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ABSTRACT. Let G be a quasi-split reductive group over a non-archimedean local
field. We establish a local Langlands correspondence for all irreducible smooth
complex G-representations in the principal series. The parametrization map is
injective, and its image is an explicitly described set of enhanced L-parameters.
Our correspondence is determined by the choice of a Whittaker datum for G, and
it is canonical given that choice.

We show that our parametrization satisfies many expected properties, among
others with respect to the enhanced L-parameters of generic representations, tem-
peredness, cuspidal supports and central characters. Our correspondence lifts
to a categorical level, where it makes the appropriate Bernstein blocks of G-
representations naturally equivalent to module categories of Hecke algebras com-
ing from Langlands parameters. Along the way we characterize genericity of
G-representations in terms of representations of an affine Hecke algebra.
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INTRODUCTION

Consider a quasi-split reductive group G = G(F') over a non-archimedean lo-
cal field F. Let Irr(G) be the set of (isomorphism classes of) irreducible smooth
G-representations on complex vector spaces. The conjectural local Langlands corre-
spondence (LLC) asserts that Irr(G) is canonically partitioned into finite L-packets
I14(G), indexed by L-parameters ¢. Some time after the initial formulation in [Bor2],
it was realized that II4(G) should be parametrized by the set of irreducible represen-
tations of a finite component group Ry. These conjectures have motivated a large
part of the study of reductive groups over local fields in past decades, see the survey
papers [ABPS2| Bor2) [Kal, Kud, [Vog].

This paper establishes a local Langlands correspondence for the most accessible
class of G-representations, those in the principal series. To formulate the result
precisely, we quickly recall some relevant notions.

Let T C G be the centralizer of a maximal F-split torus in G, or equivalently a
minimal Levi subgroup of G. Then T is itself a torus because G is quasi-split, and
T is unique up to conjugation. Any representation of G that can be obtained from
a smooth representation of T by parabolic induction and then taking a subquotient,
is called a principal series G-representation. These representations form a product
of Bernstein blocks in Rep(G). We denote the set of irreducible principal series
G-representations by Irr(G,T). We warn that some L-packets contain elements of
Irr(G, T') and also other elements of Irr(G).

It has turned out that the representation pr of Ry associated to a given w € Irr(G)
is not canonically determined. To specify it uniquely one needs additional input,
namely a Whittaker datum for G. Such a Whittaker datum can be used to normalize
relevant intertwining operators, which then determine exactly how p, € Irr(Ry) is
related to w. For non-quasi-split groups G such a normalization should also be
possible [Kal, Conjecture 2.5], but it is much more involved.

We fix a Borel subgroup B = T'U and a nondegenerate character £ of the unipotent
radical U of B. Then (U, ¢), or rather its G-conjugacy class, is a Whittaker datum
for G. Recall that m € Irr(G) is called (U, §)-generic if Homy (7, €) is nonzero.

Let W be the Weil group of F, let GV be the complex dual group of G and let
LG = GY x Wp be the Langlands dual group. In this introduction (but not in the
body of the paper) we realize L-parameters for G as Weil-Deligne representations

¢:WpxC—La.
The appropriate component group of such an L-parameter is
Ry = mo(Zav (6(Wr x ©)/Z(G¥)7F),

and an enhancement of ¢ is an irreducible Ry-representation. Let ®.(G) be the
set of enhanced L-parameters for GG, considered up to GV-conjugacy. An element
(¢, p) € P(G) belongs to the principal series if its cuspidal support is an enhanced
L-parameter for T. More explicitly, that means

o $(Wp) C TV x Wg (or for a GV-conjugate of TV x W, because ¢ is only

given up to G'V-conjugacy),

e p appears in the homology of a certain variety of Borel subgroups.

We denote the subset of ®.(G) associated to the principal series by ®.(G,T'). For

a given ¢ it may happen that some enhancements yield elements of ®.(G,T"), while
other enhancements bring us outside ®.(G,T).
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Our main result is a canonical LLC for principal series representations:

Theorem A. [see Section [7]
The Whittaker datum (U, &) determines a canonical bijection

Irr(G,T) +— @.(G,T)
m(g,p) <~ (dp)
™ = (¢r, pr)

with the following properties:

(a) (o, p) is (U,§)-generic if and only if p is trivial and uy = ¢(1,1) lies in the
dense Zgv(6(Wr))-orbit in

{v e GY : v is unipotent and (w)vp(w) ™t = vl*l for all w € W},

(b) w(o,p) is tempered (resp. essentially square-integrable) if and only if ¢ is bounded
(resp. discrete).

(¢) The bijection is compatible with the cuspidal support maps on both sides.

(d) The bijection is equivariant for the canonical actions of H*(Wg, Z(GV)).

(e) The bijection is compatible with the Langlands classification and (for tempered
representations) with parabolic induction.

All Borel’s desiderata from [Bor2l, §10] are satisfied. When 7 is given, ¢ is uniquely
determined by (a)—(e) and the local Langlands correspondence for tori.

For non-split quasi-split groups, the vast majority of the groups under considera-
tion here, very little in this directon was previously known. On other hand, for split
groups many instances of Theorem [A] have been established before:

e Kazhdan and Lusztig [KaLu| proved the bijection and (b,e) for Iwahori-
spherical representations , assuming that G is F-split and that Z(G) is con-
nected as algebraic group. Their starting point is Borel’s description [Borl]
of those representations, in terms of Hecke algebras.

e Reeder [Ree2] extended [KaLu] to Irr(G,T') when G is F-split, Z(G) is con-
nected and the residual characteristic p of F' is not “too small”. This is
based on work of Roche [Rocl] and includes (a,b,e). We note that here the
Whittaker datum is unique up to G-conjugacy because Z(G) is connected.

e In [ABPSI] a (noncanonical) bijection satisfying (b,d,e) was established for
Irr(G,T), when G is F-split and p is not too small.

e For quasi-split unitary groups with p > 2 a (noncanonical) bijection was
constructed by the author’s PhD student Badea [Bad].

In all cases, a study of affine Hecke algebras constitutes the largest part of the
argument. Thanks to [ABPS2 [Sol5], that technique is now available in complete
generality (even outside the principal series). The main novelties of this paper are:

e The construction of the LLC is canonical and uniform, over all
non-archimedean local fields F' and all quasi-split reductive F-groups.

e We can handle generic representations, even when not all Whittaker data
for G are equivalent.

e Our LLC lifts to a categorical level, as follows. For each involved Bernstein
block of G-representations, the LLC comes from a canonical equivalence
between that block and the module category of a certain Hecke algebra
defined entirely in terms of Langlands parameters.
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We will now discuss the content of the paper in more detail, at the same time
explaining parts of the proof of the main theorem.

We start with a Bernstein block Rep(G)* in the principal series, and a progener-
ator II; thereof. Via [Sol5] Rep(G)® is equivalent to the module category of some
Hecke algebra Endg (1), which we analyse in Section |1l We show that Endg(Ils)
is isomorphic to an affine Hecke algebra #(s) (extended with a twisted group alge-
bra), and we determine its g-parameters.

In Section 2| we involve the Whittaker datum, and that enables us to make the
aforementioned isomorphism canonical. In the same way we show that the twist in
the extension part of H(s) is actually trivial, so that it is an extended affine Hecke
algebra H(s)° x I's. Here the Bernstein group W, associated to Rep(G)*® appears as
W(R) x T for a root system Ry .

A continuation of this analysis yields a useful criterion for genericity in terms
of Hecke algebra modules. Let H(W(RY),q») C H(s)° be the finite dimensional
Iwahori-Hecke algebra from the Bernstein presentation of H(s)°. Recall that its
Steinberg representation St is given by Ts, — —1 for every simple reflection s, €
W(RY). Let det : Ws — {+1} be the determinant of the action of W; on the lattice
of F-rational cocharacters of T. We extend St to a onedimensional representation
(still denoted St) of H(W (RY),qp) x T's by making it det on T.

Theorem B. [see Theorem
Suppose that m € Rep(G)® has finite length. Then 7 is (U, &)-generic if and only if

the associated H(s)°P-module Homg(Ils, ) contains the Steinberg representation of
(MW (RY), q})  Ta)”.

The notion of principal series enhanced L-parameters is worked out in Section
There we also recall the Hecke algebras on the Galois side of the LLC, from [AMS3],
and we compute their g-parameters. Via the LLC for tori we associate to Rep(G)*®
a unique Bernstein component ®,(G)*" of ®.(G,T). That yields an extended affine
Hecke algebra H(s", q;/ 2). The crucial step to pass from the p-adic side to the Galois
side of the LLC is:

Theorem C. [see Theorem [5.3]
1/2)

There exists a canonical algebra isomorphism H(s)? = H(s", ¢}

The above steps make Rep(G)*® canonically equivalent to the module category of
’H(sv,q},m). In [AMS3], Irr(?—l(sv,q;ﬂ)) is parametrized by ®.(G)* . We want to
use that, but it does not quite suffice because we also need to keep track of genericity
of representations. Therefore we revisit several constructions from [AMS3], in our
setting of the principal series. The main point of Section [f] is to show that through
all those steps the one-dimensional representation det of (H(W (RY),qn) x T's)% is
transformed into an analogous representation det for an extended graded Hecke al-
gebra. That enables us to normalize the parametrization of Irr (’H(sv, qllp/ 2)), so that
it matches generic representations with the desired kind of enhanced L-parameters.

With that settled the preparations are complete, and the bijection in Theorem [A]

is obtained as
V

Irr(G)° + Irr(Endg(IL)%) <« Irr(H(s)”) « Irr(?—[(sv,qéﬂ/?)) — D (G)° .

The properties of the bijection Irr(G,T) <> ®.(G,T), actually a few more than
mentioned already, are checked in the remainder of Section [7]
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Several further research topics are suggested by the above theorems.

e Like in [ABPSI| §17], one would like to show that the LLC is functorial
with respect to those homomorphisms of reductive p-adic groups that have
commutative kernel and commutative cokernel. That should be doable with
the methods from [Sol3]. In particular that can be applied to automorphisms
of G from conjugation with elements of G,q(F'), then it will show how the
LLC changes if one modifies the Whittaker datum.

e Suppose that ¢ is discrete and Z(G) is compact. It is conjectured in [HII]
that the formal degree of the square-integrable representation 7 (¢, p) equals
dim(p) times the adjoint «-factor of ¢ (with suitable normalizations on both
sides). While this adjoint y-factor can be computed as in [FOS2, Appendix
A], it may be difficult to determine this formal degree. The reason is that
one would like to use a type, but sometimes it is not known whether a type
for the involved Bernstein block exists.

e Every L-packet conjecturally supports a stable distribution on G. For L-
packets that are entirely contained in Irr(G, T'), one could try to prove that
the distribution ZpEIrr(R¢) dim(p) tr (¢, p) is stable.

e A modern geometric approach to the Langlands correspondence [FaScl Hell
Zhu| predicts that the derived category of Rep(G) embeds in a derived cat-
egory of coherent sheaves on a stack of Langlands parameters. It would be
interesting to transfer the obtained natural equivalence

Rep(G)® = Mod (H(s", q}p))

to a setting with such coherent sheaves, that would establish a part of the
conjectures in [FaScl [Hel, [Zhu]. It is reasonable to expect that can be done,
because H(s", qllp/ 2) is constructed from ®.(G)* and because on the under-
lying cuspidal level the local Langlands correspondence for tori achieves it

already.

Acknowledgements. The authors thanks Jessica Fintzen and Tasho Kaletha for
interesting discussions about this paper.

1. HECKE ALGEBRAS FOR PRINCIPAL SERIES REPRESENTATIONS

Let F be a non-archimedean local field, with ring of integers or and let gr be
the cardinality of the residue field. Let |- |r : FF — R>¢ be the norm and fix an
element wpr with norm q}l. Let G be a quasi-split reductive F-group, where we
include connectedness in the definition of quasi-split. Let S be a maximal F-split
torus in G. We write G = G(F'), S = S(F) etcetera.

Since G is F-quasi-split, the centralizer 7 of S in G is a maximal F-torus. It is
also a minimal F-Levi subgroup, a Levi factor of a Borel subgroup B of G. The
Weyl group of (G,S) and (G, S) is

W(G,8) = Ng(8)/Zg(S) = Ng(S5)/T = Na(5)/T = Na(T)/T.

This is also the Weyl group of the root system R(G,S).
Let T¢pe be the unique maximal compact subgroup of 7" and let X, (T") be the
group of unramified characters of 7', that is, the characters that are trivial on Ttp.
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Pick any smooth character xo : ' — C* and write x. = Xxo|z.,,- Then x. determines
X (T)x0 and conversely.

We denote the category of smooth G-representations on complex vector spaces by
Rep(G), and the set of equivalence classes of irreducible objects therein by Irr(G).
The set Xn(T)xo = Irr(T7)°7 (with s7 = [T, xo]r) is also known as a Bernstein
component of Irr(7"). From Irr(7)°T one derives a Bernstein component Irr(G)?,
where s = [T, xo]g. It consists of the irreducible subquotients of the normalized
parabolic inductions

I§(x) = ind$ (x ® 61°) with x € Xne(T)x0.
We recall that the Bernstein block Rep(G)® is the full subcategory of Rep(G) made
up by the representations 7 such that every irreducible subquotient of 7 belongs
to Irr(G)®. The standard way to classify Irr(G)® is by describing Rep(G)® as the
module category of a Hecke algebra, and then using the representation theory of
Hecke algebras. We do so with the method that provides maximal generality, from
[Heil, [Sol5].

We denote smooth induction with compact supports by ind. The T-representation
imd%cpt (Xe) = xe ® C[T/Tpt] is a progenerator of Rep(T")*T. By the first and second
adjointness theorems,

I, = I (ind7, , (X))
is a progenerator of Rep(G)®. Let Endg(ILs) be the algebra of G-endomorphisms of
II;, acting from the left on II;. Then the functors
Rep(G)* +— Endg(IL;) — Mod
(L.1) p —  Homg(Tls, p)
V ®Endg (1) Hs < 14

are equivalences of categories [Roc2l Theorem 1.8.2.1]. This is compatible with par-
abolic induction, in the following sense. Let P = M R, (P) be a parabolic subgroup
of G, where B C P, M is a Levi factor of P and T' C M. The diagram

Rep(G)* —  Endg(Il;) — Mod
. 1Endg (11,
(1.2) TIE T 1ndEnd1C\;4((H5)M)

Rep(M)*™ — FEndy(Ils,,) — Mod

S M

commutes, see [Sol2, Condition 4.1 and Lemma 5.1].

The algebra Endg(I1;) was investigated in [Sol5], in larger generality. We will
make it more explicit in the current setting. Since dimxo = 1, x|z, is irreducible
and we may use [Sol5l, §10] with E' = E; = C and 01 = o|z,,, = Xc. For comparison
with [Sol5] we also note that the group

Xoue(T, x0) = {x € Xur(T) : X ® X0 = X0}
is trivial. We write
W, = Stabw(g,g) (ET) = Stabw(gg) (an(T)Xo) = Stabw(g,‘g) (Xc)-
This group acts naturally on the complex variety
Ts := xoXu(T).
by (w - x)(t) = x(w~'tw). The theory of the Bernstein centre [BeDe] says that
Z(Rep(G)s) = Z(EndG(Hs)) = (9()(n1f(1j)XO)VV5 = O(an(T)XO/WS)'
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The algebra Endg(ILs) contains O(Xn:(T)x0) = O(Ts) as maximal commutative
subalgebra, and as module over that subalgebra it is free with a basis {N,, : w € Ws}
[Sol5l Theorem 10.9].

We note that the inertial equivalence class s for GG can arise from different inertial
equivalence classes for T'. Namely, the possibilities are wsp = [T, wxo|r with w €
W(G,S). Thus ws = s as inertial equivalence classes for G, but they are represented
by different subsets of Irr(7"). For any w € W(G,S), the G-representations II; and
Ty = Ig(ind%pt (wx.)) are isomorphic, see [Renl §VI.10.1]. That yields an algebra
isomorphism

(1.3) Endg(Ils) = Endg (ILys),

unique up to inner automorphisms of Endg(Ils). In principle that suffices to compare
the functors Homg (Ilg, 7) and Home (ITys, 7) on the level of isomorphism classes of
representations. Nevertheless, we will have to make explicit later, and we
prepare for that now.

