indeed,
earlier results about Hecke algebras entail that has various consequences that
involve reducible representations, see Paragraph Furthermore the equivalence
of categories makes it possible to relate Rep(G) to the complex geometry of the
space/stack of L-parameters, as in [Sol5].

In Theorem [C] we do not claim surjectivity of the parametrization map, because
for that we would need surjectivity in Theorem [A]lb, which we do not know when F'
is a local function field. That is in fact the only obstruction: the image of the map
in Theorem |C|is the union of all Bernstein components of ®.(G) whose underlying
cuspidal L-parameters can be reached via Theorem [A] So in all the cases where the
surjectivity of Theorem [A]lb has been proven, we also get surjectivity in Theorem [C]

Theoremyields in particular a classification of the discrete series of G, in terms
of the bounded discrete enhanced L-parameters in the image of the parametrization
map. On the other hand, Theorem [A] also classifies discrete series representations of
GT. For supercuspidal representations these two methods agree, that is a starting
point of our setup. We do obtain two independent ways to classify the discrete series
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in terms of supercuspidal representations of Levi subgroups: with Hecke algebras
via Theorem |C| and with Jordan blocks as in [Mcell MoTal [KiMal.

Moreover both methods can be pushed further, to classify all irreducible smooth
GT-representations. Indeed, in Theorem |C| that comes at the same time as the dis-
crete series (in the underlying proofs from [AMS2] the discreteness of representations
is actually analysed last). Irreducible tempered GT-representations are classified
with endoscopy and Jordan blocks in [MoTal [MoRe]. The step from tempered rep-
resentations to all irreducible smooth representations via the Langlands classification
is well-known and standard, and with that extension the papers [MoTal [MoRe|] also
classify Irr(G™).

Theorem D. (see Theorem {4.11])
The following two ways to parametrize Irr(G) with enhanced L-parameters coincide:

e with Hecke algebras via Theorem[C,
o with endoscopy, Jordan blocks and the Langlands classification.

Because the two strategies are so different, it is quite cumbersome to check that
they agree. We do this step by step in Section {4} in the following order: completely
positive discrete series, all discrete series, irreducible tempered, all irreducible repre-
sentations. The most difficult part concerns the enhancements of L-parameters for
discrete series representations. To match those for the two methods in Theorem
we have to impose new conditions on the Hecke algebra isomorphisms in Theorem [B]
It turns out that these are precisely the conditions that render Theorem |B|canonical
(in the sense already stated).

A few words about the setup of the paper are in order. As we mentioned at
the start of the introduction, we consider four classes of classical groups. For all
classes the proofs of our results are extremely similar, yet not entirely the same. For
symplectic and (special) orthogonal groups, almost everything that we show about
Hecke algebras was known already, from [Hei2, [Hei3| for p-adic groups and from
[Moul, [AMS3] for Langlands parameters.

Instead we focus on general (s)pin groups in Sections [I|and [3| That is a little bit
more involved because the center Z(G) of such a group G is not compact, and it
allows one to recover the proofs for symplectic and (special) orthogonal groups by
dividing Z(G) out and restricting from GV to its derived group, where G denotes
the complex reductive group with root datum dual to that of G. Sections 2] and []
are written so that they apply equally well to symplectic, (special) orthogonal and
general (s)pin groups.

For unitary groups, the necessary changes affect the notations so much that we
only discuss them in the separate Section[5] We check carefully which modifications
are needed to make Sections work for unitary groups. It turns out that for un-
ramified unitary groups some calculations in Paragraph have different outcomes,
which we record.

1. GENERAL SPIN GROUPS

Let F' be a non-archimedean local field with absolute Weil group W . Consider
a finite dimensional F-vector space V endowed with a symmetric bilinear form.
The associated general pin group is denoted GPin(V'), it contains the general spin
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group GSpin(V') with index 2. Both are subgroups of the multiplicative group of
the Clifford algebra of V. For the root datum of GSpin(V') we refer to [AsShl §2].
Simultaneously we consider the groups GSpin(V’), where dim(V’) = dim(V') and
disc(V)) = disc(V’). The equivalence classes of such groups are naturally in bijection
with:
e equivalence classes of symmetric bilinear forms of the same dimension and
the same discriminant as V,
e pure inner twists of SO(V).

We will refer to these groups as the pure inner twists of GSpin(V'). Let us list all
the possibilities:
o for dim = 2n + 1, the split group GSpin,,, ;1 (F) of F-rank n and one pure
inner twist GSpinj,, ,  (F)) of F-rank n — 1,
e for dim = 2n, the split group GSpin,,, (F') of F-rank n and one pure inner
twist GSpinb,, (F) of F-rank n — 1,
e for dim = 2n, the quasi-split group GSpin3, (F') of F-rank n — 1 and one
pure inner twist GSpin, 4+1(#), which is also quasi-split.
For any of these groups G, we write

(1.1) ot — GPin(V) if dimV is even
’ | GSpin(V) if dimV is odd

All (pure) inner twists share the same Langlands dual group, so for that we have
precisely three possibilities:

e GSpiny, ; = GSp,,(C), and since one of the p-adic groups is split we may
take “GSpin,,, ; = GSp,,(C),

e GSpiny, = GSO4,(C), and again one of the p-adic groups is split so we take
LGSpiny,, = GSOs,(C),

e GSpinj’ = GSO2,(C), and W acts on it via passing to a quotient Wz /W g
of order two and then conjugation by an element of Og,(C) \ SOs,(C).
We may take “GSpin}, = GO2,(C), where we remember that every Lang-
lands parameter for GSpin3, (F') sends Wg to GSO2,(C) and Wr \ Wg to
GO2,(C) \ GSO2,(C).

We write ©G,, or LG for “GSpiny,, 1, “GSpin,,, or “GSpin},,. We also write

GSp,,(C) ’ der Sps,(C) if dimV = 2n + 1

Langlands parameters for G* take values in G and are considered up to conjugation
by GVT.

1.1. Properties of Langlands parameters.

Let us investigate when a Langlands parameter ¢ for GG is discrete. The image
of ¢ is contained in G, so in GSp,, (C) or in GOs,(C). In the former case ¢ is
an L-parameter for GSpin, ,(F) or GSpinj,;(F'), in the latter case for a general
spin group of even size. We can distinguish two subcases:

e when im(¢) C GSOs,(C), ¢ is an L-parameter for GSpin,,, (F') or GSpin},, (F),

e otherwise there is an index two subgroup Wgr C Wp such that ¢(Wg X
SLy(C)) € GSO42,(C). Then ¢ is an L-parameter for a group GSpinj, (F) or
GSping, (F) which splits over E.
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We suppose that the bilinear form By on C?" from which GV is defined is given
by a (skew-)symmetric matrix J € GL2,(C). Let ps: LG — C* be the similitude
character, that is

(1.2) By(gv,gv2) = pés(9)By(vr,v2) w109 € C g € MG
Recall that ([1.2)) holds for g = ¢(w) with w € Wg x SLy(C). Hence the map
B~J . C o (CQn)V

v = [V By, v)]
provides an isomorphism of W g x SLg(C)-representations
(1.3) ¢ = ¢¥ @ulod or equivalently ¢ (o)™ == oV,
Here ¢V denotes the contragredient of ¢. The adjoint map
By ¢ (9@ (uhod) ™) = ¢’ @nfod
is also an isomorphism of W x SLy(C)-representations. Suppose that V; is an

irreducible subrepresentation of (¢, C?"), on which B; is nondegenerate. By Schur’s
lemma there exists ¢; € C* such that BJV\Vl = ¢1By|y,. Then

~ ~ vV < v ~
Bjlv, =By '|v, =aBy v, = Byl

so ¢1 € {1,—1}. This says that (Vi, By) has a well-defined sign ¢;.

Since G = C*FGyer and “Gyer = Spy,,(C) or LGy € 09, (C), the decompo-
sition of (¢, C?") in irreducible subrepresentations can be carried out just like for
orthogonal or symplectic representations. For those kinds of representations we use
the instructive paper [GGP]. Thus we decompose

(1.4) (¢,C%") =

where V;, is the space of the representation ¢ and Ny is the multiplicity space (with a
trivial action). By [GGP) Theorem 8.1] the right hand side of determines ¢ up
to GV-conjugacy, apart from some exceptional cases in which it is up to GOs,(C)-
conjugacy. Further, by [GGP) §4] B; induces bilinear a form on each of the Ny
and

(1.5) 2GY 4o, (8) = L o, (H(Wr x SLy(C))) =
S(H¢EI+ O(Ny)®Idy, ) x Hwer Sp(Ny) ® Idy,, x Hwelo GL(Ny) © 1y, evy,

where S(H) denotes the subgroup of elements in H with determinant equal to 1.
Here we abbreviated

I= = { e m(Wp x SL2(C)): ¢ 2 Y ® p o ¢,sgn(v)) = +sgn(GVaer)},

I° = {$ elr(Wp x SLa(C)) : ¢ £ 9V @ pgy 0 ¢}/ (¥ ~ 9" @ s 0 ).

Recall that ¢ is discrete if and only if Zgv (¢)/Z(GY)WF is finite, which is equivalent
to: Zgv,,, (¢) is finite. From (L.5) we see that that is the case if and only if

(1.6) N,=0forreI"UI® and  dim(N,)<1forTel".

From now on we assume that ¢ is discrete. Thus each 7 ® P, has multiplicity at
most one in ¢.

Recall that SLy(C) has a unique irreducible representation (P,, C*) of dimension
a € Z=o, and that it is self-dual with sign (—1)*~!. Let Jord(¢) be the set of
pairs (1,a) € Irr(Wg) x Zsq for which 7 ® P, occurs in (¢, C*"). The set Jord(¢)

@wem(wmsm(@) Ny &V,
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describes the Jordan decomposition of the unipotent element u, = ¢(1,(§1)): for
each (7,a) € Jord(¢), ug has dim7 Jordan blocks of size a. We abbreviate

Jord,(¢) ={a € Z>o : (1,a) € Jord(¢p)}.

We define
Ir(Wp)E = {7 €lir(Wp): 727V @ pY o ¢,sgn(r) = £sgn(GVger) },
Ir(Wp)y = {rehr(Wp):72 ™V @ pulod}/ (T ~1"Quk o).

Then we can express (|1.4) more precisely as

(1.7)

v @ ol D nle® o @ n

TEII’I‘(WF); a odd:(7,a)€Jord(¢) TGII‘I’(WF); a even:(T,a)€Jord(¢)

Our setup with pure inner forms entails that we must take component groups for
L-parameters in G 4o = SO(V)Y, which equals SO3,(C) or Sps,(C). We put

(1.8) Sg = m0(26V 4., (9));

and we use the irreducible representations of Sy as enhancements of ¢. From
we see that every (7,a) € Jord(¢) contributes a generator zr, of order two to Sy.
Here z; 4 acts as —1 on 7 ® F, and as 1 on the other summands of . The group
Sy is abelian and consists of all products of the z; , such that the determinant is 1.
Thus every element of Sy involves an even number of 2, , with a dim 7 odd.

A character € of Sy is a G-relevant enhancement of ¢ if and only if € restricted to
Z(GY 4er)WF encodes G via the Kottwitz isomorphism, i.e. it is quadratic if G is a
“prime” form (with notation as above ) and trivial otherwise. Here the image
of Z(GV 4er)WF in S, is generated by
(1.9)

T,a)

H(T,a)GJord(¢>): adim 7 odd &

which is an element of order < 2.
We want to make explicit which enhancements of ¢ are cuspidal. Like in ([1.7))

(1.10) ZGvder(¢<WF)) = S( H Idy, ® O( @ (Ca)> X

Telr(Wr)} a odd:(r,a)€Jord(¢)

H Idy, ® Sp( @ Ca) .

T€Ir(Wr) a even:(7,a)€Jord(¢)

This brings us to the setting of [Mcell, MoTa] and [AMS3] §5.3]. In the latter it is
checked that (¢, €) is cuspidal if and only if the following conditions are met:

e Jord(¢) does not have holes, that is, if (7,a) € Jord(¢) and a > 2, then also
(1,0 —2) € Jord(g),
e ¢ is alternated, in the sense that for all (7,a), (7,a + 2), (7/,2) € Jord(¢):

(111) EW(ZT,(IZ’T,O,—‘,-Q) =—1 and 671-(2,’7_/72) = —1.
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1.2. Hecke algebras for Langlands parameters.

We will work out the Hecke algebras associated in [AMS3], §3] to Bernstein compo-
nents of enhanced L-parameters for G. Although in [AMS3] we used an alternative
group Sy coming from the simply connected cover of GV ey, the constructions work
equally well with Sy as above.

It is shown in [AsSh, §2] that every standard Levi subgroup L = L(F) of G =
GSpin(V) is of the form

L(F)=Gpn_ x GLy, (F) x -+ x GLy, (F),
where n— € N, G,,_ = G,,_(F) = GSpin(V_) with disc(V_) = disc(V') and
dim(V) —dim(V_) = 2(ny + - - - + ng).
Then “G,,_ has the same type as “G (but smaller rank) and
(1.12) Lg =L@, xGL,, (C) x --- x GL,, (C).

Assume that the (skew-)symmetric matrix J € GL2,(C) defining the bilinear form
has the following simple shape: the isotropic part is built from matrices (§§) or
(_01 (1)) placed in rows and columns j,2n + 1 — j. Then the embedding “£ — LG is

given by
(1.13) (hyhay. ooy i) = (s hiy by p(h) Th DTt wl(ho) Thy T,

where for an invertible matrix m we denote the inverse-transpose by m~1 = (mfl)T.
Consider a Langlands parameter ¢: W x SLo(C) — ©£. With (1.12) and (1.13)
we can write

(114)  o=(P sje0-ofD ¢/ ontos=o- oD, 6@ (0] ®uioo),

where ¢_: Wp x SLy(C) — LG~ and ¢;: Wp x SLy(C) — GLy, (C). Clearly ¢ is
discrete if and only if ¢_ and all the ¢; are discrete. Notice that Sy = Sy_ because
ZGLnj (©)(¢5) is connected. An enhancement

e € Irr(Sy) = Irr(Sy_)

is cuspidal if and only (¢_,€) and all the (¢;, triv) are cuspidal. For (¢_,€) cusp-
idality was analysed after , while for (¢;,triv) it means that ¢; is trivial on
SLy(C) and ¢; is irreducible as representation of Wy [AMSI, Example 6.11].

Let ®cusp(L) denote the set of LY-conjugacy classes of cuspidal enhanced L-
parameters for L. From now on we assume that (¢, €) € ®eusp(L). Following [AMST),
§8], this gives a subset

51\‘1 = (Z(LV)O,ﬁba €) C Peusp(L)

and a Bernstein component ®,(G)S" C ®.(G). For 7 € Irr(Wp), let £, be the
multiplicity of 7 in ¢_ (regarded as W p-representation via the standard embedding
Lq, — GL2,_) and let e, be the sum of the multiplicities of 7 in the GL,,(C).

Then (|1.14) and (1.7) become
¢=0¢_-D @ 2e;7 @ @ er(T @ 7'V®Iuéo¢)’

TEIrr(WF)j): 7'€Irr(WF)2S

¢|WF = @ (2er +47)T @ EB er(T @ ™ ® F‘é °¢)

TEl(Wp)3 Tl (Wr)§



AFFINE HECKE ALGEBRAS FOR CLASSICAL p-ADIC GROUPS 11

From (|1.5) we deduce

(1.15) Zava(@) =S I Osese(© @lar, )x

TGIrr(WF);t
II Spoe,ir,©@Idy, x  J[ GL,(C) @Idy, vy
Telr(Wp), TEIrr(WF)g

Relevant for the determination of Hecke algebras are furthermore

Zev, (¢) L = s( [[ 00.(C)x () @ldy,)x

TGIrr(WF)g
II Spe.(©x(C)r@ldy, x [ (€ @ldyevy,
T€lrr(Wp) g TEIrr(WF)g5

Gy =Zav((Wr)) = CZgv,,, (¢),
M=GyntL=C*(Zgv,, (¢)N*L),

T=zMyP=c*( [ @)= ][] @9))=2zr"L).

TGIrr(Wp)j TEIrr(WF)g

If GV = GSO2,(C), we may extend it to G¥T := GOy, (C). That means omitting
the S from ([1.15)), which makes the group (at most) a factor 2 bigger, so that it
decomposes naturally as a product over the involved 7’s:

(1.16) Zvt (6(Wr)) = H Gy

7'611“1“(WF)j):LJIrr(WF)(q)5

Then the root system R(GX,T ) decomposes canonically as a disjoint union of the
root systems
R; = R(G{,T,T)=R(Gy ., TNG,).

In [AMS3] §1] a graded Hecke algebra is attached to the data (Gg, M, ug,€). The
maximal commutative subalgebra is O(Lie(T")), the root system is R, and the para-
meters of the roots come from [Lus2]. The root system and the parameter functions
¢: R: — Z>¢ (which are used to construct graded Hecke algebras) were worked out
in [AMS3], §5.3]. To write down the parameters uniformly, we define

max Jord,(¢_) Jord (o) # 0
(1.17) a-=14 0 Jord-(¢-) = 0,7 € r(Wp),
-1 Jord, (¢_) =0,7 € Irr(WF)df

Notice that now a; is odd for 7 € II‘I‘(WF):; and even for 7 € Irr(Wp),. For e =0
the torus T'N G)ZJ reduces to 1, and there are no roots. Otherwise we denote a
root of length v/2 by a and a root of length 1 by 3. Now the root systems and the
parameter can be expressed as in Table [ When e, = 1, we must regard D, and
A 1 as the empty root system. Although S is not a root in C), or D, [AMS3|
§3.2] still allows us to attach a useful parameter c¢(3).

