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Abstract. We prove that a strengthened form of the local Langlands
conjecture is valid throughout the principal series of any connected split
reductive p-adic group. The method of proof is to establish the pres-
ence of a very simple geometric structure, in both the smooth dual and
the Langlands parameters. We prove that this geometric structure is
present, in the same way, for the general linear group, including all
of its inner forms. With these results as evidence, we give a detailed
formulation of a general geometric structure conjecture.
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1. Introduction

Let G be a connected reductive p-adic group. The smooth dual of G —
denoted Irr(G) — is the set of equivalence classes of smooth irreducible
representations of G. In this paper we state a conjecture based on [5, 6, 7, 8]
which asserts that a very simple geometric structure is present in Irr(G).
A first feature of our conjecture is that it provides a guide to determining
Irr(G). A second feature of the conjecture is that it connects very closely
to the local Langlands conjecture.

For any connected reductive p-adic group G, validity of the conjecture
gives an explicit description of Bernstein’s infinitesimal character [15] and
of the intersections of L-packets with Bernstein components in Irr(G).

The conjecture can be stated at four levels:

• K-theory of C∗-algebras
• Periodic cyclic homology of finite type algebras
• Geometric equivalence of finite type algebras
• Representation theory

At the level of K-theory, the conjecture interacts with the Baum–Connes
conjecture [13]. BC has been proved for reductive p-adic groups by V.
Lafforgue [44]. The conjecture of this paper ABPS can be viewed as a
“lifting” of BC from K-theory to representation theory. In this paper ABPS
will be stated at the level of representation theory.

The overall point of view of the paper is as follows. Denote the L-group
of the p-adic group G by LG. If G is split, then LG is a connected reductive
complex algebraic group. A Langlands parameter is a homomorphism of
topological groups

WF × SL2(C) −→LG
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which is required to satisfy some conditions. Here WF is the Weil group
of the p-adic field F over which G is defined. Let G denote the complex
dual group of G, and let {Langlands parameters}/G be the set of all the
Langlands parameters for G modulo the action of G. The local Langlands
correspondence asserts that there is a surjective finite-to-one map

Irr(G) −→ {Langlands parameters}/G,

which is natural in various ways. A more subtle version [46, 42, 3, 66]
conjectures that one can naturally enhance the Langlands parameters with
irreducible representations of certain finite groups, such that the map be-
comes bijective.

The aim of the paper is to introduce into this context a countable disjoint
union of complex affine varieties, denoted {Extended quotients}, such that
there is a commutative triangle of maps

{Extended quotients}

++vv
Irr(G) // {Langlands parameters}/G

in which the left slanted arrow is bijective and the other two arrows are
surjective and finite to one.

The key point is that in practice {Extended quotients} is much more eas-
ily calculated than either Irr(G) or the G-conjugacy classes of Langlands
parameters. In examples, bijectivity of the left slanted map is proved by us-
ing results on the representation theory of affine Hecke algebras. The right
slanted map is defined and studied by using an appropriate generalization
of the Springer correspondence.

The paper is divided into three parts:

• Part 1: Statement of the conjecture
• Part 2: Examples
• Part 3: Principal series of connected split reductive p-adic groups

We should emphasize that the conjecture in Part 1 of this article is a
strengthening of the geometric conjecture formulated in [5, 6, 7, 8]. In [5,
6, 7, 8] the local Langlands correspondence was not part of the conjecture.
Now, by contrast, the local Langlands correspondence is locked into our
conjecture.

Let s be a point in the Bernstein spectrum of G, let Irrs(G) be the part
of Irr(G) belonging to s and let {Langlands parameters}s be the set of
Langlands parameters whose L-packets contain elements of Irrs(G). Let Hs

be the stabilizer in G of this set of Langlands parameters.
Furthermore, let T s and W s be the complex torus and finite group as-

signed by Bernstein to s, and let (T s//W s)2 is the extended quotient (of
the second kind) for the action of W s on T s. According to our conjecture,
the local Langlands correspondence, restricted to the objects attached to
s, factors through the extended quotient (T s//W s)2. In this precise sense,
our conjecture reveals a geometric structure latent in the local Langlands
conjecture.
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The essence of our conjecture is:

Conjecture 1.1. Let G be a quasi-split connected reductive p-adic group or
an inner form of GLn(F ), and let Irr(G)s be any Bernstein component in
Irr(G). Then there is a commutative triangle

(T s//W s)2

**xx
Irr(G)s // {Langlands parameters}s/Hs

in which the horizontal arrow is the map of the local Langlands conjecture,
and the two slanted arrows are canonically defined maps with the left slanted
arrow bijective and the right slanted arrow surjective and finite-to-one.

In Part 2, we give an account of the general linear group GLn(F ) and its
inner forms GLm(D). Here, D is an F -division algebra of dimension d2 over
its centre F and n = md. Except for GLn(F ), these groups are non-split.
The main result of Part 2 is:

Theorem 1.2. Conjecture 1.1 is valid for G = GLm(D). In this case, for
each Bernstein component Irr(G)s ⊂ Irr(G), all three maps in the commu-
tative triangle are bijective.

Calculations involving two other examples — G = Sp2n(F ) and G =
G2(F ) — are also given in Part 2.

In Part 3 we assume that the local field F satisfies a mild restriction on
its residual characteristic, depending on G. For the principal series we then
prove that the conjectured geometric structure (i.e. extended quotients) is
present in the enhanced [46, 42, 3, 66] Langlands parameters. In this case
the enhanced Langlands parameters reduce to simpler data, which we call
Kazhdan–Lusztig–Reeder parameters.

More precisely, the main result in Part 3, namely Theorem 24.1, is:

Theorem 1.3. Let G be a connected split reductive p-adic group. Assume
that the residual characteristic of the local field F is not a torsion prime for
G. Let Irr(G)s be a Bernstein component in the principal series of G. Then
Conjecture 1.1 is valid for Irr(G)s i.e. there is a commutative triangle of
natural bijections

(T s//W s)2

))xx
Irr(G)s // {KLR parameters}s/Hs

In this triangle {KLR parameters}s/Hs is the set of Kazhdan–Lusztig–
Reeder parameters for the Bernstein component Irr(G)s, modulo conjugation
by Hs.

The construction of the bottom horizontal map in the triangle generalizes
results of Reeder [55]. Reeder requires, when the inducing character is ram-
ified, that G shall have connected centre; we have removed this restriction.
Therefore, our result applies to the principal series of SLn(F ).
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Additional points in Part 3 are — labelling by unipotent classes, correct-
ing cocharacters, and proof of the L-packet conjecture stated in [8].

Finally, the appendix defines geometric equivalence. This is an equivalence
relation on finite type algebras which is a weakening of Morita equivalence.
Geometric equivalence underlies and is the foundation of Conjecture 1.1

Acknowledgements. Thanks to Mark Reeder for drawing our attention
to the article of Kato [41]. We thank Joseph Bernstein, David Kazhdan,
George Lusztig, and David Vogan for enlightening comments and discus-
sions.

Part 1. Statement of the conjecture

2. Extended quotient

Let Γ be a finite group acting on a complex affine variety X as automor-
phisms of the affine variety

Γ×X → X.

The quotient variety X/Γ is obtained by collapsing each orbit to a point.
For x ∈ X, Γx denotes the stabilizer group of x:

Γx = {γ ∈ Γ : γx = x}.

c(Γx) denotes the set of conjugacy classes of Γx. The extended quotient is
obtained by replacing the orbit of x by c(Γx). This is done as follows:

Set X̃ = {(γ, x) ∈ Γ×X : γx = x}. X̃ is an affine variety and is a subvariety

of Γ×X. The group Γ acts on X̃:

Γ× X̃ → X̃

α(γ, x) =(αγα−1, αx), α ∈ Γ, (γ, x) ∈ X̃.

The extended quotient, denoted X//Γ, is X̃/Γ. Thus the extended quotient

X//Γ is the usual quotient for the action of Γ on X̃. The projection X̃ →
X, (γ, x) 7→ x is Γ-equivariant and so passes to quotient spaces to give a
morphism of affine varieties

ρ : X//Γ→ X/Γ.

This map will be referred to as the projection of the extended quotient onto
the ordinary quotient.

The inclusion

X ↪→ X̃

x 7→ (e, x) e = identity element of Γ

is Γ-equivariant and so passes to quotient spaces to give an inclusion of
affine varieties X/Γ ↪→ X//Γ. This will be referred to as the inclusion of the
ordinary quotient in the extended quotient. We will denote X//Γ with X/Γ
removed by X//Γ−X/Γ.



6 A.-M. AUBERT, P. BAUM, R. PLYMEN, AND M. SOLLEVELD

3. Bernstein spectrum

We recall some well-known parts of Bernstein’s work on p-adic groups,
which can be found for example in [15, 56].

With G fixed, a cuspidal pair is a pair (M, σ) where M is a Levi fac-
tor of a parabolic subgroup P of G and σ is an irreducible supercuspidal
representation of M. Here supercuspidal means that the support of any
matrix coefficient of such a representation is compact modulo the centre of
the group. Pairs (M, σ) and (M, σ′) with σ isomorphic to σ′ are considered
equal. The group G acts on the space of cuspidal pairs by conjugation:

g · (M, σ) = (gMg−1, σ ◦Ad−1
g ).

We denote the space of G-conjugacy classes by Ω(G). We can inflate σ to
an irreducible smooth P-representation. Normalized smooth induction then
produces a G-representation IGP(σ).

For any irreducible smooth G-representation π there is a cuspidal pair
(M, σ), unique up to conjugation, such that π is a subquotient of IGP(σ).
(The collection of irreducible subquotients of the latter representation does
not depend on the choice of P.) The G-conjugacy class of (M,σ) is called
the cuspidal support of π. We write the cuspidal support map as

Sc : Irr(G)→ Ω(G).

For any unramified character ν of M, (M, σ ⊗ ν) is again a cuspidal pair.
Two cuspidal pairs (M, σ) and (M′, σ′) are said to be inertially equivalent,
written (M, σ) ∼ (M′, σ′), if there exists an unramified character ν :M→
C× and an element g ∈ G such that

g · (M, ψ ⊗ σ) = (M′, σ′).

The Bernstein spectrum of G, denoted B(G), is the set of inertial equivalence
classes of cuspidal pairs. It is a countable set, infinite unless G = 1. Let
s = [M, σ]G ∈ B(G) be the inertial equivalence class of (M, σ) and let
Irr(G)s be the subset of Irr(G) of representations that have cuspidal support
in s. Then Irr(G) is the disjoint union of the Bernstein components Irr(G)s:

Irr(G) =
⊔

s∈B(G)

Irr(G)s.

The space Xunr(M) of unramified characters of M is a natural way a com-
plex algebraic torus. Put

(1) Stab(σ) = {ν ∈ Xunr(M) | σ ⊗ ν ∼= σ}.

This is known to be a finite group, so Xunr(M)/Stab(σ) is again a complex
algebraic torus. The map

(2) Xunr(M)/Stab(σ)→ Irr(M)[M,σ]M , ν 7→ σ ⊗ ν

is bijective and thus provides Irr(M)[M,σ]M with the structure of an alge-
braic torus. This structure is canonical, in the sense that it does not depend
on the choice of σ in Irr(M)[M,σ]M .

The Weyl group of (G,M) is defined as

W (G,M) := NG(M)/M.



GEOMETRIC STRUCTURE 7

It is a finite group which generalizes the notion of the Weyl group associated
to a maximal torus. The Weyl group of (G,M) acts naturally on Irr(M),
via the conjugation action on M. The subgroup

(3) W s := {w ∈W (G,M) | w stabilizes [M, σ]M}.

acts on Irr(M)[M,σ]M . We define

(4) T s := Irr(M)[M,σ]M

with the structure (2) as algebraic torus and the W s-action (3). We note
that the W s-action is literally by automorphisms of the algebraic variety T s,
via (2) they need not become group automorphisms. Two elements of T s

are G-conjugate if and only if they are in the same W s-orbit.
An inertially equivalent cuspidal pair (M′, σ′) would yield a torus T ′s

which is isomorphic to T s via conjugation in G. Such an isomorphism T s ∼=
T ′s is unique up to the action of W s.

The element of T s/W s associated to any π ∈ Irr(G)s is called its infini-
tesimal central character, denoted πs(π). Another result of Bernstein is the
existence of a unital finite type O(T s/W s)-algebra Hs, whose irreducible
modules are in natural bijection with Irr(G)s. The construction is such that
Hs has centre O(T s/W s) and that πs(π) is precisely the central character
of the corresponding Hs-module.

Since Irr(Hs) is in bijection with the collection of primitive ideals of Hs,
we can endow it with the Jacobson topology. By transferring this topology to
Irr(G)s, we make the latter into a (nonseparated) algebraic variety. (In fact
this topology agrees with the topology on Irr(G)s considered as a subspace
of Irr(G), endowed with the Jacobson topology from the Hecke algebra of
G.)
Summary: For each Bernstein component s ∈ B(G) there are:

(1) A finite group W s acting on a complex torus T s;
(2) A subset Irr(G)s of Irr(G);
(3) A morphism of algebraic varieties

πs : Irr(G)s −→ T s/W s;

(4) A unital finite-type O(T s/W s)-algebra Hs with

Irr(Hs) = Irr(G)s.

4. Approximate statement of the conjecture

As above, G is a quasi-split connected reductive p-adic group or an inner
form of GLn(F ), and s is a point in the Bernstein spectrum of G.

Consider the two maps indicated by vertical arrows:

T s//W s

ρs

��

Irr(G)s

πs

��
T s/W s T s/W s
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Here πs is the infinitesimal character and ρs is the projection of the extended
quotient on the ordinary quotient. In practice T s//W s and ρs are much easier
to calculate than Irr(G)s and πs.

An approximate statement of the conjecture is:

πs : Irr(G)s −→ T s/W s and ρs : T s//W s −→ T s/W s are almost the same.

The precise statement of the conjecture — in particular, precise meaning of
“are almost the same” — is given in section 7 below.
πs and ρs are both surjective finite-to-one maps and morphisms of alge-

braic varieties. For x ∈ T s/W s, denote by #(x, ρs), #(x, πs) the number
of points in the pre-image of x using ρs, πs. The numbers #(x, πs) are of
interest in describing exactly what happens when Irr(G)s is constructed by
parabolic induction.

Within T s/W s there are algebraic sub-varieties R(ρs), R(πs) defined by

R(ρs) := {x ∈ T s/W s | #(x, ρs) > 1}
R(πs) := {x ∈ T s/W s | #(x, πs) > 1}

It is immediate that

R(ρs) = ρs(T s//W s − T s/W s)

R(πs) will be referred to as the sub-variety of reducibility.
In many examples R(ρs) 6= R(πs). Hence in these examples it is impossi-

ble to have a bijection
T s//W s −→ Irr(G)s

with commutativity in the diagram

T s//W s

ρs %%

// Irr(G)s

πs
yy

T s/W s

A more precise statement of the conjecture is that after a simple algebraic
correction (“correcting cocharacters”) ρs becomes isomorphic to πs. Thus
ρs is an easily calculable map which can be algebraically corrected to give
πs. An implication of this is that within the algebraic variety T s/W s there
is a flat family of sub-varieties connecting R(ρs) and R(πs).

5. Extended quotient of the second kind

With Γ, X, Γx as in Section 2 above, let Irr(Γx) be the set of (equivalence
classes of) irreducible representations of Γx. The extended quotient of the
second kind, denoted (X//Γ)2, is constructed by replacing the orbit of x (for
the given action of Γ on X) by Irr(Γx). This is done as follows :

Set X̃2 = {(x, τ)
∣∣x ∈ X and τ ∈ Irr(Γx)}. Then Γ acts on X̃2.

Γ× X̃2 → X̃2,

γ(x, τ) = (γx, γ∗τ),

where γ∗ : Irr(Γx)→ Irr(Γγx). Now we define

(X//Γ)2 := X̃2/Γ,
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i.e. (X//Γ)2 is the usual quotient for the action of Γ on X̃2. The projection

X̃2 → X (x, τ) 7→ x is Γ-equivariant and so passes to quotient spaces to
give the projection of (X//Γ)2 onto X/Γ.

ρ2 : (X//Γ)2 −→ X/Γ

Denote by trivx the trivial one-dimensional representation of Γx. The inclu-
sion

X ↪→ X̃2

x 7→ (x, trivx)

is Γ-equivariant and so passes to quotient spaces to give an inclusion

X/Γ ↪→ (X//Γ)2

This will be referred to as the inclusion of the ordinary quotient in the
extended quotient of the second kind.

6. Comparison of the two extended quotients

With X,Γ as above, there is a non-canonical bijection ε : X//Γ→ (X//Γ)2

with commutativity in the diagrams

(5) X//Γ

ρ ##

ε // (X//Γ)2

ρ2zz

X//Γ
ε // (X//Γ)2

X/Γ X/Γ

cc ::

To construct the bijection ε, some choices must be made. We use a family
ψ of bijections

ψx : c(Γx)→ Irr(Γx)

such that for all x ∈ X:

(1) ψx([1]) = trivx;
(2) ψγx([γgγ−1]) = φx([g]) ◦Ad−1

γ for all g ∈ Γx, γ ∈ Γ;
(3) ψx = ψy if Γx = Γy and x, y belong to the same connected component

of the variety XΓx .

We shall refer to such a family of bijections as a c-Irr system. Clearly ψ

induces a map X̃ → X̃2 which preserves the X-coordinates. By property
(2) this map is Γ-equivariant, so it descends to a map

ε = εψ : X//Γ→ (X//Γ)2.

Observe that εψ makes the diagrams from (5) commute, the first by con-
struction and the second by property (1). The restriction of εψ to the fiber
over Γx ∈ X/Γ is ψx, and in particular is bijective. Therefore εψ is bijective.
Property (3) is not really needed, it serves to exclude ugly examples.

One way to topologize (X//Γ)2 is via the X-coordinate, in other words, by
simply pulling back the topology from X/Γ via the natural projection. With
respect to this naive topology εψ is continuous. This continuous bijection,
however, is not usually a homeomorphism. In most cases X//Γ is more
separated than (X//Γ)2.
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But there are other useful topologies. Let O(X) be the coordinate algebra
of the affine variety X and let O(X)o Γ be the crossed-product algebra for
the action of Γ on O(X). There are canonical bijections

Irr(O(X) o Γ)←→ Prim(O(X) o Γ)←→ (X//Γ)2,

where Prim(O(X) o Γ) is the set of primitive ideals in this algebra. The
irreducible module associated to (x, τ) ∈ (X//Γ)2 is

(6) Ind
O(X)oΓ
O(X)oΓx

(Cx ⊗ τ).

The space Prim(O(X) o Γ) is endowed with the Jacobson topology, which
makes it a nonseparated algebraic variety. This can be transferred to a
topology on (X//Γ)2, which we also call the Jacobson topology. It is slightly
coarser than the naive topology described above.

The bijection εψ is not always continuous with respect to the Jacobson
topology. In fact, it follows readily from (6) that εψ is continuous in this
sense if and only the following additional condition is satisfied:

(4) Suppose that x, y lie in the same connected component of the variety
XΓx , that Γy ⊃ Γx and that γ ∈ Γx. Then the Γy-representation

ψy([γ]) appears in Ind
Γy
Γx
ψx([γ]).

While the first three conditions are easy to fulfill, the fourth can be rather
difficult.

The two finite-type O(X/Γ)-algebras O(X//Γ) and O(X)oΓ are usually
(i.e. if the action of Γ on X is neither trivial nor free) not Morita equivalent.
In examples relevant to the representation theory of reductive p-adic groups
these two finite-type O(X/Γ)-algebras are equivalent via a weakening of
Morita equivalence referred to as “geometric equivalence”, see the appendix.

7. Statement of the conjecture

As above, G is a quasi-split connected reductive p-adic group or an inner
form of GLn(F ), and s ∈ B(G). Let {Langlands parameters}s be the set of
Langlands parameters for s ∈ B(G) and Hs the stabilizer of this set in the
dual group G.

The conjecture consists of the following five statements.

(1) The infinitesimal character

πs : Irr(G)s → T s/W s

is one-to-one if and only if the action of W s on T s is free.
(2) The extended quotient of the second kind (T s//W s)2 surjects by a

canonical finite-to-one map onto {Langlands parameters}s/Hs.
(3) The extended quotient of the second kind (T s//W s)2 is canonically

in bijection with the Bernstein component Irr(G)s.
(4) The canonical bijection

(T s//W s)2 ←→ Irr(G)s

comes from a canonical geometric equivalence of the two unital finite-
type O(T s/W s)-algebras O(T s)oW s and Hs. See the appendix for
details on “geometric equivalence”.
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(5) The above maps and the local Langlands correspondence fit in a
commutative triangle

(T s//W s)2

**xx
Irr(G)s // {Langlands parameters}s/Hs

(6) A c-Irr system can be chosen for the action of W s on T s such that
the resulting bijection

ε : T s//W s −→ (T s//W s)2

when composed with the canonical bijection (T s//W s)2 → Irr(G)s

gives a bijection

µs : T s//W s −→ Irr(G)s

which has the following six properties:

Notation for Property 1:
Within the smooth dual Irr(G), we have the tempered dual
Irr(G)temp = {smooth tempered irreducible representations of G}/ ∼
T s

cpt = maximal compact subgroup of T s.
T s

cpt is a compact real torus. The action of W s on T s preserves T s
cpt, so we

can form the compact orbifold T s
cpt//W

s.

Property 1 of the bijection µs :
The bijection µs : T s//W s −→ Irr(G)s maps T s

cpt//W
s onto Irr(G)s ∩

Irr(G)temp, and hence restricts to a bijection

µs : T s
cpt//W

s ←→ Irr(G)s ∩ Irr(G)temp

Property 2 of the bijection µs :
For many s the diagram

T s//W s

ρs %%

µs // Irr(G)s

πs
yy

T s/W s

does not commute.

Property 3 of the bijection µs:
In the possibly non-commutative diagram

T s//W s

ρs %%

µs // Irr(G)s

πs
yy

T s/W s

the bijection µs : T s//W s −→ Irr(G)s is continuous where T s//W s has
the Zariski topology and Irr(G)s has the Jacobson topology — and the
composition

πs ◦ µs : T s//W s −→ T s/W s
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is a morphism of algebraic varieties.

Property 4 of the bijection µs:
There is an algebraic family

θz : T s//W s −→ T s/W s

of finite morphisms of algebraic varieties, with z ∈ C×, such that

θ1 = ρs, θ√q = πs ◦ µs, and θ√q(T
s//W s − T s/W s) = R(πs).

Here q is the order of the residue field of the p-adic field F over which G is
defined and R(πs) ⊂ T s/W s is the sub-variety of reducibility. Setting

Yz = θz(T
s//W s − T s/W s)

a flat family of sub-varieties of T s/W s is obtained with

Y1 = R(ρs), Y√q = R(πs).

Property 5 of the bijection µs (Correcting cocharacters):

For each irreducible component c of the affine variety T s//W s there is a
cocharacter (i.e. a homomorphism of algebraic groups)

hc : C× −→ T s

such that

θz[w, t] = b(hc(z) · t)

for all [w, t] ∈ c.

Let b : T s −→ T s/W s be the quotient map. Here, as above, points of T̃s are
pairs (w, t) with w ∈ W s, t ∈ T s and wt = t. [w, t] is the point in T s//W s

obtained by applying the quotient map T̃ s → T s//W s to (w, t).
Remark. The equality

θz[w, t] = b(hc(z) · t)

is to be interpreted thus:
Let Z1, Z2, . . ., Zr be the irreducible components of the affine variety T s//W s

and let h1, h2, . . ., hr be the cocharacters as in the statement of Property
5. Let

νs : T̃ s −→ T s//W s

be the quotient map.

Then irreducible components X1, X2, . . ., Xr of the affine variety T̃ s can be
chosen with

• νs(Xj) = Zj for j = 1, 2, . . . , r
• For each z ∈ C× the map mz : Xj → T s/W s, which is the composi-

tion

Xj −→ T s −→ T s/W s

(w, t) 7−→ hj(z)t 7−→ b(hj(z)t),
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makes the diagram

Xj

mz ##

νs // Zj

θz{{
T s/W s

commutative. Note that hj(z)t is the product of hj(z) and t in the
algebraic group T s.

Remark. The conjecture asserts that to calculate

πs : Irrs(G) −→ T s/W s

two steps suffice:
Step 1: Calculate ρs : T s//W s −→ T s/W s.
Step 2: Determine the correcting cocharacters.

The cocharacter assigned to T s/W s ↪→ T s//W s is always the trivial cochar-
acter mapping C× to the unit element of T s. So all the non-trivial correcting
is taking place on T s//W s − T s/W s.