Proposition 1.1. Let w € W(G,S) be of minimal length in wWs. The isomorphism
Iy =2 11,5 can be chosen so that the induced algebra isomorphism (L.3|) restricts to

O(Ty) = O(Ts) : f = fow™ .

Proof. Let w = s, - - - s251 be a reduced expression in the Weyl group W (G, S). Then

each simple reflection s; has minimal length in $jWs;_,..s15- In this way we reduce

the proposition to the case w = s,, for a simple root a« € W(G,S), with s,s7 # s7.
Let G, C G be the subgroup generated by T'U Uy UU_4. As

G Goa .37
I = Igq, IB5c, indr, (xe)

and similarly for II,, it suffices to work with the reductive group G, and its Borel
subgroup B N G,. Equivalently, we may (and will) assume that R(G,S) has rank
one. In this rank one setting, an isomorphism

(1.4) I, > 11, ,

is exhibited in [Ren, Lemme VI.10.1]. We analyse that construction.
By [Ren, Corollaire VII.1.3]

(1.5) I§ : Rep(T)°T — Rep(G)® is an equivalence of categories.

Let Jg : Rep(G) — Rep(T') be the normalized Jacquet restriction functor with

respect to the opposite Borel subgroup B. As st # s.57, Bernstein’s geometric
lemma [Ren, Théoréme VI.5.1] entails that

(1.6) Jg[gw 2 @steom for all 7 € Rep(T)°".

Let pr,,. : Rep(T) — Rep(T)*” be the projection provided by the Bernstein decom-
position. From (1.6 we see that

(1.7) Pr,. Jg : Rep(G)® — Rep(T)°T is the inverse of (1.5]).

It follows (slightly varying on the proof of [Ren, Lemme VI1.10.1] by using B instead
of B) that (1.4) is determined by the choice of a T-isomorphism

(1.8) prﬁTng_[Sa5 & indr‘:ﬁcpt (Xe)-
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Pick a representative for s, in Ng(7T'). From (1.6 with 7 = ind?Cpt (SaXc) We see that

evaluation at s, in Igind%pt(saxc) provides an isomorphism of 7T-representations
(1.9) evg, pr:.,JgHsa5 — st ind%pt(saxc).
Further we have a canonical T-isomorphism

S;l . ind%pt (SaXc) — ind%pt (Xc)

(1.10) e [t f(satsyh)]

The composition of (1.9) and ((1.10]) gives us (1.8)). Applying (1.5, we obtain (|1.4]).
The subalgebra O(T;) of End¢(Il) arises as I§ (O(T5)), where O(T;) acts on

ind?cpt (xc) = O(Ts) by multiplication, see [Sol5]. From (|1.10]) we see that

st ind?Cpt (SaXc) is naturally isomorphic to the regular representation of O(T5).
Similarly O(Tys) acts on ind%cpt(saxc) = O(Tys) by multiplication, and it be-
comes a subalgebra of Endg(Ils,s) via I§. From (T.6) we see that its action on
syt ind%pt(saxc), obtained via Jg[g, is

sl O(T,,s) — O(TY)

«

followed by the regular representation. In other words, the action of f € O(T;) on
syt ind%pt(saxc) via coincides with the action of s,(f) = fos, ! € O(T;) on
syt ind%cpt(saxc) via (1.10). Applying the normalized parabolic induction functor
I§, we find that I§(f) € Endg(Il,) is transformed into I§(f o s;!) € Endg(Ils,s)

by . O

We resume the analysis of End(Il;) with s = [T, xo]g. Let Rs, be the set of roots
a € R(G,S) for which Harish-Chandra’s function g, is not constant on Xy,,(T")xo-
Then R; , is a root system and W (R; ;) is a normal subgroup of W [Hei, Proposition
1.3]. As explained in [Sol5, §3], we can modify xo inside Xy (7")xo so that W(R; )
fixes xo. Let RIM be the positive system determined by the chosen Borel subgroup
B of G. Then
W, = W(Rsp) x T

where I'; denotes the stabilizer of R;f# in W;. Following [Sol5l §3], we use the lattice
T/Tepy = X*(Xue(T)), and the dual lattice (T'/Tept)” = Xo(Xne(T)). For o € Rs ),
let by be the unique generator of T'/Typ N QoY such that |a(hy)|p > 1. We put

R! ={hy:a € R,,} CT/Tept
and we let Ry C (T'/Tcpt)" be the dual root system. By [Sol5, Proposition 3.1]
Rs = (R;/’ T/Tcpt7 Rsa (T/Tcpt)v)

is a root datum with Weyl group W(R,') = W(Rs,). Moreover Wy acts naturally
on Rs and I's is the Ws-stabilizer of the basis of Rs determined by B.

The complex variety Ty is isomorphic to X,;(7") via multiplication with xo. Let
H(5)° be the vector space O(T) @ C[W (R )], identified with O(Xp,,(T)) @ C[W (RY)]
via Xy (T') — Ts. Given label functions A\, \* and ¢ € C*, we build the affine Hecke
algebra H(Rs, A, A", q) (see for instance [AMSI, Proposition 2.2] with z; specialized
to q). Via the above isomorphism of vector spaces we make #(s)° into an algebra
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which is isomorphic to H(Rs, A\, A\*,q). The group I's acts on H(s)° by algebra
isomorphisms:

(1.11) Wf@w)=fory t@yuy™  feO(T),weW(R,).
That gives rise to a crossed product algebra
H(s) := H(s)° x T,

which we would like to be isomorphic with Endg(ILs).
For s, with o € R, simple, and more generally for any w € W(RY), an ele-
ment N, € Endg(Ils) is constructed in [Sol5, Lemma 10.8 and remarks], it is called

q;A(a)/ 2T1’,J over there. It can be determined uniquely by the choice of a good maxi-
mal compact subgroup K of GG, associated to a special vertex in apartement for 7
in the Bruhat-Tits building of (G, F).

For v € T's we have to be more careful, mainly because it need not fix yo. (The
group W; fixes xo when G is F-split, but the argument in that case does not gen-
eralize to G that only split over a ramified extension of F.) Since Xy,(7T, xo) = 1,
there exists a unique x, € Xy (T") such that v - xo = xo0 ® xy. Then x, is fixed by
W(R;) [Sol5, Lemma 3.5]. The element J, from [Sol5, Theorem 10.9] comes from
A, in [Sol5l §5]. From [Sol5, start of §5.1] we see that A, depends on x, (which is
unique) and on some

py € Homz (X0, X0 ® Xv)-
For the latter we have a canonical choice, namely the identity on C. Apart from
that A, depends only on the choice of K.

Theorem 1.2. The above intertwining operators N,,J, € Endg(Ils) give rise to an
algebra isomorphism

Ende(Ils) = H(s)® x C[Is, ],
for a 2-cocycle fs : T2 — C*, suitable Ws-invariant label functions \ : RY —
Zso, \* : RY — Z>o and q-base q};/2. This isomorphism is determined by the choice
of a mazimal compact subgroup K of G.

Proof. The isomorphism between #(s)° and the subalgebra of Endg(Il;) generated
by O(Ts) and the N, with w € W(RY) is given in [Sol5, Theorem 10.9]. The
operators Jy (v € I's) in [Sol5, Theorem 10.9] coincide with the A, € Endg(Il,)
from [Sol5l, §5.1]. The multiplication rules for the A, are given in [Sol5l, Proposition
5.2.a). As X (T, x0) = 1, we get

A’yAw’ = hs(’%'y/)Avw’ '77'7/ eI,
for some fs(7,7") € C*. By the associativity of the multiplication, f; is a 2-cocycle.

The other parts of [Sol5l, Proposition 5.2] also simplify, because x~ is fixed by W (RY).
They show that

AyAy = Ay and  AyA, = Ay, for vy €Ts,w e W(RY).
This implies
(1.12) AT AQA, = Ay, = A Ay A,
In view of how N, is constructed from A,, [Sol5, §10], the relation entails
A;leAV = N,-14y. That and [Sol5, (5.2)] show that I's acts on the image of

H(s)° in Endg(Ils) as in (1.11)). Combining that with [Sol5, Theorem 10.9] yields
the required algebra isomorphism. O
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An important part of the structure of Endg (Il;) consists of the labels A(h)), A\*(h.)

with o € R ;. Here the eigenvalues of N, are q;}(h‘v*)/Q and —q;)‘(h‘v*)m. When
we recall the known formulas for these labels, it will be convenient to consider all
a € R(G,S) such that s, € Ws.

Suppose first that G is F-split. By [Sol7, Proposition 4.3], a € R, , if and only if
xoaV: F* — C* is unramified. Further, by [Sol7, Theorem 4.4]

(1.13) MaY(wph)) = M (0¥ (wih)) = 1.

Now we suppose that G quasi-split but not necessarily split. A special role is played
by pairs of roots in type 2As,, such that the diagram automorphism permutes the
pair. We settle the other cases before we turn to those exceptional roots.

Let F,, be the splitting field of &« € R(G,S) and let f(F,/F) be the residual degree
of F,,/F. Assume that « is not exceptional, then the issue can be reduced to (1.13]).
Indeed, by [SolT, §4.2], a € R, if and only if x o a¥ : F — C* is unramified.
Moreover, by [Sol7, Corollary 4.5]

(1.14) Mo (@) = M (0 (wy))) = f(Fa/F).

In most cases hy = a"(wy!) in T/Tept, and sometimes oV (wp!) = (hY)? in T/Teps.
In the latter cases, for instance PGLy(F),

(1.15) A(BY) = F(Fa/F), N'(hY) = 0.

The exceptional cases occur only when R, , has a component of type BC, which
comes from a component of type 2As, in R(G,S). Consider an indivisible root
a € R, which comes from two adjacent roots in 2Agn. As explained in [Sol7,
§4.2], the computation of the parameters for this a can be reduced to a quasi-
split group SU3(F,/E,). Moreover, since the groups of unramified characters of
SU3(Fo/Eq),Us(Fo/Eq) and PUs(F,/E,) are naturally identified, the reductions
from [Sol7, §2] apply to these groups in the strong sense that in these instances
of [Sol7, Proposition 2.4] no doubling or halving of roots can occur. Consequently
the labels for aw € R(G,S) are precisely f(E,/F) times the labels for « as root for
Us(Fy/Ey).

For Us(F,/E,) all g-parameters for principal series representations were com-
puted via types by the author’s PhD student Badea [Bad]. The outcome can be
summarized as follows.

o If F,,/E, is unramified and x. is trivial on Tepe N SU3(Fo/Ey), then a € Rs ),
and A(hY) = 3, \*(hY) = 1.

o If F,,/FE, is unramified and x. is nontrivial on Tepe N SUs(Fo/Eq), then
a € Rs;, and A(hY) = X (b)) = 1.

o If F,/E, is ramified, then o € R, if and only if x o ¥ : FS — C* is
nontrivial on oy, . (We note that x* oon|0§ = 1 because s4Xc = X¢.) When

this condition is fulfilled, we have A(a¥(wj!)) = A" (a¥(wy!)) = 1 and
AhY) =1, *(hY) = 0.
We warn that in [Bad] it is assumed throughout that the residual characteristic of
F is not 2. For unramified characters x this restriction is not necessary, because in
those cases the Hecke algebras and the parameters were already known from [Borl].
However, for other x the tricky calculations in [Badl, §2.7 and §5.2.1] do not work in
residual characteristic 2.
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For F of arbitrary characteristic, the Hecke algebra parameters for Us(F,/Eq)
can also be determined via the endoscopic methods from [Mce], see [Sol7, Theorem
4.9]. That shows that the above formulas also apply when the residual characteristic
of Fis 2.

2. WHITTAKER NORMALIZATION

Unfortunately the isomorphism from Theorem is not entirely canonical, be-
cause it depends on a good maximal compact subgroup K of G, and often G has
more than one conjugacy class of such subgroups. Further, it may be expected that
the 2-cocycle fis of T’y is trivial, because G is quasi-split. We will fix both issues
by using a Whittaker datum. Let U be the unipotent radical of B (since all Borel
subgroups of G are conjugate, the choice of B is inessential.) Let £ : U — C*
be a nondegenerate smooth character, which means that it is nontrivial on every
root subgroup U, with a € R(G,S) simple. Then the G-conjugacy class of (U, &) is
Whittaker datum for G.

Recall that a Whittaker functional for 7 € Rep(G) is an element of

Homy (7, &) = Homg (77, Indg(f)) )

where Ind denotes smooth induction. We say that 7 is generic, or more precisely
(U, &)-generic, if it admits a nonzero Whittaker functional. It is well-known [Rod|
Shal] that every representation Ig(x) with x € Irr(T') is generic, and that its space
of Whittaker functionals has dimension one. For the upcoming arguments we need
a larger but modest supply of generic representations.

Proposition 2.1. Suppose that R(G,S) and Rs, have rank one. Then |Wy| = 2
and by Theorem H(s) is an affine Hecke algebra with a unique positive oot hy,.
Let Styys) be the Steinberg representation of H(s), the unique essentially discrete
series representation with an O(Ty)-weight of the form xola|} with s € R.

(a) The G-representation Sts := Styy(5) @End, (11,) s s generic.

(b) Suppose that A\(hY) # X*(hy). In that case H(s) has a unique essentially discrete
series representation Sty )~ with an O(Ts)-weight of the form Xola| 515 where
s,a € R and |a(hY)|'@ = —1, see [Sold, §2.2]. Then the G-representation Sts_ :=
St1(s)— ®Ende(11,) s is generic.

(c) Suppose that af € 2(T/Tep)Y and A(hY) = N*(hY). Choose a € R as in part (b).
Then IS (xo|a|4) is a direct sum of two irreducible subrepresentations. One of
them, say 7J_, is (U,&)-generic and the other, say ©_, is not.

(d) The irreducible G-representations in parts (a-c) are unitary.

Proof. (a) As R(G,S) and Rs, have the same rank, the equivalence of categories
translates “essentially square-integrable” into “essentially discrete series” [Sol5
Theorem 9.6.c]. In particular St, is an essentially square-integrable G-representation.
The assumptions of the proposition amount to the assumptions for [Shahl, Theo-
rem 8.1]. Part (b) of that result provides the desired conclusion, at least when
char(F') = 0. The version of [Shah| Theorem 8.1] with char(F') > 0 was established
in [Lom| Theorem 5.5].

(b) This is analogous to part (a).

(c) Tt is well-known (see for instance [Sol4, §2.2]) that indggz)(x(ﬂaﬁ?) is a di-
rect sum of two onedimensional representations, say ﬂg{(ﬁ)i and ﬂ%( o) Writing
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ﬂfﬁn = 773_[/(2)_ ®Ende (IL) 115, we obtain

I§ (xolal$) = nf_ @ "

Since dim Homy (1§ (xola%),€) = 1, exactly one these direct summands is generic
(which one depends on &). By renaming if necessary, we can make 7J_ generic.

(d) This holds because these representations are tempered and irreducible [Ren),
Corollaire VII.2.6]. O

2.1. Modules of Whittaker functionals.

For our purposes it is more convenient to analyse a perspective on generic repre-
sentations which is dual to the traditional view. For (m,V) € Rep(G) let VT be the
smooth Hermitian dual space, that is, the vector space of all conjugate-linear maps
X : V — C which factor through V' — V¥ for some compact open subgroup K of
G. The Hermitian dual representation 7! on VT is defined by

(7T (@N)(v) = A(x(g7)v)  VoeV.

Equivalently, ! is the smooth contragredient of the complex conjugate of 7. If 7 is
unitary and admissible, then 7 is isomorphic to 7 via the G-invariant inner product.

Lemma 2.2. If 7 € Rep(G)®, then also 7' € Rep(G)®.

Proof. Let §' = [M,o]c be any inertial equivalence class different from s. We may
assume that o is unitary, so o' 2 ¢. Let P C G be a parabolic subgroup with Levi
factor M and let My C M be the subgroup generated by all compact subgroups of
M. Then Il(g(imd%1 (o)) is a progenerator of Rep(G)?, see [Ren, Théoréme VI.10.1].
With Bernstein’s second adjointness we compute

(2.1) Homg (I8 (indyy, (), 7') = Homyy (indjf, (o), J9(x')) =
Homjy (ind%l(a), (JgTr)T) = Homyy, (o, (ng)T) >~ Homyy, (JS (1), 0).