Recall that the Bernstein component CIJe(G)5v has as cuspidal supports precisely
the twists of (¢, €) by elements of

Xne(PL) = Z("L % Ip)Sy, = Xue(L).
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TABLE 1. Root systems and graded Hecke algebra parameters for 7

T € - R, c(a) c(B)
r(Wp), =0 D, 2 0=1+a,
Ir(Wg)j >0 B, 2 1+a,
Ir(Wpg), =0 C., 2 c28)=2,c(f)=1=1+a,
Irr(Wp)% >0 BC.. 2 1+a,
II“I‘(WF)¢ =0 AeT—l 2 -

Here W g acts trivially on the type GL factors of “£ and on Z(G,_) = C*, so

(1.18) Xu(PL) =2 72(G,) x Hj c1d=zte) =T

Without changing ®.(G)*", we can bring (¢, €) in a somewhat better position:
o if ¢j : Wp — GL,,(C) differs from ¢} @ ug o ¢ by 2 € Z(GLy,(C)) =
Xur(GLy, (F)), then we replace ¢; by 21264, so that

2= 2P @ o b = (21205) @ ug o 6.

o if n; = n; and ¢;, ¢; differ by an element of X,,;(GLy,(F')), then we adjust
one of them so that actually ¢; = ¢;,
o if ¢;,0; € Irr(WF)g and ¢, gb;-/ ® pl o ¢ differ by an element of GL,,(C),
then we replace ¢; by ¢;.
Let 7 € Irr(WF)i be a twist of 7 € Irr(WF)qjsE by an unramified character, such
that 7/ is equivalent with 7V & pé o ¢ but not with 7. By the above assumptions
on ¢, e, = 0 if e, > 0. Still, ¢, ¢, can be nonzero simultaneously. If e, > 0 and
Uy < Uy (resp. £y =l =0 and a, =0 < a,/) then we change ¢; =7 to ¢; =7/, so
that the roles of ¢, and ¢,/ (resp. of a, and a,/) are exchanged.
Let Z(LV); C Z(LY)° = T be the subgroup of elements z such that z¢ is equivalent

with ¢ in ®.(L)*". It is finite and the map
Z(LY)°JZ(LY)S — ®e(L)* : 2+ (2, €)

is a bijection. The affine Hecke algebra we are constructing has the underlying
complex torus

(1.19) Ty = LYY UL )G =T/ T] Z(CLa, (©))s-

Let t; be the torsion number of 7 € Irr(Wp), that is, the order of the group
Z(GL4_ (C));. Then t, is also the number of irreducible constituents 6 of Res}’:F T.
We need to distinguish two cases:

(i) 0 = 6" ®@plod. Then the same goes for all constituents of Res}zF T, because
all those are in one orbit for Wg. The proof of [Sol4, Proposition 4.10.a]
(which concerns self-dual representations of W) applies and shows that 7
and 7' have the same sign.

(ii) 6 2 0¥ @ p o¢ for all eligible . Again the proof of [Sol4l, Proposition 4.10.a
applies, now it shows that 7 and 7’ have different signs.

According to these two cases, we divise a new partition of Irr(W F);F:
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o Irr(Wp)™ is the set of all 7 € Irr(Wg)J in case (i) above, modulo the
relation 7 ~ 7/;

e Irr(Wp)™ " is defined in the same way, only starting from Irr(Wp) ;;

o Irr(Wpg)t~ is the set of all 7 € Irr(WF)jf in case (ii) above, modulo the
relation 7 ~ 7/;

o Irr/(WF)j =TIrr(Wgp)t T Ulrr(Wg)~~ Ulrr(Wg)T™ = II‘I‘(WF);:/(T ~ 7).
A computation like for (|1.15) yields

Zovaw@@0) =S [T O, ©7) I Spoeriern (O

TGIrr(WF):;‘" TEIIT(WF);_
(1.20) x I  GLac,4e,40.(©2x ][] GLe (0.
TEIrr(WF)z_ ‘rEIrr(WF)g5

Analogous to (1.16)) we decompose
ZGVL‘r (¢(IF)) = HT G(\;(IF)J—a

T =C* x Ty, =C* x (C*/Z(GLg4 (C),),
(1.21) ; {kHHT 5, {1,71}( /Z(GLq, (C))-)

X"(Tw)CZo @ X*(Tw,)=Zo P Z°.

In each of the above cases, the product or sum runs over Irr’ (Wp)i U Irr(WF)g.
For comparison with [AMS3] we record the group

(1.22) J =Z¢v(¢p(Ip)) = C* Zgv, . (o(IF)).

The root system of J° with respect to the (possibly non-maximal) torus T splits
naturally as a disjoint union of root systems R(GZ(IF) _T,T), indexed as in (1.21]).
We note that by the above assumptions on 7 and 7/ we have £, > ¢, = 0 and if
£; =0, then £ =0 and a,; > a,». With Table[l| at hand, one checks readily that

(1.23) R(GYq,,T.T) = R(Gy T, T)

)

in all cases. (Only the dimensions of the root subspaces for Gg(IF) . are higher
than for Gy _, namely ¢, times higher in all but ones cases.) In view of [AMS3]

Proposition 3.9], this means that (¢, €) is a good basepoint of <I>6(L)5v.
Now the roots for the Hecke algebra that we are after can be found with [AMS3|
Definition 3.11]. The reduced roots a € R(GX(IF)TT’ T) need to be scaled by a

certain factor m, € N, which we compute next. Let By D T; be a ¢(Frobp)-stable

Borel subgroup and maximal torus of J°, such that T?(FrObF ) 5 T. A natural choice
for T; comes from the standard maximal tori T, in G:;(IF) L

(1.24) Ty = C*( I1 rox [ 1< I1 1%).

TEIrr(WF)$+UIrr(WF);_ Telr(Wp) ™ TGIrr(WF)g

We see that R(G;(IF)J" T) has t; irreducible components, unless 7 € Irr(WF);f*,
then there are t./2. Following [AMS3| Definition 3.11], m, equals t. (or t,/2 for
T € Irr(WF);f_) times a number m,, which is m, for Resgg ¢ where E/F is the
unramified extension of degree t, (or t./2 for 7 € Irr(WF)g_). By definition m/, is
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the smallest number such that ker(m/a) contains all ¢ € T for which tResgg ¢ is
equivalent with Reswg o.

The group of t € T with t¢ = ¢ factors as a product indexed by all possible T,
and the contribution from one 7 consists of ¢, unramified characters of Wr. But
this group of unramified characters becomes trivial if we pass from W g to the Weil
group of the degree ¢, unramified extension of F. Hence m/, = 1, unless maybe
when 7 € Irr(WF);_. In the latter situation we usually have m/, = 2, because
ker(m/,a) has to contain an element ¢ € (1 — ¢(Frobp)*/2)T; . with a(t) = —1. The
only exception occurs when ¢, = 0 and « € C,, is long, then m/, = 1. We conclude
that m, = t, in all cases, except when 7 € Irr(Wp):;*, ;=0 and o € C,, is long,
then mgy = t,/2.

Finally, we are ready to define the root datum for our affine Hecke algebra:

Rev = (Rgv,X*(Tgv),Rﬁvv,X*(Tsv))7
where Ryv = {mqa : a € R(GY, T)rea}-
Here R,v is the disjoint union of root subsystems
Ry 7 ={maa:a € R(GY T, T)sed}-

Notice that X*(T,v ;) arises from the part of X*(7T") associated to 7 by multiplication
with ¢, where ¢, = m, for most o € R(GX’TT ,T). The multiplication rules in our
affine Hecke algebra are determined by parameter functions A\, \*: Rgv — Z>(, which
come from [AMS3, Lemma 3.14]. The outcome of those constructions is summarized
in [AMS3, §5.3]:

e For a € R, eq a short root in a type B root system, t, = mq, c(a) =

ar +1,c*(a) = a + 1 and

Ma) =tr(ar + ap +2)/2, N(a) =t (ar —a)/2.
We note that A*(a)) > 0 because £, > ..
o For a € R;1eq,T € Irr(WF);f_, £ = 0, « a long root of a type C root
system: c¢(a) = 2 and
AMa) = N (a) =my =t /2.
e For all other & € R;1eq: ¢(a) =2 and
AMa) = X (a) = mg = tr.
We note that the operation o +— mqya preserves the type of the root systems R req
from Table |1} except that in the case 7 € Irr(W F);f_, L+ 0 =0 type C¢, is turned
into B, .
We also need to determine Wyv, the stabilizer of s} in
(1.26) Ngv(LY x Wg)/LY = Ngv(LY) /LY.
Recall the embedding “£ — G from (1.13). For each j the group Ngv+ (LY)
possesses an element that exchanges h; and pf(h—)J h;TJ ~1. In terms of represen-
tations of W (via ¢), this

(1.25)

(1.27) exchanges 7 and 7V @ pl o ¢.

Further Ngv+ (L) contains elements that permute the factors GLy;(C) of the same
size. It follows that Ngv4 (LY)/LY is isomorphic with a direct product of Weyl
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groups of type B, where ey counts the number of j’s with n; = N. The group
has index at most two in Ngv+(LY)/LY, which comes from the difference
between GOz, (C) and GSO2,(C).

The group Wyv can be represented with elements that normalize M and T and
centralize ¢(Ir x SLa(C)), so in particular elements of J. Further W,v contains
W(Rsv) = W(J°,T) as a normal subgroup. Fix a standard Borel subgroup BY of
GV. That determines a Borel subgroup B of J°, and hence a system of positive
roots in R(J°,T) and in Rsv. Let I'sv be the subgroup of Wyv that stabilizes this
positive system of roots. By standard results about finite root system and Weyl
groups
(1.28) Ws\/ = W(Rgv) X Fﬁv.

Let us determine I'yv in terms of the action of Ngv(LY)/L" on the type GL factors
of LY and on the tensor factors of ¢ (as described above). The 7 € Irr(Wg) with
er = 0 do not contribute. If e; > 0, then e,g, = 0 for every unramified twist 7 ® x
which is not isomorphic to 7 by our normalization of ¢. Hence every element of
Ngv+(LY) that stabilizes sY must already stabilize ¢. In other words, Wyv equals
the stabilizer of ¢ in Ngv(LY)/LY. Thus we can represent Wyv with elements of
Zav ., (¢) that normalize T. Let W;C and F:v be the versions of Wyv and I'yv for

GY*. From (1.15]) we see that
(1.29) whi=1[wh.= J[ W®B.)x [ WA .
T T€Irr’(Wp)j Tl (Wp)g
Comparing with Table [1} we find that
(1.30) I, = T wB..)/w(bD.,) IT 70(0z, (C)@1dy,).
TEIrr’(WF):g:éT:O TEII‘I‘I(WF);ZETZO
In (1.30) every 7 contributes a factor

Iy,

I

L= (rr) 2 L/27

to Fjv. For 7 not appearing in , we may put F:V,T = 1.

When dim 7 is even, det(r;) = 1 and when dim 7 is odd, det(r;) = —1. Hence
the S in does not put any condition on the 7, with dim 7 even. If there exists
aT e Irr(WF); with £; > 0, then we can use Oy (C) to make the determinant of
a product of r:’s equal to 1. From [Moul, §4.1] we know that this leaves just two
possibilities for T'sv:

b Fs\/ = HTEIIFI(WF);ZET:0<TT>7
e if G is a form of GSpiny, and £ = J[; GLy; with n; € Z>o, then

Ty = I1 (rr) x 8( I1 (rs)),

TEIrr'(WF)jS:ZT:O,dim T even TEIrr’(WF);f:ET:O,dim 7 odd

where S denotes the subgroup of elements with determinant 1.

Conceivably our affine Hecke algebra could contain the span of I'sv as a twisted
group algebra. But here the 2-cocycle of Wyv involved in the Hecke algebra can be
computed for each 7 separately, and (r;) = Z/2Z only has trivial 2-cocycles.

Let us summarise our findings. From we know that X*(7,v) has index
two in Z @ @, Z°, where Z¢ = X*(T,v). If we replace X*(T,v) and X,(Tsv) in
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Rsv by ©:Z°, we get a new root datum Rgsv ger that decomposes naturally. More
precisely, the root datum R,v qer, extended with the finite group I :v acting on
it, is a direct sum of such extended root data, where the product is indexed by
TE Irr’(WF);f U Irr(WF)g. For each such 7 the data are (with a a root of length

v/2 and $3 a root of another length) are collected in Table 2| Recall from (T.17) that
ar is odd for 7 € Irr(WF)('; and even for 7 € Irr(Wp) .

TABLE 2. Data from R4v for each 7

4 ap  X*(Tos) Revr M) A(B) A (8) Lo
1 -1 7=  D. ¢t — —— Out(D.)
0 -1  ze B.. t, tr/2 t:/2 1
0 0 76 C.. t, t t, 1
>1 -1 VA Be, tr tr(ar+1)/2 tr(ar +1)/2 1
>1 >0 VA Be, tr;  telar+ar+2)/2 t(ar—ar)/2 1
II‘I‘(WF)g 77 AeT—l tr - - 1

Here the second, third and fourth lines can be regarded as special cases of the
fifth line. We write them down nevertheless, because they arise from different lines
in Table |1} With Table [2| and we can finally make the affine Hecke algebra
associated in [AMS3] to sV (and a parameter z € C*) explicit:

(1.31) H(sY,2) = H(Rev, A\, A*, 2) x Tyv,

where I';v acts on H(Rsv, A, A*, z) via automorphisms of Rgv.

2. MOEGLIN’S CLASSIFICATION OF DISCRETE SERIES REPRESENTATIONS

Arthur famously proved the local Langlands correspondence for symplectic and
quasi-split (special) orthogonal groups over p-adic fields [Art]. An analogue for quasi-
split unitary groups was announced in [Mok] and proven (for all unitary groups) in
[KMSW]. As explained in [Mced, MoRe|, Arthur’s endoscopic methods can also be
applied to (special) orthogonal groups and general spin groups that are not necessar-
ily quasi-split. In principle that should yield local Langlands correspondences for all
classical groups over p-adic fields. However, not all arguments have been worked out
in detail. For classical groups over local function fields far less is known, the notable
exception being [GaVal]. We address that in Paragraph Here we make Moeglin’s
parametrization of discrete series representations [Mcell, MoTal, Mce3l, [Moed] more
explicit.

Let G = G, = G(F) be a symplectic group, a special orthogonal group or a
general spin group. When G is an even special orthogonal group or an even general
spin group, we denote by G the associated orthogonal or general pin group, as
in (L.1). In the other cases G means just G. Let Z(G)s be the maximal F-split
central torus in G. It is isomorphic to F'* for general spin groups and trivial in the
other cases.

We say that an irreducible smooth G-representation belongs to the discrete series
if it is square-integrable modulo centre. More explicitly, that means that = has a
unitary central character and its restriction to the derived group of G is square-
integrable.
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The group GL,,(F) x G, is a Levi subgroup of a group G, of the same kind
as G, but of rank m higher. There is a parabolic induction functor

X : Rep(GLy,(F)) x Rep(Gy,) = Rep(Grim),

which up to semisimplification does not depend on the choice of a parabolic subgroup
of Gpym with Levi factor GL,,(F) x Gy,. Similarly there is a parabolic induction
functor
x: Rep(GLy(F)) x Rep(G;)) — Rep(G;,,,).

Let p € Irr(GLg,(F)) be unitary and supercuspidal, for some d,. For an integer
a > 1 we can form the generalized Steinberg representation 0(p,a) € Irr(GL,,(F))
with m = d,a. Take 7 in the discrete series of G, and let v, be the character by
which Z(G)s acts on w. One says that (p, a) lies in the Jordan block of 7 if 6(p, a) x
is irreducible but there exists a’ € a + 27Z such that d(p,a’) x 7 is reducible. We
denote the set of all such pairs (p,a) by Jord(m). That reducibility is only possible
if the nontrivial element

sa € Ngt (GLg,a(F) x G) /(GLq,a(F) x G ),
n pll

see (3.1)), stabilizes d(p,a’) X 7 up to an unramified character. That in turn implies
that the version of s, with a = 1 stabilizes p, or more explicitly

(2.1) p=pY @y
To Jord(w) one can associate a finite group Sy, the Fo-vector space with basis
{2p,a : (p,a) € Jord(m)}. A character er : Sx — {1,—1} can be defined (almost

entirely) using parabolic induction [Mcell p. 147-148]. To complete the definition
of €, one needs information about the supercuspidal cases from [Art] or [MoRe].

Theorem 2.1. [Moeglin]
Let F be a p-adic field and consider © in the discrete series of GT.

(a) Jord(r) has image in “G, by which we mean that the Langlands parameter of
&(p,a)EJord(ﬂ)é(p7 a) € II‘I‘( H GLdpa(F))

factors through “G.

(b) Jord(w) determines precisely the L-packet containing 7.

(¢) The above provides an injection from the discrete series of G to the set of
pairs (Jord, €) (up to GVT-conjugacy) for which Jord has image in *G and € is
G-relevant, as explained around (|1.9)).

(d) When G # G, the restriction of w to G is reducible if and only if dya is even
for all (p,a) € Jord(m).

(p,a)€Jord(m)

In fact there should be a bijection in part (c), but for our purposes an injection
suffices. Theorem [2.1]a entails in particular

— \
(2.2) Z(p,a)EJord(w) d,a = size of G".

Parts (a) and (b) of Theorem 2.1 are in proven in [Mce3, §2.2-2.5]. When in addition
G is quasi-split, parts (c) and (d) are shown in [Mced, §7.1]. Theorem [2.1}c—d is
stated for all our G* in [Mce3, §2.5], attributed to Arthur [Arf]. Later this was
worked out for non-quasi-split groups in [MoRe]. We note that these sources do
include surjectivity in part (c).
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It was shown in [Mce3l Theorem 2.5.1] that, in the setting of Theorem 7 is
supercuspidal if and only if Jord(m) does not have holes and ¢, is alternated in the
sense of . For the main results in this paper it suffices to know that Theorem
holds for supercuspidal representations, with Jord and e of this particular form.

We point that unfortunately the proof of Theorem for supercuspidal rep-
resentations is not yet entirely complete (except when G has very small rank).
Namely, while the stabilization of the twisted trace formula has been now estab-
lished in [MoWa], Arthur’s book [Art] still relies on certain papers that are an-
nounced but have not yet appeared. The paper [MoRe| uses [Art], and also leaves
some other details to be worked out. On the other hand, the part of Theorem
that classifies discrete series representations in terms of supercuspidal representa-
tions is documented much better. Besides the above references, it is also treated in
[Meell MoTal [KiMal, [Xul.