Notation for Property 6.
If S and V are sets, a labelling of S by V is a map of sets λ : S → V .
Property 6 of the bijection µs (L-packets):

As in Property 5, let {Z1, . . . , Zr} be irreducible components of the affine
variety T s//W s. Then a labelling λ : {Z1, Z2, . . . Zr} → V exists such that:
For every two points [w, t] and [w′, t] of T s//W s:

µs[w, t] and µs[w′, t′] are in the same L-packet

if and only

(i) θz[w, t] = θz[w
′, t′] for all z ∈ C×;

(ii) λ[w, t] = λ[w′, t′], where we lifted λ to a labelling of T s//W s in the
obvious way.

Remark. An L-packet can have non-empty intersection with more than one
Bernstein component. The conjecture does not address this issue. The
conjecture only describes the intersections of L-packets with any one given
Bernstein component.

In brief, the conjecture asserts that — once a Bernstein component has been
fixed — intersections of L-packets with that Bernstein component consist-
ing of more than one point are “caused” by repetitions among the correct-
ing cocharacters. If, for any one given Bernstein component, the correcting
cocharacters h1, h2, . . ., hr are all distinct, then (according to the conjecture)
the intersections of L-packets with that Bernstein component are singletons.

A Langlands parameter can be taken to be a homomorphism of topological
groups

WF × SL2(C) −→ LG,
where F is the p-adic field over which G is defined, WF is the Weil group of
F , and LG is the L-group of G. Let G, as before, denote the complex dual
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group of G. By restricting a Langlands parameter to the standard maximal
torus of SL2(C) a cocharacter

C× −→ T

is obtained, where T is a maximal torus of G. In examples, these give the
correcting cocharacters.

For any G and any s ∈ B(G) the finite group W s is an extended finite
Coxeter group i.e. is a semi-direct product for the action of a finite abelian
group Γ on a finite Weyl group W :

W s = W o Γ.

Due to this restriction on which finite groups can actually occur as a W s,
in examples there is often a clear preferred choice of c-Irr system for the
action of W s on T s.

What happens if G is a connected reductive p-adic group which is not
quasi-split? Many Bernstein components Irr(G)s have the geometric struc-
ture as in the statement of the conjecture above. However, in some examples
there are Bernstein components Irr(G)s which are canonically in bijection
not with (Ts//Ws)2 but with (Ts//Ws)2-twisted by a 2-cocycle. See Sec-
tion 13 for the definition of (Ts//Ws)2-twisted by a 2-cocycle. The authors
of this paper are currently formulating a precise statement of the conjecture
for connected reductive p-adic groups which are not quasi-split. Our precise
statement will be given elsewhere.

Part 2. Examples

8. Remarks on the supercuspidal case

Recall the group Xunr(M) of unramified characters of M, its finite sub-
group Stab(σ) defined in (1, and the complex algebraic torus T s, defined in
(4) as the quotient of Xunr(M) by Stab(σ). We first consider the special case
in which s ∈ B(G) is a supercuspidal inertial pair in G, that is, s = [G, π]G,
where π is a supercuspidal irreducible representation of G. We have

T s ' Irr(G)s.

On the other hand, the group W s is the trivial group {1}. Hence we have
(T s//W s)2 = T s/W s = T s. It follows that the left slanted map in the
commutative triangle from statement (5) in Section 7 is here the identity
map. In other words, when s is supercuspidal, the triangle collapses into
the horizontal map, i.e., the existence of the commutative triangle of maps
is equivalent to the existence of the local Langlands map.

The other parts of the conjecture are trivially true when s is supercuspidal,
except Property 6. Each of the maps µs, πs, and ρs being equal to the
identity map, we have

θ√q = θ1 (= Id).

It implies that only the trivial cocharacter can occur. On the other hand, the
labelling should consist in a unique label. Hence the conditions (i) and (ii)
in Property 6 are empty. It follows that Property 6 is equivalent to the
following property:
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Property S: When s is supercuspidal, the set of representations of G which
belong to the intersection of Irr(G)s with an L-packet is always a singleton.

Property S is obviously true if Z(G) is compact, because in that case there
is no non-trivial unramified character of G, thus Irr(G)s itself is reduced to
a singleton. It is also valid if G = GLn(F ), because each L-packet is a
singleton.

Property S is expected to hold in general. For instance, it is true for the
supercuspidal L-packets constructed in [28].

9. The general linear group and its inner forms

Let F be a local non-archimedean field. Let G be an inner form of the
general linear group G∗ := GLn(F ), n ≥ 1, that is, G is a group of the form
GLm(D), where D is an F -division algebra, of dimension d2 over its centre
F , and where n = md (see for instance [2, § 25]). By F -division algebra we
mean a finite dimensional F -algebra with centre F , in which every nonzero
element is invertible.

We have G = A×, where A is a simple central F -algebra. Let V be a
simple left A-module. The algebra EndA(V ) is an F -division algebra, the
opposite of which we denote by D. Considering V as a right D-vector space,
we have a canonical isomorphism of F -algebras between A and EndD(V ).

Heiermann [35] proved that every Bernstein component of the category of
smooth G-modules is equivalent to the module category of an affine Hecke
algebra. Together with [61, Theorem 5.4.2] this proves a large part of the
ABPS conjecture for G: properties 1–5 from Section 7. In particular, this
provides a bijection between T s//W s and Irr(G)s for any point s ∈ B(G).
Moreover, T s//W s and (T s//W s)2 are canonically isomorphic. In subsec-
tion 9.1, we shall construct a canonical bijection from (T s//W s)2 to Irr(G)s

by following a different approach based on the fact due to Sécherre and
Stevens [59] that the affine Hecke algebra which occurs in the picture here
is a tensor product of affine Hecke algebras of equal parameter type.

Let WF denote the Weil group of F . The complex dual group of the
group G is G = GLm(C). An L-group for a given p-adic group can take one
of several forms. The L-group of an inner form of a (quasi-)split group may
be identified with the L-group of the latter [2, § 26]. Moreover, the L-group
of a split group can be taken to be equal to its complex dual group. Hence
we may and we do define the L-group of G as

LG = GLn(C).

Then a Langlands parameter for G is a relevant continuous homomorphism
of topological groups

Φ: WF × SL2(C) −→ GLn(C),

for which the image in G of any element is semisimple, and which commutes
with the projections of WF × SL2(C) and G onto WF . Two Langlands
parameters are equivalent if they are conjugate under LG. The set of equiv-
alence classes of Langlands parameters is denoted Φ(G).

We recall that “relevant” means that if the image of Φ is contained in a
Levi subgroup M of G, then M must be the L-group of a Levi subgroupM
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of G. Hence here it means that d must divide all the ni if M ' GL(n1,C)×
· · · × GL(nh,C). Then we set mi := ni/d and define M = GL(m1, D) ×
· · ·×GL(mh, D). In the particular case of d = 1, i.e., for the group G∗, every
Langlands parameter is relevant. Hence we get

Φ(G) ⊂ Φ(G∗).

In the next three subsections we shall construct, for every Bernstein com-
ponent of G, a commutative triangle of natural bijections as Property 7 of
Section 7.

9.1. Types and Hecke algebras for GLm(D).
Let s be any point in B(G). Recall from [22] that an s-type is a pair (K, λ),

with K an open compact subgroup of G and (λ,V) is an irreducible smooth
representation of K, such that Irrs(G) is precisely the set of irreducible
smooth representations of G which contain λ. We shall denote by (λ̌,V∨)
the contragredient representation of λ. The endomorphism-valued Hecke
algebra H(G, λ) attached to (K, λ) is defined to be the space of compactly
supported functions f : G → EndC(V∨), such that

f(k1gk2) = λ̌(k1)f(g)λ̌(k2), where k1, k2 ∈ K and g ∈ G.

The standard convolution gives H(G, λ) the structure of an associative C-
algebra with unity. There is a canonical bijection

(7) Irrs(G)→ Irr(H(G, λ)).

Generalizing the work of Bushnell and Kutzko [23], Sécherre and Stevens
have constructed in [59] an s-type (Ks, λs) for each s ∈ B(G) and explicitly
described the structure of the algebra H(G, λs).

We shall recall the results from [59] that we need. Let s = [M, σ]G . The

Levi subgroupM is the stabilizer of some decomposition V =
⊕h

j=1 Vj into
subspaces, which gives an identification

(8) M'
∏h

j=1
GLmj (D), where mj = dimD Vj .

We can then write

σ =
⊗h

j=1
σj ,

where, for each j, the representation σj is an irreducible unitary supercus-
pidal representation of Gj := GLmj (D).

We define an equivalence relation on {1, 2, . . . , h} by

(9) j ∼ k if and only if mj = mk and [Gj , σj ]Gj = [Gk, σk]Gk ,

where we have identified Gj with Gk whenever mj = mk. We may, and do,
assume that σj = σk whenever j ∼ k, since this does not change the inertial
class s. Denote by S1, S2, . . ., Sl the equivalence classes. For i = 1, 2, . . . , l,
we denote by ei the cardinality of Si. We call the integers e1, e2, . . ., el the
exponents of s. Hence we get

(10) M'
∏l

i=1
GLmi(D)ei and σ ' σe11 ⊗ · · · ⊗ σ

el
l ,
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where σ1, . . . , σl are pairwise distinct (after unramified twist). We abbre-
viate si := [GLmi(D)ei , σ⊗eii ]GLmiei (D) and we say that s has exponents

e1, . . . , el. In the setting of (10)

W s = NG(M, σ)/M =

l∏
i=1

W si ∼=
l∏

i=1

Sei ,(11)

Stab(σ) = {χ ∈ Xunr(M) : σ ⊗ χ} =
∏l

i=1
Stab(σi)

ei .(12)

Recall that every unramified character of Gi = GLmi(D) is of the form
g 7→ |Nrd(g)|zF for some z ∈ C, where Nrd : Mmi(D) → F is the reduced
norm. This sets up natural isomorphisms

Xunr(Gi) ∼= C
/2π

√
−1

log qF
Z ∼= C×,

Xunr(M) ∼=
∏l

i=1
(C×)ei .

Let n(σi) be the torsion number of σi, that is, the order of Stab(σi). Let T s

and Ti be the Bernstein tori associated to s and [Gi, σi]Gi , as in (4). There
are isomorphisms

Ti ∼= Xunr(Gi)/Stab(σi) ∼= C
/ 2π

√
−1

n(σi) log qF
Z ∼= C×,

T s =
l∏

i=1

T si =
l∏

i=1

(Ti)
ei ∼= Xunr(M)/Stab(σ).(13)

AsW s stabilizes σ ∈ Irr(M), the bijection (13) isW s-equivariant. Although
the above isomorphisms are not canonical, a consequence of the next theorem
is that they can be made so by an appropriate choice of the σi.

Theorem 9.1. The extended quotient of the second kind (T s//W s)2 is canon-
ically in bijection with the Bernstein component Irr(G)s.

Proof. For every i ∈ {1, 2, . . . , l}, as proved in [59], there exists a pair
(Ki, λi), formed by an open compact subgroup Ki of Gi = GLmi(D) and a

smooth irreducible representation λi such that the representation λ̃i extends

λi to the normalizer K̃i of Ki in Gi and the supercuspidal representation σi
is compactly induced from λ̃i:

(14) σi = c−IndGi
K̃i
λ̃i.

The group Ki is a maximal simple type in the terminology of [58]. Its
construction (given in [58]) generalizes the construction made by Bushnell
and Kutzko in [21] in the case of the general linear group.

We shall denote by oD the ring of integers of D, and by qD the order of
the residue field of D.

The group Ki = K(Ai, βi) is built from a simple stratum [Ai, ai, 0, βi] of
the F -algebra Ai := EndD(Vi). The definition of a simple stratum is given
in [58, Def 1.18]. Here we just recall that βi is an element of Ai such that
the F -algebra Ei := F [βi] is a field, Ai is an oF -hereditary order of Ai that
is normalized by E×i , and ai is a positive integer. Then the centralizer of
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Ei in Ai, denoted Bi, is a simple central Ei-algebra. We fix a simple left
Bi-module VEi and write DEi for the algebra opposite to EndBi(VEi). We
define

(15)
mEi := dimDEi

VEi , qi := q
mEi
DEi

,

W̃ei := X∗
(
Ti
)ei oSei = X∗

(
T si
)
oW si .

Notice that W̃ei is an extended affine Weyl group of type GLei . Now we
quote [59, Main Theorem and Prop. 5.7]: there is an isomorphism of unital
C-algebras

(16) H(G, λs) ∼=
⊗l

i=1
Hqi(W̃ei).

For later use we also mention that this isomorphism preserves supports [59,

Proposition 7.1 and Theorem 7.2]. The factors Hqi(W̃ei) are (extended)
affine Hecke algebras whose structure is given explicitly for instance in [21,
5.4.6, 5.6.6].

By combining Corollary A.3 from Example 3 in the Appendix with the
multiplicativity property of the extended quotient of the second kind, we
obtain a canonical bijection

(17)
⊗l

i=1
Hqi(W̃ei)→ (T s//W s)2.

The composition of (7), (16) and (17) gives a canonical bijection

Irrs(G)→ (T s//W s)2. �

Let H(G) be the Hecke algebra associated to G, i.e.,

H(G) :=
⋃
K
H(G//K),

where K are open compact subgroups of G, and H(G//K) is the convolution
algebra of all complex-valued, compactly-supported functions on G which are
K-biinvariant. The Hecke algebra H(G) is a non-commutative, non-unital,
non-finitely-generated C-algebra. It admits a canonical decomposition into
ideals, the Bernstein decomposition:

H(G) =
⊕

s∈B(G)

H(G)s.

The following result extends Theorem 3.1 in [19] from GLn(F ) to its inner
forms. This can be viewed as a “topological shadow” of conjecture 1.1.

Theorem 9.2. Let s ∈ B(G). Then the periodic cyclic homology of H(G)s

is isomorphic to the periodised de Rham cohomology of T s//W s:

HP∗(H(G)s) ' H∗(T s//W s;C).

Proof. The proof follows those of [19, Theorem 3.1]. Let esλ be the idempo-
tent attached to the semisimple s-type (Ks, λs) as in [22, Definition 2.9]:

esλ(g) =

{
(volKs)−1 dimλ tr(τ(g−1)) if g ∈ Ks ,

0 if g ∈ G \ Ks.
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The idempotent esλ is then a special idempotent in the Hecke algebra H(G)
according to [22, Definition 3.11]. It follows from [22, §3] that

Hs(G) = H(G) ∗ esλ ∗ H(G).

We then have a Morita equivalence

H(G) ∗ esλ ∗ H(G) ∼Morita e
s
λ ∗ H(G) ∗ esλ.

By [22, 2.12] we have a canonical isomorphism of unital C-algebras:

(18) H(G, λs)⊗C EndCV ∼= esλ ∗ H(G) ∗ esλ,

so that the algebra esλ∗H(G)∗esλ is Morita equivalent to the algebraH(G, λs).
Then, thanks to the description of latter given in (16), we may finish the
proof identically as in [19, Theorem 3.1]. �

Example 9.3. For the group GLn(F ) we can describe the flat family of
sub-varieties of T s/W s from Section 4 explicitly. We assume for simplicity
that s = [GLr(F )e, σ⊗e]G , where er = n. Then the sub-variety R(ρs) =
ρs(T s//W s − T s/W s) is the hypersurface Y1 given by the single equation∏
i 6=j(zi − zj) = 0. The sub-variety of reducibility R(πs) is the variety Y√q

given by the single equation
∏
i 6=j(zi − qzj) = 0, according to a classical

theorem [16, Theorem 4.2], [68].
The polynomial equation

∏
i 6=j(zi− v2zj) = 0 determines a flat family Yv

of hypersurfaces. The hypersurface Y1 is the flat limit of the family Yv as
v → 1, as in [30, p. 77].

9.2. The local Langlands correspondence for GLm(D).
We recall the construction of the local Langlands correspondence for

G = GLm(D) from [37]. It generalizes and relies on the local Langlands
correspondence for G∗ = GLn(F ),

recF,n : Irr(GLn(F ))→ Φ(GLn(F )).

The latter was proven for supercuspidal representations in [45, 33, 36], and
extended from there to Irr(GLn(F )) in [68].

If π is an irreducible smooth representation of G, we shall denote its
character by Θπ. Let IrressL2(G) denote the set of equivalence classes of
irreducible essentially square-integrable representations of G. Recall the
Jacquet–Langlands correspondence [29, 10]:
There exists a bijection

JL: IrressL2(G)→ IrressL2(G∗)

such that for each π ∈ IrressL2(G):

Θπ(g) = (−1)n−m ΘJL(π)(g
∗),

for any pair (g, g∗) ∈ G ×G∗ of regular semisimple elements such that g and
g∗ have the same characteristic polynomial. (Recall that an element in G is
called regular semisimple if its characteristic polynomial admits only simple
roots in an algebraic closure of F .)

Let Φ be a Langlands parameter for G. Replacing it by an equivalent one,
we may assume that there exists a standard Levi subgroup M ⊂ GLn(C)
such that the image of Φ is contained in M but not in any smaller Levi
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subgroup. Again replacing Φ by an equivalent parameter, we can achieve
that

M =
l∏

i=1

(GLni(C))ei and Φ =
l∏

i=1

Φ⊗eii ,

where Φi ∈ Φ(GLni(F )) is not equivalent to Φj for i 6= j. Since Φ is relevant
for G, mi := ni/d is an integer and M corresponds to the standard Levi
subgroup

M =
∏l

i=1
(GLmi(D))ei ⊂ GLm(D).

By construction the image of Φi is not contained in any proper Levi subgroup
of GLni(F ), so rec−1

F,ni
(Φi) ∈ IrressL2(GLni(F )). The Jacquet–Langlands

correspondence produces

σi := JL−1
(
rec−1

F,ni
(Φi)

)
∈ IrressL2(GLmi(D)),

σ :=
∏l

i=1
σ⊗eii ∈ IrressL2(M).

The assignment Φ 7→ (M, σ) sets up a bijection

(19) Φ(G)←→ {(M, σ) :M a Levi subgroup of G, σ ∈ IrressL2(M)}/G.

It is known from [29, Theorem B.2.d] and [11] that for inner forms of GLn(F )
normalized parabolic induction sends irreducible square-integrable (modulo
centre) representations to irreducible tempered representations. Together
with the Langlands classification [43] this implies that there exists a natural
bijection between Irr(G) and the right hand side of (19). It sends (M, σ) to

the Langlands quotient L
(
IGM(σ)

)
, where the parabolic induction goes via

a parabolic subgroup with Levi factorM, with respect to which the central
character of σ is ”positive”. The combination of these results yields:

Theorem 9.4. The natural bijection

Φ(G)→ Irr(G) : Φ 7→ (M, σ) 7→ L
(
IGM(σ)

)
is the local Langlands correspondence for G = GLm(D).

We denote the inverse map by

(20) recD,m : Irr(G)→ Φ(G).

Let s = [M, σ]G be an inertial equivalence class for G. We want to under-
stand the space of Langlands parameters

Φ(G)s := recD,m(Irrs(G))

that corresponds to the Bernstein component Irrs(G). We may assume that
M and σ are as in (10). Via Theorem 9.4 σi corresponds to

recD,mi(σi) = recF,ni(JL(σi)) ∈ Φ(GLmi(D)).

We choose a representative ηi : WF × SL2(C)→ GLni(C) and we put

η =
∏l

i=1
(ηi)

⊗ei ,

a representative for recD,m(IGM(σ)). Since JL(σi) is essentially square inte-
grable, ηi is an irreducible representation of WF × SL2(C). It follows that
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the centralizer of ηi in Mni(C) is Z(Mni(C)) = CI. From this we see that
the centralizer of (ηi)

⊗ei in Mniei(C) is

ZMniei (C)(η
⊗ei
i ) = Mei(C)⊗ Z(Mni(C)) ⊂ Mei(C)⊗Mni(C) ∼= Mniei(C).

In this way the centralizer of η⊗eii in GLniei(C) becomes isomorphic to
GLei(C) and

(21) ZGLn(C)(η) ∼=
∏l

i=1
GLei(C).

This means that, for any Langlands parameter for GLei(D)

Φi : WF × SL2(C)→ GLei(C) ⊂ GLniei(C),

Φiη
⊗ei
i is a Langlands parameter for GLmiei(D). More generally, for any

product Φ =
∏l
i=1 Φi of such maps,

(22) Φη is Langlands parameter for G.

Let IF ⊂ WF be the inertia group and let Frob ∈ WF be a Frobenius
element. Since all Langlands parameters in Φ(G)s have the same restriction
to the inertia group IF (up to equivalence), it suffices to consider Φi which
are trivial on IF . We will show in the next subsection that Φ(G)s indeed
consists of such products Φη (up to equivalence).

Recall from [18, §10.3] that the local Langlands correspondence is com-
patible with twisting by central characters. The group Xunr(GLmi(D)) is
naturally in bijection with Z(GLni(C)). Hence for any χ ∈ Xunr(GLmi(D))

recD,mi(σi ⊗ χ) = ΦχrecD,mi(σ) = Φχηi,

where Φχ is trivial on IF ×SL2(C) and Φχ(Frob) ∈ Z(GLni(C)) corresponds
to χ. By Theorem 9.4 Φχηi is GLni(C)-conjugate to Φi if and only if χ ∈
Stab(σi). More generally, for any χ ∈ Xunr(M),

(23) Φχη is M -conjugate to η if and only if χ ∈ Stab(σ).

Thus the unramified twists of σ ∈ Irr(M) are naturally parametrized by
the torus T s ∼= Xunr(M)/Stab(σ).

9.3. The commutative triangle for GLm(D).
Recall the short exact sequence

1→ IF →WF
d→ Z ∼= 〈Frob〉 → 1.

A character ν : WF → C× is said to be unramified if ν is trivial on IF .

Then ν(w) = z
d(w)
ν for some zν ∈ C× (w ∈ WF ). Let Xunr(WF ) denote

the group of all unramified characters of WF . Then the map ν 7→ zν is
an isomorphism from Xunr(WF ) to C×. Denote by R(a) the a-dimensional
irreducible complex representation of SL2(C). Recall that each L-parameter
Φ is of the form Φ = Φ1⊕· · ·⊕Φh with each Φi irreducible. The next result
is Theorem 1.2 in our Introduction.
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Theorem 9.5. Let s ∈ B(G). There is a commutative diagram

(T s//W s)2

ϕs

&&xx
Irr(G)s // Φ(G)s

in which all the arrows are natural bijections.

Proof. The bottom and left slanted maps where already established in The-
orems 9.1 and 9.4. Since these are canonical bijections, we could simply
define the right slanted map as the composition of the other two. Yet we
prefer to give an explicit construction of ϕs, which highlights its geometric
origin. This is inspired by [19, § 1] and [6, Theorem 4.1], with the difference
that we are using here the extended quotient of the second kind (T s//W s)2

instead of (T s//W s).
LetM be a Levi subgroup of G and σ an irreducible unitary supercuspidal

representation ofM such that s = [M, σ]G . As in (10), we may assume that

M'
∏l

i=1
GLmi(D)ei =

∏l

i=1
Geii and σ ' σe11 ⊗ · · · ⊗ σ

el
l ,

where the [Gi, σi]G are pairwise distinct. Recall from (13) that

T s =
∏l

i=1
(Ti)

ei ,

where each Ti is isomorphic to C×. To make the below constructions well-
defined, we must make a canonical choice for σi in its inertial equivalence
class in Irr(Gi). The Hecke algebra H(Gi, λi) associated to this inertial
class, as in (7), is canonically isomorphic to the ring of regular functions on
Xunr(Gi)/Stab(σi) ∼= C×. We choose σi as (14), so that it corresponds to
the unit element of this torus.

By (11) the group W s is isomorphic to a product of symmetric groups
Sei . Since the extended quotient of the second kind is multiplicative, we
obtain

(24) (T s//W s)2 ' (T e11 //Se1)2 × · · · × (T ell //Sel)2.

We set si := [Geii , σ
⊗ei
i ]G′i , for each i ∈ {1, . . . , l}, where G′i = GLeimi(D).

We observe that

(25) Φ(G)s ' Φ(G′1)s1 × · · · × Φ(G′l)sl ,

Put M′ := G′1 × · · · × G′l . Then Theorem 9.4 and (25) imply that

(26)
Irr(G′1)s1 × · · · × Irr(G′l)sl → Irr(G)s,

(π′1, . . . , π
′
l) 7→ L

(
IGM′(π

′
1 ⊗ · · · ⊗ π′l)

)
is a bijection. Hence we are reduced to define canonical bijections

(T eii //Sei)2 → Φ(G′i)si .