Since [M, o]g # s, JS () does not have any irreducible subquotient isomorphic with
o or an unramified twist of o. Hence ({2.1]) is zero. This means that the component
of 7! in Rep(G)? is zero for any &' # s. O

From [BuHe, (2.1.1)] one sees that the Hermitian dual of ind%(¢) is Ind$ (¢), with
respect to the pairing

Ind§(€) x ind$(€) — C
(f1, f2) = Jing fr(9)f2(g)dg
Hence there is a natural isomorphism
(2.2) Homg (W,Indg(f)) >~ Homg (ind%(£), n1).
By Lemma and (L.1]), the right hand side is isomorphic with
(2.3) Homp,q,, 11,) (Home(I1s, indf (€) ), Homeg (T, 7).

Thus any nonzero Whittaker functional for 7 yields a nonzero element of (2.3)).
This prompts us to analyse Homg(ITs, ind$ (€)) as Endg(I1)°P-module. By [BuHe),
Theorem 2.2] there are canonical isomorphisms of T-representations

(2.4) Jgindg (€) 2 indfirgp(€) = indf,, (triv).
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From that we compute

(2.5) Homg (Tls,ind(€)) = Home (1§ (ind7, , (xc)), indg(€)) =
HomT(indgcpt (Xe)s Jgindg(f)) = HomT(indipt (Xe)s ind?e} (triv)).

The Bernstein decomposition of Rep(7") entails that only the part of ind{Te} (triv) on

which T¢py acts according to x. contributes to the right hand side. Hence (2.5)) is
naturally isomorphic with

(2.6) Homrp (ind::ﬁCpt (xe), ilrldri‘ﬁcpt (Xc)) = Homr,,, (Xe, ind%Cpt (Xc)) = ind%Cpt (Xe)-

This vector space contains a canonical unit vector, namely x. € ind%cpt (xc) or equiv-
alently 1 € O(T;). We use the boldface to indicate that it is an element of ([2.6),
not of Endg(Ils).

We want to normalize our intertwining operators IV, so that they act on 1 in an
easy way. Any f € O(Ts) = ind::ﬁcpt (xc) can be regarded as element of Endg(Ils),
namely Ig applied to multiplication by f. The action of that on is again
multiplication by f. Thus is free of rank one as O(T;)-module, and 1 forms
a canonical basis.

Let C(T5) be the field of rational functions on 75, the quotient field of O(T;). It

follows from Bernstein’s geometric lemma [Ren, Théoreme VI.5.1] that

(2.7) Endg (I§C(Ty)) = Endg (I§O(T3)) ®or,) C(Ts),
see [Sol5l Lemma 5.3]. The natural isomorphisms (2.5)) and (2.6 extend to
(2.8) Homg (I§O(T3), indff (€)) ®o(r,) C(Ty) = C(T3),

and as module over (2.7)) this is an extension of scalars of (2.6)). The advantage of
this setup is:

Proposition 2.3. Theorem[1.9 extends to an algebra isomorphism

Endg (I§C(Ty)) = (C(Te) x W(RY)) » C[Ts, k.
Proof. This is a direct consequence of Theorem and §5.1 (in particular Corollary
5.8) of [Sol5. O

In Proposition the basis elements of C[I',fs] are the same J, = A, as in
Theorem [L.2] The basis elements of
CIW(R,)] € Endg (I§C(T5))
are the T, from [Sol5, Proposition 5.5], which are expressed in terms of the N,
in Lemma 10.8 and the preceding remarks of [Sol5]. Proposition enables us to
analyse the actions on ([2.6) and on (2.8)) more explicitly.
For w € W(RY),v € Ts and f € O(Ts):
[Ty = 1 [Tody = (U Tud) - (13 M T )
=@ Twty) - (fowy) = (fowy)(X - Tuly)
in (2.8). Notice that 1 -.J, must be invertible in O(T), because J, is invertible in
Endg (1L).
We write 0pq for 0,5y, where n € Z and « € RY. We also abbreviate

e L )

(2.9)
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Proposition 2.4. For each simple root hY € R there exists n, € Z such that
1-Ts, = —0On,a in (2.8).

Proof. The operators N5, € Endg(Ils) and 7s, arise by parabolic induction from
the analogous elements for the Levi subgroup G, of G generated by T'U U, U U_,,.
Hence it suffices to work in G, which means that we may assume that R(G,S) and
R; ;, have rank one.

First we consider the cases where gu« # 1, or equivalently A(hY) # A\*(hY). From
[Sol3l, (5.19)] we know that T, (¢a — 0-a)(gax + 0—a) € Endg(Ils). Hence we can
write

1- 7;(1 = fl(QQ - efa)_l(QOz* + ‘9704)_1 with f1 € O(Ts)
The relations 7'5%! =1 and (2.9)) imply that
f1 8a(f1)
(Qa - 904)((]04* + 9@)(Qa - 9—01)((]04* + e—a)
It follows that there exist € € {1} and n, € Z such that
Ji= eenaa(Qa - Hia)(Qa* + ei’a)a
for suitable signs +, +'. Equivalently

(2.10) 1- Ty = bnoa (qi"‘__;_aa)n (qii*j;_o‘a ) T s,

1= (1'7;a)304(1'7;a) =

where 1,7 € {0,1}.
Under our assumption of € 2(T/Tept)" and s, fixes any x € Xy, (T) with x(h)) =
—1. Notice that fo(x) =1 whenever 0,(x) € {£1}. As in [Sold, 10.7.b] define
1 i I§(evy)Ts, = — 1§ (evy),
(2.11) o™ { 0 otherwise.
By [Sol5, Lemma 10.8]

(2.12) Q;\?(hg)/QNsa +1=(Tsn0-coa + 1)(0aga — 1)(0agax + 1)(02a — 1)71

belongs to Endg(Ils). In particular

(ee(n&,m)a 2+ 1)(9aQa - 1)(0aQa* + 1)
00 — 1

lies in Home; (1L, ind§ (¢ )) = O(T5). Specializing the numerator of at x/ with
0o (x') =1 gives (€ +1)(ga — 1)(gax + 1). Since go > 1 and has no poles, this
implies € = —1.

Let Gger be the derived group of G and write s4e; = [X|7nGaer» T N GderlGye,- BY
construction H(s4er) is the subalgebra of H(s) generated by C[T N Gder/Tept N Ger)
and N, . From [Soldl §2.2] we recall that Sty : H(s) — C is given on H(sger) by

(2.13) 1- ("N, 1) =

— Vv —n
StH(s)(Nsa) = _qF)\(ha)/27 St?—l(s)(ena) =4, -

From Proposition [2.1]a,d we know that
Homg (Sts, Ind$ (€)) = Homg(ind$ (€), Sts)  has dimension 1.
As in , any nonzero Whittaker functional yields a surjection
Homg (I, indf (€)) = O(Ts) — Styye)-
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This is an O(Ts)-module homomorphism, so up to rescaling it must be evaluation
at xst, the unique O(Ty)-weight of Sty(s). Since H(W(RY),qp) acts on Sty () via
the sign representation,

(2.14) O - (22N, +1) € ker(evyy,) Vo € T/Tups.

For x = 0 we can make that more explicit with (2.12]):

(215) 1+ (22N, +1) = (6 — O —eraf2) (Bata — 1) (adas + 1) (020 — 1) "

(ga — 0-0)"(qax + e—a)nl - e(na_ea)a<Qa — 0a)"(qax + Qa)”l (0aga — 1)(0agas +1)
B (qa — 0-a)"(qax + 9704)77, (020 — 1)
When 1 = 1, this reduces to

(qa — 0-a)(gax + e—a)n/ - e(na—m)a(Qa — 0a)(qax + Ha)nl Oo(Oaqos + 1)
(Qa* + 970[)71' (an — 1)

Evaluation at xs; sends this element to

—q 7 (g — 43 ) (s + @3 D" 43145 gax + 1)
<qOé* + Qa>(qa2 — 1)

That contradicts ([2.14)), so that n must be 0.
We recall from [Sol4l proof of Theorem 2.4.c] that Sty)— is given on H(sqer) by

£ 0.

Sty (Now) = =g "2 Staye)- (Ona) = (—az)™

By Proposition 2.1}b.d,
Homg (Sts_, Ind$ (€)) = Homg (ind(€), Sts—)  has dimension 1.
As above, this gives a surjection
Homg (I, ind (€)) 2 O(Ts) = Styy(s)-,
which (up to rescaling) is evaluation at the O(Ts)-weight xsi— of Stys)—. Then
ker(ev,g, ) contains
(216) 1+ (gp" PNy, +1) = 1+ (To0—coa + 1)(Batde — 1) (Baton + 1) (020 — 1)
= (80 = Oy —eo)o (G + 00/ Gax + 0-a)" ) (Bada — 1) (Bagas + 1)(f2q — 1)~

(qa* + e—a)n/ - g(na—ea)a(qa* + ga)ﬂ/ (eaq(x - 1)(904@[04* + 1)
(Goe +00)" (EDEE

When n' = 1, (2.16) simplifies to

(Qa* +0-a — G(na—ea)a(qa* + ea))

(GQQQ - 1)9a
(92& - 1)

Evaluation at xs¢— results in

(=dat )™~ (4o = o )(~Gar o — Ddax
Gar — 1
This is nonzero because ¢, > gax > 1. But then (2.16]) does not lie in the kernel of
€Vyg, , a contradiction. Therefore 7" must be 0.
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Now we consider the cases with o« = 1, or equivalently A\(hY) = A*(h.). Then
we can omit all factors o« + 0+, and we can replace 6o, — 1 by 6, — 1. The above
argument with Sty () still applies, and shows that n = 0. (]

For the moment we continue to work in G,. Assume that of € 2(T/T.y)" and
A(hY) = X*(hY). The onedimensional H(s)-representation 773{(5)_ from Proposition
2.1]c extends canonically to a representation of H(s) + 7, H(s), because T, does
not have a pole at |a|i4. In particular 7r7g_[( - determines a character of the order
two group (75, ). We define

(2.17) R Ot
0 71';]_[(5)7’(7;0» = sign.

This complements the definition of €, when of € 2(T/Tept)Y and A(RY) # A*(hY),
see (2.11]). Together these provide a function
(2.18) 2 : {hY € RY simple, of € 2(T/Tept)"'} — {0,1}.

Lemma 2.5. (a) The function (2.18) is I's-invariant.
(b) Take « in the domain of €2 and let ny be as in Proposition . Then ng — €4
1S even.

Proof. (a) For v € T, represented in Ng(T), we have yGoy ™! = G
Iy Ts., J;l = 7;7((%). Further

7(a) and

~Y G «@
Ad(N 56, (xolali) = 150G (olali) for any 2 € C.

When A(hy) = A*(hY), we apply this with z = ia. We note that I& z(n?_) is generic
while I& (7" ) is not. As IS p(xd ) = Igw(a)BAd(V)(ﬂﬁg—)’ we conclude that mf_
for G.,(o) is obtained from 7§_ for G, by Ad(y). Hence €,(,) = €.

When A(hY) # N*(hY), the same argument works with the irreducible represen-
tation Igﬁca (xolar|%).
(b) Suppose that A(hy) # A*(hY). Recall from the proof of Proposition that
efo = —1. Specializing the numerator of at x with 0,(x) = —1 gives

(=(=D)" £ 1)(=qa — 1)(—=qax + 1) = ((=1)"" = 1)(ga + 1)(1 = qax)-

Again this must be 0 by (2.13]). Using ga« # 1 we find that n, — €, is even.
Suppose that A(h)) = A*(h}) and W?—t(s)J(Ts&) = triv. By Proposition d, any

(e
Whittaker functional for 7'[';]_[( o)— gives a surjection

Homg (I1,, ind$ (€)) = O(T;) — «f

H(s)—"
As O(Ts)-module homomorphism it is (up to scaling) evaluation at x_ := xola|%,
a character such that 6,(x—) = —1. Then ker(ev,_) contains

1 (Tsa = 1) = —bnpa — o,

SO 1, is odd. Recall that €, = 1 in this case.
Suppose that A(hY) = A*(h)) and W%(s)_\<7;a> = sign. Then ker(ev, ) contains

1 (Tso +1) = —bnga + bo,

SO ng is even. Here e, = 0, so again n, — €, is even. O
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2.2. Normalization of intertwining operators.

With Lemma a, we can extend €7 to a We-invariant function on {h) € R/ :
of € 2(T/Tept)V}. In [Sol5], €, was only defined when A(hY) # A*(hY), implicitly
saying that it is 0 otherwise. We can just as well use ¢, for any simple h) with
af € 2(T/Tept)”, Lemma a ensures that all the computations from [Sol5| remain
valid. In particular we can now (re)define Ny, € Endg(Ils) by

A(he)/2 _ 1
(2.19) 4dr Nso +1=(Tsa0-caa +1) (faga — 1)(0agax +1)(02a — 1)
for any simple hY with af € 2(T/Tept)Y. The analogous formula when of ¢&
2(T/Tept)V is slightly simpler:

(2.20) "IN 41 = (To, + 1) (Bage — 1) (00 — 1)

Recall that the isomorphism in Theorem was determined by the choice of a
good maximal compact subgroup K of GG, associated to a special vertex in aparte-
ment for 7 in the Bruhat-Tits building of (G, F).

Lemma 2.6. The good maximal compact subgroup K can be replaced by a G-
conjugate, such that the isomorphism in Theorem satisfies, for all simple roots
hy € RY:
1-7T5.0-c,a=-1 and 1-N;, = —q;)‘(hX)/Ql.

Proof. Recall the integers n, from Proposition [2.41 We will tacitly put ¢, = 0
when af ¢ 2(T/Tept)V. Select y in Homy(ZRs,Z) so that (y,af) = n, — €, for
every simple root of € R,. By Lemma b y can be extended to an element
of Homy ((T'/Tept)Y,Z) = T/Tept, which we still denote by y. The automorphism
Ad(0y) of H(s)° extends uniquely to an automorphism of H(s)° ®o 7,y C(T5), which
satisfies

(221) Ad(ey)(’];ae_ﬁa) - ﬁaasa(y)—ye—ea - ﬁae(—na)a'
By Proposition [2.4]
(2.22) 1-Ad(0y)(Ts.0-cna) = —1.

For any representative yg of y in T, K’ = Ad(yg)K is another good maximal com-
pact subgroup of G. If we replace K by K’, then we must replace the representatives
w € K for w € W(G,S), which are used in the constructions behind Theorem
by representatives in K’. Which choice in K’ does not matter, we take

Ad(ygh)d = dw ™ (y5 e € K.
For a simple root, that means
- - f
Ad(yG)saTcpt = Sa (hX)@’a ) € Ng(T)/TCpt.
According to [Hel, Proposition 3.1], the effect of this replacement on Ty, is left
composition with s, (6a <y’aﬁ>) = Héy’an> or equivalently right multiplication with

—(y.at
02" n view of (2:21), the effect of Ad(y;") on H(s)° is precisely Ad(6,).
By (2.22)), the new element 7; = T;,0(, ), has the same €, as before, and n,
has become €,. Now ({2.22) says that 1-7; 0_.,o = —1. The equations (2.19) and
(2.20) for the new elements N/ become

PPN 41 = (T2 0 0+ 1)(0ada — 1) (Bagan + 1) (020 — 1)
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In view of (2.22)), this implies

1- ("N, +1) =0 € C(TL).
Equivalently, we obtain 1 - N, = —q;)‘(hCVM)/Ql' 0

From now on we choose K as in the statement of Lemma 2.6 For w € W; let
det(w) be the determinant of the action of w on (T'/T¢pt) ®7zR. Then det : Wy — R
is a quadratic character extending the sign character of W(RY).

For v € T's we write 1-.J, = 2,0, with z, € C* and x, € T//T¢pt. Consider the
operators

N, = det(y)z; "0z, Jy € Endg(ILs).
From (2.9) we see that
(2.23) 1-N, =det(y)1 v € L.
Theorem 2.7. The operators Ny, N, for w € W(RY) with K as in Lemmal|2.6 and
N, with v € I's as above, provide an algebra isomorphism
Endg(IL) = H(s)® x I's = H(s).
Given the Whittaker datum (U, &), this isomorphism is canonical.