2.1. The method of close local fields.

To goal of this paragraph is to deduce instances of Theorem [2.I] for groups over
local function fields (for which very little is in the literature) from Theorem for
groups over p-adic fields. To this end we employ the method of close fields, a general
method to transfer statements from a group over one local field to the same group
over an another local field, provided these fields look sufficiently similar. Let F be a
local field of positive characteristic and let F’ be a local field of characteristic zero.
From the classfication of classical groups we see that we can define any algebraic
group G = G, as in Section [2 simultaneously over F' and over F”.

Consider 7 in the discrete series of G(F)™. Let d be the maximum of the depths of
7 and of all the p that appear in Jord(w). We denote the subcategory of Rep(G(F'))
generated by the representations of depth < d by Rep(G(F'))<4. Let F’ be a p-adic
field which is sufficiently close to F', with respect to the depth D := D(p, G, d) and
the groups G, GL,,, G, with m < rk(G). Here F and F’ are at least D-close, but
usually a lot closer is needed.

By |Gan| the method of close fields yields canonical equivalences of categories

CIBE" . Rep(Gu(F))<p — Rep(Gn(F))<p,
(2.3) COFF . Rep(GLn(F))<p —= Rep(CGLy(F))<p,
CQ’F’FI: Rep(gm—m(F))SD — Rep(gn+m(F,))§Da

for all m < rk(G) = n. By [Sold, Theorem 3.5] these equivalences of categories are
compatible with normalized parabolic induction. Hence the equivalences ([2.3)) trans-
fer the condition that (p,a) belongs to Jord(r) into the condition that ¢SV " (1)
belongs to Jord(¢9-FF (r)). In other words, induces an injection

(2.4) Jord () — Jord(¢FHFF ().

Now the problem arises that Jord(w) could be too small, so that would not be
surjective. Then fails and Jord(7) would not yield a Langlands parameter for
G(F). For groups over p-adic fields this used to be a difficult problem [MoTal p.
727], which has only been solved with the endoscopic methods from [Art]. To carry
out the method of close fields completely, we need the following additional input.

Hypothesis 2.2. Fix G, a prime p and a depth d € N. There exists a bound
D(p,G,d) € Z>q such that

e for all p-adic fields F’,
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o for all unitary supercuspidal representations o € Irr(G(F")) of depth < d,
e for all p € Irr(GLy,(F")) occurring in Jord(o),
the depth of p is < D(p,G,d).

For symplectic groups and split special orthogonal groups this assumption is
known (for p > 2) from [GaVal, Lemma 8.2.3], in the stronger form D(p, G, d) = d+1.
In fact the main results of [GaVal imply Theorem for these split groups, includ-
ing bijectivity in part (¢). For possibly non-split classical groups (with p > 2 but
not general spin groups), it seems likely that Hypothesis follows from [KSS].

Proposition 2.3. Fiz a prime p and a group G as before. Suppose that Hypothesis
holds for all d € N. Then Theorem holds for G(F), for any local function
field F.

Proof. Write ¢9%F" () as a subquotient of the parabolic induction of a supercuspidal
representation o X p; X --- X p, of a Levi subgroup of G(F')*. Since (normalized)
parabolic induction preserves depth [MoPr, Theorem 5.2], o and all the p; have
depth < d. The Jordan block of (9% (7 consists of the Jordan block of o and some
pairs (p, a) where p is an unramified twist of p;. By Hypothesis all p appearing
in Jord(¢9FF' (r)) have depth < D(p,G,d). We note that p € Irr(GL,,(F")) where
m < 1k(G) by Theorem a. Hence every such p is in the image of (GLlm P F for
the correct m. Then (¢GFm-FF")=1p lies in Jord(r), and we can conclude that
is in fact a bijection.

The L-parameter ¢, of any p from Jord(r) has depth < D, because the LLC for
general linear groups preserves depths [ABPS2, Proposition 4.2]. Let W7, be the
r-th filtration subgroup of the absolute Galois group of F. Recall from [Del, (3.5.1)]
that the D-closeness of F' and F’ is reflected in a group isomorphism

(2.5) Wr/WEH =2 We /WEF

Composition with (2.5) transfers ¢, to a L-parameter for GLg, (F"), say ((¢,). When
F and F’ are very close (for instance 2% D-close), ((¢,) is indeed the L-parameter
of ¢Glap B I (p) [ABPS2, Theorem 6.1]. We note that we really can chose F’ that

close to F: by [Del] such a field exists and the above works for any choice of F’ that
is D-close to F. For such an F’ composition of the L-parameter of

XI(p’,a)EJord(Cg’FvFl(Tr))5(p,7a)
with (2.5)) yields the L-parameter of

IX(p,a)EJord(7r)(5(p7 a)'

By Theorem a the former parameter has image in “G, hence so does the latter
parameter. We define the latter to be the L-parameter of 7, like in . Then
parts (a) and (b) of Theorem [2.1] hold for G(F).

The (partially defined) character €O P () is transferred, via (2.4)), to a (partially
defined) character €x of Sr. Moreover e is G(F)-relevant because €, r, (185G (F)-
relevant.

Suppose that two discrete series representations 7,7 of G(F)* have the same
Jordan block and the same e. Then their transfers to representations of G(F”)
also share the same Jordan block and the same e. With Theorem R.dlc we find
COBF (1) = ¢9FF (7). Then says that = = 7.

Similarly readily shows that Theorem [2.1]d carries over from G(F”') to G(F). O
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2.2. Parametrization of essentially square-integrable representations.
From now on F' can be any non-archimedean local field, but we need Hypothesis
[2:2]if F has positive characteristic.
We note that Out(G) is trivial except for special orthogonal groups and general
spin groups associated to vector spaces of even dimension 2n. Then (for n # 2)

(2.6) Out(G) = GVF/GY 22 03, (C) /SO0, (C).

When G is a form of SOy, we ignore its exceptional automorphisms and instead we
use (2.6 as a definition of Out(G). In particular the two-element group (2.6) acts
naturally on Irr(G) and on ®.(G).

Theorem 2.4. Let F be a p-adic field.

(a) Suppose that Out(G) is trivial. There exists a canonical injection
e from the set of discrete series representations of G,
o to the set of discrete bounded parameters in ®.(G).
(b) Suppose that Out(G) is nontrivial. There exists an injection
e from the set of discrete series representations of G,
o to the set of discrete bounded parameters in ®.(G),
which intertwines the actions of Out(G). The induced injection between Out(G)-
orbits in these two sets is canonical.
(¢) The injection in parts (a) and (b) send supercuspidal unitary G-representations
to bounded cuspidal L-parameters, and non-supercuspidal representations to non-
cuspidal enhanced L-parameters.

Proof. (a) If we apply the LLC for GLg4,(F') to a p occurring in Jord(7), we obtain
¢p € Irr(Wp). The property (2.1)) translates to

(2.7) bp =y D Py,
From (22.7)), (1.3) and Theorem we see that

{(¢p,a) : (p,a) € Jord(m)}
is the set of Jordan blocks of some ¢ € ®(G) with

(2.8) ¢ @uGop= o=V @ ¢y,

Further ¢ is unique by [GGPl, Theorem 8.1], and discrete because Jord(m) does not
have multiplicities. As p (from above) was unitary supercuspidal and in particular
tempered, ¢, is bounded and therefore ¢ is also bounded.

Under the correspondence Jord(w) — Jord(¢), the group S; becomes Sy. The
set of G-relevant characters of Sy is naturally in bijection with the set of partially
defined characters ¢, of S; which figures in Theorem c. Thus we can define the
required injection by sending 7 to (¢, €) such that the LLC for GL,, sends

(2.9) (Jord(m),e7) to (Jord(¢),e).

(b) The proof of part (a) applies perfectly well to the disconnected reductive group
G™. It provides a canonical injection from the discrete series representations 7% of
GT to the pairs (¢,€) with ¢ € ®(G)/Out(G) bounded and discrete and € € S(;,
where S(; is like Sy but computed in Og,(C). We can distinguish two cases:
e There exists (7,a) € Jord(¢) with adim7 odd. From we see that the
group S; contains an element of Og,(C) \ SO2,(C). Hence the preimage of
¢ in ®(G) is just one equivalence class.
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By Theorem [2.1]d, 7 € Irr(G™) restricts to an irreducible representation
7 of G. In particular 7 is stable under Out(G). Clifford theory tells us that
there are precisely two inequivalent irreducible representations of G that

restrict to .
As S = F'zJord((b)‘, we find

S;r %S¢ X]FQ.

Hence there exist precisely two characters of Sg that extend €|s - We decree
that the bijection for the discrete series of G sends 7 to (¢, €[s, ), that is the

only natural possibility and does not disturb the injectivity we had for G™.
e adim7 is even for all (7,a) € Jord(¢). Now shows that S;r does
not contain any elements from O2,(C) \ SO2,(C), so S] = S,;. By [GGP,
Theorem 8.1] the preimage of ¢ in ®(GSpin(V')) consists of two equivalence
classes, say ¢’ and ¢”. Then ¢” is equivalent with Ad(hY)¢’ for some h" €
02,(C) \ SO2,(C) and Sy is canonically isomorphic with Sg.
By Theorem d the restriction of 7™ to G is reducible. By Clifford
theory it is the direct sum of two inequivalent irreducible G-representations
say ' @ 7", and any element of Gt \ G exchanges 7’ and 7”.

(2.10) We choose a bijection between {(¢',€), (¢”,€)} and {7, 7"},

and we decree that it gives two instances of the injection for the discrete series
of G. Notice that this guarantees Out(G)-equivariance on these objects.

Combining all instances, we obtain the desired injection for the discrete series of G.
Its only noncanonical parts are the choices , which become invisible when we
pass to Out(G)-orbits.

(c) This is clear from the criteria for cuspidality on pages [9] and O

For the moment G is a general spin group. Since the centre of G is not com-
pact (unlike for the other groups in Section , we have to distinguish between
discrete series representations and essentially square-integrable representations. A
G-representation 7 is called essentially square-integrable if its restriction to Gger is
square-integrable. If 7 is in addition irreducible, then there exists an unramified
character x € X,,;(G) such that y ® 7 has unitary central character, that is, y ® 7
belongs to the discrete series. We can even achieve this with x a real power of the
norm character of F* =2 G/Gger.

Recall from [Hai] that the group Xy, (G) of unramified characters of G is naturally
isomorphic with (Z(G")°17)w,, which for our G is just Z(GV)® = C*. Similarly
the group Xun,(G) of unitary unramified characters is naturally isomorphic with the
maximal compact subgroup Z(G")g,, of Z(GY)°. The group X,;(G) acts on Irr(G)
by tensoring and the group Z(GV)¥ = Z(G") acts on ®.(G) by

2(¢,p) = (2p,0),  (20)|1pxSLa(C) = lipxsia(c)s  (2¢)(Frobr) = z ¢(Frobp).

Theorem 2.5. Let G be a general spin group.

(a) The injection in Theorem [2.fla is equivariant for the actions of Xun(G) =
Z(GY)ept, and by suitable choices the bijection in Theorem .b can be made
equivariant for these actions.

(b) The injection from part (a) extends canonically to an injection

o from the set of irreducible essentially square-integrable G-representations,
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o to the set of discrete parameters in ®.(G).
(¢) The injection in part (b) is equivariant for the actions of Xn(G) =2 Z(GY)°, and
it respects cuspidality.

Proof. (a) Let m € Irr(G) and (¢, €) € ®.(G) be as in the proof of Theorem [2.4] For
X € Xunr(G), x @ 7 is of the same kind. From the natural isomorphisms

(x ® St(p,a)) x (x ® ™) = x ® (St(p,a) x 7)
we see that
Jord(x @ m) equals {(x ® p,a): (p,a) € Jord(m)} =: x ® Jord(m).
The properties of e, in [Mce3|, §2.5] readily imply that

Ex®n (Zx®p,a) = €x (Zp,a) .

Let x € Z(G")° correspond to x via Xun(G) = Z(GY)gpy- Then x¢ is still discrete
and bounded, while

Jord(x¢) equals {(x7,a):(7,a) € Jord(¢)} =: xJord(¢).

The action of x does not change € as character of

S = La 4, (¢) = Zgv o, (XP) = Sgo-

However, the element z,, € Sy is renamed as zy,, and to account for that we
rename € to Ye.

Suppose now that m and (¢, €) are matched by Theorem SO holds. By
the known equivariance properties of the LLC for GL,,,

(x ® Jord(m), €yor) is sent to  (xJord(¢), Xe).

In the setting of Theorem a, this shows that xy ® 7 is matched with (x¢, ye),
which is the desired equivariance.

In the setting of Theorem b, only the choices in could disturb this
equivariance for Xun(G) = Z(GY)gy. To prevent that, it suffices to make the
entirety of the choices in an equivariant way. This can be done as follows.
Pick a set of representatives for the (¢, €) with all a dim 7 even, modulo the action of
Z(GY)2y- For each of these ¢'s we fix a choice (2.10), say (¢/,€) — 7'. Then decree
that, for each x € Xunr(G), (X¢', €) is matched via x @ 7.

(b) By design, the set of essentially square-integrable irreducible G-representations
can be expressed as

(2.11) discrete series of G' X x,..(¢) Xur(G)-

Similarly, it follows from [Heill Lemma 5.1] that the set of discrete parameters in
®.(G) can be constructed as

(2.12) bounded discrete part of ®.(G) XZ(GV)%, Z(GY)°.

From , and part (a) we deduce an injection from the set of essentially
square-integrable irreducible G-representations to the discrete part of ®.(G), which
is equivariant for X, (G) = Z(G"Y)°.

(c) The actions of X,;(G) on Irr(G) and of Z(GV)° on ®.(G) preserve cuspidality.

Combine that with Theorem [2.4lc and the construction of the injection in part
(b). a
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Now G can again be any group as in Section[2] The set of supercuspidal Bernstein
components of Irr(G) is just Irreusp(G)/Xnr(G). Recall the notion of a Bernstein
component of enhanced L-parameters from [AMSI] §8]. By definition, the set of
cuspidal Bernstein components of ®.(G) is Peusp(G)/Z(GV)°. If we apply Theorems
and [2.5 to these sets, we obtain:

Corollary 2.6. Theorems[2.] and[2-5.b induce an injection

e from the set of supercuspidal Bernstein components of Irr(G),
e to the set of cuspidal Bernstein components of ®.(G).

This injection is Out(G)-equivariant and becomes canonical if we pass to Out(G)-
orbits on both sides.

3. COMPARISON OF HECKE ALGEBRAS FOR BERNSTEIN COMPONENTS

In this section G is a general spin group. All our results are also valid for sym-
plectic groups and for (special) orthogonal groups, with slightly simpler proofs, see
[Hei2| [Hei3l Heid] (on the p-adic side) and [Mou] and [AMS3] §5.3] (on the Galois
side). Before we compare Hecke algebras, let us match Bernstein components for
Irr(G) and for ®.(G).

Suppose that the bilinear form on V is given by a symmetric matrix J, such that
the isotropic part is made from blocks (§ é) placed in rows and columns j,dim V +
1—j. Let pg : G — F* by the spinor norm, so that Spin(V') = ker ug. The Levi
subgroup L = L(F) is embedded in G = GSpin(V) via

Gn_ [F* x GLy,(F) x -+ x GLy, (F) = G/F* =2 SO(V)

(9—7917 s 7gk) = (gla <59k 9—> jgk_Tj_17 ceey Jgk_TJ_l)
It is difficult to write down the actual embedding in such terms, to study that the
root datum from [AsSh| is more useful. The group Ngpin(y)(L) contains an element

that exchanges g; and J gj_Tj —1 and the same time multiplies g_ with det(g;). As
automorphism of L , it is given by

(31) (g—)gla o 7gk) = (det(gj)g_,gl, - 951, jgj_Tjilagj-i-l) e agk)
We record that the effect of (3.1) on irreducible representations is
oo X--- Koy »—)J,ﬁalﬁ---ﬁoj,lﬁ(ajv@)yg_ odet) Moji 1 X-- Koy,

where v,_ is character by which the central subgroup F* C G,,_ acts on o_.

Further Ng(L) contains elements that act on L by permuting some type GL
factors of the same size. The group Ngpinv)(L)/L is generated by elements of
these two kinds, and is isomorphic to a direct product of Weyl groups of type B..
For Ng(L)/L the only difference is that the elements from are subject to a
determinant condition if dim(V) is even. Notice that these descriptions match those
after . Thus there are canonical isomorphisms

(3:2) NG(L)/L = Ngv(LY)/LY and  Napinv)(L)/L = Ngve (LY) /LY.

Theorem 3.1. (a) There exists a injection
e from the set of supercuspidal Bernstein components of Irr(L),
e to the set of cuspidal Bernstein components of ®.(L).
This bijection is equivariant for the natural actions of and becomes canon-
ical if we pass to Out(G, _)-orbits.
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(b) Let L run through a set of representatives for the conjugacy classes of Levi
subgroups of G. The corresponding instances of part (a) provide an injection
e from the set of Bernstein components of Irr(G),
e to the set of Bernstein components of ®.(G).
This injection becomes canonical if we pass to Out(G)-orbits.

Proof. (a) The injection and the canonicity follow from Corollary while the
equivariance can be seen from our explicit formulas for the actions of , namely
([1.13), and (3.1).

(b) By definition Bernstein components of Irr(G) are parametrized by supercuspidal
Bernstein components for Levi subgroups of G. Further s;, C Irreysp(L) and sz, C
Irreusp(L’) give the same Bernstein component for Irr(G) if and only if s7, and sy,
are G-conjugate. Analogous statements hold for Bernstein components of ®.(G)
[AMS1] §8], which yields the desired bijection. By the equivariance in part (a), this
bijection does not depend on the choice of the representative Levi subgroups. O

With Theorem we consider 0 = m(¢g, €5) € Irteysp(L). Then s, = Xy (L)o is
the image of 57 under Theorem b. The injectivity and Xy, (L)-equivariance in
Theorem say that this extends to an injection from sy, to s/. Then the equiv-
ariance in Theorem [3.I}a guarentees that the groups W and W,v are canonically
isomorphic.