Thus we may, and do, assume that m = er (so that n = erd) and

(27) s = [GLr(D)e, σ⊗e]G .

Then we have T s ' (C×)e and W s ' Se.
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Let t ∈ (C×)e. We write t in the form

(28) t = (z1, . . . , z1︸ ︷︷ ︸
b1 terms

, z2, . . . , z2︸ ︷︷ ︸
b2 terms

, . . . , zh, . . . , zh︸ ︷︷ ︸
bh terms

),

where z1, . . . , zh ∈ C× are such that zi 6= zj for i 6= j, and where b1 + b2 +
· · ·+ bh = e. Let W s

t denote the stabilizer of t under the action of W s. We
have

(29) W s
t ' Sb1 ×Sb2 × · · · ×Sbh .

In particular every τ ∈W s can be written as

(30) τ = τ1 ⊗ · · · ⊗ τh with τj ∈ Irr(Sbj ).

Let pj = p(τj) denote the partition of bj which corresponds to τj . We write:

(31) pj = (pj,1, . . . , pj,lj ), where pj,1 + · · ·+ pj,lj = bj .

Recall that we have chosen σ ∈ Irr(GLr(D)) such that, via the Hecke algebra
of a supercuspidal type, it corresponds to the unit element of the torus
Xunr(GLr(D))/Stab(σ). We fix a representative

(32) η for recD,r(σ) ∈ Irr(WF × SL2(C)).

Corresponding to each pair (η, pj) as above, where j ∈ {1, . . . , h}, we have
a Langlands parameter:

(33)
ΦF
η,pj : WF × SL2(C)→ GLbjrd(C) ⊂ Mbj (C)⊗Mrd(C),

ΦF
η,pj =

(
R(pj,1)⊕ · · · ⊕R(pj,lj )

)
⊗ η.

Recall that

(T s//W s)2 '
{

(t, τ) : t ∈ (C×)e, τ ∈ Irr(W s
t )
}
/W s.

Define νj ∈ Xunr(WF ) by νj(Frob) := zj for each j ∈ {1, . . . , h}. We fix a
setwise section

ψσ : C× ∼= Xunr(GLr(D))/Stab(σ)→ C× ∼= Xunr(GLr(D)).

We define a map

ϕs : (T s//W s)2 → Φ(G)s,

ϕs(t, τ) = (ψσ ◦ ν1)⊗ ΦF
η,p1
⊕ · · · ⊕ (ψσ ◦ νh)⊗ ΦF

η,ph
,

(34)

where W s
t ' Sb1 × · · · × Sbh and τ = τ1 ⊗ · · · ⊗ τh, with τj ∈ Irr(Sbj ),

and pj = p(τj) denotes the partition of bj which corresponds to τj . By (23)
ϕs(t, τ) does not depend on the choice of ψσ, up to equivalence of Langlands
parameters.

The above process can be reversed. Let Φ ∈ Φ(G)s. By (23) we may
assume that its restriction to WF is of the form

(ψσ)e ◦ (ν1 ⊕ · · · ⊕ ν1 ⊕ ν2 ⊕ · · · ⊕ ν2 ⊕ · · · ⊕ νh ⊕ · · · ⊕ νh)⊗ η,
where ν1, . . . , νh ∈ Xunr(WF ) are such that νi 6= νj if i 6= j (which is
equivalent, since νi and νj are unramified, to νi(Frob) 6= νj(Frob) if i 6= j).
For each j ∈ {1, . . . , h}, let bj denote the number of occurrences of νj . We
set

t := (ν1(Frob), ν1(Frob), . . . , νh(Frob)) ∈ (C×)e.
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For each j ∈ {1, . . . , h}, let pj be a partition of bj , such that

(35) Φ = ψσ ◦ ν1 ⊗ ΦF
η,p1
⊕ · · · ⊕ ψσ ◦ νh ⊗ ΦF

η,ph
.

For j = 1, . . . , h, let τj ∈ Irr(Sbj ) be the irreducible representation of Sbj
which is parametrized by the partition pj . We set τ := τ1 ⊗ · · · ⊗ τh. The
map Φ 7→ (t, τ) is the inverse of the map ϕs. Thus ϕs is a bijection.

Now we have all the arrows of the diagram in Theorem 9.5, it remains to
show that it commutes. Although all the arrows are canonical, this is not
at all obvious, and our proof will use some results that will be established
only in part 3.

In view of (24), (25) and (26), it suffices to consider s as in (27). Let

W̃e := Ze o Se and q̃ := qmEDE be as in (15). The left slanted bijection in

Theorem 9.5 runs via the affine Hecke algebra Hq̃(W̃e) associated to s in
(16), so we must actually look at the extended diagram

(36) Irr(Hq̃(W̃e)) //
(
(C×)e//Se

)
2

ϕs

��
Irr(GLer(D))s

κs

OO

recD,er // Φ(GLer(D))s

First we consider the essentially square-integrable representations. For those
the Langlands parameter is an irreducible representation of WF × SL2(C),
of the form

ψσ ◦ νz ⊗ ΦF
e,η = ψσ ◦ νz ⊗R(e)⊗ η,

where νz ∈ Xunr(WF ) with νz(Frob) = z. The partition (e) of e corresponds
to the sign representation of Se, so

(37) (ϕs)−1(ψσ ◦ νz ⊗R(e)⊗ η) = (z, . . . , z, sgnSe).

Let Ste be the Steinberg representation of Hq̃(W̃e). It is the unique ir-
reducible, essentially square-integrable representation which is tempered
and has real infinitesimal central character. The top map in (36), as con-
structed by Lusztig [47] and described in Example 3 of the Appendix, sends
(z, . . . , z) ⊗ Ste to (37). This can be deduced with [42, Theorem 8.3], but
we will also prove it later as a special case of Theorem 23.1.

The map κs comes from the support-preserving algebra isomorphism
(16). By [61, (3.19)] this map respects temperedness of representations.
The argument in [61] relies on Casselman’s criteria, see [26, §4.4] and [52,
§2.7]. A small variation on it shows that κs also preserves essential square-
integrability. Both statements apply to rec−1

D,er(R(e) ⊗ η) because it is es-
sentially square-integrable and unitary, hence tempered.

By the Zelevinsky classification for GLn(F ) [68], rec−1
F,n(R(e) ⊗ η) is a

consituent of

I
GLn(F )
GLrd(F )e

(
ν

(1−e)/2
F JL(σ)⊗ ν(3−e)/2

F JL(σ)⊗ · · · ⊗ ν(e−1)/2
F JL(σ)

)
,

where νF (g∗) = | det(g∗)|F . It follows that rec−1
D,er(R(e)⊗η) is a constituent

of

I
GLer(D)
GLr(D)e

(
ν

(1−e)/2
D σ ⊗ ν(3−e)/2

D σ ⊗ · · · ⊗ ν(e−1)/2
D σ

)
,
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where νD(g) = |Nrd(g)|F . By our choice of σ the infinitesimal central char-

acter of κs
(
I

GLer(D)
GLr(D)e (σ

⊗e)
)

is 1 ∈ (C×)e/Se, so κs
(
rec−1

D,er(R(e) ⊗ η)
)

has

real infinitesimal central character. Thus κs
(
rec−1

D,er(R(e)⊗ η)
)

possesses all

the properties that characterize Ste in Irr(Hq̃(W̃e)), and these two repre-
sentations are isomorphic.

By definition κs ◦ rec−1
D,er transforms a twist by ψσ ◦ νz into a twist by

(z, . . . , z), so

κs
(
rec−1

D,er(ψσ ◦ νz ⊗R(e)⊗ η)
)

= (z, . . . , z)⊗ Ste.

We conclude that the diagram (36) commutes for all essentially square-
integrable representations.

Now we take t and τ as in (28) and (30). The construction of the Lang-
lands correspondence for GLer(D) in (19) implies

(38) rec−1
D,er(ϕ

s(t, τ)) =

L
(
I

GLer(D)
GLb1r(D)×···×GLbhr(D)

(⊗h

j=1
rec−1

D,bjr
(ψσ ◦ νj ⊗ ΦF

η,pj )
))

=

L
(
I

GLer(D)∏h
j=1

∏lj
i=1 GLpj,ir(D)

(⊗h

j=1

⊗lj

i=1
rec−1

D,pj,ir
(ψσ ◦ νj ⊗R(pj,i)⊗ η)

))
.

The GLpj,ir(D)-representation rec−1
D,pj,ir

(ψσ ◦ νj ⊗ R(pj,i) ⊗ η) is essentially

square-integrable, so by the above we know where it goes in the diagram
(36). Since (16) preserves supports, it respects parabolic induction and
Langlands quotients (see [61] for these notions in the context of affine Hecke
algebras). In particular every subgroup GLpj,ir(D) ⊂ GLer(D) corresponds

to a subalgebra Hq̃(W̃pj,i) ⊂ Hq̃(W̃e). Thus the representation of Hq̃(W̃e)
associated to (38) via (16) is

(39) L
(

Ind
Hq̃(W̃e)⊗h
j=1

⊗lj
i=1Hq̃(W̃pj,i )

(⊗h

j=1

⊗lj

i=1
(zj , . . . , zj)⊗ Stpj,i

))
.

In view of the Zelevinsky classification for affine Hecke algebras of type GLn
[42, 68], the Langlands parameter of (39) is⊕h

j=1
zj ⊗

⊕lj

i=1
R(pj,i).

Now Theorem 22.3, in combination with the notations (28)–(31), shows that
the top map in (36) sends (39) to (t, τ). Hence the diagrams in (36) and in
the statement of the theorem commute. �

With Theorem 9.5 we proved statements (1)–(5) of the conjecture in Sec-
tion 7 for inner forms of GLn(F ). Statement (6), including properties 1–6,
is also true and can proved using only the affine Hecke algebras (16). This
will be a special case of results in Part 3.

10. Symplectic groups

For symplectic and orthogonal groups, Heiermann [35] proved that every
Bernstein component of the category of smooth modules is equivalent to
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the module category of an affine Hecke algebra. Together with [61, Theo-
rem 5.4.2] this proves a large part of the ABPS conjecture for such groups:
properties 1–5 from Section 7.

For the remainder of the conjecture, additional techniques are required.
Property 6 should make use of the description of the L-packets from [51].
The statements (2) and (5) involve the local Langlands correspondence for
symplectic and orthogonal groups, which is proved by Arthur in [4]. How-
ever, at present his proof is up to the stabilization of the twisted trace
formula for the group GLn(F ) o 〈εn〉, where εn is defined in (40), see [4,
§ 3.2].

In this section, in order to illustrate the fact that extended quotients
can be easily calculated, we shall compute T s//W s in the case when G is a
symplectic group and s = [M, σ]G with M the Levi subgroup of a maximal
parabolic of G.

Let un ∈ Mn(F ) be the n× n matrix defined by

un :=


·

·
·

−1
1

−1

 .

For g ∈ Mn(F ), we denote by tg the transpose matrix of g, and by εn the
automorphism of GLn(F ) defined by

(40) εn(g) := un · tg−1 · u−1
n .

We denote by G = Sp2n(F ) the symplectic group defined with respect to
the symplectic form u2n:

G :=
{
g ∈ GL2n(F ) : tgu2ng = u2n

}
.

Let k and m two integers such that k ≥ 0, m ≥ 0 and k + m = n. In this
section we consider a Levi subgroup M of the following form:

M :=


g g′

εk(g)

 : g ∈ GLk(F ), g′ ∈ Sp2m(F )

 ' GLk(F )× Gm.

Let In ∈ Mn(F ) denote the identity matrix. We set

(41) wM :=

 Ik
I2m

Ik

 .

The element wM has order 2 and we have

(42) wM ·

g g′

εk(g)

 · wM =

εk(g)
g′

g

 .

We have

(43) NG(M)/M = {1, wM}.
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Let πM be an irreducible supercuspidal representation of M. We have
πM = ρ⊗σ, where ρ is an irreducible supercuspidal representation of GLk(F )
and σ is an irreducible supercuspidal representation of Sp2m(F ). We set
s := [M, πM]G .

If W s = {1}, then the parabolically induced representation ρo σ of G is
irreducible.

We will assume from now on that W s 6= {1}. Then it follows from (43)
that

W s = NG(M)/M = {1, wM}.
Let ρεk denote the representation of GLk(F ) defined by

ρεk(g) := ρ(εk(g)), g ∈ GLk(F ).

Then equation (42) gives:

(44) wM(ρ⊗ σ) = ρεk ⊗ σ.
The theorem of Gel’fand and Kazhdan [32, Theorem 2] says that the rep-
resentation ρεk is equivalent to ρ∨, the contragredient representation of ρ.
Hence we get

(45) wM(ρ⊗ σ) ∼= ρ∨ ⊗ σ.

Lemma 10.1. We have

T s//W s = T s/W s t pt1 t pt2.

Proof. Since the group Sp2m(F ) does not have non-trivial unramified char-
acters, we get

Xunr(M) ∼= Xunr(GLk(F )) ∼= C
/2π

√
−1

log q
Z ∼= C×.

We have
Stab(πM) = Stab(ρ).

It follows that

T s ∼= Xunr(M)/Stab(πM) = Xunr(GLk(F ))/Stab(ρ) ∼= C
/ 2π

√
−1

n(ρ) log q
Z ∼= C×,

where n(ρ) is the order of Stab(ρ).
On the other hand, since wM belongs to W s, we have

wMπM ∼= νM πM,

for some νM ∈ Xunr(M). Hence

(46) wMπM ∼= νρ⊗ σ,
for some ν ∈ Xunr(F

×), where we have put νρ := (ν ◦ det) ⊗ ρ. Then it
follows from (45) that

ρ∨ ⊗ σ ∼= νρ⊗ σ,
that is,

ν1/2ρ⊗ σ ∼= (ν1/2ρ)∨ ⊗ σ.
It implies that

ρν1/2 ∼= (ρν1/2)∨.

Hence, by replacing ρ by ρν1/2 if necessary, we can always assume that the
representation ρ is self-contragredient, that is, ρ ∼= ρ∨.
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We shall assume from now on, that ρ is self-contragredient. Let νk ∈
Xunr(GLk(F )). We shall denote by [νk] the image of νk in the quotient
Xunr(GLk(F ))/Stab(ρ).

We have νk = ν ◦det for some ν ∈ Xunr(F
×). Let g ∈ GLk(F ). We obtain

wMνk(g) = ν(det(εk(g))) = ν(det(tg
−1

)) = ν(det(g−1)) = νk(g)−1.

Hence νkStab(ρ) is fixed by wM if and only if ν2
k ∈ Stab(ρ). On the other

hand, we have ZW s(wM) = W s. It follows that

(T s)wM/ZW s(wM) =
{

[1], [ζn(ρ)]
}
,

where we have put

ζn(ρ) := |det(·)|
π
√
−1

n(ρ) log q

F ,

that is,

(T s)wM/ZW s(wM) ' {−1, 1} ⊂ C×. �

Then by using [61, Theorem 5.4.2] (which is closely related to Property
4 of the bijection µs) we recover from Lemma 10.1 the well-known fact that
νkρo σ reduces for exactly two unramified characters νk.

11. The Iwahori spherical representations of G2

Let G be the exceptional group G2. Let s0 = [T , 1]G where T ' F××F×
is a maximal F -split torus of G. The following result is a special case of
Theorem 22.3 in Part 3.

Theorem 11.1. The conjecture (as stated in Section 7) is true for the point
s0 = [T , 1]G2.

This is such an illustrative example that we include some of the calcula-
tions in [7].

We note that Xunr(T ) ∼= T with T a maximal torus in the Langlands
dual group G = G2(C). The Weyl group W of G2 is the dihedral group of
order 12. The extended quotient is

T//W = T/W t C1 t C2 t pt1 t pt2 t pt3 t pt4 t pt5.

The flat family is Yα := (1 − α2y)(x − α2y) = 0. Note that Y√q = R the

curve of reducibility points in the quotient variety T/W . The restriction of
πα to T//W − T/W determines a finite morphism

C1 t C2 t pt1 t pt2 t pt3 t pt4 t pt5 −→ Yα.

Example. The fibre of the point (q−1, 1) ∈ R via the map π√q is a set
with 5 points, corresponding to the fact that there are 5 smooth irreducible
representations of G2 with infinitesimal character (q−1, 1).

The map πα restricted to the one affine line C1 is induced by the map
(z, 1) 7→ (αz, α−2), and restricted to the other affine line C2 is induced by
the map (z, z) 7→ (αz, α−1z). With regard to the second map: the two
points (ω/

√
q, ω/

√
q), (ω2/

√
q, ω2/

√
q) are distinct points in C2 but become

identified via π√q in the quotient variety T/W . This implies that the image

π√q(C2) of one affine line has a self-intersection point in the quotient va-

riety T/W . Also, the curves π√q(C1), π√q(C2) intersect in 3 points. These
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intersection points account for the number of distinct constituents in the
corresponding induced representations.

Part 3. The principal series of split reductive p-adic groups

12. Introduction to Part 3

Let G be a connected reductive p-adic group, split over F , and let T be a
split maximal torus in G. The principal series consists of all G-representations
that are obtained with parabolic induction from characters of T .

We denote the collection of all Bernstein components of G of the form
[T , χ]G by B(G, T ) and call these the Bernstein components in the principal
series. The union

Irr(G, T ) :=
⋃

s∈B(G,T )

Irr(G)s

is by definition the set of all irreducible subquotients of principal series
representations of G.

Let T be the Langlands dual group of T and choose a uniformizer $F ∈ F .
There is a bijection t 7→ ν between points in T and unramified quasicharac-
ters of T , determined by the relation

ν(λ($F )) = λ(t)

where λ ∈ X∗(T ) = X∗(T ). The space Irr(T )[T ,χ]T is in bijection with T
via t 7→ ν 7→ σ⊗ν. Hence Bernstein’s torus T s is isomorphic to T . However,
because the isomorphism is not canonical and the action of the group W s

depends on it, we prefer to denote it T s.
For each s ∈ B(G, T ) we will construct a commutative triangle of bijec-

tions

(T s//W s)2

))xx
Irr(G)s // {KLR parameters}s/H

Here {KLR parameters}s is the set of Kazhdan–Lusztig–Reeder parameters
associated to s ∈ B(G) and H is the stabilizer of this set of parameters in
the dual group G.

In examples, T s//W s is much simpler to directly calculate than either
Irr(G)s or {KLR parameters}s.
Let us discuss the triangle in the case that H is connected. The bijectivity
of the right slanted arrow (see Section 19) is essentially a reformulation
of results of Kato [41]. It involves Weyl groups of possibly disconnected
reductive groups. We will extend the Springer correspondence to such groups
in Section 15.

The left slanted arrow is defined (and by construction bijective) in [47].
The horizontal map is defined and proved to be a bijection in [42, 55], see
Section 20. The results in [55] are based on and extend those of [42]. Thus
there are three logically independent definitions and bijectivity proofs.
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The bijectivity of the horizontal arrow shows that the local Langlands
correspondence is valid for each such Bernstein component Irr(G)s and de-
scribes the intersections of L-packets with Irr(G)s. Once a c-Irr system has
been chosen for the action of W s on T s, there is the bijection

T s//W s −→ (T s//W s)2,

so the L-packets can be described in terms of the extended quotient of the
first kind. In Section 25 we check that the labelling of the irreducible com-
ponents of T s//W s predicted by the conjecture is provided by the unipotent
classes of H.

13. Twisted extended quotient of the second kind

Let Γ be a finite group with a given action on a set X. Let \ be a given
function which assigns to each x ∈ X a 2-cocycle \(x) : Γx×Γx → C× where
Γx = {γ ∈ Γ : γx = x}. It is assumed that \(γx) and γ∗\(x) define the same
class in H2(Γx,C×), where γ∗ : Γx → Γγx, α 7→ γαγ−1. Define

X̃\
2 := {(x, ρ) : x ∈ X, ρ ∈ IrrC[Γx, \(x)]}.

We require, for every (γ, x) ∈ Γ×X, a definite algebra isomorphism

φγ,x : C[Γx, \(x)]→ C[Γγx, \(γx)]

such that:

• φγ,x is inner if γx = x;
• φγ′,γx ◦ φγ,x = φγ′γ,x for all γ′, γ ∈ Γ, x ∈ X.

We call these maps connecting homomorphisms, because they are reminis-

cent of a connection on a vector bundle. Then we can define Γ-action on X̃\
2

by
γ · (x, ρ) = (γx, ρ ◦ φ−1

γ,x).

We form the twisted extended quotient of the second kind

(X//Γ)\2 := X̃\
2/Γ.

We will apply this construction in the following two special cases.

1. Given two finite groups Γ1, Γ and a group homomorphism Γ →
Aut(Γ1), we can form the semidirect product Γ1 o Γ. Let X = Irr Γ1.
Now Γ acts on Irr Γ1 and we get \ as follows. Given x ∈ Irr Γ1 choose an ir-
reducible representation πx : Γ1 → GL(V ) whose isomorphism class is x. For
each γ ∈ Γ consider πx twisted by γ i.e., consider γ · πx : γ1 7→ πx(γ−1γ1γ).
Since γ ·πx is equivalent to πγx, there exists a nonzero intertwining operator

Tγ,x ∈ HomΓx(γ · πx, πγx).

By Schur’s lemma it is unique up to scalars, but in general there is no
preferred choice. For γ, γ′ ∈ Γx there exists a unique c ∈ C× such that

Tγ,x ◦ Tγ′,x = cTγγ′,x.

We define the 2-cocycle by \(x)(γ, γ′) = c. Let Nγ,x with γ ∈ Γx be the
standard basis of C[Γx, \(x)]. The algebra homomorphism φg,x is essentially
conjugation by Tg,x, but the precise definition is

(47) φg,x(Nγ,x) = λNgγg−1,gx if Tg,xTγ,xT
−1
g,x = λTgγg−1,gx, λ ∈ C×.
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Notice that (47) does not depend on the choice of Tg,x. This leads to a new
formulation of a classical theorem of Clifford.

Lemma 13.1. There is a bijection

Irr(Γ1 o Γ)←→ (Irr Γ1//Γ)\2.

Proof. The proof proceeds by comparing our construction with the classical
theory of Clifford; for an exposition of Clifford theory, see [53]. �

The above bijection is in general not canonical, it depends on the choice
of the intertwining operators Tγ,x.

Lemma 13.2. If Γ1 is abelian, then we have a natural bijection

Irr(Γ1 o Γ)←→ (Irr Γ1//Γ)2.

Proof. The irreducible representations of Γ1 are 1-dimensional, and we have
γ · πx = πx for γ ∈ Γx. In that case we take each Tγ,x to be the identity,
so that \(x) is trivial. Then the projective representations of Γx which
occur in the construction are all true representations and (47) simplifies to
φg,x(Tγ,x) = Tgγg−1,gx. Thus we recover the untwisted extended quotient of
the second kind in Lemma 13.1. �

2. Given a C-algebra R, a finite group Γ and a group homomorphism
Γ→ Aut(R), we can form the crossed product algebra

Ro Γ := {
∑
γ∈Γ

rγγ : rγ ∈ R},

with multiplication given by the distributive law and the relation

γr = γ(r)γ, for γ ∈ Γ and r ∈ R.

Now Γ acts on X := IrrR. Assuming that all simple R-modules have
countable dimension, so that Schur’s lemma is valid, we construct \(V ) and
φγ,V as above for group algebras. Here we have

X̃\
2 = {(V, τ) : V ∈ IrrR, τ ∈ IrrC[ΓV , \(V )]}.

Lemma 13.3. There is a bijection

Irr(Ro Γ)←→ (IrrR//Γ)\2.

If all simple R-modules are one-dimensional, then it becomes a natural bi-
jection

Irr(Ro Γ)←→ (IrrR//Γ)2.

Proof. The proof proceeds by comparing our construction with the theory
of Clifford as stated in [53, Theorem A.6]. The naturality part can be shown
in the same way as Lemma 13.2. �

Notation 13.4. For (V, τ) as above, V ⊗ Vτ is a simple R o ΓV -module,
in a way which depends on the choice of intertwining operators Tγ,V . The
simple Ro Γ-module associated to (V, τ) by the bijection of Lemma 13.3 is

(48) V o τ := IndRoV
RoΓV

(V ⊗ Vτ ).

Similarly, we shall denote by τ1 o τ the element of Irr(Γ1 o Γ) which corre-
sponds to (τ1, τ) by the bijection of Lemma 13.1.
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14. Weyl groups of disconnected groups

Let M be a reductive complex algebraic group. Then M may have a finite
number of connected components, M0 is the identity component of M , and

WM0
is the Weyl group of M0:

WM0
:= NM0(T )/T

where T is a maximal torus of M0. We will need the analogue of the Weyl
group for the possibly disconnected group M .