Proof. By direct computation, using Lemma [2.6}

(2.24) 1-T5,0-cha = —det(7)2,0,, (2. )-
A similar computation shows that
(2.25) LT orOcar(a)yly = =1+ Jy = —det(7)2,0,, .

As JyTs,0-coa equals T 0c ~(a))y 2.24) and (12.25)) are equal, and we deduce
that so(zy) = z4. Hence x, is fixed by each such s,, and by the entire group
Now we check that the IV, satisfy the desired relations. It is easy to see that

1-N,5 = det(y¥)1 = det(y)det(y)1 = 1 - N, N5,
NyfNT = JofIst = foy™  feO(T),
NyToo Nt = 2710 0 Iy Ton IS 00,20 = 00 T
The first two of these relations imply that
N,5 = NyN5 for all v,7 € I,.
We deduce that, with respect to the given O(T;)-basis, Endg(Ils) becomes H (s)° xT.
Any two isomorphisms of this kind differ by an automorphism 1 of H(s)° x Ts.
Since the subalgebra O(T) is mapped naturally to Endg(Ils), ¢ is the identity on
that subalgebra. Hence 1) extends to an automorphism of the version of H(s)® x I's
with C(7;). Then (2.9) entails that ¢) multiplies each basis element 7, N, by an
element of O(T;). Combining that with Lemma [2.6/and (2.23)), we find that 1 is the
identity. O
Theorem [2.7] shows in particular that the 2-cocycle s from Theorem [1.2] becomes
trivial in H?(Ts, C*).
Recall from page [7| that s can also arise from wsp = [T, wyo|r for any w €

W(G,S). To compare all these cases, it suffices to consider one w from every left
coset of Wy = Stabyy (g s)(s7)-

O, = Te..

Yo
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Proposition 2.8. Let w € W(G,S) be of minimal length in wWs.

(a) The isomorphism Il = 11,5 from |[Ren, §VI.10.1] can be normalized so that it
sends 1 € Homg (Tl,, ind$(€)) to 1 € Homg(IT,s, ind$ (€)).

(b) In that situation the induced algebra isomorphism Endg(Ils) = Endg(Ilys) is
given by f s fow ! for f € O(Ty) and Ny +— N1 for v € Wi.

Proof. (a) The isomorphism of G-representations

Ow = Tyg = II;
from Proposition [I.1] induces a map
(2.26) O(T,) = Homg(Ils, ind$ (€)) — Homg (Tlys, ind$ (€)) 22 O(Tops)

and a compatible algebra isomorphism
Ad(¢y') : Endg(TTs) — Endg(ITys).
In view of ([2.4)—(2.6)) and Proposition ([2.26) must be f +— fow™! followed by

multiplication with some element of O(Tys).

Like in the proof of Proposition we reduce to the case where R(G,S) has rank
one, w = S, is a simple reflection and s,s7 # sp. We represent s, in the maximal
compact subgroup K from Lemma Consider x. € ind%cpt (xc) and

1 € Homg(Il,, ind(€)) = Homyp (ind%pt (Xe)s ind?e}(triv)).

Recall from ([2.5)) that here the isomorphism is given by Jg and the natural trans-
formation id — Jg[g. By definition Jg(l)xc = Xc. We want to determine

(2.27) J5(1)J5($s.) (saxc) € Jgindg (€),
where s, is considered as element of indipt(saxc) C Jgﬂsas. From (|1.6) we see
that Jg(gbsa) on ind%pt(saxc) equals

Sq © [J%(d)sa) on s, - indipt(saxc)] osyt.

Similarly Jg (1) on sq - ind%pt(xc) equals

Sq O [Jg(l) on ind%pt(xc)] os,t.

Now we can compute (2.27)). First s,x is mapped to x. by s;!, then (T.8)—(T.10)
show that Jg(qﬁsa) sends that to x. € i1r1d£pt (xc)- Applying Jg(l) returns . €
indr{e} (triv) and finally the action of s, yields sqx.. Hence

Jg(l)Jg(Cbsa)(SaXC) = SaXc = Jg(l)(SaXC)a
where the second 1 comes from Il ;. In view of (2.5) and (2.6)), that implies
JS(1) IS (¢s,) = JS(1) and 1og,, = 1.

(b) Since w has minimal length in wWj, it also has minimal length in wW (Rs ). Ac-
cording to [AMS3] Lemma 2.4.a], w(R{,) C R(B,S). By the W(G, S)-equivariance
of Harish-Chandra p-functions also w(Ry ) C Rys u, and therefore w(Ry ) = Rf, ..

The proof of part (a) shows that equals f — fow™!. With the rough
description of the H(s)-action on Homg (I, ind$(€)) from we deduce that

Ad(¢,') sends each N, € H(s) to N1 times an element of O(T,v). The more
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precise descriptions from Lemma [2.6/and (2.23]) show that in fact Ad(¢,,!) N, equals

Nypw—-1 for any v € Wi. (]

3. CHARACTERIZATION OF GENERIC REPRESENTATIONS

We want to parametrize Irr(G, T') so that the generic representation correspond to
the expected kind of enhanced L-parameters. To that end a simple characterization
of genericity in terms of Hecke algebras will be indispensable.

We start with a complete description of Homg (Hg, indg(f )) as right H(s)-module.
Let H(W(RY,q3) C H(s)° be the finite dimensional Iwahori-Hecke algebra spanned

by the Ny, E\'Vith w € W(RY). The Steinberg representation of H(W (RY,qp)) is
defined by
(3.1) St(Ns, ) = —q;\,(hg)/Z for simple h)Y € R/.
We extend this to a representation St of
H(We, ) := H(W(RY), qp) % T

by St(NyN,) = St(Ny)det(y). Notice that this formula equally well defines a
representation of the opposite algebra H(Ws, qf})"p )

Special cases of the next result were established in [ChSa] (for the Iwahori-
spherical Bernstein component of a split group) and in [MiPa] (for principal rep-
resentations of split reductive p-adic groups, with some extra conditions).

Lemma 3.1. There is an isomorphism of H(s)°P-representations

. ~ i H(s)°P
Hom (1L, mdg(f)) = 1ndHEf/2/§’q;)op(St).

Proof. Let w € W(RY) and v € Ts. By Lemma [2.6 and
1 NyN, =1-St(N,N,) € Homg (Ils, indg (€)).
As vector spaces
H(s) = O(Ts) © H(Ws, q3).

Further Homg (Hs,indg(f)) is isomorphic to O(T;) as O(Ts)-module, with basis
vector 1. Hence

. 7—[( )OP . a

indyy iy, gpyee (3t) = Home(ITs, ind5(¢)
h&1 — h-1

is an isomorphism of #(s)°P-modules. 0

The criterium ([2.2)—(2.3)) for genericity can be put in a more manageable form
with Lemma For any 7 € Rep(G)*:

Home (m, Indf (€)) = Homg (indf (€), 7')
= Homppqg, (11,)or (Home (15, ind(¢)), Home(Il;, 1))

(s)°P

~ . H
(3.2) = Homy,(5)op ((de(WE,q;)op(St)) , Homg (11§, 7TT))
~ HomH(qu%)op (St, Homg (1L, WT)).

Corollary 3.2. A representation m € Rep(G)*® is (U,§)-generic if and only if the
H(Ws, q)°P-module Homg (Ils, 71) contains St.
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In this corollary the effect of 7 + 7' on H(5)°P-modules is not obvious, we analyse
that in several steps. With the *-structure and the trace from [Solll §3.1],

(3.3) H(Ws,q) = HW(RY), q3) x T

is a finite dimensional Hilbert algebra, so in particular semisimple.

Recall that a standard G-representation is of the form 1§ (7 ®x), where P = M N
is a parabolic subgroup of G, 7 is an irreducible tempered M-representation and
X : M — R+ is an unramified character in positive position with respect to P. By
conjugating P and M, we may assume that T' C M.

Lemma 3.3. Suppose that T € Rep(M)TX0lm . Then I§(1 ® x) € Rep(G)® and
Homg (I, I§ (7 @ x)T) = Homg (I, I8 (7 ® X)) as H(Ws, ¢) P -modules.

Proof. The representation 1§ (7 ® x) has cuspidal support Sc(7) ® x|r € [T, Xor, S0
it belongs to Rep(G)[Tx0le. By [Ren, 1V.2.1.2]

ISrex) 2 I5(rox)) =I5 @ xh).

Since Y is real-valued and 7 is unitary [Renl, Corollaire VII.2.6], the right hand side
is isomorphic with 1§ (7 ® x~1). Consider the continuous path

[—1,1] = Rep(G)* : t — IS(T @ xY).

Via the equivalence of categories (1.1)), we obtain a continuous path in Mod(H(s)°P).
Modules of a finite dimensional semisimple algebra are stable under continuous de-
formations, so

Homg (Hg, Ig(T ® X)T) =~ Homg (Hs, Ig(T ® Xfl)) =~ Homg (HS, Ig(r ® X))
as H(Ws, g)°P-modules. O

We are ready to establish a useful characterization of genericity, without Hermi-
tian duals. The next result is formulated for finite length representations, but we
believe it is also valid without that condition. To study it for arbitrary representa-
tions in Rep(G)* one probably needs Hermitian duals of modules over affine Hecke
algebras.

Theorem 3.4. Suppose that T € Rep(G)® has finite length. Then w is (U, §)-generic
if and only if HomH(th;)op (Homeg(Ils, ), St) is nonzero.

Proof. Since 7 has finite length, we can form it semisimplification mss. Then 7715
is the semisimplification of 7. By (3.3) the module category of H(Ws,qp) is
semisimple. In particular

(34) HomH(WS’q}:‘)op (St, HOHIG (H57 WT))

does not change if we replace «f by Wls. Since we only need semisimplifications of
modules here, we may pass to the Grothendieck group of finite length representations
in Rep(G)®. The standard modules in Rep(G)*® form a Z-basis of that Grothendieck
group. Indeed, that is a consequence of the Langlands classification [Ren, Théoréme
VIIL.4.2] and the property that the irreducible quotient of a standard module is the
unique maximal constituent in a certain sense [BoWa, §XI.2].



22 PRINCIPAL SERIES REPRESENTATIONS OF QUASI-SPLIT REDUCTIVE P-ADIC GROUPS

For each such standard module we have Lemma [3.3] and hence the conclusion
of Lemma [3:3] extends to the entire Grothendieck group of the finite length part of
Rep(G)®. In particular

Homg (I, 7TT) = Homg (11 ol ) = Homg (I, mss) = Home (Il,, )

5y 'ss

as H(Ws, qj\;)(’p—modules. Hence the vector space is isomorphic with
HomH(WE’qé)DP (St, Homg (I, 7r))

By the semisimplicity of the involved algebra, this has the same dimension as

(3.5) Homy, (yy, ) (Homg (I, ), St).

We conclude by applying Corollary |3.2 - to . and . O

From Theorem it is easy to prove an analogue of the uniqueness (up to scalars)
of Whittaker functionals [Rod, [Shal] in the context of Hecke algebras. Let M be
a standard Levi subgroup of G and write sy; = [T, xo]a. Via parabolic induction
H(srr) = Endp(I1s,,) becomes a subalgebra of H(s) & Endg(Il). In fact the

constructions in [Sol5l §10.2] show that #H(sps) is a parabolic subalgebra of H(s),
in the sense of [Sol2, p. 216]. The functor ind;{gg;;op corresponds to parabolic

induction from M to G, see [Roc2, Proposition 1.8.5.1].

Lemma 3.5. Let V be an irreducible H(spr)°P-module. Then

H(s)oP
dunHomH(W a)er (md H(onr)oP VSt)

Proof. By the Bernstein presentation of #H(s)°? we can simplify the module:

H(s)oP . H(s)oP o H(We,qp)oP H(sr)oP
ReSH(Ws,Q%)"p( dH(w)opv)—de(WsMF,q;)w(RGSHW%M,@)OP )-

With Frobenius reciprocity it follows that

(3.6) Homyy gy, o (indjy §> oo V3 St) =2 Homy gy, nyon (V, St).

This reduces the lemma to the case M = G, which investigate next.
As H(s) has finite rank as module over its centre, V' has finite dimension. Hence
V contains an eigenvector for O(T), say with character ¢t. Then

0 # Homp(r,)(t, V) = Homy(s)or (1ndH§5)o)p (t),V),

H(s)oP

so V is a quotient of indO(TE) (t). For multiplicities upon restriction to the finite

dimensional semisimple subalgebra H (W, ql’\m)OP , that means

(3.7) dim Homy, gy, 42 Ayor (VSt) < dim Homy, gy, ) (meET?) (), St).

By the presentation of H(s), ind és) )p( ) =2 H(Ws,qp)P as H(Ws, q)°P-modules.
Hence the right hand side of (| . is 1 O
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4. HECKE ALGEBRAS FOR PRINCIPAL SERIES L-PARAMETERS

Fix a separable closure Fs of F' and let Wy C Gal(F;s/F) be the Weil group. Let
I be its inertia subgroup and pick a geometric Frobenius element Frobg of W . Let
G be the complex dual group of G and let “G = GV x W be the Langlands dual
group. Let ®(G) be the set of L-parameters ¢ : Wr x SLy(C) — LG, considered
modulo GV-conjugacy.

For an L-parameter ¢ we have the component group Ry = mo(Zgv (¢)/Z(GV)WF)
— this is the appropriate version because G is quasi-split. We define a (G-relevant)
enhancement of ¢ to be an irreducible representation of the finite group Ry. Com-
pared to [AMSI], the quasi-splitness of G allows us to focus on the enhancements
whose Z(GV)-character is trivial, and that eliminates the need to consider the
centralizer of ¢ in G¥s. We denote the set of GV-conjugacy classes of enhanced
L-parameters for G by ®.(G).

Recall [AMSI] that there exists a notion of cuspidality and a cuspidal support
map Sc for enhanced L-parameters. The map Sc associates to each (¢, p) € ®.(G)
a F-Levi subgroup L of G and a cuspidal enhanced L-parameter for L (unique up
to GV-conjugation). We say that (¢, p) is a principal series L-parameter if Sc(¢, p)
is an enhanced L-parameter for T' (or a G-conjugate of T'). In that case Sc(¢, p)
is unique up to Ngv(TV x Wg)-conjugacy. In other words, Sc(¢, p) as element of
®.(T) is unique up to conjugacy by Ngv(TV x Wg)/TV.

For the maximal torus 7', the dual group T is a complex torus. In particular any
L-parameter for T is trivial on SL9(C) and has trivial component group. Hence an
element of ®(T) is just the TV-conjugacy class of a homomorphism ¥ : Wx — FT.
Every element of ®.(7T) is cuspidal, because T" has no proper Levi subgroups.

To describe principal series (enhanced) L-parameters more explicitly, we consider
an arbitrary (¢,p) € ®.(G). We want to determine Sc(¢, p) = (L,,€). By con-
struction

—1/2

0 2770
(41) Wl =0l and (Frobr, ("FO qlpﬂ)) — 6(Frobp, (qFO q}f)).

—1/2

In order that L = T, it is necessary that qﬁ(Frob, qFO 0

b ) € TVFroby and
¢(i) € TVi for all i € Ip. The group HY := Zgv($(W)) is reductive and
Ry =m0(Zav(9)/Z(GV)WF)  equals 7o (Zpv (¢(SLa(C)))/Z(GY)WF).
This group is a quotient of
70 (Zmv (6(SL2(C)))) = mo(Zav (ug)),

where ugy = ¢(1, (3 %)) Thus we can regard p as an irreducible representation of
0 (ZHv (u¢)) Let (MY, uy, €) be the cuspidal quasi-support of (ug, p) for HY, as in
[AMST] §5]. Then 1 is the L-parameter determined (up to conjugacy) by and
uy, while € is as above and LY = Zyv(Z(MV)°).