We may assume that ¢ has been normalized like ¢ after . Then the group
W,v can also be described as the stabilizer of

(3.3) o =0 RKX, " = o &KX, p%.

in Ng(L)/L. The stabilizer W," of ¢ in Ngpiny)(L)/L decomposes as a direct
product of subgroups W ,. From we see that

o if p ¥ p¥Y @ vy_ odet, then Wy , =S, = W(Ae,—1),

o if p= p¥ @ vy_ odet, then Wy , = W(B,,) = W(C,,), which can sometimes

be interpreted better as W (D,,) x Aut(Dy,).
In [Sol3, §10] an extended affine Hecke algebra H(s) = Endg(Ils) was attached to
s, where I, is a particular progenerator of Rep(G)°. We have II, = IgHEL, where
Ig is the (normalized) parabolic induction functor for P a parabolic subgroup of G
with Levi factor L, and Il,, := indfl (o), with L' the subgroup of L generated by all
compact subgroups. We note that § 10 of [Sol3] is applicable because the restriction
of o to L' is multiplicity-free, which follows from the fact that £ is a direct product
of reductive groups with centre of dimension < 1. In this setup Mod(H(s)°P) is
naturally equivalent with Rep(G)® so we will show that H(s) is self-opposite and
compare it with H(s", 2).
The complex torus underlying H(s) is

(3.4) T, =s; 25 =Ty,

and the action of W on 7, can be identified with the action of W, on Tyv. Here
Ty = Xue(L)/ X (L, 0),

where Xy, (L,0) C Xy, (L) is the stabilizer of o € Irreusp(L). Hence

* ~ 1 _
X*(T,) = L, /L' where L, = ﬂxean(L,a) ker .
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More explicitly, L/L' 2 Z x []; Z% and
Ly /L' is the subgroup Z x H (tp, ),
J

where the first factor Z comes from Z(G)° = GL;. We recall that ¢, denotes the
torsion number of p, that is, the number of unramified characters of GLg,(F') that
stabilize p € Irr(GLg, (F')). We write the root datum for H(s) as

Rs = (257X*(Tﬁ)7 Z;/7X*(T5))

As explained in [Sol3] §3], the root system XY comes from the roots o € ¥,0q4(G, Z(L))
for which the so-called Harish-Chandra p-function p® has a zero on sy. Then X
consists of multiples of some elements of X,0q4(G, Z(L))Y = 31eqa(GY, Z(LY)), just like

Rgv in ([1.25).

The group W," acts naturally on Rs and contains W (3;). Our choice of a Borel
subgroup BY of GV yields a system of positive roots 3F in ;. If T\ denotes the
stabilizer of ¥} in Wi then

(3.5) Wi =T x W(Zs) and W, =T, x W(Z,).

To match this decomposition with (|1.28]), we need to compare the underlying root
systems. In [Sol3|, §3] an element

(3.6) hl € (LyNLL)/L' C Ly/L' = X*(T%)

was associated to each a € Xyq(G,Z(L)). Here L, is the Levi subgroup of G which
contains L and the root subgroups Uy (for o/ € R(G,S) with o[y € Qa) and
whose semisimple rank is one higher than that of L. In fact (L, N LY)/L' = Z, hY
generates this group and is pinned down by the requirement vg(a(hy)) > 0. Then

(3.7) Y = {h2 : u® has a zero on s }.
Recall that R;v is a disjoint union of irreducible root systems

Ry, = R(GY,T.T) = R(Gy,,,T.T)

Ir),

which are given explicitly in Table 2| Similarly, by [Hei3, Proposition 1.13], g is
a disjoint union of irreducible root systems Rs ,, each one coming from the factors
GLp; (F') of L with o; = p. By [Hei3, Proposition 1.15] (generalized to our setting)
the groups W and I';” decompose canonically as direct products of subgroups Wy,
and T'{ .

We fix one p and we let 7 € Irr(Wg) be its image under the LLC for GLy,, (F).
By design e; = e, > 0. Recall from (1.29) and (1.30) that W and I'};, decompose
canonically as direct products of subgroups W;Q,T and FIT. By Theorem a

(3.8) Wi, =Wq  forall 7 € Ir(Wp) with e, > 0.

Since Jord(o_) and Jord(¢—) correspond via the LLC, ¢, > 0 if and only if p appears
in Jord(o_). We write

a, = max{a : (p,a) € Jord(c_)},

which equals a,. Let p’ correspond to 7’ via the LLC for GLg,(F), so p' is an
unramified twist of p which is not isomorphic to p, but still o' = p"V @ v,_ o det.
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Proposition 3.2. There is a canonical bijection Rs , — R; eq which respects posi-
tivity of roots. In particular W(Rs,) = W (R;) and T'f , = rs .

Proof. The proof of [Hei3, Proposition 1.13] shows that for GLg,(F)% C L the
roots «a : t — tﬁ;l with 1 < 4,5 < e,,i # j can be treated entirely like roots for
some general linear group. Hence the associated function p® has a zero on sy and
hy € X5 Thus Rs, always contains a root subsystem of type Ae,—1. In terms of
Rs: the corresponding part of X*(75) can be identified with (¢,Z)% and Ae, 1 is
embedded there as the elements h;, = t,o" with o € Z of the usual form

(0,...,0,1,0,...,0,—1,0,...,0).

In view of the description of ij following (3.3)), Rs,, is a Se,-stable reduced root
subsystem of BC,,. In other words, it has type A, .—1,Be,,Ce, or D.,. We check
all the cases in Table[Il

e TC Irr(Wp)g,KT = 0. Then p % p¥ ® v,_ o det and from we see that
Ry =2 A, 1 =R,

e T C Irr(WF);f,ET > 0. Here p = pY @ v,_ odet and a; = a, > 0. Since
(p,a,) € Jord(c_), p®@| - [(@+D/2 x o_ is reducible [Mced, §3.2]. Hence the
automorphism (3.1)) comes from a root « for which p® has a zero on T;. In
the picture at becomes hY = t,a" with " a standard basis vector
of Z%. In particular Rs, has type Be,, just like R; req-

eTC Irr(WF);,ET =0. Again p = p¥ ® v,_ o det, but now p does not occur
in Jord(o_). Still fixes p, and by [Hei2, p. 1610] p® |- |2 x o_ is
reducible. This is like the previous case, only with a, = a, = 0. Notice that
b =ap =ay =0 as well. Again we find R;, = Be,, while R, = C,.

e TE Irr(WF);f,ZT = 0. Now fixes p = p¥ ® v,_ o det although p does
not occur in Jord(o_). By [Hei2, p. 1610], p x o_ is reducible. By our
assumptions on o, £+ = 0, so p/ x o_ is also reducible. Then the shape of
p® [Sol3l (3.7)] entails that u® is constant on Ty, for « associated to (3.1)).
Hence R; , does not contain short roots from B, or long roots from Ck,.

Consider a root in D, \ Ac,—1, so of the form

B8=(0,...,0,1,0,...,0,1,0,...,0).

Via a suitable reflection s, with a as before, 8 is associate to a root 3’ €
Ae,—1. Since s, € W, b = ,uﬂ' 0 Sq. As /ﬁ, has a zero on Ty, so does pP.
Therefore R, ; contains

hy =t,8" =1,(0,...,0,1,0,...,0,1,0,...,0),

and Rs, = D, = R;.
In all cases there is indeed a natural bijection Rs, — R, ;eq: the identity on all roots
except the short roots in the second case, those are multiplied by 2. The bijection
preserves positivity of roots, so it induces an isomorphism from the stabilizer F;‘:p C

W;fp of R;'fp to the stabilizer F:V,T C W;C,T of RY. O

Now we analyse the g-parameters for H(s). In view of the shape of u® [Sol3, (3.7)
and (3.10)], the condition (3.7) on a € ¥,0q(G,Z(L)) is equivalent with g, > 1,
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where ¢, comes from p® and will also be a g-parameter for H(s). The parameter
functions A, A* : X3 — R>g and the parameters

A A* 2 * AMa)=A* 2

o = q% (a)+A*(a))/ - ql(V (a)=A*(a))/

were computed in [Hei2, [Hei3]. Although these papers were written for Sp(V') and
SO(V), the same arguments apply in our setting, that was checked in [Sol3| [Sol4].
The g-parameters on R, are expressed in terms of ¢, and a,. More precisely, by
[Hei2, Proposition 3.4] the g-parameters are:

to(a,+1)/2

to(ap+1)/2 and ¥ = a7 ’

o if R; , & Be, and « is a short root, then g, = ¢
e otherwise ¢, = q;f and ¢} = 1.
With g as ¢g-base that gives
o MNa) =tylap+ay +2)/2,\(a) =ty(ap, — ay)/2 if o is a short root in Be,,
o \a) = X*(a) =t, otherwise.
In the case 7,7 € Irr(WF);, lr + €y =0 we find gg = ¢ = q?/Q for the short roots
h\ﬂ/ in B.,. As explained in [Sol4, proof of Theorem 4.9], we may replace hg by a
long root (hj)? = hy Jg of Ce,, and simultaneously put

(3.9) G2 =af.  dp=1  MB/2)=X(8/2)=t,.

With that improvement, the bijection R;, — R;.q in Proposition becomes
simply the restriction of the canonical bijection X*(Ts) — X.(Tsv) to reduced roots.
That yields a canonical isomorphism of root data

Rs = Rsv,red7

where the subscript red means that (for the involved non-reduced root systems BC)
we take only the indivisible roots and the non-multipliable coroots. Comparing with
page we see that the parameter functions A, \* for #H(s) are the same as those

for H(sY,z) with z = q};/ ®. Thus we find a canonical isomorphism of affine Hecke
algebras

(3.10) H(Ras M N, 01/ %) = H(Rov, AN, g ).

Here we have qllw/ ? instead of ¢p because in the setup of [AMS3] the indeterminate

2% was a replacement of the usual ¢ in affine Hecke algebras.

We recall from ((1.30]) that

', = H r
s Telrr(wp);,eT=0< )

where r; is the nontrivial automorphism of Rev , = D, . With Proposition we
deduce that
+ _
I's = HTelrr(WF)g,eT=0<Tp>’

where p corresponds to 7 via the LLC for GLgim-(F) and 7, is the nontrivial au-
tomorphism of Rs, = D.,. For each such 7 we define .J,_ as in [Hei3, §4.6], it is
unique up a factor £1. Then the arguments from [Hei3| remain valid in our setting
(see [Sol3l, §10]) and they show that

(3.11) H(s) = H(Re, AN, q) %) % T,
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where T's acts on H(Rs, )\,)\*,q}/ 2) via automorphisms of Rs;. We note that the
algebra on the right is canonically isomorphic to its own opposite:

H(Ra MA@ ) 3 Te = (H(Re, A, A, g3 %) 3 T) P
!

(B12) o o T f feOM),we W,

Here T), with w € W(Rs) x I's denotes a product of a standard generator of

H(Rs, A\, A, q};ﬂ) and an element of I'y.

Theorem 3.3. There exists an algebra isomorphism
Hs)® = H(s" ")

which extends the isomorphism O(Ts) = O(Tgv) given by Theorem . This iso-
morphism is canonically determined up to:

(1) the action of Out(G),
(2) conjugation by elements of O(Ts)*,
(3) adjusting the image of T's in H(s) by a character of Ts,
(4) Let 3 be a short simple root in a root system Be,, and suppose that Rs , has
type D, or that Rs , has type Be, and qg = 1. Then we may replace sg by
1/2

hyss € X*(Ts) x W(Rs) and T, by T}’Lgsﬁ in H(Re, \, A%, %) x TH,.
Remark. The condition ¢ = 1 in (4) is equivalent with A(3) = A*(5), and also
with /. =0,a, = —1.

Proof. From ([1.31]), Theorern and Propositionwe get an algebra isomorphism
(3.13) H(sV, ") 2 H(Re, A XY, g/ %) T

It is canonical up to the action of Out(G) on supercuspidal representations, see
Theorem We fix a bijection s;, — s} as in Theorem then we do not have
to worry about Out(G) any more.

We compose with and then with , where we regard
as isomorphism between the opposites of the involved algebras. That yields the
required algebra isomorphism as in the statement.

Any two such isomorphisms differ by an automorphism ¢ of H(R4, A\, A*, q%,/ 2) xDs.
We need to investigate the possibilities for 1. Since the isomorphism

O(Tw) = O(T,) C Hs)

has been fixed, 1 is the identity on O(T;). Any such ¢ extends naturally to an
automorphism ). of
C(TE)WE & H(R57)\7)\*>QJIJ‘/2) X Fﬁa
O(Ts)Ws

an algebra which by [Lus3| is isomorphic to C(T;) x Ws. As 9. is the identity on
C(T,) and W, acts faithfully on Tg, 1. must send any w € W; to 6,w for some
O € C(Ts)™ .

For a simple reflection s, € W(Rs) there are unique f1, fo € C(T,) such that
T, = fi5a + fo, see [Lus3]. Then

w(Téa) = fﬂ/]e(sa) + fo= flesasa + f2,
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so by the invertibility of ¢ we must have
s, € O(T5)" = C* x X*(Ts).

Write 05, = 20, with z € C* and = € X*(Ts). (We write 6, to emphasize that we
regard z as an element of O(T;).) Then

1 =52 = 1h(50)? = (2045,)% = 22991:95&(@33 = 2291+5a(x).
Hence z = +1 and s,(x) = —z, which implies z € ZhY. (Here we do not use (3.9)),
in the sense that we do not replace B._ even when that is possible.) For every
x € ZhY, f10y54 + f2 satisfies the same quadratic equation as T} _, that follows from
a computation in C(7s) which uses that 6,s, is a reflection in the same direction

as Sq. On the other hand — f160,s, + fo does not satisfy that quadratic relation, so
z=1 and

(3.14) Ve(Sa) = Onohy Sa for some n, € Z.

Let of € Ryv be the coroot associated to h) € Rs. In a slightly larger algebra, (3.14))
can be rewritten as

we(sa) = stag—y where <y7 Qﬁ> = Ng.

Guided by this formula we define y € Homgz(ZR,v,Z) by (y, of) = ng for all simple
coroots af. Embed Homgy(ZRsv,Z) in QR, and form the lattice

Xe := X*(T;) + Homy(ZRsv, Z) C X*(Ts) ®z Q.
Then 9. extends to the automorphism of C[X. x W(Rs)|, given by conjugation
with 6,. Hence 9 is also conjugation with 6y, at least on H(Rs, A, A*,q}m). For
y € X*(Ts) that is simply an inner automorphism, which accounts for (ii).

There are only few other possible y. For each 7 with e, > 0, we have a direct

summand

(ZeTv RS,’T: ZeTa RSV,’T) Of RSa
where R, has type A.. 1, Be, or D, . For type A. _1, Z°" surjects onto
Homgz(ZRsv +,7Z). Otherwise Homz(ZRsv -, Z) is spanned by Z° and
y = (L,1,...,1)/2. Conjugation by 6, on C[Z°" x W(B,)] sends sg to hjss and
fixes the other simple reflections. When Rs ; = D,,, this gives an automorphism of
H(Deﬂaq;ﬂ) X (sp) and of H(s)°P.

However, when R; . has type B, conjugation by 6, only extends to an auto-
morphism of H(Rs, A, \*, q;/ 2) if qZ; = 1, because the g-parameters ggqj of sg and
qs (qg)_1 of hgsig need to be equal for such an automorphism. That gives the choices
for ¢ described in (iv). Notice that this excludes the cases C._ that could arise via
B9)-

It remains to investigate automorphisms ¢ of H(Rg, A, A*, qllm/ 2) x I'y that restrict
to the identity on H(Rs, A, \*, q;/2). As above we deduce that for each v € T's there
exist z € {£1} and = € X*(T5) such that () = 260,7. Just like conjugation by 7,
conjugation by v (7) is a product of diagram automorphisms of D._ on

« 1/2 « 1/2
P(HRo AN i) = H(Re AN 0°).
Hence 20, must lie in the centre of H(Rq, A\, A*, q;ﬂ), which means that (z,af) =0
for every coroot of. Looking at the rank of R; -, we see that x lives only in the Z°
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for which R;, = A. _1. The part of = in the associated direct summand of X*(75)
is a multiple of (1,1,...,1). In particular 8, commutes with v. As v has finite order
in the finite group I's:

1= ,yord'y _ d}(,y)ordw _ (Zem,y)ord'y — Zord’yegrdv,YOrd'y — Zord’Ygord(

This implies that ord(y)x = 0 and = = 0,9(vy) = £y. We deduce that there exists
a character € : I's — {£1} such that ¥ (vy) = €(y)7. O

vz

3.1. Versions for G™.
There also exists a version of Theorem for Gt. Let LT = Zg+(Z(L)°) be the
Levi subgroup of G* with identity component L. It has the same shape:

LT =G/ x GLyy (F) x -+ x GLy, (F).

The whole theory behind H(s", z) [AMST] [AMS2, [AMS3] was written for possibly
disconnected complex reductive groups, so it applies to G*. The set of cuspidal
Bernstein components in ®.(L") is

Ceusp (L) /(Z(LH)F )Wy = Peusp(LT)/Z(L)°
An element in there is the same as an element (¢,€) € Peusp(L)/Z(L)° together
with an extension of € € Irr(Sy) to €™ € Irr(S(;f). Let s denote the Bernstein

component determined by (¢, "), and similarly without the +. We note that there
is canonical bijection

®c(L)

sY

= @ (LT) (20, 6) > (20, €M),

The same arguments as in Paragraph shows that

(3.15) H(sT,2) = H(Rev, A, A%, 2) x T

The arguments in Paragraph and for Theorem [3.1] lead to a canonical injection
from the set of Bernstein components of Irr(G™) to the set of Bernstein components
in ®.(G), say sT ~— sV, It relates to Theorem [3.1| by ResS ', as in the proof of

Theorem On the level of representations and enhanced L-parameters of LT, by
Theorems and each instance s + sV comes a bijection

(3.16) (L) = T, — Tow = & (LT)L .