Lemma 14.1. Let M, M0, T be as defined above. Then we have

NM (T )/T ∼=WM0
o π0(M).

Proof. The group WM0
is a normal subgroup of NM (T )/T . Indeed, let

n ∈ NM0(T ) and let n′ ∈ NM (T ), then n′nn′−1 belongs to M0 (since the
latter is normal in M) and normalizes T , that is, n′nn′−1 ∈ NM0(T ). On
the other hand, n′(nT )n′−1 = n′nn′−1(n′Tn′−1) = n′nn′−1T .

Let B be a Borel subgroup of M0 containing T . Let w ∈ NM (T )/T . Then
wBw−1 is a Borel subgroup of M0 (since, by definition, the Borel subgroups
of an algebraic group are the maximal closed connected solvable subgroups).
Moreover, wBw−1 contains T . In a connected reductive algebraic group, the
intersection of two Borel subgroups always contains a maximal torus and the
two Borel subgroups are conjugate by a element of the normalizer of that

torus. Hence B and wBw−1 are conjugate by an element w1 of WM0
. It

follows that w−1
1 w normalises B. Hence

w−1
1 w ∈ NM (T )/T ∩NM (B) = NM (T,B)/T,

that is,

NM (T )/T =WM0 · (NM (T,B)/T ).

Finally, we have

WM0 ∩ (NM (T,B)/T ) = NM0(T,B)/T = {1},

since NM0(B) = B and B ∩NM0(T ) = T . This proves (1).
Now consider the following map:

NM (T,B)/T →M/M0 mT 7→ mM0.(49)

It is injective. Indeed, let m,m′ ∈ NM (T,B) such that mM0 = m′M0.
Then m−1m′ ∈M0 ∩NM (T,B) = NM0(T,B) = T (as we have seen above).
Hence mT = m′T .

On the other hand, let m be an element in M . Then m−1Bm is a Borel
subgroup of M0, hence there exists m1 ∈M0 such that m−1Bm = m−1

1 Bm1.

It follows that m1m
−1 ∈ NM (B). Also m1m

−1Tmm−1
1 is a torus of M0

which is contained in m1m
−1Bmm−1

1 = B. Hence T and m1m
−1Tmm−1

1

are conjugate in B: there is b ∈ B such that m1m
−1Tmm−1

1 = b−1Tb.
Then n := bm1m

−1 ∈ NM (T,B). It gives m = n−1bm1. Since bm1 ∈ M0,
we obtain mM0 = n−1M0. Hence the map (49) is surjective. �

Let G be a connected complex reductive group and let T be a maximal
torus in G. The Weyl group of G is denoted WG.
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Lemma 14.2. Let A be a subgroup of T and write M = ZG(A). Then the
isotropy subgroup of A in WG is

WG
A = NM (T )/T ∼=WM0

o π0(M).

In case that the group M is connected, WG
A is the Weyl group of M .

Proof. Let R(G,T ) denote the root system of G. According to [62, § 4.1],
the group M = ZG(A) is the reductive subgroup of G generated by T and
those root groups Uα for which α ∈ R(G,T ) has trivial restriction to A
together with those Weyl group representatives nw ∈ NG(T ) (w ∈ WG) for
which w(t) = t for all t ∈ A. This shows that WG

A = NM (T )/T , which by

Lemma 14.1 is isomorphic to WM0 o π0(M).
Also by [62, § 4.1], the identity component of M is generated by T and

those root groups Uα for which α has trivial restriction to A. Hence the Weyl
group WM◦ is the normal subgroup of WG

A generated by those reflections
sα and

WG
A /WM◦ ∼= M/M◦.

In particular, if M is connected then WG
A is the Weyl group of M . �

In summary, for t ∈ T such that M = ZG(t) we have

(T//WG)2 = {(t, σ) : t ∈ T, σ ∈ Irr(WG
t )}/WG(50)

IrrWG
t = (IrrWM0

//π0(M))\2(51)

15. An extended Springer correspondence

Let M◦ be a connected reductive complex group. We take x ∈M◦ unipo-
tent and we abbreviate

Ax := π0(ZM0(x)).(52)

Let x ∈ M◦ be unipotent, Bx = BxM◦ the variety of Borel subgroups of M◦

containing x. All the irreducible components of Bx have the same dimension
d(x) over R, see [27, Corollary 3.3.24]. Let Hd(x)(Bx,C) be its top homology,
let ρ be an irreducible representation of Ax and write

(53) τ(x, ρ) = HomAx

(
ρ,Hd(x)(Bx,C)

)
.

We call ρ ∈ Irr(Ax) geometric if τ(x, ρ) 6= 0. The Springer correspondence
yields a one-to-one correspondence

(54) (x, ρ) 7→ τ(x, ρ)

between the set of M0-conjugacy classes of pairs (x, ρ) formed by a unipotent
element x ∈M0 and an irreducible geometric representation ρ of Ax, and the

equivalence classes of irreducible representations of the Weyl group WM0
.

Remark 15.1. The Springer correspondence which employ here sends the
trivial unipotent class to the trivial WM◦-representation and the regular
unipotent class to the sign representation. It coincides with the correspon-
dence constructed by Lusztig by means of intersection cohomology. The dif-
ference with Springer’s construction via a reductive group over a field of
positive characteristic consists of tensoring with the sign representation of

WM0
, see [38].
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Choose a set of simple reflections for WM◦ and let Γ be a group of auto-
morphisms of the Coxeter diagram of W . Then Γ acts on WM◦ by group
automorphisms, so we can form the semidirect product WM◦ o Γ. Further-
more Γ acts on Irr(WM◦), by γ ·τ = τ ◦γ−1. The stabilizer of τ ∈ Irr(WM◦)
is denoted Γτ . As described in Section 13, Clifford theory for WM◦ oΓ pro-
duces a 2-cocycle \(τ) : Γτ × Γτ → C×.

We fix a Borel subgroup B0 of M◦ containing T and let ∆(B0, T ) be the
set of roots of (M◦, T ) that are simple with respect to B0. We may and
will assume that this agrees with the previously chosen simple reflections in
WM◦ . In every root subgroup Uα with α ∈ ∆(B0, T ) we pick a nontrivial
element uα. The data (M◦, T, (uα)α∈∆(B0,T )) are called a pinning of M◦.

The action of γ ∈ Γ on the Coxeter diagram of WM◦ lifts uniquely to an
action of γ on M◦ which preserves the pinning. In this way we construct
the semidirect product M := M◦oΓ. By Lemma 14.2 we may identifyWM

with WM◦ o Γ.
First we need to prove a technical lemma.

Lemma 15.2. Let ρ ∈ Irr(π0(ZM◦(x))) and write ZM (x, ρ) = {m ∈ ZM (x)|
ρ ◦Ad−1

m
∼= ρ}. The following short exact sequence splits:

1→ π0

(
ZM◦(x, ρ)/Z(M◦)

)
→ π0

(
ZM (x, ρ)/Z(M◦)

)
→ Γ[x,ρ]M◦ → 1.

Proof. First we ignore ρ. According to the classification of unipotent orbits
in complex reductive groups [24, Theorem 5.9.6] we may assume that x is
distinguished unipotent in a Levi subgroup L ⊂ M◦ that contains T . Let
D(L) be the derived subgroup of L and define

L′ := ZM◦(D(L))(T ∩ D(L)) = ZM◦(D(L))T.

Choose Borel subgroups BL ⊂ L and B′L ⊂ L′ such that x ∈ BL and
T ⊂ BL ∩ B′L. Let [x]M◦ be the M◦-conjugacy class of x and Γ[x]M◦ its
stabilizer in Γ. Any γ ∈ Γ[x]M◦ must also stabilize the M◦-conjugacy class

of L, and T = γ(T ) ⊂ γ(L), so there exists a w1 ∈ WM◦ with w1γ(L) =
L. Adjusting w1 by an element of W (L, T ) ⊂ WM◦ , we can achieve that
moreover w1γ(BL) = BL. Then w1γ(L′) = L′, so we can find a unique w2 ∈
W (L′, T ) ⊂ WM◦ with w2w1γ(B′L) = B′L. Notice that the centralizer of

Φ(BL, T )∪Φ(B′L, T ) inWM◦ is trivial, because it is generated by reflections
and no root in Φ(M◦, T ) is orthogonal to this set of roots. Therefore the
above conditions completely determine w2w1 ∈ WM◦ .

The element w1γ ∈ WM◦ o Γ acts on ∆(BL, T ) by a diagram automor-
phism, so upon choosing uα ∈ Uα \ {1} for α ∈ ∆(BL, T ), it can be repre-
sented by a unique element

w1γ ∈ Aut
(
D(L), T, (uα)α∈∆(BL,T )

)
.

The distinguished unipotent class of x ∈ L is determined by its Bala–Carter
diagram. The classification of such diagrams [24, §5.9] shows that there
exists an element x̄ in the same class as x, such that Adw1γ(x̄) = x̄. We
may just as well assume that we had x̄ instead of x from the start, and that
w1γ ∈ ZM (x). Clearly we can find a representative w2 for w2 in ZM (x), so
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we obtain

w2w1γ ∈ ZM (x) ∩NM (T ) and w2w1γ ∈
ZM (x) ∩NM (T )

Z(M◦)T
.

Since w2w1 ∈ WM◦ is unique,

(55) s : Γ[x]M◦ →
ZM (x) ∩NM (T )

Z(M◦)T
, γ 7→ w2w1γ

is a group homomorphism.
We still have to analyse the effect of Γ[x]M◦ on ρ ∈ Irr(Ax). Obviously

composing with Adm for m ∈ ZM◦(x) does not change the equivalence class
of any representation of Ax = π0(ZM◦(x)). Hence γ ∈ Γ[x]M◦ stabilizes ρ if
and only if any lift of γ in ZM (x) does. This applies in particular to w2w1γ,
and therefore

s(Γ[x,ρ]M◦ ) ⊂
(
ZM (x, ρ) ∩NM (T )

)/(
Z(M◦)T

)
.

Since the torus T is connected, s determines a group homomorphism from
Γ[x,ρ]M◦ to π0

(
ZM (x, ρ)/Z(M◦)

)
, which is the required splitting. �

One step towards a Springer correspondence for WM is:

Proposition 15.3. The class of \(τ) in H2(Γτ ,C×) is trivial for all τ ∈
Irr(WM◦). There is a bijection between(

Irr(WM◦)//Γ
)

2
and Irr(WM◦ o Γ) = Irr(WM ).

Proof. There are various ways to construct the Springer correspondence for
WM◦ , for the current proof we use the method with Borel–Moore homology.
Let ZM◦ be the Steinberg variety of M◦ and Htop(ZM◦) its homology in the
top degree

2 dimC ZM◦ = 4 dimC BM◦ = 4(dimCM
◦ − dimCB0),

with rational coefficients. We define a natural algebra isomorphism

(56) Q[WM◦ ]→ Htop(ZM◦)

as the composition of [27, Theorem 3.4.1] and a twist by the sign represen-
tation of Q[WM◦ ]. By [27, Section 3.5] the action of WM◦ on H∗(Bx,C) (as
defined by Lusztig) corresponds to the convolution product in Borel–Moore
homology.

Since M◦ is normal in M , the groups Γ,M and M/Z(M) act on the
Steinberg variety ZM◦ via conjugation. The induced action of the connected
group M◦ on Htop(ZM◦) is trivial, and it easily seen from [27, Section 3.4]
that the action of Γ on H(ZM◦) makes (56) Γ-equivariant.

The groups Γ,M and M/Z(M) also act on the pairs (x, ρ) and on the
varieties of Borel subgroups, by

Adm(x, ρ) = (mxm−1, ρ ◦Ad−1
m ),

Adm : Bx → Bmxm−1
, B 7→ mBm−1.

Given m ∈M , this provides a linear bijection H∗(Adm) :

HomAx(ρ,H∗(Bx,C))→ HomAmxm−1 (ρ ◦Ad−1
m , H∗(Bmxm

−1
,C)).
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The convolution product in Borel–Moore homology is compatible with these
M -actions so, as in [27, Lemma 3.5.2], the following diagram commutes for
all h ∈ Htop(ZM◦):

(57)
H∗(Bx,C)

h−→ H∗(Bx,C)
↓H∗(Adm) ↓H∗(Adm)

H∗(Bmxm
−1
,C)

m·h−−→ H∗(Bmxm
−1
,C).

In case m ∈ M◦γ and m · h corresponds to w ∈ WM◦ , the element h ∈
H(ZM◦) corresponds to γ−1(w), so (57) becomes

(58) H∗(Adm) ◦ τ(x, ρ)(γ−1(w)) = τ(mxm−1, ρ ◦Ad−1
m )(w) ◦H∗(Adm).

Denoting the M◦-conjugacy class of (x, ρ) by [x, ρ]M◦ , we can write

Γτ(x,ρ) = {γ ∈ Γ | τ(x, ρ) ◦ γ−1 ∼= τ(x, ρ)}(59)

= {γ ∈ Γ | [Adγ(x, ρ)]M◦ = [x, ρ]M◦} =: Γ[x,ρ]M◦ .

This group fits in an exact sequence

(60) 1→ π0

(
ZM◦(x, ρ)/Z(M◦)

)
→ π0

(
ZM (x, ρ)/Z(M◦)

)
→ Γ[x,ρ]M◦ → 1,

which by Lemma 15.2 admits a splitting

s : Γ[x,ρ]M◦ → π0

(
ZM (x, ρ)/Z(M◦)

)
.

By homotopy invariance in Borel–Moore homology H∗(Adz) = idH∗(Bx,C)

for any z ∈ ZM◦(x, ρ)◦Z(M◦), so H∗(Adm) is well-defined for
m ∈ π0

(
ZM (x, ρ)/Z(M◦)

)
. In particular we obtain for every γ ∈ Γτ(x,ρ) =

Γ[x,ρ]M◦ a linear bijection

H∗(Ads(γ)) : HomAx(ρ,Hd(x)(Bx,C))→ HomAx(ρ,Hd(x)(Bx,C)),

which by (58) intertwines theWM◦-representations τ(x, ρ) and τ(x, ρ)◦γ−1.
By construction

(61) H∗(Ads(γ)) ◦H∗(Ads(γ′)) = H∗(Ads(γγ′)).

This establishes the triviality of the 2-cocycle \(τ) = \(τ(x, ρ)).
Consider any g ∈ Γ \ Γx. Then gτ corresponds to

Adg(x, ρ) = (gxg−1, ρ ◦Ad−1
g ).

For γ ∈ Γx we define an intertwining operator in

EndWM◦
(
HomAgxg−1 (ρ ◦Ad−1

g , Hd(x)(Bgxg−1 ,C))
)

associated to gγg−1 ∈ Γgxg−1 as

(62) Hd(x)(Adgs(γ)g−1) = Hd(x)(Adg)Hd(x)(Ads(γ))Hd(x)(g
−1).

We do the same for any other point in the Γ-orbit of (x, ρ). Then (61) shows
that the resulting intertwining operators do not depend on the choices of
the elements g.

We follow the same recipe for any other Γ-orbit of Springer parame-
ters (x′, ρ′). As connecting homomorphism φg,(x′,ρ′) we take conjugation
by Hd(x′)(Adg). From this construction and Lemma 13.3 we obtain a bijec-

tion between Irr(WM◦ o π0(M)) and the extended quotient of the second
kind

(
Irr(WM◦)//Γ

)
2
. �
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We note that the bijection from Proposition 15.3 is in general not canoni-
cal, because the splitting from Lemma 15.2 is not. But with some additional
effort we can extract a natural description of Irr(WM ) from Proposition
15.3.

We say that an irreducible representation ρ1 of ZM (x) is geometric if every
irreducible ZM◦(x)-subrepresentation of ρ1 is geometric in the previously
defined sense. Notice that this condition forces ρ1 to factor through the
component group π0(ZM (x)).

We note that π0(ZM (x)) acts naturally on Hd(x)(Bx) and on C[Γ], via the
isomorphism

(63) ZM (x)/ZM◦(x) ∼= Γ[x]M◦ .

Theorem 15.4. There is a natural bijection from{
(x, ρ1) | x ∈M◦ unipotent, ρ1 ∈ Irr

(
π0(ZM (x))

)
geometric

}
/M

to Irr(WM ), which sends (x, ρ1) to

HomZM (x)

(
ρ1, Hd(x)(Bx)⊗ C[Γ]

)
.

Proof. Let us take another look at the geometric representations of Ax =
ZM◦(x). By construction they factor through π0(ZM◦(x)/Z(M◦)). From
(55) we get a group isomorphism

(64) π0(ZM (x)/Z(M◦)) ∼= π0(ZM◦(x)/Z(M◦)) o s
(
Γ[x]M◦

)
.

Suppose that ρ ∈ Irr(Ax) is geometric. Then the operators Hd(x)(Ads(γ))
intertwine ρ with the π0(ZM◦(x)/Z(M◦))-representation s(γ) · ρ and they
satisfy the multiplicativity relation 61. Now it follows from Lemma 13.1
that every irreducible geometric representation of π0(ZM (x)) can be written
in a unique way as ρo σ, with ρ ∈ Irr(Ax) geometric and

σ ∈ Irrs(Γ[x,ρ]M◦ ) = Irr(Γ[x,ρ]M◦ ).

This enables us to rewrite ˜Irr(WM◦) as a union of pairs (x, ρ1 = ρ o σ),
with x in a finite union of chosen Γ-orbits of unipotent elements. Clearly M
acts on the larger space{

(x, ρ1) | x ∈M◦ unipotent, ρ1 ∈ Irr
(
π0(ZM (x))

)
geometric

}
by conjugation of the x-parameter and the action induced by H∗(Adm) on
the ρ1-parameter. By (62) and the construction of s(γ) in Lemma 15.2,

this extends the action of Γ on ˜Irr(WM◦). That provides the bijection from(
Irr(WM◦)//Γ

)
2

to set of the M -association classes of pairs (x, ρ1). Com-

bining this with Proposition 15.3, we obtain a bijection between Irr(WM )
and the latter set. If we work out the definitions and use (48), we see that
it sends (x, ρ1 = ρo σ) to

τ(x, ρ) o σ = IndW
M◦oΓ

WM◦oΓ[x,ρ]M◦

(
τ(x, ρ)⊗ σ).
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Since every irreducible complex representation of a finite group is isomorphic
to its contragredient, we can rewrite this as

IndW
M◦oΓ

WM◦oΓ[x,ρ]M◦

(
HomAx(ρ,Hd(x)(Bx))⊗ σ∗

) ∼=
IndW

M◦oΓ
WM◦oΓ[x,ρ]M◦

(
HomΓ[x,ρ]M◦

(
σ,HomAx(ρ,Hd(x)(Bx))⊗ C[Γ[x,ρ]M◦ ]

))
.

In view of Lemma 15.2, the previous line is isomorphic to

IndW
M◦oΓ

WM◦oΓ[x,ρ]M◦

(
HomZM (x,ρ)

(
ρ⊗ σ,Hd(x)(Bx)⊗ C[Γ[x,ρ]M◦ ]

)) ∼=
IndW

M◦oΓ
WM◦oΓ[x]M◦

(
HomZM (x,ρ)

(
ρ⊗ σ,Hd(x)(Bx)⊗ C[Γ[x]M◦ ]

))
.

With Frobenius reciprocity and (63) we simplify the above expression to

IndW
M◦oΓ

WM◦oΓ[x]M◦

(
HomZM (x)

(
ρo σ,Hd(x)(Bx)⊗ C[Γ[x]M◦ ]

)) ∼=
HomZM (x)

(
ρo σ,Hd(x)(Bx)⊗ C[Γ]

)
.

The last line is natural in (x, ρ1 = ρo σ) because the ZM (x)-representation
Hd(x)(Bx) depends in a natural way on x, as we observed at the start of the
proof of Proposition 15.3. �

There is natural partial order on the unipotent classes in M :

O < O′ when O ( O′.

Let Ox ⊂M be the class containing x. We transfer this to partial order on
our extended Springer data by defining

(65) (x, ρ1) < (x′, ρ′1) when Ox ( Ox′ .

We will use it to formulate a property of the composition series of some
WM -representations that will appear later on.

Lemma 15.5. Let x ∈ M be unipotent and let ρ o σ be a geometric irre-
ducible representation of π0(ZM (x)). There exist multiplicities
mx,ρoσ,x′,ρ′oσ′ ∈ Z≥0 such that

IndWoΓ
WoΓ[x,ρ]M◦

(
HomAx

(
(ρ,H∗(Bx,C)

)
⊗ σ

) ∼=
τ(x, ρ) o σ ⊕

⊕
(x′,ρ′oσ′)>(x,ρoσ)

mx,ρoσ,x′,ρ′oσ′ τ(x′, ρ′) o σ′.

Proof. Consider the vector space HomAx

(
ρ,H∗(Bx,C)

)
with theWM◦-action

coming from (56). The proof of Proposition 15.3 remains valid for these rep-
resentations. By [12, Theorem 4.4] (attributed to Borho and MacPherson)
there exist multiplicities mx,ρ,x′,ρ′ ∈ Z≥0 such that

(66) HomAx

(
(ρ,H∗(Bx,C)

) ∼= τ(x, ρ)⊕
⊕

(x′,ρ′)>(x,ρ)

mx,ρ,x′,ρ′ τ(x′, ρ′).
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By (59) and (58) Γ[x,ρ]M◦ also stabilizes the τ(x′, ρ′) with mx,ρ,x′,ρ′ > 0, and
by Proposition 15.3 the associated 2-cocycles are trivial. It follows that

(67) IndWoΓ
WoΓ[x,ρ]M◦

(
HomAx

(
(ρ,H∗(Bx,C)

)
⊗ σ

) ∼=
τ(x, ρ) o σ ⊕

⊕
(x′,ρ′)>(x,ρ)

mx,ρ,x′,ρ′IndWoΓ
WoΓ[x,ρ]M◦

(
τ(x′, ρ′)⊗ σ

)
.

Decomposing the right hand side into irreducible representations then gives
the statement of the lemma. �

16. The Langlands parameter Φ

Let WF denote the Weil group of F , let IF be the inertia subgroup of
WF . Let Wder

F denote the closure of the commutator subgroup of WF , and

write Wab
F = WF /W

der
F . The group of units in oF will be denoted o×F .

We recall the Artin reciprocity map aF : WF → F× which has the
following properties (local class field theory):

(1) The map aF induces a topological isomorphism Wab
F ' F×.

(2) An element x ∈WF is a geometric Frobenius if and only if aF (x) is
a prime element $F of F .

(3) We have aF (IF ) = o×F .

We now consider the principal series of G. We recall that G denotes a
connected reductive split p-adic group with maximal split torus T , and
that G, T denote the Langlands dual groups of G, T . Next, we consider
conjugacy classes in G of continuous morphisms

Φ: WF × SL2(C)→ G

which are rational on SL2(C) and such that Φ(WF ) consists of semisimple
elements in G.

Let B2 be the upper triangular Borel subgroup in SL2(C). Let BΦ(WF×B2)

denote the variety of Borel subgroups of G containing Φ(WF × B2). The

variety BΦ(WF×B2) is non-empty if and only if Φ factors through Wab
F , see

[55, §4.2]. In that case, we view the domain of Φ to be F× × SL2(C):

Φ: F× × SL2(C)→ G.

In this section we will build such a continuous morphism Φ from s and data
coming from the extended quotient of second kind. In Section 17 we show
how such a Langlands parameter Φ can be enhanced with a parameter ρ.

Throughout this article, a Frobenius element FrobF has been chosen and
fixed. This determines a uniformizer $F via the equation aF (FrobF ) = $F .
That in turn gives rise to a group isomorphism o×F × Z→ F×, which sends
1 ∈ Z to $F . Let T0 denote the maximal compact subgroup of T . As the
latter is F -split,

(68) T ∼= F× ⊗Z X∗(T ) ∼= (o×F × Z)⊗Z X∗(T ) = T0 ×X∗(T ).

BecauseW does not act on F×, these isomorphisms areW-equivariant if we
endow the right hand side with the diagonalW-action. Thus (68) determines
a W-equivariant isomorphism of character groups

(69) Irr(T ) ∼= Irr(T0)× Irr(X∗(T )) = Irr(T0)×Xunr(T ).
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Lemma 16.1. Let χ be a character of T , and let [T , χ]G be the inertial class
of the pair (T , χ) as in §3. Let

s = [T , χ]G .(70)

Then s determines, and is determined by, theW-orbit of a smooth morphism

cs : o×F → T.

Proof. There is a natural isomorphism

Irr(T ) = Hom(F×⊗ZX∗(T ),C×) ∼= Hom(F×,C×⊗ZX
∗(T )) = Hom(F×, T ).