For LY = TV we need MY = TV, which implies that u, = 1. There is an
explicit criterium for Sc(ug, p) = (TV,1,€) with arbitrary €, as follows. Let B3 be
the variety of Borel subgroups of H">° that contain ug, it carries a natural action of
Zpv(ug). Let p° be any irreducible constituent of p|q (7,0 (u,))- Then the criterium
says: p° appears in the action of mo(Zpv.c (ug)) on the (top degree) homology of B, .
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Summarising, we found the following necessary and sufficient conditions for (¢, p) €
®.(G) to be a principal series enhanced L-parameter:
(i) gi)(FrobF, <qF;/2 QIO/Q) ),QS(Z) €TV x Wg for any i € Ip;
F
(ii) p° appears in H, (B}ffv) where HY = Zgv(6(Wr)).
We note that under these conditions Sc(¢, p) does not depend on ug or p. Moreover
it equals Sc(¢, triv), because H'P (B;jﬁv) is a permutation representation of Ry (with
as permuted objects the irreducible components of Bjufv), and that always contains
the trivial representation. With this in mind, we call ¢ € ®(G) a principal series
L-parameter if (i) holds.
Recall from [Hail, §3.3.1] that there is a natural isomorphism

(42) an(G) = (Z(GV)IK’O)FrOb’

that the group of unramified characters Xy, (T') is naturally isomorphic to (TV17)g .

We will sometimes identify these groups and write simply X,,(7T). We note that
(TVIr)3y,. acts on ®(T) by

(2X)[1r = X[17, (2X)(Frobr) = z(x(Frobr))
for z € (TV'F)° and ¥ € ®(T). A Bernstein component of ®.(T) = ®(T) is by
definition one Xy, (T)-orbit in ®(7"). We will usually write this as sy, = X, (T)x for
one x € ®(T). It gives rise to a Bernstein component ®,(G)¢" := Se™ (T, s7) in the
principal series part of ®.(G).

Next we make the extended affine Hecke algebra H(s",z) from [AMS3] explicit.
The maximal commutative subalgebra of H(s",z) is O(s") ® C[z,z7!], where z is a
formal variable. In this context we prefer to write Tyv for s, to emphasize that it is
a complex torus (as a variety, in general it does not have a canonical multiplication).

The group Ngv(TV x Wg)/T" acts naturally on ®(T'), by conjugation. Let Wyv
denote the stabilizer of sV in Ngv(TV x Wg)/TV. Although W,v need not be a
Weyl group, it always contains the Weyl group of a root system. Namely, consider
the group J = Zgv(X(IF)), with the torus (TV"WF)° and the maximal torus 7.
According to [AMS3, Proposition 3.9.a and (79)], R(J°, (TV"WF)°) is a root system
and Wv acts naturally on it. Moreover [AMS3] Proposition 3.9.b] says that for a
suitable choice of x in Tgv the set of indivisible roots

R(J°,(TVWVF)°) 0y equals  R(Zev(((Wp))°, (TVWr)°)
For such a choice of a basepoint x of Tyv,
&= W(R(J®,(TVWF)%)
is a normal subgroup of W,. Let RV (JO, (TVWr )O) be the positive root system
determined by the Borel subgroup BY of GY. Then Wyv = W, x I'yv, where Tgv
denotes the stabilizer of RT(J°, (TV"Wr)°) in Wv.

The root system for H(s", z) will essentially be R(J°, (TV"W)°), but we still need
to rescale the elements [AMS3, §3.2]. We note that the inclusion (TV"Wr)° — TV
induces a surjection

pr: R(J°, TV)U {0} — R(J°,(T¥"Wr)°) u{0}.

In [AMS3, Definition 3.11], positive integers mq for a¥ € R(J°, (TV"Wr)°)
defined, as follows.

red’

red are
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e Suppose that pr=!({a"}) meets k > 1 connected components of R(J°,T").
These k components are permuted transitively by Frobg. Then m, equals
k times the analogous number m/, obtained by replacing F' by its degree k
unramified extension (or equivalently replacing Froby by Frob%).

e Suppose that pr=!({a"}) lies in a single connected component of R(J°, T").
Then m,, is the smallest natural number such that ker(mqa") contains the
kernel of the canonical surjection

(4.3) (TVVF) = (TVF ), & Xue(T).
In fact it is easy to identify the kernel of . as
(TV WF)FrobF (TV WF) (1 - FrObF)TV’IF.

F

Lemma 4.1. The number my, equals f(F,/F), where W g, is the W p-stabilizer of
a lift of &" to R(GY,TV).

Proof. The m,, can be related to the structure of the F-group G. Let G, be the
F-simple almost direct factor of G such that pr=!({a"}) consists of roots coming
from GY. Write G, = Resg, /FHa, where H, is absolutely simple. The injection

Ga — G induces a surjection “G — G, which does not change aV((T V,Wr )Frobp)
Knowing that, the first bullet above says that m,, equals f(E,/F’) times the number
my, for Ho(Eq).

Let 74 be the maximal torus of H, with Resg, /pTa = T N Ga. The Weil group
W, acts on the irreducible root system R(H.,7.'), and the set of orbits is in
bijection with the irreducible component of R(J°,(TV'WF)°) containing o". Let
W g, be the Wg,_-stabilizer of an element o’V € R(H,7,’) that corresponds to .
Then oV = o'V W

Suppose that the elements of Wg, o'V are mutually orthogonal, which happens
in most cases. From the definitions we see that

‘O‘v( T WF)FrobF)‘ = f(Fu/Ea)-
Here the relevant elements of (TV"Wr )Froby are the powers of
(1 — Frobg)t where (Frob™a’V)(t) = exp(27win/f(F./Ed.)).
We find m,, = f(F,/E,) and mq = f(F,/F).
Next we consider the cases where the elements of Wg,_ o'" are not mutually or-
thogonal. Classification shows that R(H",7.’) has type 2As, and
(W, oV =[Fy: Ey] =2,
so that Hy aq = PUzyy1(Fo/Ey). Direct computations show that:
e When F,/E, is ramified, m/, = 1 and m, = f(E4/F) = f(F./F).
e When F,/E, is unramified, m/, = 2 and m, = 2f(E,/F) = f(F,/F). O
Lemma and [AMS3], Lemma 3.12] yield the precise definition of the root system
for H(s",z):

A%

Ryv = {mo[ozv oY e R(JO (T WF )md}
This root system is endowed with an action of Wyv. Hence Wyv also acts on the
resulting root datum from [AMS3] §3.2]:

Rev = (Rev, X*((TV'" )y, ) Biv, Xo (T35 ,)) = (Rev, T/ Tep, RY, (T Tept) V).
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The label functions A\, \* for H(s",z) are determined in [AMS3], Proposition 3.14].
Suppose first that the elements of Wg_ o'V are mutually orthogonal (in the notation
from the proof of Lemma , and that the same holds for a¥/2 whenever oV /2
can be lifted to R(GY, (TV"W#)°). In these non-exceptional cases

(4.4) A(maa) = X (mea) = mg = f(F,/F).

If in addition mya¥ € 2X* ((TV’IF)%VF) = 2(T/Tept), then we can get the same
Hecke algebras with maa" /2 instead of m,a", and

(4.5) Amaa [2) = mgy = f(Fa/F), X*(maa” /2) = 0.

We call the remaining cases exceptional, these occur only when R(GV,T") has a
component of type 24z, and o or oV /2 comes from two non-orthogonal roots that
are exchanged by the diagram automorphism. As noted in the proof of Lemma
Hyad = PUspi1(Fo/Ey). The groups PUsyi1(Fo/Eqy), SUspt1(Fo/Es) and
Uon+1(Fo/Ey) give the same root system, the same unramified characters and the
same groups (TV'"Wr)°. Hence the relevant data for H, can be reduced (via its
derived group) to those for Us,41(Fa/Ey), and it suffices to continue the analysis
in the latter group.

For Usp+1(Fo/Eq) all the labels were computed in [AMS4] §5]. For convenience
we provide an overview, where we remark that the labels from [AMS4] still have to
be multiplied by f(E,/F) to account for the restriction of scalars G, (F) = Hqo(Ey),
as in the proof of Lemma We write o = oV + oV, where o’V and «"V are
non-orthogonal roots in As, exchanged by the diagram automorphism.

e F,/FE, unramified and X(Wg,) C Z(GL2,4+1(C)) x Wg_. Then A(a") =3
and \*(a") = 1.

o F,/E, unramified and X(Wg,) ¢ Z(GL2,+1(C)) x Wg,. Here we need
X(Wg,) to fix U,v pointwise for oY € Rev. Under that condition A\(a¥) =
N(aY)=1.

e [,/E, is ramified. When x oa" : F, — C* is conjugate-orthogonal, a" ¢
Rsv. Otherwise Y o is conjugate-symplectic, then a¥ € Ryv and A\(aV) =
A*(aV) = 1. Equivalently, using a¥' /2 as root:

(4.6) Ma¥/2) =1, X(aY/2)=0.
The algebra H(s",z) has a subalgebra H(s",z)°, whose underlying vector space is
O(Ty) @ Clz, 2| @ C[W2/].

It is isomorphic to the affine Hecke algebra H(Rgsv, A\, A*, z), for suitable label func-
tions A, A*. The identification of the vector spaces comes from the elements N,, €
H(Rsv, A\, \*, z) and the bijection

(4.7) (T')Sy, — Tov 1t — tX.
Theorem 4.2. There is a canonical algebra isomorphism H(s",z) = H(sY,2z)°xTyv.

Proof. By design H(s",z) is free as H(s",z)°-module, with a basis indexed by T'sv.
More precisely, by [AMS3], Proposition 3.15.a] the actions of I'sv on Rgv,Tyv and
O(T,v) naturally induce an action of I'sv on H(s",z)°. For every v € T'sv, that
yields an element of H(s",z), unique up to scaling.

For the Langlands parameters under consideration, the sheaf ¢€ from [AMSI]
AMS3] is just the constant sheaf with stalk C on the point 1 € TV. It follows that
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there is canonical choice for the map gb, from [AMS3] (90)], namely the identity.
Then v — ¢b, is multiplicative, the scalars A, s in the proof of [AMS3] Proposition
3.15.b] reduce to 1 and C[[sv] embeds in H(s",z) as the span of these gb,. With
this in place, [AMS3], Proposition 3.15.a] provides the desired statement. O

Next we specialize z to qllp/ 2, that yields the algebra

(4.8) sV, ql?) = H(s", q/%)° % Tow 2 H(Rev, A, N, qH?) x T
We note that here the isomorphism depends on the choice of the basepoint y of T,v.

From (4.8) we see that the centre of H(sv,q};m) is O(Ty)Ws = O(T,v /Wyv). The
main use of the algebras (4.8)) lies in the following result.

Theorem 4.3. [AMS3, Theorem 3.18] There exists a canonical bijection
O.(G)Y — Irr(?—[(ﬁv,qllpm))
v 1/2

\4

such that:
(a) M(9,p, q},ﬂ) admits the central character Wyv ¢ € Tyv /W, where |1, = ¢l1,

- —1/2
and ¢(Frobp) = ¢(Frobp, <‘1F0 1/2) ).
dr
(b) ¢ is bounded if and only if M (¢, p, q}pﬂ) s tempered.

(c) ¢ is discrete if and only if M(¢, p, q},/z) is essentially discrete series and the
rank of Rsv equals the F-split rank of T /Z(G).
(d) The bijection is equivariant for the canonical actions of Z(GV)F n (TV-1F)°,
We note that in [AMS3] the canonicity is obtained in a slightly weaker sense, by
interpreting the subalgebra of H(s", qllw/ 2) spanned by the N, with v € I';v as the
endomorphism algebra of a certain perserve sheaf [AMS3], (30)]. We got rid of that
subtlety in the proof of Theorem
For part (d) we recall that any element ¢t € Z(GV)!¥ determines a weakly unram-
ified character of G [Hal, §3.3.1], and that character is trivial on T¢p if and only if
t e (TV'IF)°. To t € Z(GY)F N (TV'1F)° we associate the automorphism

TNy = x(t)x Ny x €T/ Tepy,w € Wev
of H(s", q};/ 2), where z is regarded as function on T,v via (4.7). The action of t on

Irr (’H(sv, qllm/ 2)) is composition with the above automorphism.

5. COMPARISON OF HECKE ALGEBRAS

We start with a Bernstein component s for 7. Recall that this is just a X, (T')-
coset in Irr(7T"). The local Langlands correspondence for tori [Lan2, [Yu| associates
to 67 a Xy (T)-orbit in ®(T'), that is, one Bernstein component s in @ (7).

From [ABPS2] Proposition 3.1] we know that there is a natural group isomorphism

(5.1) Ne(T)/T 2 Ngv (T x Wg)/TV.

By the naturality of the LLC for tori, the action of Ng(T")/T on Irr(T) is turned into
the conjugation action of Ngv(TV x Wg)/TV by (5.1) and the LLC. In particular
Ws = Staby,r),r(sT) is naturally isomorphic to Wev = Staby_, (7vaw )7V (s7.)

via .



28 PRINCIPAL SERIES REPRESENTATIONS OF QUASI-SPLIT REDUCTIVE P-ADIC GROUPS

Lemma 5.1. There exists a natural bijection between RY and Rsv, which preserves
positivity.

Proof. Pick any x € sp.
By construction R; consists of positive multiples of the o € R(G,S)" for which
a € R, ,,. Similarly Rev consists of positive multiples of the & in

R(Zov(R(1p)), TVWE?)  C R(GY, TVWr?) = R(GY,5")ea = R(G,S)\%

for which x(Ip) fixes Uyv or Usev in Zgv(X(IF)). Since both R and Rgv are
reduced root systems, this means that there exists at most one bijection RY — Rgv
which scales each root by a positive real number. Positivity in RY is determined by
B and positivity in Rgv is determined by BY, so such a bijection would automatically
preserve positivity of roots.

It remains to check that for R; and Rev the same elements of R(G,S)Y,, are
relevant. For the non-exceptional roots we know from f that o € Xy, if
and only if y o @ : F* — C* is unramified. Via the LLC for tori that becomes:

a’ox:Wg, — C x Wp, restricts to the identity on If,.

In this setting the roots in the associated W g-orbit in R(GY,T") are mutually or-
thogonal, permuted by Wg and fixed by W, . Hence o o Y(If,) fixes U,v point-
wise, which means that o belongs to R(Z(;v(f((IF)),TV’WF*O)red. This argument
also works in the opposite direction, so a¥ € Rgv and only if o € Rs .

For the exceptional roots " with s, € W, = W,v, we saw on page and after
that on both sides the issue can be reduced to a unitary group Usp4+1. From
the list of cases at the end of Section [1]it is clear that if Us, 1 is unramified, ¥ is
relevant for RY if and only if it is relevant for Ryv.

When the involved group Us,41 only splits over a ramified extension, we need
to check one more detail to arrive at the same conclusion. Namely, if oV o y :
Wg, — C* is conjugate-orthogonal (respectively conjugate-symplectic) then yoa :
0y, — C* must be trivial (respectively of order two). This is exactly [GGP, Lemma
3.4]. O

Lemma implies that the isomorphism restricts to Wo = W2,. We choose
a W2,-invariant base point xo of sy as in Section We use the image xg of Xo
under the LLC as basepoint of sp. By the aforementioned equivariance of the LLC
for tori, xo is invariant under W .

Recall that hY € RY generates Qa¥ N T/Tepe. The element mea does not
necessarily generate QoY N T/Tep. However, since Rgv is part of the root datum
Rsv, maa” is at most divisible by 2 in T/Tep (namely when it is a long root in
a type C root system). For a better comparison, we replace mqa” by maa" /2
whenever that is possible. That option was already taken into account in Section [4
We denote the new multiple of a¥ by m, and we write

Ry = {maa" 1 a¥ € R(JO,TV’WF’O)}.

Now Lemma [5.1] entails that the isomorphism

(5:2) XH(T) 2 X*(Xar (T)) 2 T/ Tope = X*(TV)3y., ),
induced by the LLC for tori, sends R, bijectively to Rgv.

Lemma 5.2. For any a € R0 AM(hy) = Mmaa¥) and X*(hY) = X*(maaY).
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Proof. For the non-exceptional roots, this was checked in (|1.14]), , Lemma [4.1]
and (4.4). For exceptional roots (i.e. thise for which the issue can be reduced to a

unitary group Us), it is verified case-by-case in the lists at the end of Section [If and
just before (4.6]). g

We are ready to prove that the desired isomorphism between Hecke algebras on
two sides of the LLC.

Theorem 5.3. There is a canonical algebra isomorphism s : H(s)P — H(s", q};m),

given by
e on O(Ts), s is induced by the bijection Ty = Tyv from the LLC for tori,
e )(Ny) = Ny-1 for allw € Wy = Wev.