As justified by (3.16)), we will sometimes write T,+ for Tg, or Ty+v for Tyv.
The theory used to construct and analyse H(s) is not known for arbitrary discon-
nected reductive groups. For O(V) and GPin(V') (the only disconnected instances

of G*) we can work it out by hand though. First we need a good progenerator 5L
for Rep(LJr)sJLr with s;, = [L,o]r. We start from II; = ind¥, (o), where L' is the
subgroup of L generated by all compact subgroups. We distinguish two cases.

Suppose first that Out(G,_) does not stabilize s;,. Then indf+ (o) is irreducible
for all ¢/ € Irr(L)°L, and

ind} " (I,) = ind}) (o) =: 11,
is a progenerator of Rep(LJr)sf for the same reasons as for Il;, . Since L is normal
in LT,
Resf indf" (II,,) = I, &1 1L, =11, &I,
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where [ € LT\ L and s, =1 -sy. Further, by Frobenius reciprocity
(317)  Endp (indf'TI,, ) 2 Homy (I, ,indf T, ) 2 Homy (I, , I, &1y, ).

By the Bernstein decomposition of Rep(L) this equals Endy,(Il;, ), which by is
naturally isomorphic with O(T5).

Suppose now that Out(G,—) stabilizes s;. Since Xy (Gn—) = {1}, Out(G,-)
stabilizes every o’ € Irr(L)*L. Clifford theory tells us that o extends in two ways to

~

a representation of L™, say o™ and o~. For an unramified character y € X, (L1) &
Xnr(L) we put

(cox)t=0c"®x and (c®x) =0 @x.
This yields two Bernstein components Irr(L*)q = X (LT)oT and Irr(L1)°L =
Xue(LT)o™, both naturally in bijection with Irr(L)2. We note that s} and s, are in

different N+ (L*)-orbits, because they are inequivalent on G, and N+ (LT) /G
only adjusts Irreusp(LT) on the type GL factors of L. In this setting

Hsz = indfil (o)

is a progenerator of Rep(LJr)sJLr and its restriction to L is just indfl (o) =1I;,. All
the elements of O(T;) determine L*-endomorphisms of ind%?, (o), so
O(Ts) = Endy(Il;, ) = End+ (Hs{)'

In both above cases we constructed a canonical progenerator II_+ of Rep(LJ“)sz,
L
with LT-endomorphism algebra O(T;). We define

+
I+ =I5 (I3).
where P is the semidirect product of L™ and the unipotent radical of P.

Proposition 3.4. The representation I+ is a progenerator of Rep(G+)5+.

Induction from G to G gives an injective algebra homomorphism Endg(Ils) —
Endg+ (II°), which is bijective when Out(G,_)sy = sz.

Proof. Suppose first that Out(G,,—)sy # sr. Then
(3.18) M, = 15 (indf" (I,,)) = ind&" (I§(IL,,)) = indG* (I1,).
Now indg+ yields an algebra homomorphism

Endg(I1;) — Endg+ (ind§ ' T1,) = Endgs (IL+),

which is injective because II; C H5+} o As G is open in G, indg+ preserves
projectivity. Moreover G has finite index in GT, so (3.18)) shows that II,+ is finitely
generated and projective. For any nonzero 7 € Rep(G)*®", the part of 7|g in Rep(G)*
generates T so is nonzero. Hence

Homg+ (I;+, 7) = Homg (I, 7) # 0,

which shows that II,+ generates Rep(G)*".
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Next we suppose that Out(G,,—)s;, = s. Then

(19) M|, —I§(1,],) = I9(1L,) ~ IL,
(3.20) ind&" (11,) = 187 (ind%" (1L,,)) = 157 (I,; ® indf, (07))
= 1§ (Iy) @ 157 (ind o (07)) = Tt @ 15! (11, ).
Since s7 and s; are in different Ng+ (LT)-orbits, st # s~ = [LT,07]5+. By the

Bernstein decomposition Rep(G1)*" and Rep(G™1),- are orthogonal subcategories
of Rep(G™), so

(3.21)  Endg+ (ind&" (ITy) = Endg+ (Iy+ & 10, ) = Endgs (Ty+ ) ® Endgs (TT,-).

From (3.21)), indgr and (3.19) we obtain algebra homomorphisms
(3.22) Endg(Ils) — Endg+ (I1;+) — Endg(Il,+) = Endg(1s).
The composition of these homomorphisms is the identity and Endg+ (Il;+) is nat-

urally a subalgebra of Endg (Il +), from which we conclude that (3.22)) consists of
isomorphisms.

By the same argument as in the first part, inngr (IL,) is finitely generated and
projective. In view of (3.20), so is its direct summand II;+. Let 7 € Rep(G™),+ be

nonzero. By (3.20))
Homg+ (Tt , 7) = Homgs (Iy+ @ I, 7) = Homgs (ind§ 11y, 7) = Homg (Ils, 7).
As we already saw above, the right hand side is nonzero. Therefore I+ is indeed a

progenerator of Rep(G™),+. O

We define H(sT) = Endg+ (Il+), then Proposition shows that there is an
equivalences of categories

Mod(H(sT)P) =5 Rep(G)*"

3.23 .
( ) \%4 =V ®gyst) gt

Proposition 3.5. There exists an algebra isomorphism

()P = H(, %) = H(Rev, AN %) n T
It extends the isomorphism O(T;) = O(Tsv) induced by (3.16|) and is canonical up
to the operations (2),(3),(4) in Theorem[3.3,

Proof. With the progenerators I+ at hand, the paper [Sol3] also applies to GT.
Therefore all the arguments in Section [3] remain valid. The only difference with the
proof of Theorem is that we do not have to replace W™ by W, any more. (]

From the above proof we see that in the description of Proposition the map
H(s) — H(sT) from Proposition [3.4] becomes just the inclusion

(3.24) H(Rav, A A%, g1 %) 3 Tov = H(Rav, AN, gl %) x T,

Lemma 3.6. (a) Suppose that Out(G,—)s;, = s1,. Then the restriction map
Rep(GH)*" — Rep(G)® is an equivalence of categories.

(b) Suppose that Out(G,—)sr # s, and that all the direct factors GLy,(F') of L have
m even. Then indg+: Rep(G)* — Rep(GJr)er is an equivalence of categories.

(¢) In the remaining cases Rep(G)® and Rep(GT)*" are not naturally equivalent.
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Proof. (a) Via (3.19) and (3.24), the restriction is induced by the algebra homomor-
phism H(s) — H(sT). In Proposition [3.4 we saw that it is an isomorphism.
(b) The second condition implies that Ng+(L*)/LT = Ng(L)/L. Hence I'} = T,
which together with (3.24)) means that the map H(s) — H(s") from Proposition
is an algebra isomorphism. That yields equivalences of categories

Rep(G)* <« Mod(H(s)°P) <« Mod(H(sT)P) <«  Rep(GT)*"
V @yps) s < |4 &~ v+ = VT ST |
By the first condition, (3.18)) holds. Hence V' ®3,) Ils is mapped by (3.25) to

VT ®H(5+) I+ =V ®’H(5) indg+ (Hg) = indg+ (V ®H(s) Hg).

(c) The assumption says that L has a direct factor GL,,(F') with m odd, and that
Out(Gn—)sy, = {sr,8,} with s’ =17 -s; # s, for any I~ € G \ G,_. Consider
an element s, € N+ (LT) which acts in this factor GL,,(F) by g — Jg~TJ~! and
on L as in (3.1). Then det(s,) = —1 because m is odd, so soL ¢ W;. On the other
hand s,l~ stabilizes 5JLF, S0 Sol LT = s, LT € W;. Thus W, # W, which by
(3.24) means that the inclusion H(s) — H(s™) is not an isomorphism. O

(3.25)

3.2. Langlands parameters via Hecke algebras.
Let s = [L,0]g be an inertial equivalence class for G. Recall the natural equiva-
lence of categories

Rep(G)®* —= Mod(H(5)°P) = Mod(Endg (I1,)°P) ‘

(3.26) T —  Homg (I, 7)

Let us fix an isomorphism as in Theorem It induces an equivalence of categories
(3.27) Mod(#(5)°") = Mod(H(s", g3/ *)).
It was shown in [AMS3] Theorem 3.18] that there is a canonical bijection
Ir(H(sY, q%) «— ®(G)
M@.eqf’) = (60
Theorem 3.7. The maps , and induce a bijection
Ir(G) +— B (G)S
m(pe) (e
It satisfies the following properties:

(3.28)

(a) The cuspidal support maps form a commutative diagram

Irr(G)* — ®,(Q)%"
4 Sc 1 Se
Irr(L)*E /Wy — Beusp(L) /WS

In particular (¢, €) is cuspidal if and only if w(¢,€) is supercuspidal.

(b) m(p,¢€) is essentially square-integrable if and only if ¢ is discrete.

(¢) m(p,€) is tempered if and only if ¢ is bounded.

(d) For any x € Xn:(G), corresponding to X € (Z(GV)1F°)w ., there is a canonical
isomorphism w(xp,€) = x @ w(p,€).

(e) The Z(G)s-character of w(¢,€) equals the character of Z(G)s determined by the
image of ¢ in ®(Z(G)s).

All the above statements also hold with G instead of G.
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Remark. Surjectivity on the cuspidal level in Theorem [2.I}¢ would imply that
the parametrization map in Theorem [3.7] is also surjective. That is known when
F' is a p-adic field, from [Art] and [MoRe]. When F is a local function field, that
surjectivity has been shown for symplectic and for split special orthogonal groups,
assuming p > 2 [GaVal.

Parts (b)—(e) were already predicted in [Borl §10]. In fact Borel formulated more
general versions of (d) and (e), which in principle can also be checked in our setup.
We refrain from taking that up here, because it will boil down to properties of
endoscopy which fall outside the scope of this paper.

Proof. (a) The central character of M (¢,e,q};/ %) is described in [AMS3], Theorem

3.18.a]. It lies in Tyv/Wev and by construction equals WyvSc(¢,€). Similarly the
central character of Homg(IL, w(¢, €)) € Irr(H(s)°P) lies in T,/W, and by [Solll
Condition 4.1 and Lemma 6.1] it equals W;Sc(m (¢, €)).

(b) By [Solll, Theorem 4.9.a] the map respects temperedness. The equivalence
does so as well, because by Proposition the isomorphism in Theorem
preserves the notion of positive roots (which determines the conditions for tem-
peredness, see e.g. [Solll p. 215]). By [AMS3, Theorem 3.18.c], under the map
(13.28)) temperedness of irreducible representations corresponds to boundedness of
(enhanced) L-parameters.

(c) This is similar to part (b), now we use [Solll Theorem 4.9 and Proposition 4.10],
Proposition and [AMS3|, Theorem 3.18.d].

(d) This follows from [Solll, Lemma 4.3.c] and [AMS3, Theorem 3.18.¢].

(e) First we reduce to the cuspidal case. Clearly 7(¢,¢) and Sc(m(¢,€)) have the
same Z(G)-character. Recall that Z(G)s"' = GV/GY4er = C*. The quotient map
GV — Z(G)s" is the similitude character u, so the image of ¢ in ®(Z(G);) is p&od.
The cuspidal support map for enhanced L-parameters only changes things in GV qer
(and modifies the enhancements), so pf o ¢ = p o ¢ where Sc(¢,€) = (¢, €:). In
view of part (a), (¢, €¢) is the enhanced L-parameter of Sc(m(¢,¢€)) =: 7.

The GL-factors of LY lie in GV ger, so they are contained in the kernel of ;. Hence
(s © ¢ depends only on the component of ¢. in Gy _, let us call the latter ¢_. On
the other hand, Z(G)s is contained in the factor G,— of L, so the Z(G)s-character
of . depends only on the component of 7, in G,—, say m— € IrTeusp(Gn—).

It remains to compare the Z(G),-character v,_ of m_ with p% o ¢_. Those agree

by , which finishes the proof for G.
The proof for G is basically the same. To get the bijection we use and
Proposition instead of and (3.27). Although in [Soll] the group G is
connected, the parts that we use work just as well for G*. For parts (d) and (e) it
is helpful to note that

Xue(G) 2 X (GT), Z(GTY)=7Z(GY) and Z(G) =7Z(G"). O
Since the map s — 5" between sets of Bernstein components is injective, the
bijections in Theorem [3.7] combine to injections
Irr(G) — @.(G),
Irr(GT) — ®.(GM).
The image of these maps is a union of Bernstein component of enhanced L-parameters.

However, we did not show that the maps (3.29)) are bijective. For that we would
need bijectivity in Theorem 2.1} which is unknown when F' is a local function field.

(3.29)
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From and - (or and Proposition [3.5] E 5| for G*) we obtain equiva-

lences of categorles

I

Rep(G)? Mod(H(s¥, qi/%)),

(3.30) Rep(G+)5+ o Mod(H(5+v7QF/ ))

From that and [Sol5| §5] (in particular the proof of [Sol5, Theorem 5.4]) we obtain:

Corollary 3.8. The p-adic Kazhdan—Lusztig conjecture [Vog, Conjecture 8.11],
about multiplicities between standard and irreducible representations, holds for G

and GT.

Suppose now that M C G is a Levi subgroup which contains L. It is a direct
product of a group of the same type as G and of factors GL,,(F'), so all the previous
results apply just as well to L. Then H(sps) = Endp(Ils,,) embeds in H(s) via
normalized parabolic induction and ’H(szq;/ 2) embeds naturally in H(s ,q;/ 2).
As isomorphism

(3.31) H(s21) = H(sYp, qp ")

we can simply take the restriction of H(s)°P = H(s", q};/ %) from Theorem E The
same works for M+ C G, using Paragraph In this setting we can compare the
equivalences of categories and their analogues for M, M ™, using normalized
parabolic induction.

Let E(¢, e qllm/z) be the standard H(s", qllw/2)—module associated to (¢, €) in [AMS3]

§2.2 and Theorem 3.18.a]. By definition M (4, e,qll?/ 2) is the unique irreducible

quotient (“Langlands quotient”) of E(¢, ¢ q};/Q). We let 75(,€) be the image of

E((Z),e,q},/ 2) under (3.30), and we use analogous notations for G, M, M™, with
superscripts M or +.
Let us point out that for bounded ¢ (and in fact for almost all ¢):

E($,e,q)%) = M(¢,e,q)/*) and  wy(,€) = 7(,€).

Theorem 3.9. Let (¢,eM) € ®.(M)*™ be bounded, or a twist of a bounded param-
eter by an element of Z(M") which is positive with respect to MY BY in the sense
of [AMS2, Appendix A]. Then

IMU (Wst ¢7 @ HomsM ,€) @ se(9,€),

where the sum runs over all € € Irr(Sy) with Sc(¢,€) = Sc(p, eM). The same holds
for MT C GT.

Sypdp )

note that the condition in [AMS3|, Lemma 3.19.a] is fulfilled by [AMS2] IJDWro}IT)osmmn
A.3] and the assumed properties of ¢. Via and we obtain the corre-
sponding statement for modules of H(s)°? and H(sys)°P. By [Solll Condition 4.1
and Lemma 6.1] the equivalences commute with normalized parabolic induc-
tion, which enables us to transfer the statement to representations of G and M. The

same proof works for M+ c GT. O

Proof. By [AMS3, Lemma 3.19.a] this holds for E(¢, ,qllp/ ) and indHE ’qFI/Q) We
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4. COMPARISON OF LANGLANDS PARAMETERS

In this section we will compare the enhanced L-parameters for G obtained via
the endoscopic methods of Arthur and Mceglin with the enhanced L-parameters
associated to irreducible G(F')-representations in Theorem Although endoscopy
only seems to be available when F' is a p-adic field, in Paragraph we showed
how the resulting parametrization can be transferred to classical groups over local
function fields. That requires Hypothesis (which we hope to lift in the future).
Then Mceeglin’s constructions to find enhanced L-parameters make sense for any
classical group over a non-archimedean local field. Since that applies to G rather
than G, we will focus on G -representations in this paragraph.

We will compare them with our method via Hecke algebras, increasing the classes
of representations under consideration step by step. For supercuspidal representa-
tions the enhanced L-parameters in Theorem are by definition equal to those
constructed in Theorems 2.1] and 2.4l The relation between the discrete series and
the supercuspidal representations of classical groups is due to Meeglin and Tadié
[Mcell [MoTa], also proven with different methods by Kim and Matié¢ [KiMal.

4.1. Cuspidal supports of essentially square-integrable representations.

There are cuspidal support maps both for irreducible G-representations and for
®.(G). Recall from Theorem a that these maps commute with the assignment
of enhanced L-parameters via Hecke algebras. We want to check that the same
holds for Moeglin’s parameters of discrete series representations. (Since the cuspidal
support maps commute with tensoring by unramified characters, that implies the
same statement for essentially square-integrable representations.) The initial steps
to determine the cuspidal support of (¢,€) € ®.(G) are:

e Replace (¢,€) by dlw, and (¢|si,(c),€), where ¢(SL2(C)) lies in H :=
ZGVder (¢(WF)) a’nd

Sy = 10(Za 4., (9)) = w0 (Zr (dlsr,(c)))-
e From (o|sr,(c), €) we extract the triple

1/2 0 1 1
Sp =10 <q1; qF1/2> , Up = ¢ <0 1> , €€ Irr(ﬂo(ZH(s¢,u¢))).