Together with (69) we obtain isomorphisms

Irr(T0) ∼= Hom(o×F , T ),

Xunr(T ) ∼= Hom(Z, T ) = T.

Let χ̂ ∈ Hom(F×, T ) be the image of χ under these isomorphisms. By the
above the restriction of χ̂ to o×F is not disturbed by unramified twists, so we
take that as cs. Conversely, by (69) cs determines χ up to unramified twists.
Two elements of Irr(T ) are G-conjugate if and only if they areW-conjugate
so, in view of (70), the W-orbit of the cs contains the same amount of
information as s. �

Let H = ZG(im cs) and let M = ZH(t) for some t ∈ T . Recall that
a unipotent element x ∈ M0 is said to be distinguished if the connected
center Z0

M0 of M0 is a maximal torus of ZM0(x). Let x ∈M0 unipotent. If

x is not distinguished, then there is a Levi subgroup L of M0 containing x
and such that x ∈ L is distinguished.

Let X ∈ Lie M0 such that exp(X) = x. A cocharacter h : C× → M0 is
said to be associated to x if

Ad(h(t))X = t2X for each t ∈ C×,
and if the image of h lies in the derived group of some Levi subgroup L for
which x ∈ L is distinguished (see [40, Rem. 5.5] or [31, Rem.2.12]).

A cocharacter associated to a unipotent element x ∈ M0 is not unique.
However, any two cocharacters associated to a given x ∈ M0 are conjugate
under elements of ZM0(x)0 (see for instance [40, Lem. 5.3]).

We work with the Jacobson–Morozov theorem [27, p. 183]. Let ( 1 1
0 1 ) be

the standard unipotent matrix in SL2(C) and let x be a unipotent element
in M0. There exist rational homomorphisms

(71) γ : SL2(C)→M0 with γ ( 1 1
0 1 ) = x,

see [27, §3.7.4]. Any two such homomorphisms γ are conjugate by elements
of ZM◦(x).

For α ∈ C× we define the following matrix in SL2(C):

Yα =
(
α 0
0 α−1

)
.

Then each γ as above determines a cocharacter h : C× →M0 by setting

(72) h(α) := γ(Yα) for α ∈ C×.
Each cocharacter h obtained in this way is associated to x, see [40, Rem. 5.5]
or [31, Rem.2.12]. Hence each two such cocharacters are conjugate under
ZM0(x)0.
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Lemma 16.2. Each cocharacter h above can be identified with a cocharacter
of H associated to x, where x is viewed as a unipotent element of H.

Any two such cocharacters of H are conjugate by elements of ZH(x)0.

Proof. Recall J.C. Jantzen’s result [40, Claim 5.12] (see also [31] for a related
study in positive good characteristic): For any connected reductive subgroup
H2 of an arbitrary connected complex Lie group H1, the cocharacters of H2

associated to a unipotent element x ∈ H2 are precisely the cocharacters of
H1 associated to x which take values in H2.

Applying this with H1 = H and H2 = M0, we get that h can be identified
with a cocharacter of H, and is associated to x viewed as a unipotent element
of H.

The last assertion follows from [40, Lem. 5.3]. �

From now on we view the h above as cocharacters of H associated to
x. Any two γ : SL2(C) → M0 ⊂ H as above are conjugate by elements of
ZH(x).

Suppose that γ′ : SL2(C) → H is an optimal SL2-homomorphism for x
such that

γ′(Yα) = γ(Yα) for α ∈ C×.
Then γ′ = γ, see [50, Prop. 42].

Choose a geometric Frobenius $F and set Φ($F ) = t ∈ T . Define the
Langlands parameter Φ as follows:

(73) Φ: F× × SL2(C)→ G, (u$n
F , Y ) 7→ cs(u) · tn · γ(Y )

for all u ∈ o×F , n ∈ Z, Y ∈ SL2(C).
Note that the definition of Φ uses the appropriate data: the semisimple

element t ∈ T , the map cs, and the homomorphism γ (which depends on
the Springer parameter x).

Since x determines γ up to M◦-conjugation, cs, x and t determine Φ up
to conjugation by their common centralizer in G. Notice also that one can
recover cs, x and t from Φ and that

(74) h(α) = Φ(1, Yα).

17. Varieties of Borel subgroups

We clarify some issues with different varieties of Borel subgroups and
different kinds of parameters arising from them. Let G be a connected
reductive complex group and let

Φ: WF × SL2(C)→ G

be as in (73). We write

H = ZG(Φ(IF )) = ZG(im cs),

M = ZG(Φ(WF )) = ZH(t).

Although both H and M are in general disconnected, Φ(WF ) is always
contained in H◦ because it lies in the maximal torus T of G and H◦. Hence
Φ(IF ) ⊂ Z(H◦).
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By construction t commutes with Φ(SL2(C)) ⊂ M . For any q1/2 ∈ C×
the element

(75) tq := tΦ
(
Yq1/2

)
satisfies the familiar relation tqxt

−1
q = xq. Indeed

tqxt
−1
q = tΦ(Yq1/2)Φ ( 1 1

0 1 ) Φ(Y −1
q1/2)t−1

= tΦ
(
Yq1/2 ( 1 1

0 1 )Y −1
q1/2

)
t−1

= tΦ
(

1 q
0 1

)
t−1 = xq.

(76)

Recall that B2 denotes the upper triangular Borel subgroup of SL2(C). In

the flag variety of M◦ we have the subvarieties BxM◦ and BΦ(B2)
M◦ of Borel

subgroups containing x and Φ(B2), respectively. Similarly the flag variety

of H◦ has subvarieties Bt,xH◦ , B
tq ,x
H◦ and

Bt,Φ(B2)
H◦ = Btq ,Φ(B2)

H◦ .

Notice that Φ(IF ) lies in every Borel subgroup of H◦, because it is contained
in Z(H◦). We abbreviate ZH(Φ) = ZH(Φ(WF × SL2(C))) and similarly for
other groups.

Proposition 17.1. (1) The inclusion maps

ZM◦(Φ) → ZM◦(Φ(B2)) → ZM◦(x),
ZH(tq, x) ← ZH(Φ) → ZH(t,Φ(B2)) → ZH(t, x),

are homotopy equivalences. In particular they induce isomorphisms
between the respective component groups.

(2) The inclusions BΦ(B2)
M◦ → BxM◦ and Btq ,xH◦ ← Bt,Φ(B2)

H◦ → Bt,xH◦ are
homotopy equivalences.

Proof. It suffices to consider the statements for H and tq, since the others
can be proven in the same way.
(1) Our proof uses some elementary observations from [55, §4.3]. There is a
Levi decomposition

ZH◦(x) = ZH◦(Φ(SL2(C)))Ux

with ZH◦(Φ(SL2(C))) = ZH◦(Φ(B2)) reductive and Ux unipotent. Since
tq ∈ NH◦(Φ(SL2(C))) and ZH(xq) = ZH(x), conjugation by tq preserves this
decomposition. Therefore

(77) ZH◦(tq, x) = ZH◦(Φ)ZUx(tq) = ZH◦(tq,Φ(B2))ZUx(tq).

We note that

ZUx(tq) ∩ ZH◦(tq,Φ(B2)) ⊂ Ux ∩ ZH◦(Φ(B2)) = 1

and that ZUx(tq) ⊂ Ux is contractible, because it is a unipotent complex
group. It follows that

(78) ZH◦(Φ) = ZH◦(tq,Φ(B2))→ ZH◦(tq, x)

is a homotopy equivalence. If we want to replace H◦ by H, we find

ZH(Φ)/ZH◦(Φ) = {hH◦ ∈ π0(H) | hΦh−1 ∈ Ad(H◦)Φ},
and similarly with (tq,Φ(B2)) or (tq, x) instead of Φ.
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Let us have a closer look at the H◦-conjugacy classes of these objects.
Given any Φ, we obviously know what tq and x are. Conversely, suppose
that tq and x are given. We apply a refinement of the Jacobson–Morozov
theorem due to Kazhdan and Lusztig. According to [42, §2.3] there exist
homomorphisms Φ : WF × SL2(C) → G as above, which return tq and
x in the prescribed way. Moreover all such homomorphisms are conjugate
under ZH◦(tq, x), see [42, §2.3.h] or Section 19. So from (tq, x) we can
reconstruct the Ad(H◦)-orbit of Φ, and this gives bijections between H◦-
conjugacy classes of Φ, (tq,Φ(B2)) and (tq, x). Since these bijections clearly
are π0(H)-equivariant, we deduce
(79)

ZH(Φ)/ZH◦(Φ) = ZH(tq,Φ(B2))/ZH◦(tq,Φ(B2)) = ZH(tq, x)/ZH◦(tq, x).

Equations (78) and (79) imply that

ZH(Φ) = ZH(tq,Φ(B2))→ ZH(tq, x)

is also a homotopy equivalence.
(2) By the aforementioned result [42, §2.3.h]

(80) ZH◦(tq, x) · Btq ,Φ(B2)
H◦ = Btq ,xH◦ .

On the other hand, by (77)
(81)

ZH◦(tq, x) · Btq ,Φ(B2)
H◦ = ZUx(tq)ZH(tq,Φ(B2)) · Btq ,Φ(B2)

H◦ = ZUx(tq) · B
tq ,Φ(B2)
H◦ .

For any B ∈ Btq ,Φ(B2)
H◦ and u ∈ ZUx(tq) it is clear that

u ·B ∈ Btq ,Φ(B2)
H◦ ⇐⇒ Φ(B2) ⊂ uBu−1 ⇐⇒ u−1Φ(B2)u ⊂ B.

Furthermore, since Φ(B2) ⊂ B is generated by x and {Φ
(
α 0
0 α−1

)
| α ∈ C×},

the right hand side is equivalent to

u−1Φ
(
α 0
0 α−1

)
u ∈ B ∀α ∈ C×.

In Lie algebra terms this can be reformulated as

Adu−1(dΦ
(
α 0
0 −α

)
) ∈ LieB ∀α ∈ C.

Because u is unipotent, this happens if and only if

Aduλ(dΦ
(
α 0
0 −α

)
) ∈ LieB ∀λ, α ∈ C.

By the reverse chain of arguments the last statement is equivalent with

uλ ·B ∈ Btq ,Φ(B2)
H◦ ∀λ ∈ C.

Thus {u ∈ ZUx(tq) | u · B ∈ B
tq ,Φ(B2)
H◦ } is contractible for all B ∈ Btq ,Φ(B2)

H◦ ,
and we already knew that ZUx(tq) is contractible. Together with (80) and

(81) these imply that Btq ,Φ(B2)
H◦ → Btq ,xH◦ is a homotopy equivalence. �

For the affine Springer correspondence we will need more precise infor-
mation on the relation between the varieties for G, for H and for M◦.

Proposition 17.2. (1) The variety Bt,xH◦ is isomorphic to [WH◦ :WM◦ ]

copies of BxM◦, and Bt,Φ(B2)
H◦ is isomorphic to the same number of

copies of BΦ(B2)
M◦ .

(2) The group ZH◦(t, x)/ZM◦(x) permutes these two sets of copies freely.
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(3) The variety BΦ(WF×B2)
G is isomorphic to [WG : WH◦ ] copies of

Bt,Φ(B2)
H◦ . The group ZG(Φ)/ZH◦(Φ) permutes these copies freely.

Proof. (1) Let A be a subgroup of T such that M◦ = ZH◦(A)◦ and let BAH◦
denote the variety of all Borel subgroups of H◦ which contain A. With an
adaptation of [27, p.471] we will prove that, for any B ∈ BAH◦ , B ∩M0 is a
Borel subgroup of M0.

Since B ∩M◦ ⊂ B is solvable, it suffices to show that its Lie algebra is a
Borel subalgebra of Lie M◦. Write Lie T = t and let

Lie H◦ = n⊕ t⊕ n−

be the triangular decomposition, where Lie B = n ⊕ t. Since A ⊂ B, it
preserves this decomposition and

Lie M◦ = (Lie H)A = nA ⊕ t⊕ nA−,

Lie B ∩M◦ = Lie BA = nA ⊕ t.

The latter is indeed a Borel subalgebra of Lie M◦. Thus there is a canonical
map

(82) BAH◦ → FlagM0, B 7→ B ∩M0.

The group M acts by conjugation on BAH◦ and (82) clearly is M -equivariant.
By [27, p. 471] the M◦-orbits form a partition

(83) BAH◦ = B1 t B2 t · · · t Bm.

At the same time these orbits are the connected components of BAH◦ and the
irreducible components of the projective variety BAH◦ . The argument from
[27, p. 471] also shows that (82), restricted to any one of these orbits, is a
bijection from the M0-orbit onto Flag M0.

The number of components m can be determined as in the proof of [63,
Corollary 3.12.a]. The collection of Borel subgroups of M◦ that contain the
maximal torus T is in bijection with the Weyl group WM◦ . Retracting via
(82), we find that every component Bi has precisely |WM◦ | elements that
contain T . On the other hand, since A ⊂ T, BAH◦ has |WH◦ | elements that
contain T , so

m = [WH◦ :WM◦ ].

To obtain our desired isomorphisms of varieties, we let A be the group gen-
erated by t and we restrict Bi → Flag M◦ to Borel subgroups that contain
t, x (respectively t,Φ(B2)).
(2) By Proposition 17.1

ZH◦(t, x)/ZM◦(x) ∼= ZH◦(t,Φ(B2))/ZM◦(Φ(B2)).

Since the former is a subgroup of M/M◦ and the copies under considera-
tion are in M -equivariant bijection with the components (83), it suffices to
show that M/M◦ permutes these components freely. Pick B,B′ in the same
component Bi and assume that B′ = hBh−1 for some h ∈ M . Since Bi is
M◦-equivariantly isomorphic to the flag variety of M◦ we can find m ∈M◦
such that B′ = m−1Bm. Then mh normalizes B, so mh ∈ B. As B is
connected, this implies mh ∈M◦ and h ∈M◦.
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(3) Apply the proofs of parts 1 and 2 with A = Φ(IF ), G in the role of
H◦, H◦ in the role of M◦ and tΦ(B2) in the role of x. �

18. Comparison of different parameters

In the following sections we will make use of several different but related
kinds of parameters.

Kazhdan–Lusztig–Reeder parameters
For a Langlands parameter as in (73), the variety of Borel subgroups

BΦ(WF×B2)
G is nonempty, and the centralizer ZG(Φ) of the image of Φ acts

on it. Hence the group of components π0(ZG(Φ)) acts on the homology

H∗
(
BΦ(WF×B2)
G ,C

)
. We call an irreducible representation ρ of π0(ZG(Φ))

geometric if it appears inH∗
(
BΦ(WF×B2)
G ,C

)
. We define a Kazhdan–Lusztig–

Reeder parameter for G to be a such pair (Φ, ρ). The group G acts on these
parameters by

(84) g · (Φ, ρ) = (gΦg−1, ρ ◦Ad−1
g )

and we denote the corresponding equivalence class by [Φ, ρ]G.

Affine Springer parameters
As before, suppose that t ∈ G is semisimple and that x ∈ ZG(t) is unipo-

tent. Then ZG(t, x) acts on Bt,xG and π0(ZG(t, x)) acts on the homology of

this variety. In this setting we say that ρ1 ∈ Irr
(
π0(ZG(t, x))

)
is geometric

if it appears in Htop(Bt,xG ,C), where top refers to highest degree in which

the homology is nonzero, the real dimension of Bt,xG . We call such triples
(t, x, ρ1) affine Springer parameters for G, because they appear naturally in
the representation theory of the affine Weyl group associated to G. The
group G acts on such parameters by conjugation, and we denote the conju-
gacy classes by [t, x, ρ1]G.

Kazhdan–Lusztig parameters
Next we consider a unipotent element x ∈ G and a semisimple element

tq ∈ G such that tqxt
−1
q = xq. As above, ZG(tq, x) acts on the variety Btq ,xG

and we call ρq ∈ Irr
(
π0(ZG(tq, x))

)
geometric if it appears in H∗

(
Btq ,xG ,C

)
.

Triples (tq, x, ρq) of this kind are known as Kazhdan–Lusztig parameters for
G. Again they are endowed with an obvious G-action and we denote the
equivalence classes by [tq, x, ρq]G.

In [42, 55] there are some indications that these three kinds of parameters
are essentially equivalent. Proposition 17.1 allows us to make this precise in
the necessary generality.

Lemma 18.1. Let s be a Bernstein component in the principal series, asso-
ciate cs : o×F → T to it as in Lemma 16.1 and write H = ZG(cs(o×F )). There
are natural bijections between H◦-equivalence classes of:

• Kazhdan–Lusztig–Reeder parameters for G with Φ
∣∣
o×F

= cs and

Φ($F ) ∈ H◦;
• affine Springer parameters for H◦;
• Kazhdan–Lusztig parameters for H◦.
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Proof. Since SL2(C) is connected and commutes with o×F , its image un-
der Φ must be contained in the connected component of H. Therefore
KLR-parameters with these properties are in canonical bijection with KLR-
parameters for H◦ and it suffices to consider the case H◦ = G.

As in (73) and (75), any KLR-parameter gives rise to the ingredients t, x
and tq for the other two kinds of parameters. As we discussed after (73), the
pair (t, x) is enough to recover the conjugacy class of Φ. A refined version of
the Jacobson–Morozov theorem says that the same goes for the pair (tq, x),
see [42, §2.3] or [55, Section 4.2].

To complete Φ, (t, x) or (tq, x) to a parameter of the appropriate kind, we
must add an irreducible representation ρ, ρ1 or ρq. For the affine Springer
parameters it does not matter whether we consider the total homology or
only the homology in top degree. Indeed, it follows from Propositions 17.1
and 17.2 and [60, bottom of page 296 and Remark 6.5] that any irreducible

representation ρ1 which appears in H∗
(
Bt,xG ,C

)
, already appears in the top

homology of this variety.
This and Proposition 17.1 show that there is a natural correspondence

between the possible ingredients ρ, ρ1 and ρq. �

19. The affine Springer correspondence

An interesting instance of Section 15 arises when M is the centralizer
of a semisimple element t in a connected reductive complex group G. As
before we assume that t lies in a maximal torus T of G and we write WG =
W (G,T ). By Lemma 14.2

(85) WM := NM (T )/ZM (T ) ∼= W o π0(M)

is the stabilizer of t in WG, so the role of Γ is played by the component
group π0(M). In contrast to the setup in Section 15, it is possible that some
elements of π0(M)\{1} fix W pointwise. This poses no problems however, as
such elements never act trivially on T . For later use we record the following
consequence of (59):

(86) π0(M)τ(x,ρ)
∼=
(
ZM (x)/ZM◦(x)

)
ρ
.

Recall from Section 5 that

T̃2 := {(t, σ) : t ∈ T, σ ∈ Irr(WG
t )},

(T//WG)2 := T̃2/WG.

We note that the rational characters of the complex torus T span the regular
functions on the complex variety T :

O(T ) = C[X∗(T )].

From (50), (51) and Proposition 15.3 we infer the following rough form of the
extended Springer correspondence for the affine Weyl group X∗(T ) oWG.

Theorem 19.1. There are bijections

(T//WG)2 ' Irr (X∗(T ) oWG) ' {(t, τ(x, %) o ψ)}/WG

with t ∈ T, τ(x, %) ∈ IrrWM0
, ψ ∈ Irr(π0(M)τ(x,%)).
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Now we recall the geometric realization of irreducible representations of
X∗(T ) oWG by Kato [41]. For a unipotent element x ∈M◦ let Bt,xG be the
variety of Borel subgroups of G containing t and x. Fix a Borel subgroup
B of G containing T and let θG,B : Bt,xG → T be the morphism defined by

θG,B(B′) = g−1tg if B′ = gBg−1 and t ∈ gTg−1.

The image of θG,B is WGt, the map is constant on the irreducible compo-

nents of Bt,xG and it gives rise to an action of X∗(T ) on the homology of Bt,xG .

Furthermore Q[WG] ∼= H(ZG) acts on Hd(x)(B
t,x
G ,C) via the convolution

product in Borel–Moore homology, as described in (56). Both actions com-
mute with the action of ZG(t, x) induced by conjugation of Borel subgroups.

Let ρ1 ∈ Irr(ZG(t, x)). By [41, Theorem 4.1] the X∗(T ) oWG-module

(87) τ(t, x, ρ1) := HomZG(t,x)

(
ρ1, Hd(x)(B

t,x
G ,C)

)
is either irreducible or zero. Moreover every irreducible representation of
X∗(T ) oWG is obtained is in this way, and the data (t, x, ρ1) are unique
up to G-conjugacy. This generalizes the Springer correspondence for finite
Weyl groups, which can be recovered by considering the representations on
which X∗(T ) acts trivially.

Propositions 15.3 and 17.2 shine some new light on this:

Theorem 19.2. (1) There are bijections between the following sets:
• Irr(X∗(T ) oWG) = Irr(O(T ) oWG);
• (T//WG)2 =

{
(t, τ̃) | t ∈ T, τ̃ ∈ Irr(WM )

}
/WG;

•
{

(t, τ, σ) | t ∈ T, τ ∈ Irr(WM◦), σ ∈ Irr(π0(M)τ )
}
/WG;

•
{

(t, x, ρ, σ) | t ∈ T, x ∈M◦ unipotent, ρ ∈ Irr
(
π0(ZM◦(x))

)
geometric, σ ∈ Irr

(
π0(M)τ(x,ρ)

)}
/G;

•
{

(t, x, ρ1) | t ∈ T, x ∈M◦ unipotent, ρ1 ∈ Irr
(
π0(ZG(t, x))

)
geometric

}
/G.

Here a representation of π0(ZM◦(x)) (or π0(ZG(t, x))) is called geo-

metric if it appears in Hd(x)(BxM◦ ,C) (respectively Hd(x)(B
t,x
G ,C)).

Apart from the third and fourth sets, these bijections are natural.
(2) The X∗(T )oWG-representation corresponding to (t, x, ρ1) via these

bijections is Kato’s module (87).

We remark that in the fourth and fifth sets it would be more natural
to allow t to be any semisimple element of G. In fact that would give the
affine Springer parameters from Lemma 18.1. Clearly G acts on the set of
such more general parameters (t, x, ρ, σ) or (t, x, ρ1), which gives equivalence
relations /G. The two above /G refer to the restrictions of these equivalence
relations to parameters with t ∈ T .

Proof. (1) Recall that the isotropy group of t in WG is

WG
t =WM =WM◦ o π0(M).

Hence the bijection between the first two sets is an instance of Clifford the-
ory, see Lemma 13.3. The second and third sets are in bijection by Propo-
sition 15.3. The Springer correspondence for WM◦ provides the bijection
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with the fourth collection. To establish a bijection with the fifth collec-
tion, we first recall from (59) that π0(M)τ(x,ρ) = π0(M)[x,ρ]M◦ . By that and
Proposition 15.3 every irreducible representation of

π0(ZG(t, x)) ∼= π0(ZM◦(x)) o π0(M)[x]M◦

is of the form ρo σ for ρ and σ as in the fourth set. By Proposition 17.2

(88) H∗(Bt,xG ,C) ∼= H∗(BxM◦ ,C)⊗ C[ZG(t, x)/ZM◦(x)]⊗ C[WG:WG
t ]

as ZG(t, x)-representations. By [55, §3.1]

ZG(t, x)/ZM◦(x) ∼= π0(M)[x]M◦

is abelian. Hence Ind
π0(M)[x]M◦
π0(M)[x,ρ]M◦

(σ) appears exactly once in the regular

representation of this group and

(89) Homπ0(ZG(t,x))

(
ρo σ,Hd(x)(B

t,x
G ,C)

) ∼=
Homπ0(ZM◦ (x))

(
ρ,Hd(x)(BxM◦ ,C)

)
o σ ⊗ C[WG:WG

t ].

In particular we see that ρ is geometric if and only if ρ o σ is geometric,
which establishes the final bijection. Now the resulting bijection between
the second and fifth sets is natural by Theorem 15.4.
(2) The X∗(T )oWG-representation constructed from (t, x, ρoσ) by means
of our bijections is

(90) Ind
X∗(T )oWG

X∗(T )oWG
t

(
Homπ0(ZM◦ (x))

(
ρ,Hd(x)(BxM◦ ,C)

)
o σ

)
.