Proof. By Theorem there is a unique isomorphism of O(T;v)-modules with these
properties. By the Ws-equivariance of the LLC for tori via , O(Ty) = O(Tyv)
is Ws-equivariant. Combine that with Lemma [5.2] and the multiplication rules in
extended affine Hecke algebras [AMS3, Proposition 2.2]. O

We note that Theorem is compatible with parabolic induction from standard
parabolic and standard Levi subgroups of G. Indeed, for a standard Levi subgroup
M of G one obtains the same isomorphism as in Theorem [5.3] on the subalgebra
generated by O(T;) and the N, with w € Nj/(T)/T.

6. PARAMETERS OF GENERIC REPRESENTATIONS

With Theorem and (5.2)) we can reformulate Theorem in terms of

H(sY, qllm/ 2)—modules. Then it says: 7 is (U, £)-generic if and only if

(6.1) Homy, )(Homg(Hg, 7),St)  is nonzero.

Wv ,q;‘;

We want to investigate which Langlands parameters should correspond to generic
representations in Theorem With the reduction theorems from [Lus3 §8-9]
we translate the study of (irreducible) representations of H(s)%? = H(sv,q;/ 2) to
representations of graded Hecke algebras. Subsequently we take a closer look at the
geometric construction of the representations of such algebras. We need to revisit
the methods from [Lus3| and [AMS2] [AMS3], because the aspects we are interested

in were not considered previously and require quite some details.

6.1. Reduction to graded Hecke algebras.
To ease the notation, from now on the elements of R,v will be called just oV,

instead of m,a" as previously. For a H(s", qllf/ 2)-module V and t € T,v write

Vi ={v €V : there exists n € N such that (0, — z(t))"v =0 for all x € X }.

If V4 is nonzero, then we call t a weight of V. For a Wv-stable subset U C Tyv, let
Mod(Hsv )y be the category of finite length Hgv-modules all whose O(T,v )-weights
belong to U. There is a natural equivalence of categories

Mod(H(s,q5/");, = @reryw,, Mod(H(s¥,qi))y,

4 = eatEU/st (ZwEWB\/ VWt)
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Let Tiv un C Tsv be the maximal compact real subtorus. It is homeomorphic to the
set of unitary characters in T; = Xy, (T")xo. For u € Tyv y, we put

Rev = {a¥ € Ryv : so(u) = u}.

This is a root system and its Weyl group is contained in Wyv ,,. Recall that we fixed
a Borel subgroup BY C GV, which provides Ryv, with a notion of positive roots.
Let I'yv ,, be the stabilizer of ij = R;fv N Rgv 4, in Wy 4, then

st,u = W(Rsvm) A F5v7u.
From these objects we build a new root datum

Rev = (Rev oy, X (Tov), RY 4 Xi(Tov)),

sV u)

which is endowed with an action of I'gv . That gives rise to an extended affine

Hecke algebra

Hsv,u = H(Rﬁvm, )\, /\*, q;/Q) X Fﬁv,u.

We denote the standard generators of this algebra (as O(T,v)-module) by Ny,
where w € Wv .

The positive part of X,,.(T) is X, .(T) = Homgz(T,Rs¢). Via the isomorphism
, X E(T) can be regarded as a subgroup of (TV,Ip)w,, and as such it acts
on Tyv. In particular that yields a subset Wev , X 5(T)u of Tyv. Notice that every

nr
element of Tyv lies in a subset of the form X (T)u with u € Tyv .

Theorem 6.1. There exists a canonical equivalence of categories

indu : MOd(H5v7u)X$ (T)u — Mod (H (5\/) qll-?/z

Vit = ZteXﬁ?(T) Vi 4

))W v X (T)u

5

such that:

(a) ind,, is given by localization of the centres on both sides, followed by induction.
(b) ind, and ind;! preserve central characters.
(¢c) ForV e Mod(Hsv u) xz 7y, there is an isomorphism

HOmH(Ws\/ 7qf‘;) (1ndu‘/7 St) = HomH(er u’q;\?)(‘/’ St)

Proof. The original version of this equivalence is [Lus3, Theorem 8.6], but the setup
is slightly different there. The version we need, including the canonicity and the
group I'yv, is shown in [Solll, Theorem 2.1.2]. Strictly speaking I's, must fix a point
of Tyv in [Soll]. Fortunately, that does not play a role in the proof, it works in the
generality of our setting because we consider u that need not be fixed by W (Rsv).
The properties (a) and (b) are checked in [AMS3, Theorem 2.5].

By J[AMS3| Theorem 2.5] the effect of the thus obtained functor ind,, on
H(Wev, gp)-modules is

. HWov,)

(6.2) Vo degwsvwaq;)V.
In this expression H(W (Rsv),qp) and C[['ev N Tyv ] are naturally subalgebras of
H(ng,qf‘;), but we have to be careful with the vau for which w € T'yv, but
w ¢ Tgv. From [Lus3, §8] and [Solll §2.1] one sees that N, is sent to

7;1}1X$(T)u = 72UanJrr(T)u
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in a suitable completion of H(sv,q;/ 2). Here 7, is as in Section [2| transferred to

completions of H(s", qllp/ 2) via Theorem From (6.2]) and Frobenius reciprocity

(in a suitably completed algebra) we obtain (c). O

With Theorem we can reduce the study of H(s", qllm/ 2)—modules that admit a

central character to modules of another affine Hecke algebra, H,v ,,, such that for the
new modules the compact part of the central character is fixed by the new extended
Weyl group. In this process all relevant properties of modules are preserved.

Let T, (Tsv) be the tangent space of T,v at u. It can be identified with
C®yz X«(Tsv), so Rgv ,, can be regarded as a subset of the cotangent space T3 (Tyv ).
For o € R,v we define a parameter

av = (AMhg) + a(w)A"(hy)) log(qr) /2 € Rxo.
The graded Hecke algebra H(W (Rgv ,,), Tu(Tsv ), k") is the vector space
O(Zu(Tyv)) @ C[W(Rgv ,,)] with multiplication defined by
o O(T,(Tyv)) and C[W(R,v ,,)] are embedded as unital subalgebras,
e for a¥ € Ryv,, simple and f € O(T,(Tyv)):

saf — sa(f)sa = kav(f — Sa(f))/av-
The group I'sv ,, acts naturally on this algebra, by

Ywf)=(wy ™) fory™h  weW(Revy), f € O(Tu(Tev)).
We define the extended graded Hecke algebra
Hﬁ’u = H(W(Rﬁvm), fu<T5v), k’u) X Fﬁv,u.

Its centre is O(T,(Tev))"=Vw and weights of Hsv ,-modules are by default consid-

ered with respect to the maximal commutative subalgebra O(%,(Tsv)). Like for

affine Hecke algebras, for a W,v ,-stable subset U C ¥, (7,v) we have the category

Mod(Hsv ,,)r of finite length modules all whose O(%,,(Tsv))-weights belong to U.
Recall the exponential map for T,v based at u:

exp, : Tu(Tev) — Tyv
y = wexp(y)

Theorem 6.2. The map exp,, induces a canonical equivalence of categories
€XDyx - MOd(HSV,u)R@)X*(TS\/) — MOd(Hsv’u)Xrﬁ(T)u’
such that:

(a) exp,. comes from an isomorphism (induced by exp,,) between localized versions
of Hgv o, and of Hev 4
(b) exp,. does not change the vector spaces underlying the modules.
(¢) The effect of exp,, on O(T,(Tsv))-weights is exp,,.
(d) For any V € Mod(Hsv u)rex,(1,v) there is an isomorphism
Homwsvyu (V,det) = HomH(st’wq?)(expu* V, St).
Proof. The original version of this equivalence is [Lus3, Theorem 9.3]. We use the
version from [Solll, Theorem 2.1.4 and Corollary 2.1.5]. This includes the canonicity
and the properties (a),(b) and (c).
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One way to see (d) is via deformations of the parameters. We can scale the
parameters k* linearly to 0. That gives a family of extended graded Hecke algebras

Hs\/,u,e = H(W(R5V7u), TU(TSV), Eku) X Ps\/,u € E RZO.

A module V can be “scaled” to modules V¢, via the scaling homomorphisms Hgv ,, . —
Hgv for e > 0 [Solll (1.11)]. For € = 0 we obtain a module V; of

Hyv y0 = O(ZTu(Tov)) x Wev y,

which equals V' as C[W,v ,]-module and on which O(%,(T,v)) acts by evaluation at
0e ‘Zu(Tﬁv).

For the affine Hecke algebra H,v ,, the parameters can be scaled via ¢r — ¢%
with e € [0,1]. That yields a family of algebras

Hsv,u,e = H(Ru, )\, )\*, q%) X Fﬁ\/’u € c RZO'
The module exp,,, V can be “scaled” accordingly via a functor
Ge : Mod(Hsv u)xyu = Mod(Hsv u)xs u e €[0,1],

see [Solll, Corollary 4.2.2]. In this process H(Wsv 4, qy) is replaced by the isomorphic
semisimple algebra H(W,v , q%)‘) The multiplicities

dim HOHIH(WE\/’mq%)\ (6—6 (eXpu* V)? St)
depend continuously on € € [0, 1] and they are integers, so in fact they are constant
as functions of €. It is known from [Solll, (4.6)—(4.7)] that
expy.(Ve) = e(exp,, V) for all € € [0, 1].
We conclude that
HomH(st’u’q})(expu* V), St) = Homy g, . 40 (Go(exp,, V), St)
= Homyy,,  (Vo,det) = Homyy,,, (V,det). O

In view of Theorems and the role of genericity for Hev ,, is played by
modules that the contain the character det of C[W,v ,]. To analyse those, we bring
the algebra in an easier form.

Let Ry~0 be the subset of Rev , consisting of the roots " for which k%, > 0. Let
I'y~0 be the stabilizer of RI>0 = Ry>0N ij in Wgv .
Lemma 6.3. R,v,, is a root system and Hgv ., = H(W (Ru>0), Tu(Tsv ), k") X Tyuso.

Proof. The set R,~q is Wyv ,-stable by the invariance properties of the labels. In
particular it is stable under the reflections with respect to its roots, so it is a root
system. In every irreducible component of Ryv o, R,~0 is either everything or empty
or the roots of one given length. By the simple transitivity of the action of W(Ry>0)
on the collection of positive systems in Ry~g:

st,u = W(Ru>0) X Fu>0-
We note that
(63)  Reva\ Ruso = {0 € Rovy: M(hY) = X*(hY), 0¥ (u) = —1}.

By reduction to irreducible root systems, and the classification thereof, one checks
that W (Rgv ,,) is the semidirect product of W (R,~0) and the subgroup generated by
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the reflections with respect to the simple roots in Rsv o, \ Ry>0. For such reflections
the multiplication relations in Hgv ,, simplify to sof = sa(f)sa. That implies

H(W(Rsv,u)a (Zu<T5V)a ku) = H<W(Ru>0)7 zu(Ts\/)a ku) X (Fu>0 N W(Rsv,u))a
which in turn implies the lemma. O

The advantage of Lemmal6.3|is that via the new presentation the algebra becomes
isomorphic to a graded Hecke algebras with equal parameters.

Lemma 6.4. H,v ,, is isomorphic to a graded Hecke algebra (extended by I'y~q) such
that every root from Ry~ has the parameter log(qr).

Proof. By [AMS3), Proposition 3.14], Hgv ,, is isomorphic to the graded Hecke algebra
associated to a certain complex reductive group G and a cuspidal L-parameter with
values in a quasi-Levi subgroup M of G. In our specific setting M° is a torus,
because we only work with principal series L-parameters. In particular the cuspidal
L-parameter is trivial on SLy(C). Thus H,v ,, is a graded Hecke algebra associated
to G and a cuspidal support whose unipotent (or nilpotent) element is trivial. By
construction [AMS3, §1] all the nonzero parameters are of the form k¥, = c(a)r,
where r; € C depends only on the connected component of the root system that
contains . Further c¢(a") = 2 by [Lus2, §2] and our earlier specialization of z to

q};/Q entails k; = log(q}pﬁ) = log(qr)/2. Combine that with Lemma O

6.2. Geometric representations of graded Hecke algebras.

Recall that w corresponds to a unitary character of T', so it is a bounded L-
parameter for 7. By [AMS3] Proposition 3.14], the algebra Hsv ,, is of the form
H(w, 0, triv,log(gr)/2), where triv means the trival local system on the trivial nilpo-
tent orbit 0. The meaning of this statement is explained somewhat further in [AMS3]
(71) and below]. It can be formulated as

H(u,0, triv, log(qr) /2) = H(GY, M", triv, log(qr) /2).

In [AMSS3] the group Gy, is defined as Z}, (u)x Xy (G), but in our current setting we

have just G;/ = Zgv(u). The reason is that at the start of Section [4 we refrained from

involving the simply connected cover of Gy, that would be superfluous for quasi-

split groups. Similarly the group MV, which is a quasi-Levi subgroup of Z(l;v (u) x

X (@) in [AMS3], becomes simply T in our setup. N
Notice that G need not be connected. In fact the isomorphism

(64) H(G1\17 Tv? triv, log(QF)/2) = Hﬁv,u = H(W(Ru>0)7 SU(T5V), ku) P NG

and Lemma imply that mo(GY) = I'y~o. When we replace G,/ by its identity
component, we obtain the subalgebra

o = H(G°, TV triv, log(qr) /2) = H(W (Ry>0), Tu(Tev ), k).

The irreducible representations of such graded Hecke algebras were parametrized
and constructed geometrically in [Lus2, [Lus4]. The parameters are triples (o, y, p°)
where:

(i) o € Lie(G.°) is semisimple,

(i) y € Lie(Gy'°) is nilpotent,

(iii) [o,y] = log(qr)y,



34 PRINCIPAL SERIES REPRESENTATIONS OF QUASI-SPLIT REDUCTIVE P-ADIC GROUPS

(iv) p° is an irreducible representation of ¢ (Z, ave/Z (G, °)) satisfying the analogue
of (ii) on page

By [Lus4] G.°-conjugacy classes of such triples are naturally in bijection with

Trr (H(Gy°, TV, triv,log(qr)/2)). Let us write that as

(Uayvp ) '_>Myap

In [Lus2l Lusd| there is an extra parameter r € C, but we suppress that because in
this paper it will always be equal to log(gr)/2. From these parameters o can always
be chosen in Lie(T"), and then W(Ry>0)o is the central character of My, .

Lusztig’s parametrization was slightly modified in [AMS2] §3.5], essent1ally by
composing it with the Iwahori-Matsumoto involution IM of H‘s’v’u. To make that
consistent, the above condition (iii) must be replaced by

(iii") [0, y] = —log(qr)y.
We denote the resulting parametrization of Irr (]HI(GX’O, TV, triv,log(qr)/ 2)), which
is the one used in [AMS3], by

(6.5) (o,y,p°) — M;Jpo =IM"My, 5 po.

Proposition 6.5. The irreducible H(Gy,°, TV , triv, log(qr)/2)-representation M;U 0
contains the sign representation of C[W (Ry>0)] if and only if p° is the trivial repre-

sentation and the Zgv.(o)-orbit of y is dense in
{Y € Lie(Gy°) : [0,Y] = —log(qr)Y }.

Proof. We may replace Go° by any finite covering group, that does not change the
associated graded Hecke algebra. In particular we may assume that the derived
group of Go° is simply connected.

Via [AMS3, Theorems 2.5 and 2.11], analogous to Theorems [6.1] and (6.2, M .0,
becomes an irreducible representation of the affine Hecke algera associated to
(Gy°, TV, triv), with parameter ¢r. By [AMS3] Proposition 2.18], M? is turned

Y,0,p°

into the module Mexp( ).exp(y),pe associated by Kazhdan-Lusztig [KaLul to
(exp(o),exp(y), p°) and gr. We note that the paper [KalLu| assumed that the de-
rived group of the involved complex reductive group is simply connected. It was
shown in [Ree2), §7.2-7.3] that Mexp(o’),exp(y), po contains the Steinberg representation

of H(W(Ry>0),qr) if and only if p° is trivial and the Zg,v,o—orbit of y is dense in
{V € Lie(Gy°) : Ad(expo)Y = ¢'Y}

Now we go back to H(Gy°, TV, triv,log(¢r)/2)-modules, and we conclude with a
version of Theorem [6.21d. O

The parametrization of Irr(H;’V’u) from has been generalized to Hv , in
[AMS2, Theorem 3.20] and [AMS3, Theorem 3.8]. The parameters are G,/ -conjugacy
classes of triples (o, y, p) as above, with as only difference that p is now an irreducible
representation of m(Zay (o, Y)/Z(G°)).