Such triples can be regarded as H-valued enhanced L-parameters which are
trivial on Wp, and that provides a notion of cuspidal support for such
triples. Up to H-conjugacy the triple (sg,ug, €) contains precisely the same
information as (@|sr,(c) €)-

e The cuspidal support of (s4, ue, €), in the group H, is another triple (¢, v, €.)
with t € H conjugate to sg,v € H unipotent, tot™! = v9 and €. €
II’I‘(?T()(ZH(t, ’U))) .

e The cuspidal support of (¢,€) is an enhanced L-parameter (¢, €.) recon-

1/2
structed from (¢|w ., t, v, €), sowith @ (§ 1) = v and ¢.(w, <q; _?/2> )=
o
¢(w)t for any arithmetic Frobenius element w € Wp.

We work this out further for discrete enhanced L-parameters of G*. (That is a little
easier than for GG, and yields basically the same information.) From we know
that H = Zg+v,  (¢(Wr)) is a direct product of orthogonal and symplectic groups
over C. To complete the above characterization of Sc(¢,¢€), it suffices to describe
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the cuspidal support for triples (s,u,¢€) in O,(C) or Sp,,(C). For that we use the
detailed analysis from [Lusl] and [Mou, §5]. Fortunately, it turns out that there are
only very few possibilities for the cuspidal supports [Lusll §10].

Symplectic case
Take a Levi subgroup Lg = Spga41)(C) X GL{ (C)"~4d+1)/2 of Sp, (C) and let
Uq € SPg(44+1) be a unipotent element with Jordan blocks of sizes {2,4,...,2d}. Take
any semisimple element s € Ly with sugs™' = u?". Then m (Zsp%(@)(s, ud)) o Fg
with basis {22, 24, . . . 224}, and €g4(22j) = (—1)7 gives a cuspidal triple (s, uq, €4).

Given a triple (s, u, €), the only options for Sc(s,u, €) are (s, uq, €4) with d € Z>¢.
We write

J — { d—+1 ifdis even,
—d if d is odd.

In [Lusll §12] the cuspidal support of (u,€) is computed via this number d’, which
is called the defect of (u,€). Assume for simplicity that all Jordan blocks of u have
different size iy,i9,...,4, which are even (this is the case if (s,u) comes from a
discrete L-parameter). Write mg (Zsp%(c)(s, u)) = F% with basis {2;,, 2i, ..., 2, }. If
r is even, we define a new € by adding ip = 0 with €¢/(z9) = 1, apart from that ¢ = e.
Then the advanced combinatorics in [Lusll §11] entails that d' = 5 j(—l)j“e’ () €
1+ 27Z. Hence
i1 J— —1—|—Zj(—1)j+T€/(zij) if d' >0,
(4.1) = { CY (e, ifd <0,
Orthogonal case
Take a Levi subgroup Lg = Oy2(C) x GL1(C)"~4)/2 of 0,,(C) (so with d = n mod 2)
and let ug € O42(C) be a unipotent element with Jordan blocks of sizes (1,3, . ..,2d—
1). Let s € Ly be semisimple such that sugs™ = u%". Then T0(Zo 5 (C) (5, ud)) = 4
with basis {21, 23, ..., 22¢-1} and €4(22j—1) = (—1)7 and —¢, give two cuspidal triples
(5,uq, Leq).

Given a triple (s, u,€) for O, (C), the options for Sc(s,u,€) are (s, uq, +€;7) with
d € Z>¢ of the same parity as n. In this case d is the defect of (u,€) [Lusl, §13].
Suppose that all Jordan blocks of u have different sizes 11,42, ...,,, which are all
odd (as for discrete L-parameters). Then [Lusll, §13] entails that

(4.2) d=| Zj(—l)je(zij)l.

By that and [AMSI], Sc(s,u,€e) = (s,uq,+€eq) where the sign is determined by
+eq(z) = €(z) for some z € Og2(C) \ SOz(C). We embed O42(C) in O,(C) so
that the subgroup O1(C) C Zo ,(c)(uq), which comes from the Jordan block of size

1, is contained in a subgroup O;,,(C) C Zg,, (c)(u) which comes from a Jordan block
of size i,,. Then we take z = z1, and we find (using that i,, is odd)

(4.3) + eq(21) = €(21) = e(z1)"™ = €(z;,,).

This determines the sign, and thus fixes Sc(s, u,€).

Proposition 4.1. Meglin’s parametrization of the discrete series of G is com-
patible with the cuspidal support maps, in the following sense. For a discrete series
representation w € Irr(G) with Sc(w) € Irr(LT), Sc(¢r, €x) is Ng+v (LTY)-conjugate
to (¢SC(7T)7 6Sc(7r))‘
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Proof. In [Mcel] the cuspidal support of 7 is studied in relation with ¢, and e;. The
Moeglin parameter of Sc(7) is obtained via a recursive procedure, whose important
steps are mentioned on [Mcell p. 147].

Suppose first that a,a’ € Jord,(m) are adjacent (that is, no b inbetween a and
a’ belongs to Jord,(m)) and that ex(p,a) = ex(p,a’). Then {(p,a),(p,a’)} can
be removed from Jord(w), and the new (Jord’,€’) corresponds to a discrete series
representation with the same cuspidal support as 7 (apart from (a + a')d,) extra
factors GL1(C) in the Levi subgroup from Sc(7)). This enables us to reduce to
the cases where €, is alternated in the sense that e;(p,a) = —er(p,a’) whenever
a,a’ € Jord,(m) are adjacent.

Suppose now that e, is alternated.

(i) If Jord,(m) consists of even numbers a and ex(p,a) = —1 for the minimal such
a, then Jord,(Sc(m)) = {2,4,...,2d} with d = |Jord,(7)| and eg.(r)(p,2a) =
1y

(ii) If Jord,(7) consists of even numbers a and e, (p, a) = —1 for the minimal such «,
Jord,(Sc(m)) = {2,4,...,2d} with d = [Jord,(7)| -1 and €ge(r)(p, 2a) = (—1)*.

(iii) If Jord,(m) consists of odd numbers, then Jord,(Sc(7)) = {1,3,...,2d — 1}
where d = |Jordgy(m)| and ego(xy(p, 1) = €(p,a) for the minimal a € Jord,(r).
This last property is implicit on [Meell, p. 147], which mentions that here €
does not change if we pass from 7 to Sc(m).

If we now compute the above numbers d in terms of the original €,, we recover
precisely and (4.2). In case (iii) we can embed Oz (C) in O, (C) such that the
part Pay—1 : SLa(C) = O2,—1(C) of Jord,(Sc()) lands in the subgroup Og;,—1(C) C
0,,(C) that contains the image of the part P;,_; of Jord,(7). Then the aforemen-
tioned property €sq(x)(p, 1) = €(p, a) becomes . O

4.2. Jordan blocks of discrete series representations.

First we check that the Jordan blocks of a discrete series representation m of
Gt = G} can be read off directly from the enhanced L-parameter assigned to it by
Theorem [B.71

Lemma 4.2. Let (¢,e) € ®.(G") be bounded and discrete, such that w(p,€) is
defined in Theorem (3.7 Then Jord(w(¢,€)) corresponds to Jord(¢) under the LLC

for general linear groups.

Proof. Let p € Irteysp(GLq, (F)) with p = p¥ ® (4.6, a condition which by (2.1)
is fulfilled by all Jordan blocks of 7(¢,€). Recall that a pair (p,a) belongs to
Jord(m (¢, €)) if and only if

e §(p,a) X m(¢,¢€) is irreducible and

e 0(p,a’) x w(¢p,€) is reducible for some a’ € a + 27Z.

Let 7 € Irr(Wp) be the L-parameter of p. Then 7 = 7V ® puf o ¢ by (2.7) and
Theorem e, as needed for Jord(¢) by (1.6). We write

YV=TQPx¢=(T®7' @ pulod)®P,®e,

where in the middle we work in GL,,,(F) x G,/ and on the right in G, .. Theorem
3.9 tells us that

(44) 5(P7 CL) X 7T(¢7 6) = @7] HOIDS;; (67 77) ® 7'['(1/), 77)7
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where the sum runs over all € SJ with Sc(¢,n) = Sc(v,€). The groups S(; and
S{[ can be compared with (|L1.5]).

(i) When sgn(r ® P,) # sgn(GY ger): S;’ = S(; and is always reducible.

(i) When sgn(r ® P,) = sgn(GVger) and (7,a) € Jord(¢): again S:Zf = Sd'f and
is reducible.

(iii) When sgn(r ® P,) = sgn(GVger) and (7,a) ¢ Jord(o): S:pr = S; X {1, zrq}.
Then Sc(v,n) = Sc(v, €) for every extension 7 of € to SJ, because 7® P, occurs
with even multiplicity in ¢ and hence does not influence the cuspidal support.
In this case (4.4) is a direct sum of two inequivalent irreducible representations.

We compare this with the aforementioned characterization of Jord(w(¢,e€)). The
reducibility of d(p,a’) X 7(¢, €) rules out case (i), and §(p,a) X 7(¢, €) is reducible in
case (ii) but not in case (iii). We conclude that (p,a) € Jord(n(¢,€)) if and only if
(1,a) € Jord(¢). O

Recall that the parametrization of the discrete series in Theorem involves the
Jordan blocks of ¢ and a character e, : Sy — {£1}. To facilitate a comparison with
our Hecke algebra methods, we revisit Moeglin’s construction of e, [Mcel] and we
show that it shares some properties with the constructions behind Theorem

Let (¢,€) € ®.(G1)*"” be discrete and bounded, and let 7(¢, ) be the discrete
series representation of GT = G, associated to it by Theorem Recall that SJ
is the Fa-vector space with basis {z;, : (7,a) € Jord(¢)}. For such a 7 we let p be
the corresponding representation of GLg,(F) and we write €(2,4) = €(2r,4). Here
we use that by Lemmathe Jordan blocks of ¢ and of 7(¢, €) are matched via the
LLC for general linear groups.

Proposition 4.3. Let a > a' € Jord,(7(¢,€)) be adjacent.
(a) €(2pa) = €(2par) if and only if w(¢, €) embeds in 6(p, (a—1)/2,(1—a’)/2) x T for

. . . ~ J’_ . .
some discrete series representation 7 of Gn—dp(a+a’)/2' Moreover, in this case

Jord(7) = Jord(r(,€)) \ {(p, a), (p,d’)}

and @ = w(¢, ) where € = 6’3&
(b) Suppose that a_ is the minimal element of Jord,(¢) and that it is even. Then
part (a) also holds with a = a_, o' =0, provided we put €(z,0) = 1.

Proof. (a) Suppose that 7(¢, €) is a subrepresentation of §(p, (a—1)/2, (1—a’)/2) x 7.
We write M = GLg,(a1a)/2 X Gn—d,(ata’)/2; SO that MU is a parabolic subgroup

of G,, with Levi factor M. From Theorem [3.7| we get 7 = m(¢, ) for some discrete
bounded ¢ € ®(M ). The L-parameter of

(p.(a = 1)/2.(1=a)/2) is 76 Pty @ |-,

and | - ](“_a/)/ 4 is in positive position with respect to M+TU. Thus Theorem is
applicable, and it says that

3(p, (a=1)/2,(1= ) /2) x & = I§fs y7 (7 © Playaryp @ | - |/ x 6,8)
= @E/ Homsé)vﬁr (€, E/) Q 71.(}3((1_~_a,)/2 ®|- ’(a—a/)/él % Q% 6/),
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where the sum runs over all € € Irr(S;”) with

SC(¢, 6) = SC(T ® P(a+a’)/2 ® ’ ’ ‘(aia/)ﬂ X (Z;a €)_
It follows that ¢ is G*V-conjugate to Py q)/2®|- |(@=a)/4 % § and that Hom g+ (€, €)
P
is nonzero. We deduce that

(4.5) S;r = Sg X (21,0, 2'.0)

and that € = €[ g+. Our assumption entails that 7(¢, €) and 0(p, (a—1)/2, (1—a’)/2)x

é
7 have the same cuspidal support. Now Theorem a and the formulas (4.1) and
(4.2)) for the cuspidal support of enhanced L-parameters show that €(2,4) = €(2p.0/)-

Conversely, suppose that €(z,q) = €(zp). Write ¢ as L-parameter ¢, X ¢
for M. Then (4.5) holds and we can take € = ¢|g+. The L-parameter ¢qq €
é

®(GL(q1q1)2(F)) is discrete and its cuspidal support consists of terms 7| - |" with
r € R. Hence ¢g o = T ® Plgiq)/2 @ |- |" for some 7 € R. Embedding in ®(G,,) and
comparing with the shape of ¢ we find

(46) P(a+a’)/2 ® | ) |T EBP(a—l—a/)/2 ® | ’ |_T =Py ® Py,

or at least up to conjugation in GL,1(C). That entails r = (a — a’) /4, from which
we deduce that

T(Gaa) = 6(p, (a+d")/2) @ |- [V = 5(p, (a—1)/2,(1 - a')/2).
By Theorem [3.9]

(@7) 15 (30, (0= 1)/2, (1= a)/2) B n(6,8)) = D), Homgyes (6¢) @70, €),
where the sum runs over all € € Irr(S;) with

Sc(¢,¢) = Sc(paa % ¢,€). = Sc(6, €).

We note that we may use irreducible representations instead of the standard
modules from Theorem because the latter are irreducible (since ¢ and qg are
bounded and ¢, o is a twist of a discrete parameter by an unramified character).
To get a nonzero contribution to , €| g+ must equal € = €|g+. Then we see
é

from (4.1) and 1 ) that €'(zp4) = €(25a/). In other words, the only nontrivial
contributions to | i come from e and one other €, and it reduces to

(48) fﬁim(w, (a—1)/2,(1—d)/2) R 7($,8)) = (6, €) & 7(, ).
In particular 7(¢, €) embeds in the left hand side of (4.8]), which can be written as

5(p. (a—1)/2, (1 — a')/2) x 7(,2).

As ¢ is discrete and bounded, Theorem b,c guarantees that m(¢,é) belongs to
the discrete series.

That proves the equivalence. The description of Jord(7) occurs at various places
in the above arguments, it is seen most clearly from .
(b) This can be shown in the same way as part (a). Notice that a_ needs to be even
to make sense of the SLy(C)-representation F,_ /. O
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It was shown in [Mcell, Proposition 5.3 and Lemme 5.4] that the Moeglin param-
eters of discrete series representations also satisfy Proposition [£.3]

Next we zoom in on a particular class defined in [Mcell §1], completely positive
discrete series representations. By [Mcel, Proposition 5.3], among the discrete series
these are precisely the 7 for which e, is alternated:

(4.9) €(2p,a) = —€(2,,4) for adjacent a,a’ € Jord, ().

A few useful properties of such representations follows directly from our description
of the cuspidal support maps.

Corollary 4.4. Let 7 be a completely positive discrete series representation of G™.

(a) 7 is uniquely determined by Jord(m) and Sc(r).
(b) Jord,(m) # 0 if and only if Jord,(Sc(m)) # 0.

Proof. (a) Under the condition (4.9) we see from (4.1)), (4.2) and (4.3) that e, is
uniquely determined by ¢, and Sc(¢r, €). Combining that with Theorem and

Proposition we see that 7 is uniquely determined by Jord(w) and Sc(m).
(b) This follows from (4.1)) and (4.2): under the condition (4.9) these numbers d
cannot be 0. O

Lemma 4.5. Let © be a completely positive discrete series representation of GT
and let (¢, €x) be its Maeglin parameter. Then the G -representation ' attached
to (¢r,€x) by Theorem is isomorphic to .

Proof. By Theorem [3.7}b,c 7 is discrete series and from Lemma we know that
Jord(n’") and Jord(w) both correspond to Jord(¢r), so m and 7’ have precisely the
same Jordan blocks. By Theorem [3.7}a and Proposition both Sc(m) and Sc(n’)
have enhanced L-parameter Sc(¢y, €x), so Sc(m) = Sc(n').

By and Proposition[t.3]a 7’ cannot be embedded in 6(p, (a—1)/2, (1—a') /2) x 7
for adjacent a > o’ € Jord,(m) = Jord,(n’) and a discrete series representation 7.

Then [Mcell, §5] entails that 7’ is a completely positive discrete series representation.
Now Corollary [4.4la shows that m = 7. O

4.3. Intertwining operators for discrete series representations.

For general discrete series representations, Proposition [4.3] achieves a kind of re-
duction to the completely positive instances without changing cuspidal supports. In
that process some direct factors of Sy are removed, so we lose information about
€. Most values of € can be reconstructed from data for the associated completely
positive discrete series representation 7+, but not all. For the missing one we will
need to study certain normalized intertwining operators.

Suppose that (p,a) € Jord(w) with a odd and that Jord,(7™) is empty. Such
p provide the only parts of e; that cannot be recovered from e,+. We note the
L-parameters of such p are precisely the 7 € Irr(W F)$ for which £, =0 < e,.

By Corollary b we may equally well assume that Jord,(Sc()) is empty. Then
Proposition leaves two possibilities for e, on Jord, (), distinguished by €x(2p,4_)
where a_ = min(Jord,(7)). The characterization of e;(z,4_) € {£1} from [Mcell,
§6.1.1] involves several steps, which we recall next. Write

Se(r) =01 X---RogRo_ € Iir(LT),



42 A.-M. AUBERT, A. MOUSSAOUI, AND M. SOLLEVELD

where o; € Irr(GL,,, (F)) and o— € Irr(G;} ). Then o_ is the partial cuspidal support
of m, as used in [Mcell (1)]. We choose an intertwining operator

(4.10) J(sg,p x 0_) € End+ pxo_)

+dp(
which squares to the identity. There are two possibilities, we normalize it as in
[Meell §6.1.2] and [Art]. It is a member of a holomorphic family of intertwining
operators

b

(4.11) J(sg,p’ x 0_) € HomGL (o x o_, pr=0 x o_),

+dp
where b € C and v(g) = |det(g)|r. This gives rise to a family of intertwining
operators

(4.12)  J(sg x 55, " x pr?2 x o)t Pt x g2 x o — pr7 X v x o,

which reduces to (#.11]) (tensored with the identity on one of the pr®) upon applying
normalized Jacquet restriction. The same works with more factors pv.