On the other hand, by [41, Proposition 6.2]

(91) H∗(Bt,xG ,C) ∼= Ind
X∗(T )oWG

X∗(T )oWM◦ (H∗(BxM◦ ,C))

∼= Ind
X∗(T )oWG

X∗(T )oWG
t

(
H∗(BxM◦ ,C)⊗ C[ZG(t, x)/ZM◦(x)]

)
as ZG(t, x)×X∗(T )oWG-representations. Together with the proof of part
1 this shows that τ(t, x, ρo σ) is isomorphic to (90). �

We can extract a little more from the above proof. Recall that Ox de-
notes the conjugacy class of x in M . Let us agree that the affine Springer
parameters with a fixed t ∈ T are partially ordered by

(t, x, ρ1) < (t, x′, ρ′1) when Ox ( Ox′ .
Lemma 19.3. There exist multiplicities mt,x,ρ1,x′,ρ′1

∈ Z≥0 such that

Homπ0(ZG(t,x))

(
ρ1, H∗(Bt,xG ,C)

) ∼=
τ(t, x, ρ1)⊕

⊕
(t,x′,ρ′1)>(t,x,ρ1)

mt,x,ρ1,x′,ρ′1
τ(t, x′, ρ′1).

Proof. It follows from (91), (88) and (89) that

(92) Homπ0(ZG(t,x))

(
ρo σ,H∗(Bt,xG ,C)

) ∼=
Ind

X∗(T )oWG

X∗(T )oWG
t

Ind
WG
t

WM◦oπ0(M)[x,ρ]M◦

(
Homπ0(ZM◦ (x))

(
ρ,Hd(x)(BxM◦ ,C)

)
⊗ σ

)
.

The functor Ind
X∗(T )oWG

X∗(T )oWG
t

provides an equivalence between the categories
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• X∗(T ) oWG
t -representations with O(T )W

G
t -character t;

• X∗(T ) oWG-representations with O(T )W
G

-character WGt.

Therefore we may apply Lemma 15.5 to the right hand side of (92), which
produces the required formula. �

Let us have a look at the representations with an affine Springer parameter
of the form (t, x = 1, ρ1 = triv). Equivalently, the fourth parameter in
Theorem 19.2 is (t, x = 1, ρ = triv, σ = triv). The WM◦-representation
with Springer parameter (x = 1, ρ = triv) is the trivial representation, so
(x = 1, ρ = triv, σ = triv) corresponds to the trivial representation of WG

t .
With (90) we conclude that the X∗(T ) o WG-representation with affine
Springer parameter (t, 1, triv) is

(93) τ(t, 1, triv) = Ind
X∗(T )oWG

X∗(T )oWG
t

(
trivWG

t

)
.

Notice that this is the only irreducible X∗(T )oWG-representation with an
X∗(T )-weight t and nonzero WG-fixed vectors.

20. Geometric representations of affine Hecke algebras

Let G be a connected reductive complex group, B a Borel subgroup and T
a maximal torus of G contained in B. Let H(G) be the affine Hecke algebra
with the same based root datum as (G,B, T ) and with a parameter q ∈ C×
which is not a root of unity.

Since later on we will have to deal with disconnected reductive groups,
we include some additional automorphisms in the picture. In every root
subgroup Uα with α ∈ ∆(B, T ) we pick a nontrivial element uα. Let Γ be a
finite group of automorphisms of (G,T, (uα)α∈∆(B,T )). Since G need not be
semisimple, it is possible that some elements of Γ fix the entire root system
of (G,T ). Notice that Γ acts on the Weyl group WG = W (G,T ) because it
stabilizes T .

We form the crossed product H(G) o Γ with respect to the canonical Γ-
action on H(G). We define a Kazhdan–Lusztig parameter for H(G) o Γ to
be a triple (tq, x, ρ) such that

• tq ∈ G is semisimple, x ∈ G is unipotent and tqxt
−1
q = xq;

• ρ is an irreducible representation of the component group
π0(ZGoΓ(tq, x)), such that every irreducible subrepresentation of the
restriction of ρ to π0(ZG(tq, x)) appears in H∗(Btq ,x,C).

The group G o Γ acts on such parameters by conjugation, and we denote
the conjugacy class of a parameter by [tq, x, ρ]GoΓ. Now we generalize [42,
Theorem 7.12] and [55, Theorem 3.5.4]:

Theorem 20.1. There exists a natural bijection between Irr(H(G) o Γ)
and G o Γ-conjugacy classes of Kazhdan–Lusztig parameters. The module
corresponding to (tq, x, ρ) is the unique irreducible quotient of the H(G)oΓ-
module

Homπ0(ZGoΓ(tq ,x))

(
ρ,H∗(Btq ,x,C)⊗ C[Γ]

)
.
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Proof. First we recall the geometric constructions ofH(G)-modules by Kazh-
dan, Lusztig and Reeder, taking advantage of Lemma 15.2 to simplify the
presentation somewhat. As in [55, §1.5], let

1→ C → G̃→ G→ 1

be a finite central extension such that G̃ is a connected reductive group with
simply connected derived group. The kernel C acts naturally on H(G̃) and

(94) H(G̃)C ∼= H(G).

The action of Γ on the based root datum of (G,B, T ) lifts uniquely to an

action on the corresponding based root datum for G̃, so the Γ-actions on G
and on H(G) lift naturally to actions on G̃ and H(G̃). Let Hq(G̃) be the

variation on H(G̃) with scalars Z[q,q−1] instead of C and q ∈ C×. In [42,
Theorem 3.5] an isomorphism

(95) Hq(G̃) ∼= KG̃×C×(ZG̃)

is constructed, where the right hand side denotes the G̃ × C×-equivariant
K-theory of the Steinberg variety ZG̃ of G̃. Since GoΓ acts via conjugation

on G̃ and on ZG̃, it also acts on KG̃×C×(ZG̃). However, the connected
group G acts trivially, so the action factors via Γ. Now the definition of
the generators in [42, Theorem 3.5] shows that (95) is Γ-equivariant. In
particular it specializes to Γ-equivariant isomorphisms

(96) H(G̃) ∼= Hq(G̃)⊗Z[q,q−1] Cq ∼= KG̃×C×(ZG̃)⊗Z[q,q−1] Cq.

Let (t̃q, x̃) ∈ (G̃)2 be a lift of (tq, x) ∈ G2 with x̃ unipotent. The G̃-conjugacy

class of t̃q defines a central character of H(G̃) and according to [27, Propo-
sition 8.1.5] the associated localization is

H(G̃)⊗Z(H(G̃)) Ct̃q ∼= KG̃×C×(ZG̃)⊗R(G̃×C×) Ct̃q ,q ∼= H∗(Z t̃q ,q,C).

Any Borel subgroup of G̃ contains C, so Bt̃q ,x̃ = Bt̃q ,x̃
G̃

and Btq ,x = Btq ,xG are

isomorphic algebraic varieties. From [27, p. 414] we see that the convolution

product in Borel–Moore homology leads to an action of H∗(Z
t̃q ,q

G̃
,C) on

H∗(Bt̃q ,x̃,C). Notice that for h̃ ∈ H∗(Z
t̃q ,q

G̃
,C) and g ∈ Go Γ we have

g · h̃ ∈ H∗(Z
gt̃qg−1,q

G̃
,C) ∼= H(G̃)⊗Z(H(G̃)) Cgt̃qg−1 .

An obvious generalization of [27, Lemma 8.1.8] says that all these construc-
tions are compatible with the above actions of Go Γ, in the sense that the
following diagram commutes:

(97)
H∗(Bt̃q ,x̃,C)

h̃−→ H∗(Bt̃q ,x̃,C)
↓H∗(Adg) ↓H∗(Adg)

H∗(Bgt̃qg
−1,gx̃g−1

,C)
g·h̃−−→ H∗(Bgt̃qg

−1,gx̃g−1
,C).

In particular the component group π0(ZG̃(t̃q, x̃)) acts on H∗(Bt̃q ,x̃,C) by

H(G̃)-intertwiners. Let ρ̃ be an irreducible representation of this component
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group, appearing in H∗(Bt̃q ,x̃,C). In other words, (t̃q, x̃, ρ̃) is a Kazhdan–

Lusztig parameter for H(G̃). According to [42, Theorem 7.12]

(98) Homπ0(ZG̃(t̃q ,x̃))(ρ̃, H∗(B
t̃q ,x̃,C))

is a H(G̃)-module with a unique irreducible quotient, say Vt̃q ,x̃,ρ̃.

Following [55, §3.3] we define a group Rt̃q ,x̃ by

(99) 1→ π0(ZG̃(t̃q, x̃))→ π0(ZG̃(tq, x))→ Rt̃q ,x̃ → 1.

Since the derived group of G̃ is simply connected, ZG̃(tq)
◦ = ZG̃(t̃q). Fur-

thermore Z(G̃) acts trivially on H∗(Bt̃q ,x̃,C), so we may just as well replace
(99) by the short exact sequence

1→ π0(ZZG(tq)◦(x)/Z(G))→ π0(ZG(tq, x)/Z(G))→ Rt̃q ,x̃ → 1.

From Lemma 15.2 (with the trivial representation of π0(ZG(tq)
◦(x)) in the

role of ρ) we know that the latter exact sequence splits. Hence all the
2-cocycles of subgroups of Rt̃q ,x̃ appearing in [55, Section 3] are trivial.

Let σ̃ be any irreducible representation of Rt̃q ,x̃,ρ̃, the stabilizer of the

isomorphism class of ρ̃ in Rt̃q ,x̃. Clifford theory for (99) produces ρ̃ o
σ̃ ∈ Irr(π0(ZG̃(tq, x))), a representation which factors through π0(ZG(tq, x))
because C acts trivially. Moreover by [55, Lemma 3.5.1] it appears in
H∗(Btq ,x,C), and conversely every irreducible representation with the latter
property is of the form ρ̃o σ̃.

With the above in mind, [55, Lemma 3.5.2] says that the H(G)-module

M(tq, x, ρ̃o σ̃) := Homπ0(ZG(tq ,x))

(
ρ̃o σ̃, H∗(Btq ,x,C)

)
= HomRt̃q ,x̃,ρ̃

(
σ̃,Homπ0(ZG̃(t̃q ,x̃))(ρ̃, H∗(B

t̃q ,x̃,C))
)(100)

has a unique irreducible quotient

(101) π(tq, x, ρ̃o σ̃) = HomRt̃q ,x̃,ρ̃
(σ̃, Vt̃q ,x̃,ρ̃).

According [55, Lemma 3.5.3] this sets up a bijection between Irr(H(G)) and
G-conjugacy classes of Kazhdan–Lusztig parameters for G.

Remark 20.2. The module (100) is well-defined for any q ∈ C×, although
for roots of unity it may have more than one irreducible quotient. For q = 1
the algebra H(G) reduces to C[X∗(T )oWG] and [27, Section 8.2] shows that
Kato’s module (87) is a direct summand of M(t1, x, ρ1).

Next we study what Γ does to all these objects. There is natural action
of Γ on Kazhdan–Lusztig parameters for G, namely

γ · (tq, x, ρq) =
(
γtqγ

−1, γxγ−1, ρq ◦Ad−1
γ

)
.

From (97) and (100) we deduce that the diagram

(102)

π(tq, x, ρq)
h−→ π(tq, x, ρq)

↓H∗(Adg) ↓H∗(Adg)

π
(
gtqg

−1, gxg−1, ρq ◦Ad−1
g

) γ(h)−−−→ π
(
gtqg

−1, gxg−1, ρq ◦Ad−1
g

)
commutes for all g ∈ Gγ and h ∈ H(G). Hence

(103) Reeder’s parametrization of Irr(H(G)) is Γ-equivariant.
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Let π ∈ Irr(H(G)) and choose a Kazhdan–Lusztig parameter such that π
is equivalent with π(tq, x, ρq). Composition with γ−1 on π gives rise to a
2-cocycle \(π) of Γπ. Clifford theory tells us that every irreducible represen-
tation ofH(G)oΓ is of the form πoρ2 for some π ∈ Irr(H(G)), unique up to
Γ-equivalence, and a unique ρ2 ∈ Irr(C[Γπ, \(π)]). By the above the stabi-
lizer of π in Γ equals the stabilizer of the G-conjugacy class [tq, x, ρq]G. Thus
we have parametrized Irr(H(G)oΓ) in a natural way with GoΓ-conjugacy
classes of quadruples (tq, x, ρq, ρ2), where (tq, x, ρq) is a Kazhdan–Lusztig
parameter for G and ρ2 ∈ Irr

(
C[Γ[tq ,x,ρq ]G , \(π(tq, x, ρq))]

)
.

The short exact sequence

(104) 1→ π0(ZG(tq, x))→ π0(ZGoΓ(tq, x))→ Γ[tq ,x]G → 1

yields an action of Γ[tq ,x]G on Irr
(
π0(ZG(tq, x))

)
. Restricting this to the

stabilizer of ρq, we obtain another 2-cocycle \(tq, x, ρq) of Γ[tq ,x,ρq ]G , which
we want to compare to \(π(tq, x, ρq)). Let us decompose

H∗(Btq ,x,C) ∼=
⊕

ρq
ρq ⊗M(tq, x, ρq)

as π0((ZG(tq, x))×H(G)-modules. We sum over all ρq ∈ Irr
(
π0(ZG(tq, x))

)
for which the contribution is nonzero, and we know that for such ρq the
H(G)-moduleM(tq, x, ρq) has a unique irreducible quotient π(tq, x, ρq). Since
π0(ZGoΓ(tq, x)) acts (via conjugation of Borel subgroups) on H∗(Btq ,x,C),
any splitting of (104) as sets provides a 2-cocycle \ for the action of Γ[tq ,x,ρq ]G

on ρq ⊗M(tq, x, ρq). Unfortunately we cannot apply Lemma 15.2 to find a
splitting of (104) as groups, because ZG(tq) need not be connected. Nev-
ertheless \ can be used to describe the actions of Γ[tq ,x,ρq ]G on both ρq and
π(tq, x, ρq), so

(105) \(tq, x, ρq) = \ = \(π(tq, x, ρq)) as 2-cocycles of Γ[tq ,x,ρq ]G .

It follows that every irreducible representation ρ of π0(ZGoΓ(tq, x)) is of the
form ρqoρ2 for ρq and ρ2 as above. Moreover ρ determines ρq up to Γ[tq ,x]G-
equivalence and ρ2 is unique if ρq has been chosen. Finally, if ρq appears
in Htop(Btq ,x,C) then every irreducible π0(ZG(tq, x))-subrepresentation of ρ
does, because π0(ZGoΓ(tq, x)) acts naturally on H∗(Btq ,x,C). Therefore we
may replace the above quadruples (tq, x, ρq, ρ2) by Kazhdan–Lusztig param-
eters (tq, x, ρ).

The module associated to (tq, x, ρq, ρ2) via the above constructions is the
unique irreducible quotient of the H(G) o Γ-module

(106) Homπ0(ZG(tq ,x))

(
ρq, H∗(Btq ,x,C)

)
o ρ2.

The same reasoning as in the proof of Theorem 15.4 shows that (106) is
isomorphic to

(107) Homπ0(ZGoΓ(tq ,x))

(
ρ,H∗(Btq ,x,C)⊗ C[Γ]

)
.

Since the H(G)-module H∗(Btq ,x,C) depends in a natural way on (tq, x), so
does the unique irreducible quotient of (107). �
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21. Spherical representations

Let G,B, T and Γ be as in the previous section. Let H(WG) be the
Iwahori–Hecke algebra of the Weyl group WG, with a parameter q ∈ C×
which is not a root of unity. This is a deformation of the group algebra
C[WG] and a subalgebra of the affine Hecke algebra H(G). The multiplica-
tion is defined in terms of the basis {Tw | w ∈ WG}, as in (131).

Recall that H(G) also has a commutative subalgebra O(T ), such that the
multiplication maps

(108) O(T )⊗H(WG) −→ H(G)←− H(WG)⊗O(T )

are bijective.
The trivial representation of H(WG) o Γ is defined as

(109) triv(Twγ) = q`(w) w ∈ WG, γ ∈ Γ.

It is associated to the idempotent

ptriv pΓ :=
∑

w∈WG

TwPWG(q)−1
∑
γ∈Γ

γ|Γ|−1 ∈ H(WG) o Γ,

where PWG is the Poincaré polynomial

PWG(q) =
∑

w∈WG
q`(w).

Notice that PWG(q) 6= 0 because q is not a root of unity. The trivial repre-
sentation appears precisely once in the regular representation of H(WG)oΓ,
just like for finite groups.

An H(G) o Γ-module V is called spherical if it is generated by the sub-
space ptrivpΓV [34, (2.5)]. This admits a nice interpretation for the un-
ramified principal series representations. Recall that H(G) ∼= H(G, I) for
an Iwahori subgroup I ⊂ G. Let K ⊂ G be a good maximal compact
subgroup containing I. Then ptriv corresponds to averaging over K and
ptrivH(G, I)ptriv

∼= H(G,K), see [34, Section 1]. Hence spherical H(G, I)-
modules correspond to smooth G-representations that are generated by their
K-fixed vectors, also known as K-spherical G-representations. By the Satake
transform

(110) ptrivH(G, I)ptriv
∼= H(G,K) ∼= O(T/WG),

so the irreducible spherical modules of H(G) ∼= H(G, I) are parametrized
by T/WG via their central characters. We want to determine the Kazhdan–
Lusztig parameters (as in Theorem 20.1) of these representations.

Proposition 21.1. For every central character (WG o Γ)t ∈ T/(WG o Γ)
there is a unique irreducible spherical H(G)oΓ-module, and it has Kazhdan–
Lusztig parameter (t, x = 1, ρ = triv).

Proof. We will first prove the proposition for H(G), and only then consider
Γ.

By the Satake isomorphism (110) there is a unique irreducible spherical
H(G)-module for every central character WGt ∈ T/WG. The equivalence
classes of Kazhdan–Lusztig parameters of the form (t, x = 1, ρ = triv) are
also in canonical bijection with T/WG. Therefore it suffices to show that
π(t, 1, triv) is spherical for all t ∈ T .
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The principal series of H(G) consists of the modules Ind
H(G)
O(T )Ct for t ∈

T . This module admits a central character, namely WGt. By (108) every
such module is isomorphic to H(WG) as a H(WG)-module. In particular it
contains the trivial H(WG)-representation once and has a unique irreducible
spherical subquotient.

As in Section 20, let G̃ be a finite central extension of G with simply
connected derived group. Let T̃ , B̃ be the corresponding extensions of T,B.
We identify the roots and the Weyl groups of G̃ and G. Let t̃ ∈ T̃ be a lift
of t ∈ T . From the general theory of Weyl groups it is known that there is
a unique t+ ∈ WGT̃ such that |α(t+)| ≥ 1 for all α ∈ R(B̃, T̃ ) = R(B, T ).
By (97)

H∗
(
Bt̃
G̃
,C
) ∼= H∗

(
Bt+
G̃
,C
)

as H(G̃)-modules. These t+, B̃ fulfill [55, Lemma 2.8.1], so by [55, Proposi-
tion 2.8.2]

(111) Mt̃,x̃=1,ρ̃=triv = H∗(Bt
+

G̃
,C) ∼= Ind

H(G̃)

O(T̃ )
Ct+ .

According to [54, (1.5)], which applies to t+, the spherical vector ptriv gen-

erates Mt̃,1,triv. Therefore it cannot lie in any proper H(G̃)-submodule of

Mt̃,1,triv and represents a nonzero element of π(t̃, 1, triv). We also note that

the central character of π(t̃, 1, triv) is that of Mt̃,1,triv, WGt̃ =WGt+.

Now we analyse this is an H(G)-module. The group Rt̃,1 = Rt̃,x̃=1,ρ̃=triv

from (99) is just the component group π0(ZG(t)), so by (101)

π(t̃, 1, triv) ∼=
⊕

ρ
Homπ0(ZG(t))(ρ, π(t̃, 1, triv)) =

⊕
ρ
π(t, 1, triv).

The sum runs over Irr
(
π0(ZG(t))

)
, all these representations ρ contribute

nontrivially by [55, Lemma 3.5.1]. Recall from Lemma 14.2 that π0(ZG(t))
can be realized as a subgroup of WG and from (110) that ptriv ∈ π(t̃, 1, triv)

can be regarded as a function on G̃ which is bi-invariant under a good max-
imal compact subgroup K̃. This brings us in the setting of [25, Proposition
4.1], which says that π0(ZG(t)) fixes ptriv ∈ π(t̃, 1, triv). Hence π(t, 1, triv)
contains ptriv and is a spherical H(G)-module. Its central character is the
restriction of the central character of π(t̃, 1, triv), that is, WGt ∈ T/WG.

Now we include Γ. Suppose that V is a irreducible spherical H(G) o
Γ-module. By Clifford theory its restriction to H(G) is a direct sum of
irreducible H(G)-modules, each of which contains ptriv. Hence V is built
from irreducible spherical H(G)-modules. By (103)

γ · π(t, 1, triv) = π(γt, 1, triv),

so the stabilizer of π(t, 1, triv) ∈ Irr(H(G)) in Γ equals the stabilizer of
WGt ∈ T/WG in Γ. Any isomorphism of H(G)-modules

ψγ : π(t, 1, triv)→ π(γt, 1, triv)

must restrict to a bijection between the onedimensional subspaces of spher-
ical vectors in both modules. We normalize ψγ by ψγ(ptriv) = ptriv. Then
γ 7→ ψγ is multiplicative, so the 2-cocycle of ΓWGt is trivial. With Theo-
rem 20.1 this means that the irreducible H(G) o Γ-modules whose restric-
tion to H(G) is spherical are parametrized by equivalence classes of triples
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(t, 1, triv o σ) with σ ∈ Irr(ΓWGt). The corresponding module is

π(t, 1, triv o σ) = π(t, 1, triv) o σ = Ind
H(G)oΓ
H(G)oΓWGt

(
π(t, 1, triv)⊗ σ

)
.

Clearly π(t, 1, triv o σ) contains the spherical vector ptrivpΓ if and only
if σ is the trivial representation. It follows that the irreducible spheri-
cal H(G) o Γ-modules are parametrized by equivalence classes of triples(
t, 1, trivπ0(ZGoΓ(t))

)
, that is, by T/(WG o Γ). �

22. Main result (the case of a connected endoscopic group)

Let χ be a smooth character of the maximal torus T ⊂ G. We recall that

s = [T , χ]G ,

cs = χ̂
∣∣
o×F
,

H = ZG(im cs),

W s = ZWG(im cs).

Let {KLR parameters}s be the collection of Kazhdan–Lusztig–Reeder pa-
rameters for G such that Φ

∣∣
o×F

= cs. Notice that the condition forces

Φ(WF × SL2(C)) ⊂ H. This collection is not closed under conjugation
by elements of G, only H = ZG(im cs) acts naturally on it.

The Bernstein centre associated to s is T s/W s. Since T = T s is a maximal
torus in H, we can identify T s/W s with the space c(H)ss of semisimple
conjugacy classes in H.

Roche [57] proved that Irr(G)s is naturally in bijection with Irr(H(H)),
under some restrictions on the residual characteristic p. Although Roche
works with a local non-archimedean field F of characteristic 0, it follows
from [1] that his arguments apply just as well over local fields of positive
characteristic. We note that for unramified characters χ this result is already
classical, proven (without any restrictions on p) by Borel [17].

In the current section we will prove the most important part of our con-
jecture in the case that H is connected. This happens for most s, a sufficient
condition is:

Lemma 22.1. Suppose that G has simply connected derived group and that
the residual characteristic p satisfies the hypothesis in [57, p. 379]. Then H
is connected.

Proof. We consider first the case where s = [T , 1]G . Then we have cs =
1, H = G and W s =W.

We assume now that cs 6= 1. Then im cs is a finite abelian subgroup of
T which has the following structure: the direct product of a finite abelian
p-group Ap with a cyclic group Bq−1 whose order divides q−1. This follows
from the well-known structure theorem for the group o×F , see [39, §2.2]:

im cs = Ap ·Bq−1.

We have
H = ZHA(Bq−1) where HA := ZG(Ap).

Since G has simply connected derived group, it follows from Steinberg’s
connectedness theorem [64] that the group HA is connected. Since Ap is
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a p-group, and p is not a torsion prime for the root system R(G,T ), the
derived group of HA is simply connected (see [65]).

Now Bq−1 is cyclic. Applying Steinberg’s connectedness theorem to the
group HA, we get that H itself is connected. �

Remark 22.2. Notice that H does not necessarily have simply connected
derived group in setting of Lemma 22.1. For instance, if G is the exceptional
group of type G2 and χ is the tensor square of a ramified quadratic character
of F×, then H = SO(4,C).

In the remainder of this section we will assume that H is connected, Then
Lemma 14.2 shows that W s is the Weyl group of H.

Theorem 22.3. Let G be a split reductive p-adic group and let s be a point
in the Bernstein spectrum of the principal series of G. In the case when
H 6= G, assume that H is connected and that the residual characteristic p
satisfies the conditions of [57, Remark 4.13]. Then there is a commutative
triangle of natural bijections

(T//W s)2

))xx
Irr(G)s // {KLR parameters}s/H

In this triangle, the right slanted map stems from the affine Springer corre-
spondence, the bottom horizontal map is the bijection established by Reeder
[55], and the left slanted map can be constructed via the asymptotic algebra
of Lusztig.