The two constructions are related as follows. To (o,y) one associates [Lus2] a
Hgv ,, X mo(Zgy.~)-representation Ey _,. Then

By —g.p0 = Homry(z v (o) (P By, )

and M, is the unique irreducible quotient of that module.

o
—0,p
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Similarly a Hgv ,, X mo(Zgy )-representation £, , can be constructed [AMS2], and
by [AMS2, Lemma 3.3] there is a canonical isomorphism

~J H5V,u o
(6.6) Ey o= degvquy,o'
One defines
(6.7) Ey—p= Homﬂo(ZGyL (a,y))(p, Ey—0),

and then M, _; , is the unique irreducible quotient of Ey, _, ,.

Lemma 6.6. Every semisimple o € Gy° can be extended to a triple as used in
, such that My 5, contains the trivial representation of C[W (Ry>0) % I'y>o].
Moreover (y, p) is unique up to Zgy (o)-conjugacy, y lies in the dense ZGX,O(U)—orbz't
m

{Y € Lie(G,°) : [0,Y] = —log(qr)Y'}

and the restriction of p to WO(ZGX,O (0,9)) is a multiple of the trivial representation.
Proof. Let M, _, be the maximal semisimple quotient Hgv ,-module of E, _,. Then
(6.8) My, —o,p = Homzy(z,y (y.0)) (P My, o),

for any eligible p. The same can be done for the analogous ]HI;’V’ ,~modules. It follows

from (6.6), (6.7) and that
~ 3 Hsv,u o
(6.9) M, _, = de:v uMy77

o
Recall that Hgv , = H\ w X Tus0. By Frobenius reciprocity and the multiplicity
Of triVyy (R, o 0)xTuso 1B My —» equals the multiplicity of trivyy(gr,.,) in M _,.

For any given o, Propositionand for Hgm entail that trivyy (g, . ) appears
with multiplicity one in My _, if y satisfies the density condition, and otherwise that
multiplicity is zero. Hence M, _, contains trivyy(r,.,)xr,., if and only if y satisfies
the condition from the statement, and then the multiplicity is one.

For such (o,y), multiplicity one ensures that there exists a unique p such that
My 5 contains trivyy(r,.o)«r,so- Let p° be an irreducible subrepresentation of p
restricted to the normal subgroup Wo(ZGZ,o (0,y)). By Clifford theory the restriction
of p to mo(Zgv.(0,y)) is a multiple of P, g - p°, where g runs over mo(Zgy (0,y))
modulo the stabilizer of p°.

Suppose that p° is nontrivial. Then g - p° is nontrivial for any g € mo(Zgy (0,¥)),
and M, _, , cannot contain any H§v7u—submodule of the form M;,y o triv- In this case
My, s, does not contain trivyy (g, q)- 0

To see that the parametrization of Irr(H® *) from [AMS3, Theorem 3.8] has a
property like Proposition [6.5] it remains to analyse the p determined by Lemma [6.6]
To that end we have to delve more deeply into the underlying constructions.

By the naturality of the parametrization , the I'y~>¢-stabilizer of M;U’ 0
equivalently of My _, ) equals the I'y>¢-stabilizer of the G °-orbit of (a,y, p°).

When p° = triv, that group depends only on (o,y). When furthermore y satisfies
the density condition from Proposition the I'y~¢-stabilizer of M° equals the

y,0,triv

(or

I',>o-stabilizer of the Gy °-orbit of o, which we denote by P
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Lemma 6.7. Let (o,y,triv) be as in Proposition . The action of H\, , on
y—otriv €xtends a unique way to an action of Hoy ,, X I'ip) that contains the trivial

representation of C[W (Ry>0) % I',].

Proof. By PropositionM;’_ o.pe contains the trivial representation of C[W (Ry>0)],
and by Lemmait does so with multiplicity one. Any v € T, stabilizes My ..,
so there exists a linear bijection I, such that

Iyoh=r~(h)oly: My ;.0 = M, ;0

for all h € Hv .
Schur’s lemma says that I, is unique up to scalars. Since trivyy(g,. ) is I'j;-stable
and appears with multiplicity on in M;_J?po, I, stabilizes the one-dimensional
subspace which affords trivyy(g,.,). We normalize I, by requiring that it fixes
trivyy(r,.) C M, _, ,o pointwise, that is the only possibility if we want to end up
with the trivial representation of W (Ry>0) x I'j).

For any ~,7 € L'ig)s Iy o Iy satisfies the same condition as Iy, so equals I,

These I, provide the desired extension. U

The module M, . comes as the unique irreducible quotient of a standard module
Ey , o [Lus5, Theorem 1.15.a. The latter is a subspace of the homology of the
variety BY of Borel subgroups of Go° ‘that contain exp(y), with coefficients in a
certain local system L. In our setting £ is trivial because it comes from the trivial
local system on {0}. In terms of the T',~o-stable Borel subgroup BY N Gy° we have

Ey 5 po C Ho(BY) = H.({geG)°/BYNGy*°: Ad(g ')y € Lie(BY N G.°)})-
From that and we see that

(610) E;,—U,triv =H, (By)ZGX,o (?J,O')‘
Lemma 6.8. Let (0,y,triv) be as in Proposition . Then
© o Z ,0 Noa
My,fo',triv = Ey,fa,triv = H*(By) Gu ()

Z o (Y, . .
as vector spaces. The subspace Hy(BY) 6w ®) has dimension one and C[W(Ry>0)]
acts on it as the trivial representation.

Proof. By [Lus4, §10.4-10.8], every irreducible subquotient of E; different

from M? is of the form M?° . with

y,—o,triv y',—o,p

Ad(Zgvo)y © Ad(Zgvo)y'.

,—Oo,triv

By the density condition on y, such a 3y’ does not exist. Therefore E° is

y,—o,triv
. . o
irreducible and equal to Myﬁmmv.

Again by [Lus4l §10.4-10.8], M is a subquotient of Eg As

,—o,triv —o,triv*

(6.11) Ad(Zgyo)y ={Y € Lie(G,°) : [0, Y] = —log(qr)Y'}

is a vector space, the intersection cohomology complex from the constant sheaf on
Ad(ZGX,o)y is simply the constant sheaf on (6.11)). In view of [Lus4, §10], restricting
that sheaf to {0} provides a natural nonzero H, , -module homomorphism

o o
y,—o,triv - EO,*O’,triV :

This realizes M?°

i—otriv &S subrepresentation of Ej
b b b

—o,triv®
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Consider the algebra A = O(Lie(Gy,'°)/Ad(G) x C) of conjugation invariant func-
tions on the Lie algebra of Gy'° x C*. We recall from [Lus2] that

l?(c)),fo',po = Hom(po, E;,a) = Hom(po, (Cfo',log(qp)/Z ®A Hf(BO))

If we replace log(qr)/2 by an arbitrary r € C, we still obtain a module for a graded
Hecke algebra, namely H(Gy°, TV, triv, r). It is known from [Lus2, Proposition 7.2]
that HA(BP) is a free A-module. That implies that the modules C_,, ®4 HA(B°)
form an algebraic family parametrized by € C and a semisimple o € Lie(Gy,°). In
particular, as modules for the finite dimensional semisimple subalgebra C[W (Ry>0)]
they do not depend on (o, 7).

For r = 0,0 = 0 the group ZGX,O(U, 0) = G.'° is connected, and we obtain Ego=
H.(B°). This is a C[W (Ry>0)]-representation with which the classical Springer
correspondence can be constructed. Here we must use the version of the Springer
correspondence from [Lusl], which by [Lusll, Theorem 9.2] means that the trivial
W (R,>0)-representation appears as

Ho(pt) = Ho(B") = Ho(B°)
for a regular unipotent element z € Gy'°. As dim Ho(B%) = 1, the parts of
o o A
y,—o,triv - EO,—U,triv - C—U,log(qp)/Q ®A H* (BO)
in homological degree zero also have dimension one and carry the trivial represen-
tation of W(Ry>0). O

We are ready to prove the desired generalization of Proposition [6.5

Theorem 6.9. There exists a canonical bijection between Irr(Hgv ,,) and the set of
G\ -conjugacy classes of triples (o,vy, p), where
e 0,y € Lie(G)) with o semisimple, y nilpotent and [o,y] = —log(qr)y,
e p is an irreducible representation of mo(Zay (o, y)/Z(Gq\f’o)), such that any
irreducible g (ZGx,o(a,y)/Z(Gx’O))—subrepresentatz'on appears in the homo-
logy of the variety of Borel subgroups of Gu° that contain exp(c) and exp(y).

The module M, ., associated to (o,y,p) contains the character det of C[Wyv ] if
and only if p is trivial and the Ad(ZGﬁ"’ (0))-orbit of y is dense in

{Y € Lie(Gy°) : [0, Y] = —log(qr)Y }.

Proof. We start with the parametrization of Irr(H(GY, TV, triv, log(qr)/2) provided
by [AMS2, §3.5] and [AMS3|, Theorem 3.8]. This has almost all the required prop-
erties, only the action of C[[';s¢] on the thus constructed modules can still be
normalized in several ways.

Fix a nilpotent y € Lie(G,,°) and consider the variety

P, :={g€G;/BYNG,°: Ad(g" ")y € Lie(BY N G}°)}.
The Hgv o, X mo(Zgy (0, y))-representation Ey, _, equals H,(PY) as vector space. The

action of mo(Zgy (0,y)) on H.(PY) is induced by the natural left action of Zgy (o, )
on Py. An element v € I~ acts on PY by

(6.12) r;tig(BYNG°) gy ' BY NG,

which in fact makes P, isomorphic to BY X I',~. We normalize the action of C[I';~0]
on By _,, by defining it as H.(r D). (This normalization was not possible in [AMS2],
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because there the homology of P, had coefficients in a possibly nontrivial local
system.)

From now on we assume that y satisfies the density condition from the statement.
In view of Lemma [6.6} it remains to analyse the mo(Zgy (o, y))-invariants in E, .
We recall from [AMS2, Lemma 3.12] that

F[U] = 7TO(ZGX (0-7 y))/ﬂ-O(ZGZ"’ (07 y))

Let 7oy € Zgy (0, y) be arepresentative of v € I'l5). Then H.(Py)
of the invariants for {7, : v € 5} in

m0(Zay (99) consists

(6.13) H*(’Py)WO(ZGZ’O (ovy)) _ @ H*(w ) By)ﬂO(ZGZ,o (O’,y))'

wel'y>o

Fix v € I',) and consider the map

£y BY o BY
9(BYNGY®) = Yeygy H(BYNGL®)

It can be decomposed as

(6.14)

_ ~1_ -1
fr=lyeopy =1y oly,,

. Z N0 (0, . o .
The induced map on H, (By)wo( X9 s the composition of the action of an Hgv -

intertwiner H,(l,,,) from mo(Zgv.(0,y)) and the action H*(p;l) of v € Hgv 4, so
it is an H‘S’v ,-intertwiner

. o o
H*(f’y) : Ey,fa,triv - Ey,fg,triv'
: (0] _ (o]
Let my _, be the extension of Eyﬁmtriv = My,fa,triv

from Lemma Consider the composition

ﬂ-y,*U(’y_l) o H*(f'y) € Ende\/,u (Egj,—a,triv)'

By Schur’s lemma this is a scalar, say A € C. We know from Lemma that

Z v,o0(o, . . . T .
Ho(By)TrO( ¥ @) has dimension one, so in terms of simplicial homology it is
spanned by an element v that is the sum of one point from every connected com-
ponent of BY. That v is fixed by Ho(f,) because (6.14) is a homeomorphism. By

Lemmas and also Ty _,(y"1)v = v. Hence A = 1 and 7, _, (7)o H.(f,) is
the identity. Equivalently,

to an Hgv ,, @ I'|5)-representation

H.(l,,,) = Hi(ry) o my—o(y) : Ho(B) ™20 5 g, (y . )P @),

(By)WO(ZGZ"’ (U’y))

Specializing to H = Cv we obtain

u Z\/,OO', T Z\/,oO’,
Ho(l ):Ho(’l“,y) : HO(By) o Gy (o,9)) _)HO(/_YBy) o Gy ( y))

Yy,

It follows that Ho(Py)WO(ZG?f (@¥)) contains the nonzero vector
S Ho(ryYw= Y Ho(r,") Y Ho(ly,,)vo.
Y€l u>0 wEFu>0/F[U] Y€ 0]

Lemma shows that this an element of Ey _, iy fixed by W(Ry>0) X I'ys0. In
other words,

(6.15) IM*M, o triv contains the C[W (Ry>0) x I'ysol-representation sign x triv.
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Lemma says that only the triples (y, o, p) of the kind indicated in the statement
have that property.

Finally, we slightly modify the construction from [AMS2) §3.5]. Instead of ex-
tending the Iwahori-Matsumoto involution from Hgv# to Hgv, by making it the
identity on C[I'y>0],

(6.16) we extend IM to Hgv ,, as multiplication by det on C[I';0].
Then (6.15) becomes: IM* My, ., contains detyy,,  if and only if (o, y, p) is as stated
in the theorem. O

We note that (6.16|) only differs from the usual Iwahori-Matsumoto involution on
the extended graded Hecke algebra Hgv ,, by the automorphism

(6.17) detr,., : ywf +— det(y)ywf v € Lys0,w € W(Ry>0), f € O(Ty(Tev)).

Since detr,., is the identity on O(%,(Tsv)), it preserves all the properties (e.g.
temperedness) that we need later on.
We wrap up this section by combining the main results.

Lemma 6.10. We modify [AMS3], Theorem 3.18] (see Theorem by using (/6.16])
instead of the involution IM from [AMS2, §3.5]. That yields a canonical bijection

\4

O.(G) — Irr(H(ﬁV,q};/Q))
(6,0) = M(s,p,q;%)
such that:
o It has all the properties listed in [AMS3, Theorem 3.18].

o M(¢,p, qll,,m) contains the Steinberg representation ”H(st,q%) if and only if

p is trivial and log ¢(1, ({ 1)) lies in the dense Zgv (gZ;(WF))-orbz't in
{Y € Lie(Zgv (6(Ir))) : Ad(¢(Frobp))Y = ¢V}

—1/2

Here |1, = ¢|1, and ¢(Frobp) = ¢(Frobp, (qFO q;2> ).

Proof. By design [AMS3], Theorem 3.18] for H(s", q;/ 2) is the composition of Theo-

rems and with (6.16]) as only difference. Since each of the three involved

bijections is canonical, so is our version of [AMS3l Theorem 3.18]. As explained
after , the automorphism detr,_, does not destroy any of the properties from
[AMS3, Theorem 3.18], so our bijection still satisfies all those properties.

In Theorem we found a necessary and sufficient condition so that My,g,p €
Irr(Hgv ) contains detw,, ,. With Theoremwe can translate that to exp,, My o,
Thus the latter module contains the representation St of H(Wsv 4, q}) if and only if
p is trivial and the orbit of y is dense in

{Y € Lie(Zgv(¢(Ir)) : Ad(uexp(0))Y = ¢z'Y}.
With Theorem [6.1] we transfer that to a property of
ind;1 eXPyx My,mp € Irr(’H(sv, qlly/Z)).

The translation to L-parameters from [AMS3] is such that Sc(¢, p) = wexp(o) and
y =logé(1,(§1)). Thus we recover the characterization of genericity stated in the
lemma. g
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7. A CANONICAL LOCAL LANGLANDS CORRESPONDENCE

Recall that we fixed a quasi-split group G = G(F'), a maximal split torus S of
G, a Borel subgroup B C G containing 7' = Zg(S) and a Whittaker datum (U, §).
Given G, only € is really a choice, the other objects are unique up to G-conjugacy.

We denote the space of irreducible G-representations in the principal series by
Irr(G, T), and we write ®.(G, T') for the set of principal series enhanced L-parameters

in ®.(G).
Theorem 7.1. The Whittaker datum (U,§) determines a canonical bijection
Irr(G,T) +— ®(G,T)

™ = (¢71’ap7r)
m(¢.p) <~ (dp)

Proof. Recall from that the LLC for tori provides a Ng(T')/T-equivariant bi-
jection between the Bernstein components of Irr(7") and the Bernstein components
of ®(T'), say s+ 5.