In GLag, (F'), the element s12 that exchanges the two blocks of GLg, (F') x GLg, (F)
induces an intertwining operator

b1

(4.13) J(s12, p"t x pv?2 x0_) € Hom .+ (ot x pv®2 x o_, pvP2 x p?t x o),
n_+2

dp
where b1, by € C. We normalize it so that it depends holomorphically on b; — by and
becomes the identity when b; = bs.
Let e € N be odd and let by, ba,...,b_1)/2 € C. The order two permutation

We i= (55,841 55) 0 (1 a)(2 e=1) -+~ ((e=1)/2 (e+3)/2)
belongs to the Weyl group W (B.). The composition of the corresponding operators
(4.12) and (4.13]) yields an intertwining operator

(4.14) J(We, prPt X -+ x prPe=/2 x p x pr 172 x o ox prT X o),

from the indicated G:L te dp—representation to itself. The upshot of [Mcell, p. 176] is

that the holomorphic family (with variables b;) of intertwining operators can
be normalized so that each operator squares to the identity and they reduce
to in the special case b; = 0 for all i. All these intertwining operators are
unique up to scalars, so our conditions leave just the choice of a sign, which in turn
is determined by J(sg,p x o_).
Pick a € Jord,(m) \ {a—} with €(z,4) = €(2,4_), and embed 7 in
7r

(4.15) 8(p, (a—1)/2,(1—a_)/2)x7 C &(p,(a—1)/2,(14+a_)/2) x5(p,a_) x &

for a discrete series representation 7 of G . Embed the right hand side in
n—(a+a—)/2

(4.16) 5(p,(a—1)/2,(14+a-)/2) x Ind Sc(d(p,a—)) x Ind Sc(7),

where Ind stands for normalized parabolic induction. We note that o_ is a factor
of Sc(7) and that

1

Ind Sc(d(p,a—)) = pr =D/ 5o pr x p x Tt e x prltTa)/2

)

which fits with (4.14]). Then (4.14) and the identity on the other factors of (4.16|
induce a self-intertwining operator of (4.16). That operator can be restricted to

(4.15) and thus yields a normalized intertwining operator
N(p,a-) € Endg+ (6(p, (a —1)/2, (1 +a-)/2) x 6(p,a_) X 7).
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Then €(2,,_) is the scalar by which N(p,a_) acts on 7, or equivalently
(4.17) 7 is fixed pointwise by e, (p,a_)N(p,a_).

We emphasize that the one choice of J(sg,p X 0_) determines a normalization for
(potentially) many instances of (4.17)).
1/2

In the Hecke algebras H(s", q}p 2) and (s, ¢ ") we also have intertwining op-
erators, they come from the underlying geometric setup [AMS2]. In the general
setting of Theorem the way an enhancement € of ¢ helps to find the irreducible
representation 7(¢,€) is by applying Homg,(¢,?) to a standard module 7(¢,5")
constructed from ¢ and the cuspidal support.

In the case at hand, for 7 = 7(¢, €) we have

Homgg(fyﬂ(qﬁjﬁw)) =0(p,(a—1)/2,(1 —a-)/2) x T,

where Sdi)F comes from 7. When 7 is the L-parameter of p, the geometric setup

provides a canonical action of {1, 2, , } on this representation, by a G*-intertwining
operator that we denote N(7,a_). That means

7 = 7(6.6) = Homg, (e, 7(6,5™) = Homy.,,(e.8(p.(a— 1)/2, (1 - a_)/2) x 7)
(4.18) = {fixed points of €(z; - )N(7,a_) in §(p, (a —1)/2,(1 —a_)/2) x 7}.

In contrast with J(sg,p x 0_), these intertwining operators for Hecke algebra rep-
resentations do not have to be normalized, they arise naturally. The only freedom
we have is that from Theorem 3.7, which we will use next. Let J(sg, 7 x ¢_) be
the canonical intertwining operator associated to sg and the Hecke algebra repre-
sentation corresponding to p X o_ via Proposition (We suppress €, from this
notation.)

Proposition 4.6. Let st = [LT, 0]+ be an arbitrary inertial equivalence class for
G*. The isomorphism H(s1)P = H(sTV, q};/Q) from Proposz'tion can be chosen
such that the following holds.

For every T € Irr(WF);; with ex > 0 = £, the intertwining operators J(sg, p x
o) and J(sg, T x¢p_) agree via the appropriate equivalences of categories from (3.30))
induced by the chosen Hecke algebra isomorphism.

A Hecke algebra isomorphism with these properties is unique up to conjugation by
elements of O(Ts4)™

Proof. Let p/ be an unramified twist of p such that p' = p'V @ v, and p’ % p. Be-
cause p' influences the structure of H (s, q}/ 2) in the part coming from the same
irreducible root system as p, we have to consider p and p’ simultaneously. Let 7 and

7’ be the L-parameters of respectively p and p'.

The case £, > 0.
1/2

From ([1.12) we know that the relevant tensor factor of H(Rsv der, A, A*, ¢ 7) X F:V is
an affine Hecke algebra H,, with underlying root datum (Zeﬂ’,Bep,,Zep’ , C’ep,). The
base point of T,v , for H, comes from p’, and pgeﬂ’ is related to this basepoint by
an order two element of the associated complex torus. The condition e, > 0 = £;

entails that /, = 0,a, = —1 and qE = 1 for the short roots 3 of Be,.
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Then Proposition allows us to replace sg by hg% in the isomorphism

/H(5+)op ) 7—[(5+v, q};ﬂ).

The representation p X o_ does not appear directly in this framework, but it does so
via a short detour. Pick x € Irr(Z°") such that the values x; := x(e;) € C* are in
generic position, except that Xe, = —1. We identify x; with an unramified character

H,
P C
X

of GLg,(F), unique up to Xy (GLg,(F),p). The H-representation indC[Zep,}

corresponds to
(4.19) P ®x1 ><---><p’®xep,_1 X pXo_.

The decomposition of this representation in irreducibles is governed by the compo-
nent group Sy of the L-parameter, which in this case is just (sg), acting on the last
coordinate.

Things become more transparent if we localize the centre of H, around Y, as
in [Lus3|]. Localization achieves that H, can be replaced by the simpler (extended
affine Hecke) algebra C[Z'] x Sy, and then our induced representation becomes

. C[Z5P 1% (sg)
(4.20) md(C[Zep’] PICy.
Since X(h/\é) = —1, the automorphism which exchanges sz and h,\é’/sﬂ affects the
action of sg on (4.20) by mutliplication with -1. As a consequence the canonical

. . . . Hy .
intertwining operator from sg on (4.20]), or equivalently on ind C[”Zep,}(cx or (4.19)), is
adjusted by a factor by -1 by the replacement sg hg55.

The intertwining operator on (4.20) associated with sg is induced by the inter-
twining operator from sg on the representation
Clz]>(sp)

ind(C[Z] C_4

of the smaller algebra C[Z] x (sg). That algebra can be identified naturally with

the localization (at the central character -1) of %(slv,q;ﬂ), where (7 X ¢_,€,_) €

(G} | dp)5 “. In this way the intertwining operator for sg on is related to
the intertwining operator J(sg, 7 x ¢_), and multiplying the former by -1 entails
that the latter is also multiplied by -1.

As J(sg,p x 0_) is a priori unique up to a factor -1, it follows that we can match

it with J(sg, 7 x ¢_) under the appropriate Hecke algebra isomorphism by making
the (unique) correct choice for the image of Ty, € H(sT", q}/Q) in H(st)oP.

The case /., = 0.

Here we need to take both J(sg, 7 x o_) and J(sg, 7 x o_) into account. The

relevant tensor factor of H(Rsv der, A, A, q};/ 2) X F:v is of the form

H, = H(Rp,,q;.”) x Out(D,,),

where Rp,, = (Z™,Dy,,Z™, Dy,). As basepoint of the underlying torus we take
p®¢. We can modify the isomorphism H(s7)P = H(stV, q};/ %) in four ways on this
tensor factor. Namely, write Out(De,) = (sg) with 8 a short root in Be, D De,. As
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the image of sg € 7—[(5+V,q;/2) in H(s7)° we may take —sg, hj}sg, —hjsp or just
3.

Like in the previous case, we can study the representations of H, induced from
characters x of Z°. We pick the first e, — 1 coordinates of x generically in C*, and
take xe, = £1. That corresponds to

POXLX - X PO Xe,—1 X pREL X0,

where p® 1 = p and p® —1 = p/. For such x the localization of #H, around the
central character W (Be,)x produces the simpler algebra C[Z%'] x (sg).
When x,, = 1, the intertwining operator for sz on

. C[Z¢P]x(sg)
(4.21) 1ndC[Z.3p]N P1Cy

is induced from the intertwining operator on ind%%“sﬁ >(C1. The algebra C[Z] x (s3)

is naturally isomorphic with the localization at 1 (corresponding to the basepoint
7) of the affine Hecke algebra for the Bernstein component containing (7 x ¢_,0_).
Thus the intertwining operator on (4.21)) is essentially J(sg,7 x ¢_). Via an in-

stance of (3.30) for a Bernstein component of Irr(G;! n dp), the latter corresponds

to +J(sp, p x 0_). Possibly adjusting the isomorphism H(s")°P = H (s, q11:/2) S0)
that sg goes to —sg, we can match J(sg, 7 X ¢_) and J(sg,p X o_).

When xe, = —1, the situation is similar, but now (4.21) is induced from

indggwsﬂ >(C,1, which comes from (77 X ¢_,€e,_). Here the intertwining operator

from sg on (4.21) is essentially J(sg, 7" x ¢_). Via the same instance of (3.30)
as above, this operator corresponds to +J(sg,p’ x 0_). We can still adjust the

isomorphism H(s1)P = H(sTV, qllm/ 2) by composition with the automorphism that
sends sg to h\ﬁ/SB. That multiplies J(sg, 7' X ¢_) with -1, while not changing J(sg, 7 x
¢—). Thus, by a suitable choice we can arrange that J(sg,7’ X ¢_) corresponds to
J(sg,p' x 0_), without disturbing the previous normalization. In total we have a
unique choice (out of four) for the image of sg under the algebra isomorphism, such
that both relevant pairs of intertwining operators match up.

With the above choices, for all relevant p, we managed to fulfill all the conditions
imposed in the statement. To this end we exploited the freedom provided by the
points (3) and (4) of Theorem [3.7| and Proposition From Table [2| we see that in
fact we had to make a choice for the image of sg in all possible instances of (3) and
(4). In view of Proposition this renders our Hecke algebra isomorphism unique
up to conjugation by elements of O(T+)*. O

Applying Proposition [£.6] we can match many more intertwining operators be-

tween G -representations with intertwining operators between H (s, qllw/ 2)—modules.

Lemma 4.7. Choose an isomorphism H(s")°P = 'H(5+v,q11;/2) as in Proposition

. For every discrete series representation m € Irr(G*‘)er and every (p,a_) €
Jord(7) with a— minimal and odd and Jord,(Sc(w)) empty, the intertwining opera-
tors N(p,a_) and N(t,a_) from ([&.17) and (4.18)) coincide on the representation

d(p,(a—1)/2,(1 —a_)/2) x T from (4.15).
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Proof. After we described how J(sg, p x 0_) determines N(p,a_). By Propo-
sition J(sg,p x 0_) corresponds to J(sg,T X ¢_), so it remains to check that
the latter determines N(7,a_) in the same way.

The constructions around and work analogously for modules of Hecke
algebras, which reduces our task to comparing

(4.22) J(we, prPt x -+ x prPe=/2 x p x pr e/ x o oox prT X o)

from (4.14) with its version for the appropriate Hecke algebra 7—[(5/\/, q},ﬂ/ 2). Recall

that b € an(GLdp (F)) corresponds to the central element q% € GLg, (C), and then
pv? corresponds to q%T. In the geometric setup from [AMS2)], given w, there is a
canonical intertwining operator
O HE VDb be— —b

(4.23) J(we,lndOETS/VQ)F )w(qFlT N qF( D20 r oo x g X ¢—,€o,)>,
from the indicated module to itself. (Here the symbols x refer to an L-parameter
with values in a direct product of groups, not to parabolic induction.) This operator
has order 2, and it comes as a member of an algebraic family parametrized by b; € R.
When all b; are equal to 0, the permutation (1 a)(2e—1)---((e—1)/2 (e+3)/2) lies
in the connected component of the centralizer group of the L-parameter in (4.23)),

and the canonical intertwining operator associated to that permutation is just the
identity. Hence for b; = 0 the operator (4.23)) reduces to

Iy 1/2

ind tC e ) )
(4.24) J<85 X - X S’B’me(TE’v) T(TX  XTX¢_,€6_)).
This operator is induced by J(sg, T X ¢_) on each of the e = e, coordinates, in the

following sense. Upon localization of H(slv, q};/ 2) at the central character associated

to T X --+ X T X ¢_, we obtain an e-fold tensor product of modules

indg%MSﬂ)W(T X ¢p_).

Then can be identified with the e-fold tensor product of the operators J(sg, 7 x
¢_) on these modules. This is the same procedure as in , so Proposition
guarantees that agrees with for b, = 0 and the correct number of
factors. Since all instances of square to the identity and they are part of
a continuous family, all these instances are fixed when we know (4.24). That is
completely analogous to the situation in (4.14). Therefore (4.22) and (4.23) agree
via a Hecke algebra isomorphism as in Proposition [4.6] O

After all these preparations, we are ready to compare the two parametrizations
of arbitrary discrete series representations of G.

stV

Proposition 4.8. Let (¢,¢) € ®.(G™) be discrete and choose a Hecke algebra
1/2

isomorphism H(sT)P = H(sTV, ¢/ ") as in Proposition . Then (o, €) is isomor-
phic with the representation m € Irr(G™) associated with (¢, €) in Theorems and
(2.3

Proof. Write ¢ as zg¢p, with z4 € Z(GY) and ¢, € ®(G) bounded and discrete. Let
X¢ € X (GT) correspond to z4. By Theorem T = X¢ ® ™ where m, corresponds
to (¢p, €). On the other hand Theorem d says that

(¢, €) = T(2pPp, €) = Xg ® (P, €).
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Therefore it suffices to prove the proposition under the additional assumption that
¢ is bounded.
Applying Proposition repeatedly, we find that 7(¢, €) embeds in

(4.25) Hpa L0(p,(a=1)/2,(1 = d)/2) x m(6,€),
where Jord(¢) C Jord(¢) and & = €| g+ is alternated in the sense of (4.9)). Here the
é

product runs over some triples with €(z,,) = €(2,,4/), not necessarily all such triples.
Similarly, by [Mcell, §5] m embeds in

(4.26) HWL, 8(p,(a—1)/2,(1—d")/2) x 7

with Jord(7) C Jord(nm) and ez = €|g+ alternated. By Lemma both 7(¢, €) and

7 are completely positive discrete series representations. Further 7 and 7r(d~>, €) have
the same Jordan blocks, because both are obtained from Jord(w) = Jord(m (¢, €)) by
removing the pairs (p,a), (p,a’) that appear in the product. By Theorem a and
Proposition 7(¢,€) and 7w have the same supercuspidal support. From
and we see that 7r((5, €) and 7 also have the same supercuspidal support. With
Corollary we deduce that 7 = m(¢, é).

Thus both (¢, €) and 7 are subrepresentations of , which is isomorphic to
(4.26). By Theorem is a direct sum of precisely [Sp : S q;]l/ 2 subrepre-
sentations, which are mutually inequivalent. Every factor d(p, (a —1)/2,(1 —a')/2)
doubles the number of constituents, because

(427) 6(p) (CL - 1)/27 (1 - a/)/2) X W(qga g)
has length two. We can distinguish three classes of p’s:

(1) When Jord,(7) is nonempty, Proposition [4.3}a determines which summands
must be picked to get 7. (This works also for Mceglin’s parametrization, by
[Mcell, §5].) Namely, start with (p,b) € Jord(7) and an adjacent (p,a) €
Jord(m) \ Jord(#). Then Proposition [4.3]a imposes a condition (recall that e
was given). Next, take (p,a’) € Jord(w) \ Jord(7) adjacent to (p,a). Of the
two choices for a subrepresentation of , one fulfills the previous con-
dition and one does not (that is another consequence of Proposition 4.3}a).
Proceeding in this way, now with ¢ \ {(p,a), (p,a’)} in the role of ¢, we
discover step by step how to pick the right constituent of

(4.28) 8(p, (a" —1)/2,(1—d")/2) x 1(,€)

for other a”,a"”" € Jord(m) \ Jord(7) as well.

(2) Suppose that Jord,(7) is empty and that Jord,(m) consists of even numbers.
In this case we may take a’ = 0, set €(p,0) = 1 and use Proposition b.
As in the previous case, € determines which constituents of and (4.5)
must chosen to enable an embedding of 7.

(3) Suppose that Jord,(7) is empty and that Jord,(m) consists of odd numbers.
By Proposition [£.6] and Lemma [£.7] our two parametrizations involve the
same constituent of 6(p, (b—1)/2, (1—a_)/2) x (¢, €), where b is the smallest
a € Jord,(m) \ {a—} such that €(2,,) = €(zp,a_). Once we know that, the
method from the previous cases tells us which constituent of we have
to take, for any adjacent a”,a” € Jord, (7).
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Hence 7 and m(¢,€) are obtained from (4.25) by taking the same constituents of
(4.28) in all cases, so ™ = (¢, €). O

4.4. Tempered representations.
Consider a bounded L-parameter ¢ € ®(G). Recall from (1.4) and (L.5) that we

can decompose (¢, C?") as

Vv
(4.29) @weli Ny ®Vy @ @%IO Ny ® (Vy @ V),

where IV, is a multiplicity space and Vd\)/ is endowed with the representation 1V ®
pl o ¢. There exists a Levi subgroup L of G, unique up to conjugation, such that ¢
factors through ®(L) and defines a discrete L-parameter for L. Every factor GL,, (F")
of L appears in G as

{(A,B) € GL,,,(F) x GL,,,(F): B=JA T}

The same goes for LY and GV. Hence every 1) € I* which appears with multiplicity

p in ¢lgr,, (c), accounts for multiplicity 2 in (4.29). In view of (1.7), the part of ¢
with image in the factor Gy,_ of LY is precisely [, +.qim Nyodd ¥, while the part of

¢ in the type GL factors of LV is
@Wi |dim(Ny)/2]¢ ® @WO dim(Ny)e.