Proof. The right slanted map is the composition of Theorem 19.2.1 (ap-
plied to H) and Lemma 18.1 (with the condition Φ($F ) = t). Since
Irr(G)s ∼= Irr(H(H)), we can take as the horizontal map the parametrization
of irreducible H(H)-modules by Kazhdan, Lusztig and Reeder as described
in Section 20. These are both natural bijections, so there is a unique left
slanted map which makes the diagram commute, and it is also natural. We
want to identify it in terms of Hecke algebras.

Fix a KLR-parameter (Φ, ρ) and recall from Theorem 19.2.2 that the
corresponding X∗(T ) oWH -representation is

(112) Homπ0(ZH(t,x))

(
ρ,Hd(x)(B

t,x
H ,C)

)
.

Similarly, by Theorem 20.1 the corresponding H(H)-module is the unique
irreducible quotient of the H(H)-module

(113) Homπ0(ZH(tq ,x))

(
ρq, H∗(B

tq ,x
H ,C)

)
.

In view of Proposition 17.1 both spaces are unchanged if we replace t by tq
and ρ by ρq, and the vector space (113) is also naturally isomorphic to

(114) Homπ0(ZH(Φ))

(
ρ,H∗(Bt,Φ(B2)

H ,C)
)
.

Recall Lusztig’s asymptotic Hecke algebra J (H) from [47]. As discussed in
Corollary A.3 in Example 3 of the Appendix, there are canonical bijections

(115) Irr(H(H))←→ Irr(J (H))←→ Irr(X∗(T ) oWH).
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According to [48, Theorem 4.2] Irr(J (H)) is naturally parametrized by the
set of H-conjugacy classes of Kazhdan–Lusztig parameters for H. Lusztig
describes the J (H)-module associated to (tq, x, ρq) in terms of equivariant
K-theory, and with [27, Section 6.2] we see that its retraction to H(H) via

H(H)
φq−→ J (H)

φ1←− X∗(T ) oWH

is none other than (113). In [47, Corollary 3.6] the a-function is used to
single out a particular irreducible quotient H(H)-module of (113). But we
saw in (100) that there is only one such quotient, which by definition is
π(tq, x, ρq).

Let Hq(H) be the affine Hecke algebra with the same based root datum
as H and with parameter q ∈ C×. Thus

Hq(H) = H(H) and H1(H) = C[X∗(T ) oWH ].

The above describes the retraction of an irreducible J (H)-module corre-
sponding to (Φ, ρ) to Hq(H) for any q ∈ C× which is not a root of unity.
But everything depends algebraically on q, so the description is valid for
all q ∈ C×, in particular for q = 1. Then [27, Section 8.2] implies that we
obtain the H1(H)-module

(116) Homπ0(ZH(t,x))

(
ρ,H∗(Bt,xH ,C)

)
with the action as in (87). The right bijection in (115) sends (113) to a
certain irreducible quotient of (116) (namely the unique one with minimal
a-weight).

For the opposite direction, consider an irreducible H1(H)-module M with
a-weight aM . According to [47, Corollary 3.6] the J (H)-module

M̃ := H1(H)aM ⊗H1(H) M,

is irreducible and has a-weight aM . See [47, Lemma 1.9] for the precise

definition of M̃ .

Now we fix t ∈ T and we will prove with induction to dimOx that ˜τ(t, x, ρ)
is none other than (116). Our main tool is Lemma 19.3, which says that
the constituents of (116) are τ(t, x, ρ) and irreducible representations cor-
responding to larger affine Springer parameters (with respect to the partial
order defined via the unipotent classes Ox ⊂ M). For dimOx0 = 0 we see
immediately that only the J s-module

Homπ0(ZH(t,x0))

(
ρ0, H∗(Bt,xH ,C)

)
can contain τ(t, x0, ρ0), so that must be ˜τ(t, x0, ρ0). For dimOxn = n Lemma
19.3 says that (116) can only contain τ(t, xn, ρn) if x ∈ Oxn . But when
dimOx < n

˜τ(t, xn, ρn) 6∼= Homπ0(ZH(t,x))

(
ρ,H∗(Bt,xH ,C)

)
,

because the right hand side already is ˜τ(t, x, ρ), by the induction hypothesis

and the bijectivity of M 7→ M̃ . So the parameter of ˜τ(t, xn, ρn) involves an
x with dimOx = n. Then another look at Lemma 19.3 shows that moreover

(x, ρ) must be M -conjugate to (xn, ρn). Hence ˜τ(t, x, ρ) is indeed (116).
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We showed that the bijections (115) work out as

Irr(H(H)) ↔ Irr(J (H)) ↔ Irr(X∗(T ) oWH)

π(tq, x, ρq) ↔ Homπ0(ZH(Φ))

(
ρ,H∗(Bt,Φ(B2)

H ,C)
)
↔ τ(t, x, ρ),

where all the objects in the bottom line are determined by the KLR param-
eter (Φ, ρ). �

23. Main result (Hecke algebra version)

In this section q ∈ C× is allowed to be any element which is not a root
of unity. We study how the conjecture can be extended to the algebras and
modules from Section 20. So let Γ be a group of automorphisms of G that
preserves a chosen pinning, which involves T as maximal torus. With the
disconnected group Go Γ we associate three kinds of parameters:

• The extended quotient of the second kind (T//WG o Γ)2.
• The space Irr(H(G)o Γ) of equivalence classes of irreducible repre-

sentations of the algebra H(G) o Γ (with parameter q).
• Equivalence classes of unramified Kazhdan–Lusztig–Reeder param-

eters. Let Φ : WF × SL2(C) → G be a group homomorphism with
Φ(IF ) = 1 and Φ(WF ) ⊂ T . As in Section 17, the component group

π0(ZGoΓ(Φ)) = π0(ZGoΓ(Φ(WF ×B2)))

acts on H∗(BΦ(WF×B2)
G ,C). We take ρ ∈ Irr

(
π0(ZGoΓ(Φ))

)
such

that every irreducible π0(ZG(Φ))-subrepresentation of ρ appears in

H∗(BΦ(WF×B2)
G ,C). The set {KLR parameters for GoΓ}unr of pairs

(Φ, ρ) carries an action of G o Γ by conjugation. We consider the
collection {KLR parameters for GoΓ}unr/GoΓ of conjugacy classes
[Φ, ρ]GoΓ.

Theorem 23.1. There exists a commutative diagram of natural bijections

(T//WG o Γ)2

**ww
Irr(H(G) o Γ) // {KLR parameters for Go Γ}unr/Go Γ

It restricts to bijections between the following subsets:

• the ordinary quotient T/(WG o Γ) ⊂ (T//WG o Γ)2,
• the collection of spherical representations in Irr(H(G) o Γ),
• equivalence classes of KLR parameters (Φ, ρ) for Go Γ with

Φ(IF × SL2(C)) = 1 and ρ = trivπ0(ZGoΓ(Φ)).

Proof. The corresponding statement for G, proven in Theorem 22.3, is the
existence of natural bijections

(117) (T//WG)2

**ww
Irr(H(G)) // {KLR parameters for G}unr/G
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Although in Section 22 q was a prime power, we notice that the upper and
right objects in (117) do not depend on q. The algebra H(G) does, but the
bottom and left slanted maps in (117) are defined equally well for our more
general q ∈ C×, as can be seen from the proofs of Theorems 20.1 and 22.3.
Thus we may use (117) as our starting point.

Step 1. The bijections in (117) are Γ-equivariant.
The action of Γ on (T//WG)2 can be written as

(118) γ · [t, τ̃ ]WG = [γ(t), τ̃ ◦Ad−1
γ ]WG .

In terms of the multiplication in Go Γ, the action on KLR parameters is

(119) γ · [Φ, ρ1]G = [γΦγ−1, ρ1 ◦Ad−1
γ ]G

We recall the right slanted map in (117) from Theorem 19.2. Write M =
ZG(t) and WG

t = W (M◦, T ) o π0(M). Then the WG
t -representation τ̃ can

be written as τ(x, ρ3)oσ for a unipotent element x ∈M◦, a geometric ρ3 ∈
Irr(ZM◦(x)) and a σ ∈ Irr(π0(M)τ(x,ρ3)). The associated KLR parameter is

[Φ, ρ3 o σ]G, where Φ ( 1 1
0 1 ) = x and Φ maps a Frobenius element of WF to

t.
From (58) we see that τ(x, ρ3) ◦ Ad−1

γ is equivalent with τ(γxγ−1, ρ3 ◦
Ad−1

γ ), so

τ̃ ◦Ad−1
γ is equivalent with τ(γxγ−1, ρ3 ◦Ad−1

γ ) o (σ ◦Ad−1
γ ).

Hence (118) is sent to the KLR parameter (119), which means that the right
slanted map in (117) is indeed Γ-equivariant.

In view of Proposition 17.1 and (119), we already showed in (103) that
the horizontal map in (117) is Γ-equivariant. By the commutativity of the
triangle, so is the left slanted map.

Step 2. Suppose that π, [t, τ̃ ]WG and [Φ, ρ1]G are three corresponding ob-
jects in (117). Then their stabilizers in Γ coincide:

Γπ = Γ[t,τ̃ ]WG
= Γ[Φ,ρ1]G .

This follows immediately from step 1.
Step 3. Clifford theory produces 2-cocycles \(π), \

(
[t, τ̃ ]WG

)
and \

(
[Φ, ρ1]G

)
of Γx. We can choose the same cocycle for all three of them.
For \(π) and \

(
[Φ, ρ1]G

)
this was already checked in (105), where we use

Proposition 17.1 to translate between Φ and (tq, x). Comparing (100) and
Theorem 19.2, we see that \(π) and \

(
[t, τ̃ ]WG

)
come from two very similar

representations: the difference is that M(t, x, ρ1) is built from the entire
homology of a variety, while the corresponding X∗(T )oWG-representation
uses only the homology in top degree. Also the Γπ-actions on these modules
are defined in the same way, so the two cocycles can be chosen equal.

Step 4. Upon applying X 7→ (X//Γ)\2 to the commutative diagram (117)
we obtain the corresponding diagram for Go Γ.
Here \ denotes the family of 2-cocycles constructed in steps 2 and 3. For
(T//WG)2 and Irr(H(G)) we know from Lemmas 13.1 and 13.3 that this pro-
cedure yields the correct parameters. That it works for Kazhdan–Lusztig–
Reeder parameters was checked in the last part of the proof of Theorem
20.1. By steps 1 and 3 the construction used in (47) yields the same homo-
morphisms between the twisted group algebras (called φγ,x in Section 13)
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in all three settings. Hence the maps from (117) can be lifted in a natural
way to the diagram for Go Γ.

The ordinary quotient is embedded in (T//WG o Γ)2 as the collection
of pairs

(
t, triv(WGoΓ)t

)
. By an obvious generalization of (93) these corre-

spond to the affine Springer parameters (t, x = 1, ρ = triv). It is clear from
the above construction that they are mapped to KLR parameters (Φ, triv)
with Φ(IF × SL2(C)) = 1 and Φ($F ) = t. By Proposition 21.1 the latter
correspond to the spherical irreducible H(G) o Γ-modules. �

24. Main result (general case)

We return to the notation from Section 22. In general the group H =
ZG(im cs) need not be connected. It is well-known, and already used several
times in the proof of Proposition 15.3, that the short exact sequence

(120) 1→ H◦/Z(H◦)→ H/Z(H◦)→ π0(H)→ 1

is split. More precisely, any choice of a pinning of H◦ (a Borel subgroup, a
maximal torus, and a nontrivial element in every root subgroup associated
to a simple root) determines such a splitting. We fix a pinning with T as
maximal torus, and with it we fix actions of π0(H) on H◦, on the Dynkin
diagram of H◦ and on the Weyl group of H◦. Lemma 14.2 shows that

(121) W s =WG
im cs
∼=WH◦ o π0(H).

According to [57, Section 8] Irr(G)s is naturally in bijection with Irr(H(H)),
where

(122) H(H) ∼= H(H◦) o π0(H).

Now we have collected all the material that is needed to prove our main
result (Theorem 1.3 in our Introduction).

Theorem 24.1. Let G be a split reductive p-adic group and let s = [T , χ]G
be a point in the Bernstein spectrum of the principal series of G. Assume
that the residual characteristic p satisfies the conditions of [57, Remark 4.13]
when H 6= G. Then there is a commutative triangle of natural bijections

(T s//W s)2

))xx
Irr(G)s // {KLR parameters}s/H

The slanted maps are generalizations of the slanted maps in Theorem 22.3
and the horizontal map stems from Theorem 20.1.

We denote the irreducible G-representation associated to a KLR parameter
(Φ, ρ) by π(Φ, ρ).

(1) The infinitesimal central character of π(Φ, ρ) is the H-conjugacy
class

Φ
(
$F ,

(
q1/2 0

0 q−1/2

) )
∈ c(H)ss

∼= T s/W s.

(2) π(Φ, ρ) is tempered if and only if Φ(WF ) is bounded, which is the
case if and only if Φ($F ) lies in a compact subgroup of H.

(3) π(Φ, ρ) is essentially square-integrable if and only if Φ(WF×SL2(C))
is not contained in any proper Levi subgroup of H◦.
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Recall that G only has irreducible square-integrable representations if Z(G)
is compact. A G-representation is called essentially square-integrable if its
restriction to the derived group of G is square-integrable. This is more
general than square-integrable modulo centre, because for that notion Z(G)
needs to act by a unitary character.

Proof. The larger part of the commutative triangle was already discussed
in (121), (122) and Theorem 23.1. It remains to show that the set {KLR
parameters}s/H (as defined on page 45) is naturally in bijection with {KLR
parameters for H◦ o π0(H)}unr/H◦ o π0(H).

By (120) we are taking conjugacy classes with respect to the groupH/Z(H◦)
in both cases. It is clear from the definitions that that in both sets the in-
gredients Φ are determined by the semisimple element Φ($F ) ∈ H. This
provides the desired bijection between the Φ’s in the two collections, so let
us focus on the ingredients ρ.

For (Φ, ρ) ∈ {KLR parameters}s the irreducible representation ρ of the

component group π0(ZH(Φ)) = π0(ZG(Φ)) must appear inH∗
(
BΦ(WF×B2)
G ,C

)
.

By Proposition 17.2.3 this space is isomorphic, as a π0(ZG(Φ))-representation,
to a number of copies of

Ind
π0(ZG(Φ))
π0(ZH◦ (Φ))H∗

(
BΦ(WF×B2)
H◦ ,C

)
.

Hence the condition on ρ is equivalent to requiring that every irreducible

π0(ZH◦(Φ))-subrepresentation of ρ appears in H∗
(
BΦ(WF×B2)
H◦ ,C

)
. That is

exactly the condition on ρ in an unramified KLR parameter for H◦oπ0(H).
This establishes the properties of the commutative diagram.
(1) From the construction in Section 20 we see that the H(H◦)-module with
Kazhdan–Lusztig parameter (tq, x, ρq) has central character

tq = Φ
(
$F ,

(
q1/2 0

0 q−1/2

) )
∈ c(H◦)ss

∼= T/WH◦ .

It follows that the H(H)-module with parameter (Φ, ρ) has central character
tq ∈ c(H)ss

∼= T s/W s. The corresponding G-representation is obtained via
a suitable Morita equivalence, which by definition transforms the central
character into the infinitesimal character.
(2) It was checked in [20] that a member of Irr(G)s is tempered if and only
if the corresponding H(H)-module is tempered.

For z ∈ C× we put V (z) = log |z|. According to [42, Theorem 8.2] the
H(H)-module with parameter (Φ, ρ) is V -tempered if and only if all the
eigenvalues of t = Φ($F ) on Lie H (via the adjoint representation) have
absolute value 1. That [42] works with simply connected complex groups
is inessential to the argument, it also applies to our H. But V -tempered
(for this V ) means only that the restriction of the H(H)-module to the
subalgebra H(H◦der) is tempered, where H◦der denotes the derived group of
H◦. The H(H)-module is tempered if and only if moreover the subalgebra
H(Z(H0)) acts on it by a unitary character. This is the case if and only if
all the eiqenvalues of t (in some realization of H0 as complex matrices) have
absolute value 1. That in turn means that t lies in the maximal compact
subgroup of T s.
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Since Φ(WF ) is generated by the finite group Φ(IF ) and t = Φ($F ), the
above condition on t is equivalent to boundedness of Φ(WF ).
(3) This is similar to part 2, it follows from [42, Theorem 8.3] and [20]. �

Notice that the bijectons in Theorem 24.1 satisfy the statements (1)–(4)
from Section 7 by construction. We will check the properties 1–6 in the
upcoming sections.

Recall that Irr(G, T ) is the space of all irreducible G-representations in
the principal series. Considering Theorem 24.1 for all Bernstein components
in the principal series simultaneously, we will establish the local Langlands
correspondence for this class of representations.

Corollary 24.2. Let G be a split reductive p-adic group, with restrictions on
the residual characteristic as in [57, Remark 4.13]. Then the local Langlands
correspondence holds for the irreducible representations in the principal se-
ries of G, and it is the bottom row in a commutative triangles of natural
bijections

(Irr T //WG)2

**ww
Irr(G, T ) // {KLR parameters for G}/G

The restriction of this diagram to a single Bernstein component recovers
Theorem 24.1. In particular the bottom arrow generalizes the Kazhdan–
Lusztig parametrization of the irreducible G-representations in the unrami-
fied principal series.

Proof. Let us work out what happens if in Theorem 24.1 we take the union
over all Bernstein components s ∈ B(G, T ).

On the left we obtain (by definition) the space Irr(G, T ). Notice that in
Theorem 24.1, instead of {KLR parameters}s/H we could just as well take
G-conjugacy classes of KLR parameters (Φ, ρ) such that Φ

∣∣
IF

is G-conjugate

to cs. The union of those clearly is the space of all G-conjugacy classes of
KLR parameters for G. For the space at the top of the diagram, choose a
smooth character χs of T such that (T , χs) ∈ s. Recall from Section 12 that
the T in (T//W s)2 is actually

T s := {χs ⊗ t | t ∈ T},
where t is considered as an unramified character of T . On the other hand,
Irr T can be obtained by picking representatives χs for (Irr T )/T and taking
the union of the corresponding T s. Two such spaces T s give rise to the same
Bernstein component for G if and only if they are conjugate by an element
of NG(T ), or equivalently by an element of WG. Therefore

(Irr T //WG)2 =
( ⋃
s∈B(G,T )

WG · T s//WG
)

2
=

⋃
s∈B(G,T )

(
T s//W s

)
2
.

Hence the union of the spaces in the commutative triangles from Theorem
24.1 is as desired. The right slanted arrows in these triangles combine to a
bijection

(Irr T //WG)2 → {KLR parameters for G}/G,
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because the WG-action is compatible with the G-action. Suppose that
(T , χ′s) is another base point for s. Up to an unramified twist, we may
assume that χ′s = wχs for some w ∈ WG. Then the Hecke algebras H(H),
and H(H ′) are isomorphic by a map that reflects conjugation by w and it
was checked in [55, Section 6] that this is compatible with the bijections be-
tween Irr(G)s, Irr(H(H)) and Irr(H(H ′)). It follows that the bottom maps
in the triangles from Theorem 24.1 paste to a bijection

Irr(G, T )→ {KLR parameters for G}/G.
Finally, the map

(Irr T //WG)2 → Irr(G, T )

can be defined as the composition of the other two bijections in the above
triangle. Then it is the combination the left slanted maps from Theorem
24.1 because the triangles over there are commutative. �

In [18, Section 10] Borel stated several ”desiderata” for the local Lang-
lands correspondence. The properties (1), (2) and (3) of Theorem 24.1
prove some of these, whereas the others involve representations outside the
principal series and therefore fall outside the scope of our results.

25. The labelling by unipotent classes

Let s ∈ B(G, T ) and construct cs as in Section 16. By Theorem 24.1 we
can parametrize Irr(G)s with H-conjugacy classes of KLR parameters (Φ, ρ)
such that Φ

∣∣
o×F

= cs. We note that {KLR parameters}s is naturally labelled

by the unipotent classes in H:

(123) {KLR parameters}s,[x] :=
{

(Φ, ρ) | Φ
(
1, ( 1 1

0 1 )
)

is conjugate to x
}
.

In this way we can associate to any of the parameters in Theorem 24.1 a
unique unipotent class in H:

(124) Irr(G)s =
⋃

[x]
Irr(G)s,[x], (T s//W s)2 =

⋃
[x]

(T s//W s)
[x]
2 .

Via the affine Springer correspondence from Section 19 the set of equiva-
lence classes in {KLR parameters}s is naturally in bijection with (T s//W s)2.
Recall from Section 2 that

T̃ s = {(w, t) ∈W s × T s | wt = t}

and T s//W s = T̃ s/W s. In view of Section 6 (T s//W s)2 is also in bijection
with T s//W s, albeit not naturally.

Only in special cases a canonical bijection T s//W s → (T s//W s)2 is avail-
able. For example when G = GLn(C), the finite group WH

t is a product of
symmetric groups: in this case there is a canonical c-Irr system, according
to the classical theory of Young tableaux.

In general it can already be hard to define any suitable map from {KLR
parameters}s to T s//W s, because it is difficult to compare the parameters
ρ for different Φ’s. It goes better the other way round and with Irr(G)s as
target. In this way will transfer the labellings (124) to T s//W s.

From [57, Section 8] we know that Irr(G)s is naturally in bijection with the
equivalence classes of irreducible representations of the extended affine Hecke
algebra H(H). To relate it to T s//W s the parametrization of Kazhdan,
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Lusztig and Reeder is unsuitable, it is more convenient to use the methods
developed in [52, 61].

To describe it, we fix some notation. Choose a Borel subgroup B ⊂ H◦

containing T . Let P be a set of roots of (H◦, T ) which are simple with
respect to B and let RP be the root system that they span. They determine
a parabolic subgroup WP ⊂W s and a subtorus

TP := {t ∈ T | α(t) = 1 ∀α ∈ RP }◦.

In [61, Theorem 3.3.2] Irr(H(H)) is mapped, in a natural finite-to-one way,
to equivalence classes of triples (P, δ, t). Here P is as above, t ∈ TP and δ is
a discrete series representation of a parabolic subalgebra HP of H(H). This
t is the same as in the affine Springer parameters.

The pair (P, δ) gives rise to a residual coset L in the sense of [52, Appendix
A]. Explicitly, it is the translation of TP by an element cc(δ) ∈ T that
represents the central character of δ (a WP -orbit in a subtorus TP ⊂ T ).
The element cc(δ)t ∈ L corresponds to tq. The collection of residual cosets
is stable under the action of W s.

Proposition 25.1. (1) There is a natural bijection between
• H-conjugacy classes of Langlands parameters Φ with Φ

∣∣
IF

= cs;

• W s-conjugacy classes of pairs (tq, L) with L a residual coset for
H(H) and tq ∈ L.

(2) Let Y P be the union of the residual cosets of TP . The stabilizer of
Y P in W s is the stabilizer of RP .

(3) Suppose that w ∈W s fixes cc(δ). Then w stabilizes RP .

Proof. (1) Opdam constructed the maps in both directions for H(H◦). To
go from H(H◦) to H(H) is easy, one just has to divide out the action of
π0(H) on both sides.

Let us describe the maps for H◦ more explicitly. To a residual coset L
Opdam [52, Proposition B.3] associates a unipotent element x ∈ B such
that lxl−1 = xq for all l ∈ L. Then Φ is a Langlands parameter with data
tq, x.

For the opposite direction we may assume that

Φ
(
WF ,

(
z 0
0 z−1

) )
⊂ T ∀z ∈ C×

and that x = Φ
(
1, ( 1 1

0 1 )
)
∈ B. Then

TP := ZT
(
Φ(IF × SL2(C))

)◦
= ZT

(
Φ(SL2(C))

)◦
is a maximal torus of ZH◦

(
Φ(IF × SL2(C))

)
. We take

tq = Φ
(
$F ,

(
q1/2 0

0 q−1/2

))
and L = TP tq.