Every principal series Bernstein component Irr(G)® of Irr(G) determines a unique
Nqg(T')/T-orbit of Bernstein components Irr(7)°7. Similarly every principal se-
ries Bernstein component ®.(G)¢ determines a unique Ng(T')/T-orbit of Bernstein
components ®,(G)*r. Thus the LLC for tori induces a natural bijection between
the Bernstein components of Irr(G,T) and those of ®.(G,T). We denote it by
Irr(G)* — ®.(G)*", where typically s = [T, xo]e and sV = (T, %o Xu(T)). From
respectively and Theorem Theorem and Theorem in the form of
Lemma [6.10, we obtain canonical bijections

(7.1)  Irr(G)® + Irr(Endg (1)) > Trr(H(s)P) Irr(?—[(sv,q;/Q)) & B (G)°
Suppose we represent s instead by wsr = [T, wxo|r with w € W(G,S) = N¢(T)/T.
Clearly we may assume that w has minimal length in wW;. Start with any = €
Irr(G)*® and follow (7.1)) to obtain g € Irr(H(s)%P), mev € Irr(?—[(s,q}m)) and

(¢ry pr) € P(G,T). We use the same notations with ws instead of s. Proposition
implies mys = 75 © Ad(¢h,) where

¢w(va) = (f © w)Nw—lvw for f € O(Tws)vv € Ww5~

Now we consider w as element of Ngv(TV x Wg)/TV via (5.1), and we define an
algebra isomorphism

Ad(6w)’ : H(ws',q/") = H(s¥,q;)
JNy = (f Ow)walvw fe O(Twsv)>v € Wsv.

With Theorem [5.3| we obtain m,sv = mev 0 Ad(¢y,)Y. All the constructions behind
Theorem and Lemma are equivariant for algebraic automorphisms of (G, T)).
Consequently 7,sv is parametrized by (w,w ™!, w - p,), for any representative of w
in Nov(TV x Wg). As (wp,w™,w - pr) equals (¢r, pr) in @.(G), we deduce that
the bijection between Irr(G)® and ®,(G)¢ from does not depend on the choice
of an inertial equivalence class for T underlying s.

Knowing that, we can unambiguously take the union of the bijections over
all Bernstein components of Irr(G,T'). O

In the remainder of this section we will show that the bijection from Theorem [7.]
has many desirable properties.



PRINCIPAL SERIES REPRESENTATIONS OF QUASI-SPLIT REDUCTIVE p-ADIC GROUPS 41

The definition of <Z~> in Lemma applies to any Langlands parameter ¢ € ®(G).

The group Zgv(6(Wr)) acts by conjugation on the variety
Vi = {v € Zgv(¢(Ip)) : v is unipotent and d(Frobr) " twé(Frobr) = viF
It is known from [CEMMZX] Proposition 5.6.1] that Vq; is an affine space over C on

which Zgv (¢(Wr)) acts with finitely many orbits, of which exactly one is open. Fol-

lowing [CEZ, §0.6], we call ¢ € ©(G) open if uy € V is lies in the open Zgv (¢(Wr))-
orbit.

Lemma 7.2. The representation w(¢,p) € Irr(G,T) is (U, &)-generic if and only if
¢ is open and p is trivial.

Proof. By Theorem 3.4] 7(¢, p) is (U, §)-generic if and only if the End¢/(Ils)°P-module
Homg (I1s, m(¢, p)) contains St. Via Theorems and 1 that becomes the analo-

gous statement for H(s", qllm/ 2)—representations. In Lemma we showed the equiv-
alence with the stated conditions on ¢ and p, except unipotency. The conditions in
Lemma imply that logug must be nilpotent. Hence ug must be unipotent (as
is any case required for Langlands parameters). O

We note that Lemma agrees with the Reeder’s findings [Reell, [Ree2| for generic
unipotent representations and generic principal series representations, in both cases
for split reductive p-adic groups with connected centre.

For the next properties of our LLC, the setup will be similar to [Sol6l §5].

Lemma 7.3. Theorem[7.1]is compatible with direct products of quasi-split F'-groups.

Proof. If G = G1 X Ga, then all involved objects for G are naturally products of the
analogous objects for G and Ga. U

Recall that the group of (smooth) characters Hom(G, C*) is naturally isomorphic
to HY(W g, Z(GV)). The former group acts on Irr(G) by tensoring, and that action
commutes with the supercuspidal support map so stabilizes Irr(G, T').

On the other hand, HY (W, Z(G")) acts on ®(G) by multiplication of maps
Wpg x SLy(C) — GV, where HY(W g, Z(GY)) gives maps that do not use SLy(C)).
That action does not change Ry, so it induces an action of H'(Wg, Z(G)) on
®.(G) which does not change the enhancements. This last action commutes with
the cuspidal support maps, so it stabilizes ®.(G,T).

Lemma 7.4. The bijection in Theorem is HY (W g, Z(GV))-equivariant.

Proof. For the fourth bijection in ([7.1]), such equivariance was shown in [Sol6, Lemma
2.2.a). Here z € HY(Wp, Z(GY)) acts via the algebra isomorphism

Hiz): HEq)) = HizsV,qi)
Ny = (foz V)N, f€O(Tyw),w e Wev.
In view of Theorem the same formula also defines an algebra isomorphism
H(z) : H(s)P — H(zs)P.

We define an action of H'(W g, Z(GY)) on the union of the spaces Irr(#(s)°?) by
z-7 = 70H(z)"!. That renders the third bijection in equivariant. Using
Theorem and the same argument we also make the second bijection in ([7.1)
equivariant for HY(W g, Z(GY)).
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Finally, consider 7 € Irr(G)* and Homg(Ils, 7) € Irr(Endg(I15)°P). Then z @ m €
Irr(G)** and

Homg (I, 2 ® 7) = Homg (Igind%cpt (2®x),z@T) =
Homg (2 ® Igind%cpt (x), 2 ® ) = Homg (Igind%cpt (x), ™) = Homg(Is, 7).

The isomorphism (from bottom to top) is given by translation by z on Irr(7"). As
modules over #H(s) and H(zs), that isomorphism is implemented by composition
with H(z)~!. Hence the first bijection in ([7.1)) is equivariant as well. O

It is clear that a principal series G-representation is supercuspidal if and only if G
is a torus. Similarly, the discussion at the start of Section [4] entails that a principal
series enhanced L-parameter for G is cuspidal if and only if G is a torus. The next
result relates the cuspidal support maps on both sides, when G is not a torus.

Lemma 7.5. Theorem and the cuspidal support maps make a commutative
diagram
Irr(G,T) — ®.(G,T)

4 Sc 4 Sc

Irr(T) /Ne(T) 2% &(T) /N (T x Wp)

Proof. From the formula for the cuspidal support (4.1)) and Theorem a, we see

that the central character of M (¢, p, q};/Q) is given by Sc(¢, p)/Wev € O (T)/Wiv.
Hence the central character of Homg (Ils, m(¢, p)) is the image Wsx 4 of Sc(e, p)/Wiv
in Irr(T") / W.

More explicitly, O(Ts)"+ acts on Homg(Ils, 7(¢, p)) via Wsxs. Then a glance at
the construction of Il; reveals that Wsx, represents the supercuspidal support of

(¢, p). O

We turn to more analytic properties of G-representations.
Lemma 7.6. 7w € Irr(G, T') is tempered if and only if ¢ € ®(G) is bounded.

Proof. Theorem b says that the fourth bijection in ([7.1]) has the desired property.
By Lemma and Theorem the third bijection in ((7.1) preserves tempered-
ness. By [Sol5, Theorem 9.6.a], so does the composition of the first and the second

bijections in ([7.1]). O

Lemma 7.7. m € Irr(G, T) is essentially square-integrable if and only if ¢ is discrete.

Proof. Suppose first that Rs, has smaller rank that R(G,S). By [Sol, Theo-
rem 9.6.b], Rep(G)°® contains no essentially square-integrable representations. As
rk(R(G,S)) equals the F-split rank of G and

tk(Rs ) = tk(RY) = k(Ro),

Theorem C says that CI)e(G)sv contains no discrete enhanced L-parameters.
Now we suppose that rk(Rs,) = rk(R(G,S)). Then [Sol5, Theorem 9.6.c] says
that restricts to a bijection between essentially square-integrable representa-
tions in Irr(G)® and essentially discrete series representations in Irr(H(s)°?). By
Lemma and Theorem the latter set is naturally in bijection with the set
of essentially discrete series representations in Irr (’H(ﬁv, qll;/ 2)) Combine that with
Theorem 4.2l c. O
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Recall from [Lanll p. 20-23] and [Bor2, §10] that every ¢ € ®(G) determines in
a canonical way a character x4 of Z(G).

Lemma 7.8. For any (¢, p) € ®(G,T), the central character of w(¢, p) equals X.

Proof. For any subquotient 7 of I§(x) = ind%(x ® 5119/ 2), the central character of 7
equals (y ® 5]13/ 2)| 7(¢) = X|z(c)- In particular the central character of 7(¢, p) equals
Sc(m (¢, p))lzc)- By Lemmathat is m(Sc(@, p))| z(q)- With (4.1)) we write it as

~ R —1/2 0
Xlz@) where X|iy = ¢liy  and X(FrobF)qu(FrobF,(qFo >).

1/2
qF/

It remains to show that x, equals x| 7(@)> and to that end we revisit the construction
from [Bor2, Lanl]. Let G be a quasi-split reductive F-group with connected centre,
such that Gier = Gger- Let ¢ € ®(G) be a lift of ¢ € ®(G). With the canonical
map p : “G — L'Z(G) we obtain p(¢) € ®(Z(G)). Via the LLC for tori that gives
Xp(3) € Irr(Z(G)), and by definition x4 = Xp(g)’Z(G)-

Let T = Zgz(S) = Zgz(T). From we see that, for any enhancement p of
¢ such that (¢,p) € ®.(G,T), we have Sc(¢p,p) = (¢,€), where v € ®(T) is a
lift of ¥ € ®(T). As ¢ and ¢ differ only by elements of @Vder C ker(p), we have
p¢ = pp. By the naturality of the LLC for tori, Xy extends both x € Irr(7") and

Xp7 = Xpg € I1t(Z(G)). Hence x|z(q) = Xz3l2(6) = Xo- 0

Suppose that P = MR, (P) is a parabolic subgroup of G, where M is a Levi
factor of P and T' C M. We can use the normalized parabolic induction functor Ig
to relate representations of M and of G.

The restriction of £ to UNM is a nondegenerate character £yy. We use (UNM, &)
to define genericity of M-representations and to normalize the LLC for Irr(M,T).

Suppose furthermore that ¢ € ®(G) factors via ®(M). By [AMSI, Theorem
7.10.a] the group Ré\)/[ = mo(Zymv (¢)/Z(MY)) injects naturally into Ry. Hence any
enhancement of ¢ € ®(G) can be considered as (possibly reducible) representation
of Ré\f .

Lemma 7.9. Let (¢, pM) € ®.(M,T) be bounded. Then
Igm (¢, p") = @p Hom (oM, p) @ 7(, p),
where the sum runs over all p € Irr(Ry) with Sc(¢, p) = Sc(¢, pM).

Proof. By [AMS3, Theorem 3.18.f and Lemma 3.19.a], the analogous statement holds
for H(s", qllm/ 2)—modules. Theorem (which is compatible with parabolic induction)
entails it also holds for H(s)°P-modules. Then (1.2)) enables us to transfer the desired

statement from #(s)°? to Rep(G)°. O

Recall that the Langlands classification for irreducible G-representations [Lanll, Ren]
associates to any m € Irr(G) a unique standard parabolic subgroup P = M R, (P),
a unique tempered 7 € Irr(M) and a unique strictly positive z € Hom(M,R<g),
such that 7 is the unique irreducible quotient of the standard module I§(r ® z).
It has a counterpart for (enhanced) L-parameters [SiZi]. Let (¢, p) € ®.(G,T) and
let (P = MR, (P), ¢», z) be the triple associated to ¢ by [SiZi, Theorem 4.6]. Here
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¢p € ®(M) is bounded and z € Xy, (M) = (Z(MY)'r)3y, is “strictly positive with
respect to P”. By [AMSI] Theorem 7.10.b] there are natural isomorphisms
M~ pM _ pM ~
R¢b — RZ(z’b - R(b - R¢
Hence p can also be regarded as enhancement of ¢ € ®(M) or ¢, € O(M).

Lemma 7.10. In the above setting:

(a) (¢, p) is the unique irreducible quotient of IST™ (6, p).

(b) 7™ (¢, p) = 7™M (2¢p, p) = 2 @ TM (¢p, p) with T (¢y, p) € Irr(M) tempered.

(¢) The triple associated to mw(¢,p) by the Langlands classification for Irr(G) is
(Pv WM(qu, P), Z)'

Proof. (a) By [Sol6l, Proposition 2.3], the analogue in Rep(H(s", q};/ 2)) holds. As in
the proof of Lemma that can be transferred to Rep(G)* via (1.2)).

(b) This is a direct consequence of Lemmas and

(c) This follows from parts (a) and (b) and the uniqueness in the Langlands classi-
fication. O

Suppose that F’/F is a finite extension inside the fixed separable closure Fy. Let
G’ be a quasi-split F’-group and put G = Respr,p(G’). Then G(F) = G'(F’), so there
is a natural bijection Irr(G(F)) — Irr(G'(F’)). On the other hand, Shapiro’s lemma
provides a natural isomorphism

Sh: ®.(G(F)) — ®.(G'(F")),
see [FOS1, Lemma A.3].
Lemma 7.11. The bijection in Theorem[7.1)is compatible with restriction of scalars,
in the sense that the following diagram commutes:

Ir(G(F), T(F)) —  ®(G(F),T(F))
1 Sh 1 Sh
Ir(G'(F'), T'(F")) — ®(G'(F), T'(F))

Here ResprjpT' =T .

Proof. By [Sol6, (26)], Sh induces a bijection from the set of Bernstein components of
®.(G(F)) to the analogous set for G'(F"). This bijection commutes with the cuspidal
support maps, so it also applies to ®.(G(F), T (F)) and ®.(G'(F'), T'(F’)). When-

ever s corresponds to 'V, there is a natural algebra isomorphism H(sv,q};/ 2) =
H(s", qllp/,Q) [Sol6, Lemma 2.4]. Combine that with ((7.1). O

Finally we investigate in what sense our (enhanced) L-parameters are unique.

Lemma 7.12. Let m € Irr(G, T). Then the ¢ from Theorem[7.1] is uniquely deter-
mined by Lemmas and [7.10
Proof. Suppose that 7 is tempered. Lemma determines Sc(¢r, pr) = QNS up to
Nev(TV x Wg). Lemma says that ¢, must be bounded, so according to [CEZ,
§0.6] ¢ is an open Langlands parameter. In other words, u,_ is uniquely determines
(up to Zgv (qgﬁ(Wp))—conjugacy) as an element of the open orbit in V.- Thus ¢,
is unique up to G'V-conjugacy.

Suppose now that 7 is not tempered. Let (P, ,z) be the triple associated to
7w by the Langlands classification. Here 7 is tempered, so the above determines



PRINCIPAL SERIES REPRESENTATIONS OF QUASI-SPLIT REDUCTIVE p-ADIC GROUPS 45

¢r € ®(P/Ry(P),T) uniquely. Then Lemma forces ¢rg. = z - ¢ and Lemma
says that ¢, equals z¢, up to G'V-conjugacy. O

It is less clear to what extent the enhancement p, of ¢, is uniquely specified.
Lemma reduces this issue to tempered m € Irr(G,T). Then ¢, is bounded,
so open. By Lemma the L-packet Il (G) contains a unique generic member,
namely 7(¢r, triv). That fixes the normalization of the interwining operators from
elements of Ry , which then determines 7(¢x,p) for any p € Irr(Rg,) such that
(¢, p) € (G, T). However, to make that precise one has to say on which mod-
ule these intertwining operators acts. That involves the constructions with Hecke
algebras in Section [6] which are canonical but not necessarily unique.
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