For ¢ € I° this involves a choice of 1 or ¥V @ p, o ¢, but that hardly matters
because both will appear equally often when we pass to GY. For the component
groups of ¢ it is a bit easier to work with G™ and L™, so we consider ¢ as element
of ®(G") and as ¢, € ®(L'). By these we mean just ®(G) and ®(L), only with
component groups of ¢ or ¢ computed in G¥* or LY*. In the description of S,
following , passing to G replaces S, by S*, which means that we forget the
determinant condition “S” on Zgv _ (¢). Thus

L+, (9r) = 11 01(C) x [ GLjdim(ny)/2)(C) x [ GL(Vy),
¢EI+:dime odd Yel* Ppelo

+ o~
S¢L - H {z0),
pelt:dim Ny odd
+_ _ gt _. gt +
sy= I ) =i~ 11 () = S5, %854,
ZZJGIJr:Nw?éO w€]+:dim(Nw)€2Z>0
Let usfix ef, € Irr(S;L) such that (¢, €1,) belongs to the image in of the parametriza-

tion map in Theorem for L™. Tt gives a discrete series representation 7(¢r, €r) €
Irr(L*), which by Proposition is the same for the endoscopic method as for

the Hecke algebra method. By Theorem E Ig:Uﬂ’(Qﬁ,,EL) has precisely |5$/¢L|
irreducible direct summands, which are mutually inequivalent and indexed by

{e € Irr(S(;') : €|S$L = eL} = Irr(Sz;/(bL).

The same conclusion was obtained in [MoTal, Theorem 13.1]. One part of the con-
structions behind Theorem [3.7]in [AMS2] [AMS3] is

G+
(4.30) (¢, €) = Homsg/% (6]8(;/% A7 ym(or.er)).
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Here the action of S;/ ¢, comes from intertwining operators

N(zy, ¢r,er) € Endgr (IS m(¢r.er)),

+
one for each generator z, of S /b

On the other hand, an irreducible tempered GT-representation m(¢). is con-
structed with endoscopy in [MoRe, §3.6], and it is checked that If: yT (¢, er) (called
o in [MoRe]) decomposes as

®5€Irr(8$) el gt =€L ﬂ((b)e.
oL

This decomposition can be achieved with suitable intertwining operators that make
S;r/ 4, act on ILGfUTr(gZ)L,eL) and are normalized in a way that is compatible with
the endoscopic methods in [MoRe|. The appropriate normalization stems from [Art]
§2.3] and involves L-functions and e-factors. Unfortunately, it becomes untractable
in the setting of Hecke algebras. Nevertheless, we can say more concretely that,
for every ¢ € I'T with dim Ny, € 2Z~¢ and ©(¢)) = d(p,a), there is a normalized
intertwining operator

N (2pa;7(¢r€L)) € Endgs (I8 (L, €L))
which squares to the identity. From [MoRel §2] we see that

+
(4.31) m(¢)e = (6|3;r/qb ®Ig:UW(¢L,€L))S¢/¢L =
L
{fixed points of the operators €(zy)N (2, m(¢r,€r)) with dim Ny, € 2Z~¢}.

Lemma 4.9. Pick an inertial equivalence class s for Gt and choose an isomor-
phism H(sT)P = H(stY, q;/Q) as in Proposition .
For every bounded (¢,€) € ®(GT)" and every ¢ € It N Jord(¢) with w(¢) =

(p,a), the intertwining operators

N(zpja,w(qSL,eL)) and N (zy, ¢r,€L)

agree via the Hecke algebra isomorphism.

Proof. We need to distinguish a few cases.

First we suppose that dim Ny, is odd. Then v appears in the factor G of LT,
and the two intertwining operators of G -representations under consideration are
induced by the analogous intertwining operators of G, -representations. The latter
two agree by Lemma [£.7]

Now we suppose dim N, that is even and that ¢ = 7 ® P, with 7 € Irr(WF);f.
Here a is odd because ¢» € I". The same arguments as for Lemma show that
N (2pa,7(¢1,€1)) and N(zy, @1, €r,) agree because N(sg, px o_) and N(sg,7 X ¢_)
agree.

Finally we suppose that dim N is even and that ¢ = 7 ® P, with 7 € Irr(W F)(;
Now a is even because ¢ € I'". In this case we do not know whether N(sg,p x o_)
and N(sg, T x ¢_) match via the Hecke algebra isomorphism. But both are unique
up to scalars and square to the identity, so the agree up to a factor +1.

Write e = ad,. Motivated by , we want to compare the operators

(4.32) N (we,IndSc(8(p,a)) x o) and N(we,Sc(T @ Py) X ¢_),
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where the right hand side is an abbreviation of (4.23). From the remarks after
(4.14) we know that the former is determined (via a continuous deformation) by the
intertwining operator

(4.33) N((sgx---x88),pX--XpxXo_),

where sg and p both appear a times. For each such factor p, we get a contribution
which is induced by N(sg,p x o_).

Similarly, in the proof of Lemma we saw that N(we,Sc(T @ P,) X ¢_) is
determined in the same way by ([.24) and N(sg, 7 x ¢_). It follows that, via the
appropriate Hecke algebra isomorphism, (4.33)) and (4.24)) agree up to a factor (+1)%.
Since a is even they really agree, and so do the two sides of . We note that

N(Zpﬂ,ﬂ'(d)L,GL)) and N(zw,gﬁL,eL)

are induced by (4.32), on both sides in the same way as in (4.16), so with the identity
on factors not involved in (4.32). We combine that with the above analysis of (4.32) -
to establish the lemma in this case.

From Proposition Lemma (4.30) and (4.31) we conclude:

Corollary 4.10. In the setting of Proposition let (¢,€) € D(GT)" be bounded.
Then (¢, €) € Irr(G) from Theorem 18 1somorphic with the tempered represen-
tation m(¢)e from [MoRe].

Together with Theorem [3.7}d, Corollary [£.10] implies that

(4.34) T(XP)e = X @ (o).
for all bounded (¢, ¢€) € ®.(G) and all unitary x € X, (GT).

We recall that with the Langlands classification [Ren] one can construct and
parametrize all irreducible smooth representations of a reductive p-adic group in
terms of the irreducible tempered representations of its Levi subgroups. (Although
[Ren] works in a setting of connected reductive F-groups, the same arguments apply
just as well to G™.)

There also exists a Langlands classification for (enhanced) L-parameters [SiZil,
which is analogous. With and these two versions of the Langlands classi-
fication, one can canonically extend the parametrization of irreducible tempered
G -representations in [MoRe| to a parametrization of Irr(G*1). The same extension
was also obtained in [ABPSI], with different methods.

Theorem 4.11. Let s be an inertial equivalence class for GT. There exists an
algebra isomorphism H(s+)P = H (st q}p/2), unique up to conjugation by elements
of O(Ty+)*, such that the following holds.

For each (¢,€) € ®,(G1)*", the G*-representation (¢, €) constructed via Hecke
algebras in Theorem is isomorphic with the G -representation associated to (¢, €)
by [MoRe| and the Langlands classification.

Proof. As before, the Hecke algebra isomorphism comes from Propositions and
By [SiZi] there exist a Levi subgroup LV of GV, a bounded ¢, € ®(L) and
X € Z(GVY)°, strictly positive with respect to the Borel subgroup BY of GV, such
that ¢ = x¢p in ®(G). Moreover, this expression for ¢ is unique up to conjugation,
and S¢()+) is canonically isomorphic with Sé)j) (computed in L1V 4¢;). The aforemen-
tioned extension of [MoRe] via the Langlands classification sends (¢, €) to the unique
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irreducible quotient of I (X ® m(p)e ) On the other hand, by [AMS2] Proposi-
tion A.3] and Theorem (3 d the GT-representation m(¢, €) is the unique irreducible
quotient of

L+U( 6) =1 +U(X ® 7(¢p,€)).
Finally, we use that m(¢p)e = ( ,€) by Corollary |4.10f n applied to L*. O

5. UNITARY GROUPS

In this section we discuss how the setup and the statements in Sections can be
adjusted, so that the arguments and the results hold for unitary groups. Most of this
can be found in [Moe2] and [Heid, §C]. We prefer to use the convenient description
of L-parameters for unitary groups from [GGP].

Let E/F be a separable quadratic extension. Let V' be a finite dimensional F-
vector space endowed with an Hermitian form. Recall that the unitary group U(V)
is a reductive algebraic F-group, an outer form of GLgi, . The classification of
pure inner twists reads:

e When dimV = 2n, there is one quasi-split group Uy, (E/F) and one pure
inner twist U), (E/F), which is not quasi-split.

e When dim V' = 2n + 1, there is a quasi-split group Us,11(E/F), associated
to a Hermitian form with discriminant 1. There is an isomorphic but dif-
ferent form UY, | (E/F), which is associated to an Hermitian form whose
discriminant is nontrivial in F* /Ng/p(E*).

The complex dual group of U,,(E/F) and U, (E/F) is GL,,(C). The group
Wr/Wg = Gal(E/F) acts on GL,,(C) by the outer automorphism

Ars J,A7T gL

where —T" denotes inverse transpose and J,, is the anti-diagonal m x m-matrix whose
with on the anti-diagonal alternating 1 and -1. We use a compressed form of the
Langlands dual group'

Upn(E/F) = U}, (E/F) = GLy(C) x Wg/Wg.

Modifications in Paragraph
According to [GGPl Theorem 8.1], any L-parameter ¢ for U(V') is determined (up
to U(V)Y-conjugacy) by its restriction to Wg x SLy(C), which we denote ¢p. This
¢E is a conjugate-dual representation, which means that ¢y, is isomorphic to s ¢g
for any s € Wp \ Wg. Moreover ¢ is conjugate-orthogonal (sign +1) if dim V' is
odd and conjugate-symplectic (sign -1) if dim V' is even. That provides a bijection
from ®(U(V)) to the isomorphism classes of conjugate-dual representations of Wg
with sign (—1)4™V =1 For consistency we define sgn(U(V)Y) = (—1)4m V-1,

Conversely, let a conjugate-dual m-dimensional representation ¢ of W xS Lo (C)
with sign (—1)""! be given. Then one can determine

(5.1) qb: WF X SLQ((C) — GLm(C) A WF/WE
up to conjugacy by requiring that ¢(W g \ Wg) consists of elements s (in the non-
identity component) such that s - ¢p is equivalent with ¢Y,. We abbreviate this
operation to ¢p — indwg oF.

It is natural to relate the centralizer group of ¢ (computed in U(V)V) to a suitable
centralizer group of ¢p. To this end we recall from [GGP| that ¢ determines an
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explicit bilinear form By on C™, with respect to which ¢g is conjugate-dual. By
[GGPl, Theorem 8.1.iii

Zywyv(®) = Zauwy,) (PE),
Aut(By) = {g € GLi(C) : By(gv, gv') = By(v,0') Yo,v" € C"}.
From [GGP, §4] one sees that Zayy(p,)(¢r) behaves exactly like ZGVj (¢) in the

case of general spin groups. More explicitly, Zyy)v(¢) and Zu (s ) (@) are given
by ([1.5) and (1.10]), we only have to omit the S (for det = 1) from those formulas.

Modifications in Paragraph
The standard Levi subgroups of G,, = U(V') are of the form

L(F)=Gp_ xGLp,(E) x--- x GLy, (E)
with G,,_ = U(V") of the same type as G,, and dimV — dim V' = 2(ny + - - + ny).
Similarly
Le=LGn_ x indyy" (GLy, (C) x -+ x GLy, (C)).
By Shapiro’s lemma, ®(L(F)) is naturally in bijection with
O(Gp_) x ®(GLy, (E) x -+ x GLy, (E)),
which by [GGP, Theorem 8.1] can be regarded as a set of conjugacy classes of

homomorphisms with domain Wg x SLs(C). Accordingly, the centralizer of ¢ €
®(L(F)) can be computed as the centralizer of ¢p in

LY}, = Aut(Bg) x GLy, (C) x - -+ x GLy, (C).

We write
Sy = Spp, = m0(Zv () = o (ZLYE(¢E))-
The cuspidal support [AMSI] of (¢,€) € ®(G) can be computed via

Zav(6(Wr)) = Zaw(B,) (9E(WE)).
This implies that

Sc(,€) = Sc(indyy” ¢, €) = indy* (Sc(g, €)),

where indgg does not change the enhancements.

As a consequence, everything in Paragraph can be carried out for unitary
groups, with ¢ and LY, instead of ¢ and LY. However, the results are not always
precisely as before. We have to distinguish two cases, depending on the ramification
of U(V), that is, the ramification of E/F.

Suppose first that E/F is ramified. We take a Frobenius element of W also as
Frobenius element of W, and we pick a representative for Wr/Wpg in Irp. Then
ReSYZE and Res}’vF are compatible with ¢ — ¢g and indgg . Hence the calculations
in Paragraph produce the correct results for U(V). We only have to remember
to omit the centre C* of GSpin(V)" and the S for det = 1, like we needed to do for
symplectic groups.

Next we suppose that E/F is unramified. Then Iy = Ir and as Frobenius element
of W we take the square of a Frobenius element of Wg. In contrast to the ramified
case, the impact on Paragraph is substantial.

For 7 € Irr(WE)jf, there is still a unique (up to isomorphism) unramified twist
7/ = 7 ® x which is conjugate-dual and not isomorphic to 7. However, in contrast
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to before 7" and 7 always have different signs [Sol4, Proposition 4.10.b]. We order
7,7 so that £, > . and if £, = £, = 0 then a; > a,.
The next change occurs in ([1.19)), there

7o = 7/([],2(CLa, (©)), e, )

_ x er _

— HT (C*/Z(GLy, (C)), A ¢j) = HT Ty 1,
with the latter two products running over Irr' (W E);f U Irr(W E)g We note that
|Z(GLnj(<C))indwF¢,\ =2|Z(GLy4.(C)),| = 2t,.

W P
In particular
X (T +) =2t (X" (T) NQX*(Tyv ).
Further (1.20) becomes
J = Zev(¢(IF)) = HT Gt

= J]  Glacieee, (©OFx  [[ GL(C).
TEII“I'/(WE)§ Telr(Wg)j

As a consequence ((1.23) has to be modified in the cases 7 € Irr(W E)(';, now it reads

Co. U400 =0
V _ er T T
R(Gyup T T) —{ BC.. 0y +0,>0 -

In view of the new shape of J, its maximal torus given in (1.24)) becomes

T=[I7r= II (@)= I (@)™

TEII‘I‘/(WE)i TGIrr(WE)g

The computation of my for a € R(J,T)eq after also changes for unramified
unitary groups. For 7 € Irr(WE)g, the root system R(Gg(IE),TTv T) has 2t; irre-
ducible components, all of type A, _; and permuted cyclically by Frobr. Hence m,
equals 2t,m/ , and the same argument as before shows that m,, = 1.

When 7 € Irr/(WE);f, the root system R(Gg(IE)ﬂ_T, T) has t; irreducible com-
ponents. They are of type Ase i, 4¢, and Frobp permutes them cyclically, so
me = t;m),. Here the computation of m/, proceeds analogously to in Paragraph
for the cases 7 € Irr(WF);f_. We conclude that m, = 2t, unless ¢, + £, = 0 and
a € Cg. is long, then my, = t;.

From this we obtain the root systems R,v  whose union is Rsv. For 7 € Irr(W E)g
we obtain A, 1 C X*(Tyv ) as before. For 7 € Irr’(WE)(:; with £ + £ > 0
we get 2t,B.  C 2t;X*(T), which can be identified with B, in X*(T,v ;). For
7 € In'(Wg), with £; + £ = 0 we obtain 2t; D, U t,(C, \ D) in 2t,X*(T),
which identifies with B, in X*(Tyv ;).

The root datum for the affine Hecke algebra decomposes nicely:

Rev = @T Revr = @T (X*(Tsv,‘r), Rev 7, Xo(Tev 1), Rsvv)'

The calculation of the parameter functions A, \* (following the method in [AMS3|
§3.3]) leads to the following modified version of Table
Here the first line is an instance of the second line, we mention it separately because
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TABLE 3. Data from R4v for each 7

ar  ap  X*(Tev;) Rev, Mo A(B) 2*(B)
0 -1 Ze B.. 2 i i

>1 >-1 Zc™ Be. 2t;  tr(ar +ap+2) tr(ar —ap)
Irr(Wg)j Vs Ae 1 2t —— ——

it comes from the exceptional case £, + £, = 0 discussed above. We note that in all

lines of TableW(Rgv,T) is the full group Wyv, so I' S) is trivial and can be omitted
from the table.

Modifications in Section [2l
Most of the necessary adjustments, as well as a proof of Theorem [2.I}¢,d for unitary
groups, can be found in [Mce2]. Let us spell out the significant changes.

The Jordan blocks of a discrete series representation m of G = U (V) are based
on unitary supercuspidal representations p of GL,,(E). Instead of , they have
to be conjugate-dual: p = p", where the bar indicates composing a representation
with the natural action of Gal(E/F) on U(V).

Although there exist outer automorphisms of unitary groups, we should not in-
volve them like for SO(V') and GSpin(V'), because here G = G. Rather, we should
just replace Out(G) by the trivial group everywhere. Then all results in Section
hold for unitary groups (except Theorem which is specific for general spin

groups).

Modifications in Section [3l
No further adjustments are needed, everything works in the above setup. The groups
| P Fﬁv,Fjv are trivial, so all considerations about those are superfluous for uni-
tary groups. Also, as G = G the material in Paragraph becomes trivial.

Modifications in Section [4l
There is only one small change, when U(V') is unramified. In the proof of Proposition
the case £, = 0 can be treated just as £, > 0, because by Table [3] the relevant
Hecke algebra has a root datum of type B, with parameters such that A\(8) =
A (B) > 0.
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