This is essentially [52, Proposition B.4], but our way to write it down avoids
Opdam’s assumption that H◦ is simply connected.
(2) Clear, because any element that stabilizes Y P also stabilizes TP .
(3) Since cc(δ) represents the central character of a discrete series represen-
tation of HP , at least one element (say r) in its WP -orbit lies in the obtuse
negative cone in the subtorus TP ⊂ T (see Lemma 2.21 and Section 4.1 of
[52]). That is, log |r| can be written as

∑
α∈P cαα

∨ with cα < 0. Some
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WP -conjugate w′ of w ∈W s fixes r and hence log |r|. But an element of W s

can only fix log |r| if it stabilizes the collection of coroots {α∨ | α ∈ P}. It
follows that w′ and w stabilize RP . �

In particular the above natural bijection associates to any W s-conjugacy
class of residual cosets L a unique unipotent class [x] in H. Conversely a
unipotent class [x] can correspond to more than one W s-conjugacy class of
residual cosets, at most the number of connected components of ZT (x) if
x ∈ B.

Let Us ⊂ B be a set of representatives for the unipotent classes in H. For
every x ∈ Us we choose an algebraic homomorphism

γx : SL2(C)→ H with γx ( 1 1
0 1 ) = x and γx

(
z 0
0 z−1

)
∈ T.

By Lemma 16.2 all choices for γx are conjugate. For each x ∈ Us we define

{KLR parameters}s,x = {(Φ, ρ) | Φ
∣∣
IF×SL2(C)

= cs × γx,Φ($F ) ∈ T}.

We endow this set with the topology that ignores ρ and is the Zariski topol-
ogy with respect to Φ($F ). In this way

(125)
⊔
x∈Us

{KLR parameters}s,x

becomes a nonseparated algebraic variety with maximal separated quotient
tx∈UsZT (im γx). Notice that (125) contains representatives for all equiva-
lence classes in {KLR parameters}s.

Proposition 25.2. There exists a continuous bijection

µs : T s//W s → Irr(G)s

such that:

(1) The diagram

T s//W s µs //

ρs

��

Irr(G)s // {KLR parameters}s/H

��
T s/W s c(H)ss

oo

commutes. Here the unnamed horizontal maps are those from Theo-
rem 24.1 and the right vertical arrow sends (Φ, ρ) to the H-conjugacy
class of Φ($F ).

(2) For every unipotent element x ∈ H the preimage

(T s//W s)[x] := (µs)−1
(
Irr(G)s,[x]

)
is a union of connected components of T s//W s.

(3) Let ε be the map that makes the diagram

T s//W s ε //

µs

%%

(T s//W s)2

xx
Irr(G)s

commute. Then ε comes from a c-Irr system.
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(4) T s//W s µs−−→ Irr(G)s → {KLR parameters}s/H lifts to a map

µ̃s : T̃ s →
⊔
x∈Us

{KLR parameters}s,x

such that the restriction of µ̃s to any connected component of T̃ s is
algebraic and an isomorphism onto its image.

Proof. Proposition 25.1.1 yields a natural finite-to-one map from Irr(H(H))
to W s-conjugacy classes (tq, L), namely

(126) π(Φ, ρ) 7→ Φ 7→ (tq, L).

In [61, Theorem 3.3.2] this map was obtained in a different way, which shows
better how the representations depend on the parameters t, tq, L. That was
used in [61, Section 5.4] to find a continuous bijection

(127) µs : T s//W s → Irr(H(H)) ∼= Irr(G)s.

The strategy is essentially a step-by-step creation of a c-Irr system for
T s//W s and H(H), only the condition on the unit element and the trivial
representation is not considered in [61]. Fortunately there is some freedom
left, which we can exploit to ensure that µs(1, T s) is the family of spher-
ical H(H)-representations, see Section 21. This is possible because every
principal series representation of H(H) has a unique irreducible spherical
subquotient, so choosing that for µs(1, t) does not interfere with the rest of
the construction. Via Theorem 24.1 we can transfer this c-Irr system to a
c-Irr system for the two extended quotients of T s by W s, so property (3)
holds.

By construction the triple (P, δ, t) associated to the representation µs(w, t)
has the same t ∈ T , modulo W s. That is, property (1) is fulfilled.

Furthermore µs sends every connected component of T s//W s to a family of
representations with common parameters (P, δ). Hence these representation
are associated to a common residual coset L and to a common unipotent
class [x], which verifies property (2).

Let c be a connected component of (T s//W s)[x], with x ∈ Us. The proof
of Proposition 25.1.1 shows that c can be realized in ZT (im γx). In other
words, we can find a suitable w = w(c) ∈ W s with Tw ⊂ ZT (im γx). Then
there is a connected component Twc of Tw such that

c :=
(
w, Twc /Z(w, c)

)
,

where Z(w, c) = {g ∈ ZW s(w) | g · Twc = Twc }.

In this notation c̃ := (w, Twc ) is a connected component of T̃ s. We want

to define µ̃s : c̃ → {KLR parameters}s,x. For every [w, t] ∈ c, µs[w, t]
determines an equivalence class in {KLR parameters}s,x. Any (Φ, ρ) in
this equivalence class satisfies Φ($F ) ∈ ZT (im γx) ∩W st. Hence there are
only finitely many possibilities for Φ($F ), say t1, . . . , tk. For every such
ti there is a unique (Φi, ρi) ∈ {KLR parameters}s,x with Φi($F ) = ti and
π(Φi, ρi) ∼= µs[w, t]. Every element of c̃ lying over [w, t] ∈ c is of the form
(w, ti). (Not every ti is eligible though, for some we would have to modify
w.) We put

µ̃s(w, ti) := (Φi, ρi).
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Since the ρ’s are irrelevant for the topology on {KLR parameters}s,x, µ̃s(c̃)

is homeomorphic to Twc and µ̃s : c̃ → µ̃s(c̃) is an isomorphism of affine
varieties. This settles the final property (4). �

26. Correcting cocharacters and L-packets

In this section we construct the correcting cocharacters on the extended
quotient T s//W s. As conjectured in Section 7, these show how to determine
when two elements of T s//W s give rise to G-representations in the same
L-packets.

Every KLR parameter (Φ, ρ) naturally determines a cocharacter hΦ and
elements θ(Φ, ρ, z) ∈ T s by

(128)
hΦ(z) = Φ

(
1,
(
z 0
0 z−1

) )
,

θ(Φ, ρ, z) = Φ
(
$F ,

(
z 0
0 z−1

) )
= Φ($F )hΦ(z).

Although these formulas obviously do not depend on ρ, it turns out to be
convenient to include it in the notation anyway. However, in this way we
would end up with infinitely many correcting cocharacters, most of them
with range outside T . To reduce to finitely many cocharacters with values
in T , we will restrict to KLR parameters associated to x ∈ Us (125).

Recall that part (2) of Proposition 25.2 determines a labelling of the
connected components of T s//W s by unipotent classes in H. This enables
us to define the correcting cocharacters: for a connected component c of
T s//W s with label (represented by) x ∈ Us we take the cocharacter

(129) hc = hx : C× → T, hx(z) = γx
(
z 0
0 z−1

)
.

Let c̃ be a connected component of T̃ s that projects onto c. We define

(130)
θ̃z : c̃→ T s, (w, t) 7→ θ

(
µ̃s(w, t), z

)
,

θz : c→ T s/W s, [w, t] 7→W sθ̃z(w, t).

For c̃ as in the proof of Proposition 25.2, which we can always achieve by
adjusting by element of W s, our construction results in

θ̃z(w, t) = t hc(z).

Lemma 26.1. Let [w, t], [w′, t′] ∈ T s//W s. Then µs[w, t] and µs[w′, t′] are
in the same L-packet if and only if

• [w, t] and [w′, t′] are labelled by the same unipotent class in H;
• θz[w, t] = θz[w

′, t′] for all z ∈ C×.

Proof. Suppose that the two G-representations µs[w, t] = π(Φ, ρ) and
µs[w′, t′] = π(Φ′, ρ′) belong to the same L-packet. By definition this means
that Φ and Φ′ are G-conjugate. Hence they are labelled by the same unipo-
tent class, say [x] with x ∈ Us. By choosing suitable representatives we
may assume that Φ = Φ′ and that {(Φ, ρ), (Φ, ρ′)} ⊂ {KLR parameters}s,x.
Then θ(Φ, ρ, z) = θ(Φ, ρ′, z) for all z ∈ C×. Although in general θ(Φ, ρ, z) 6=
θ̃z(w, t), they differ only by an element of W s. Hence θz[w, t] = θz[w

′, t′] for
all z ∈ C×.

Conversely, suppose that [w, t], [w′, t′] fulfill the two conditions of the
lemma. Let x ∈ Us be the representative for the unipotent class which labels
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them. By Proposition 25.1.1 we may assume that Tw ∪ Tw′ ⊂ ZT (im γx).
Then

θ̃z[w, t] = t hx(z) and θ̃z[w
′, t′] = t′ hx(z)

are W s conjugate for all z ∈ C×. As these points depend continuously on z
and W s is finite, this implies that there exists a v ∈W s such that

v(t hx(z)) = t′ hx(z) for all z ∈ C×.
For z = 1 we obtain v(t) = t′, so v fixes hx(z) for all z. Via the Proposition

25.1.1, hx(q1/2) becomes an element cc(δ) for a residual coset Lx. By parts
(2) and (3) of Proposition 25.1 v stabilizes the collection of residual cosets

determined by x, namely the connected components of ZT (im γx)hx(q1/2).
Let (tq, L), (t′q, L

′) be associated to µs[w, t], µs[w′, t′] by (126). Then tq =

thx(q1/2) and t′q = t′hx(q1/2), so the above applies. Hence v sends L to
another residual coset determined by x. As v(L) contains t′q, it must be
L′. Thus (tq, L) and (t′q, L

′) are W s-conjugate, which by Proposition 25.1.1
implies that they correspond to conjugate Langlands parameters Φ and Φ′.
So µs[w, t] and µs[w′, t′] are in the same L-packet. �

Corollary 26.2. Properties 1–6 from Section 7 hold in for µs as in Propo-
sition 25.2, with the morphism θz from (130) and the labelling by unipotent
classes in H.

Together with Theorem 24.1 this proves the conjectures from Section 7 for
all Bernstein components in the principal series of a split reductive p-adic
group (with mild restrictions on the residual characteristic).

Proof. Property 1 follows from Theorem 24.1.2 and Proposition 25.2.1. The
definitions of (129) and (130) establish property 5. The construction of
θz, in combination with Theorem 24.1.1 and Proposition 25.2.1, shows that
properties 2,3 and 4 are fulfilled. Property 6 is none other than Lemma
26.1. �

Appendix A. Geometric equivalence

Let X be a complex affine variety and let k = O(X) be its coordinate
algebra. Equivalently, k is a unital algebra over the complex numbers which
is commutative, finitely generated, and nilpotent-free. A k-algebra is an
algebra A over the complex numbers which is a k-module (with an evident
compatibility between the algebra structure of A and the k-module structure
of A). A is of finite type if as a k-module A is finitely generated. This ap-
pendix will introduce — for finite type k-algebras — a weakening of Morita
equivalence called geometric equivalence.

The new equivalence relation preserves the primitive ideal space (i.e. the
set of isomorphism classes of simple A-modules) and the periodic cyclic ho-
mology. However, the new equivalence relation permits a tearing apart of
strata in the primitive ideal space which is not allowed by Morita equiv-
alence. The ABP conjecture (i.e. the conjecture stated in Part(1) of this
paper) asserts that the finite type algebra which Bernstein constructs for
any given Bernstein component of a reductive p-adic group is geometrically
equivalent to the coordinate algebra of the associated extended quotient
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— and that the geometric equivalence can be chosen so that the resulting
bijection between the Bernstein component and the extended quotient has
properties as in the statement of ABP.

A.1. k-algebras. Let X be a complex affine variety and k = O(X) its
coordinate algebra.

A k-algebra is a C-algebra A such that A is a unital (left) k-module with:

λ(ωa) = ω(λa) = (λω)a ∀(λ, ω, a) ∈ C× k ×A

and

ω(a1a2) = (ωa1)a2 = a1(ωa2) ∀(ω, a1, a2) ∈ k ×A×A.
Denote the center of A by Z(A)

Z(A) := {c ∈ A | ca = ac ∀a ∈ A}

k-algebras are not required to be unital.
Remark.Let A be a unital k-algebra. Denote the unit of A by 1A. ω 7→ ω1A
is then a unital morphism of C-algebras k → Z(A). Thus a unital k-algebra
is a unital C-algebra A with a given unital morphism of C-algebras

k −→ Z(A).

Let A,B be two k-algebras. A morphism of k-algebras is a morphism of
C-algebras

f : A→ B

which is also a morphism of (left) k-modules,

f(ωa) = ωf(a) ∀(ω, a) ∈ k ×A.

Let A be a k-algebra. A representation of A [or a (left) A-module] is a
C-vector space V with given morphisms of C-algebras

A −→ HomC(V, V ) k −→ HomC(V, V )

such that

(1) k → HomC(V, V ) is unital

and

(2) (ωa)v = ω(av) = a(ωv) ∀(ω, a, v) ∈ k ×A× V .

Two representations

A −→ HomC(V1, V1) k −→ HomC(V1, V1)

and

A −→ HomC(V2, V2) k −→ HomC(V2, V2)

are equivalent (or isomorphic) if ∃ an isomorphism of C vector spaces T : V1 →
V2 which intertwines the two A-actions and the two k-actions.

Comment A.1. A representation ϕ : A → HomC(V, V ) is non-degenerate
iff AV = V . i.e. for any v ∈ V , ∃ v1, v2, . . . , vr ∈ V and a1, a2, . . . , ar ∈ A
with

v = a1v1 + a2v2 + · · ·+ arvr.
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Comment A.2. Notation. For economy of notation, a representation will
be denoted
ϕ : A→ HomC(V, V ). The unital morphism of C-algebras

k −→ HomC(V, V )

is understood to be included in the given structure.

A representation is irreducible if A → HomC(V, V ) is not the zero map
and 6 ∃ a sub-C-vector space W of V with:

{0} 6= W 6= V

and

ωw ∈W ∀ (ω,w) ∈ k ×W
and

aw ∈W ∀ (a,w) ∈ A×W
Irr(A) denotes the set of equivalence classes of irreducible representations of
A.

A.2. Spectrum preserving morphisms of k-algebras. Definition. An
ideal I in a k-algebra A is a k-ideal if ωa ∈ I ∀ (ω, a) ∈ k × I.
An ideal I ⊂ A is primitive if ∃ an irreducible representation

ϕ : A→ HomC(V, V ) k −→ HomC(V, V )

with

I = Kernel(ϕ)

That is,

0→ I ↪→ A
ϕ−→ HomC(V, V )

is exact.
Remark. Any primitive ideal is a k-ideal. Prim(A) denotes the set of prim-
itive ideals in A. The map Irr(A)→ Prim(A) which sends an irreducible
representation to its primitive ideal is a bijection if A is a finite type k-
algebra. Since k is Noetherian, any k-ideal in a finite type k-algebra A is
itself a finite type k-algebra.

Definition. Let A, B be two finite type k-algebras, and let f : A→ B be
a morphism of k-algebras. f is spectrum preserving if

(1) Given any primitive ideal I ⊂ B, ∃ a unique primitive ideal L ⊂ A
with L ⊃ f−1(I)

and

(2) The resulting map

Prim(B)→ Prim(A)

is a bijection.

Definition. Let A, B be two finite type k-algebras, and let f : A→ B be a
morphism of k-algebras. f is spectrum preserving with respect to filtrations
if ∃ k-ideals

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir−1 ⊂ Ir = A in A
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and k ideals

0 = L0 ⊂ L1 ⊂ · · · ⊂ Lr−1 ⊂ Lr = B in B

with f(Ij) ⊂ Lj , (j = 1, 2, . . . , r) and Ij/Ij−1 → Lj/Lj−1, (j = 1, 2, . . . , r)
is spectrum preserving.

A.3. Algebraic variation of k-structure. Notation. If A is a C-algebra,
A[t, t−1] is the C-algebra of Laurent polynomials in the indeterminate t with
coefficients in A.

Definition. Let A be a unital C-algebra, and let

Ψ: k → Z
(
A[t, t−1]

)
be a unital morphism of C-algebras. Note that Z

(
A[t, t−1]

)
= Z(A)[t, t−1].

For ζ ∈ C× = C− {0}, ev(ζ) denotes the “evaluation at ζ” map:

ev(ζ) : A[t, t−1]→ A∑
ajt

j 7→
∑

ajζ
j

Consider the composition

k
Ψ−→ Z

(
A[t, t−1]

) ev(ζ)−→ Z(A).

Denote the unital k-algebra so obtained by Aζ . The underlying C-algebra of
Aζ is A. Assume that for all ζ ∈ C×, Aζ is a finite type k-algebra. Then for
ζ, ζ ′ ∈ C×, Aζ′ is obtained from Aζ by an algebraic variation of k-structure.

A.4. Definition and examples. With k fixed, geometric equivalence (for
finite type k-algebras) is the equivalence relation generated by the two ele-
mentary moves:

• Spectrum preserving morphism with respect to filtrations
• Algebraic variation of k-structure

Thus two finite type k-algebras A,B are geometrically equivalent if ∃ a finite
sequence A = A0, A1, . . . , Ar = B with each Aj a finite type k-algebra such
that for j = 0, 1, . . . , r − 1 one of the following three possibilities is valid:

(1) Aj+1 is obtained from Aj by an algebraic variation of k-structure.
(2) There is a spectrum preserving morphism with respect to filtrations

Aj → Aj+1.
(3) There is a spectrum preserving morphism with respect to filtrations

Aj+1 → Aj .

To give a geometric equivalence relating A and B, the finite sequence of
elementary steps (including the filtrations) must be given. Once this has
been done, a bijection of the primitive ideal spaces and an isomorphism of
periodic cyclic homology are determined.

Prim(A)←→ Prim(B) HP∗(A) ∼= HP∗(B)

Example 1. Two unital finite type k-algebras A,B are Morita equivalent if
there is an equivalence of categories(

unital left A-modules
)
∼
(

unital left B-modules
)
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Any such equivalence of categories is implemented by a Morita context i.e.
by a pair of unital bimodules

AVB BWA

together with given isomorphisms of bimodules

α : V ⊗B W → A

β : W ⊗A V → B

A Morita context is required to satisfy certain conditions. These conditions
imply that the linking algebra formed from the Morita context is a unital
finite type k-algebra. The linking algebra, denoted M2×2(AVB,BWA), is :

=

M2×2(AVB,BWA)

A V

W B

The inclusions

A ↪→M2×2(AVB, VWA)←↩ B

a 7→
a 0

0 0
7→b

0 0

0 b

are spectrum preserving morphisms of finite type k-algebras. Hence A and
B are geometrically equivalent.
If Prim(A) and Prim(B) are given the Jacobson topology, then the bijection
Prim(A)↔Prim(B) determined by a Morita equivalence is a homeomor-
phism.

Example 2. Let X be a complex affine variety, and let Y be a sub-variety.
k = O(X) is the coordinate algebra of X, and O(Y ) is the coordinate alge-
bra of Y . IY is the ideal in O(X):

IY = {ω ∈ O(X) | ω(p) = 0 ∀p ∈ Y }
Set :

A = B = O(X)⊕O(Y )
O(X) IY

IY O(X)

Thus A is the sub-algebra of the 2 × 2 matrices with entries in O(X) con-
sisting of all those 2 × 2 matrices whose off-diagonal entries are in IY .
B = O(X) ⊕ O(Y ) is the direct sum — as an algebra — of O(X) and
O(Y ). Both A and B are unital finite type k-algebras. Irr(A) = Prim(A)
is X with each point of Y doubled. Irr(B) = Prim(B) is the disjoint union
of X and Y . Equipped with the Jacobson topology, Prim(A) and Prim(B)
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are not homeomorphic so A and B are not Morita equivalent. However, A
and B are geometrically equivalent.

Example 3. LetG be a connected reductive complex Lie group with maximal
torus T . W denotes the Weyl group

W = NG(T )/T

and X∗(T ) is the character group of T . The semi-direct product X∗(T )oW
is an affine Weyl group. In particular, it is a Coxeter group. We fix a system
of generators S ⊂ X∗(T )oW such that (X∗(T )oW, S) is a Coxeter system.
Let ` denote the resulting length function on X∗(T ) oW.

For each non-zero complex number q, there is the affine Hecke algebra
Hq(G). This is an affine Hecke algebra with equal parameters and H1(G) is
the group algebra of the affine Weyl group:

H1(G) = C[X∗(T ) oW],

i.e.,Hq is the algebra generated by Tx, x ∈ X∗(T ) oW, with relations

TxTy = Txy, if `(xy) = `(x) + `(y), and
(Ts − β)(Ts + 1) = 0, if s ∈ S.(131)

Using the action of W on T , form the quotient variety T/W and let k be
its coordinate algebra,

k = O(T/W)

For all q ∈ C×, Hq(G) is a unital finite type k-algebra. Let J be Lusztig’s
asymptotic algebra. As a C-vector space, J has a basis {tw : w ∈ X∗(T )o
W}, and there is a canonical structure of associative C-algebra on J (see
for instance [49, § 8]).

Except for q in a finite set of roots of unity (none of which is 1) Lusztig
constructs a morphism of k-algebras

φq : Hq(G) −→ J

which is spectrum preserving with respect to filtrations (see [14, Theorem 9],
itself based on [49]).

Let Cw, w ∈ X∗(T )oW denote the Kazhdan-Lusztig basis of Hq(G). For
w, w′, w′′ in X∗(T ) oW, define hw,w′,w′′ ∈ A by

Cw · Cw′ =
∑

w′′∈X∗(T )oW

hw,w′,w′′ Cw′′ .

There is a unique function a : X∗(T ) o W → N such that for any w′′ ∈
X∗(T ) oW, va(w′′)hw,w′,w′′ is a polynomial in v for all w, w′ in X∗(T ) oW
and it has non-zero constant term for some w, w′.

Let M be a simple Hq(G)-module (resp. J -module). Lusztig attaches to
M (see [49, p. 82]) an integer a = aM by the following two requirements:

CwM = 0 (resp. twM = 0) for all w ∈ X∗(T ) oW such that a(w) > a;
CwM 6= 0 (resp. twM 6= 0) for some w ∈ X∗(T ) oW such that a(w) = a.

The map φq is the unique bijection

M 7→M ′
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between the primitive ideal spaces of Hq(G) and J , with the following prop-
erties: aM = aM ′ and the restriction of M ′ to Hq(G) via φq is an Hq(G)-
module with exactly one composition factor isomorphic to M and all other
composition factors of the form M ′′ with aM ′′ > aM (see [49, Theorem 8.1]).

The algebraHq(G) is viewed as a k-algebra via the canonical isomorphism

O(T/W) ∼= Z(Hq(G))

Lusztig’s map φq maps Z(Hq(G)) to Z(J ) and thus determines a unique
k-structure for J such that the map φq is a morphism of k-algebras. J with
this k-structure will be denoted Jq. Hq(G) is then geometrically equivalent
to H1(G) by the three elementary steps

Hq(G)→ Jq → J1 → H1(G).

The second elementary step (i.e. passing from Jq to J1) is an algebraic
variation of k-structure. Hence (provided q is not in the exceptional set of
roots of unity) Hq(G) is geometrically equivalent to H1(G) = C[X∗(T )oW].

Corollary A.3. There is a canonical bijection

(T//W)2 ←→ Irr(Hq(G))

This map gives the left slanted arrow in Theorems 9.5 and 22.3.

Example 4. Let Hu(X o W ) be the affine Hecke algebra of X o W with
unequal parameters u = {q1, . . . , qk}. We assume that qi ∈ R>0. Let Su(Xo
W ) be the Schwartz completion of Su(XoW ), as in [61, §5.4]. In this setting
[61, Lemma 5.3.2] gives a morphism of Fréchet algebras

S1(X oW )→ Su(X oW ),

which is spectrum preserving with respect to filtrations. However, the exis-
tence of a geometric equivalence between the O(T/W )-algebras O(T ) oW
and Hu(T oW ) is still an open question in case u contains unequal param-
eters qi.
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groupe réductif p-adique: le cas des groupes classiques, Selecta Math. 17 (2011), 713–
756.



76 A.-M. AUBERT, P. BAUM, R. PLYMEN, AND M. SOLLEVELD

[36] G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un
corps p-adique, Invent. Math. 139 (2000), 439–455.

[37] K. Hiraga, H. Saito, On L-packets for Inner Forms of SLn, Mem. Amer. Math. Soc.
215, No. 1013, 2012.

[38] R. Hotta, On Springer’s representations, J. Fac. Sci. Uni. Tokyo, IA 28 (1982), 863–
876.

[39] K. Iwasawa, Local class field theory, Oxford Math. Monograph, 1986.
[40] J.C. Jantzen, Nilpotent Orbits in Representation Theory, in: Lie Theory, Lie Alge-

bras and Representations (J.-P. Anker and B. Orsted, eds.), Progress in Math. 228,
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