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Abstract. Let R be a root datum with affine Weyl group W, and let
H = H(R,q) be an affine Hecke algebra with positive, possibly unequal, pa-
rameters q. Then H is a deformation of the group algebra C[W], so it is
natural to compare the representation theory of H and of W.

We define a map from irreducible H-representations to W-representations and
we show that, when extended to the Grothendieck groups of finite dimensional
representations, this map becomes an isomorphism, modulo torsion. The map
can be adjusted to a (nonnatural) continuous bijection from the dual space of
‘H to that of W. We use this to prove the affine Hecke algebra version of a
conjecture of Aubert, Baum and Plymen, which predicts a strong and explicit
geometric similarity between the dual spaces of H and W.

An important role is played by the Schwartz completion S = S(R, q) of H, an
algebra whose representations are precisely the tempered H-representations.
We construct isomorphisms (. : S(R,q¢°) — S(R,q) (¢ > 0) and injection
Co: S(W) =8(R,q") — S(R, q), depending continuously on e.

Although (j is not surjective, it behaves like an algebra isomorphism in many
ways. Not only does (p extend to a bijection on Grothendieck groups of finite
dimensional representations, it also induces isomorphisms on topological
K-theory and on periodic cyclic homology (the first two modulo torsion).
This proves a conjecture of Higson and Plymen, which says that the K-theory
of the C*-completion of an affine Hecke algebra H (R, q) does not depend on
the parameter(s) q.
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Introduction

Let R = (X, Ro,Y, Ry, Fu) be a based root datum with finite Weyl group Wy and
(extended) affine Weyl group W = W, x X. For every parameter function ¢ : W —
C* there is an affine Hecke algebra H = H(R, q).

The most important and most studied case is when ¢ takes the same value
on all simple (affine) reflections in W. If this value is a prime power, then # is
isomorphic to the convolution algebra of Iwahori-biinvariant functions on a reductive
p-adic group with root datum RY = (Y, RY, X, Ry, Fy’) [IwMa]. Suppose that the
complex Lie group G¢ with root datum R has simply connected derived group.
Then the generic Hecke algebra obtained by replacing ¢ with a formal variable q
is known [KaLull [ChGi] to be isomorphic to the G¢ x C*-equivariant K-theory of
the Steinberg variety of G¢. Via this geometric interpretation Kazhdan and Lusztig
IKaLu2| classified and constructed all irreducible representations of H(R,q) (when
g € C* is not a root of unity), in accordance with the local Langlands program.

On the other hand, the definition of affine Hecke algebras with generators and
relations allows one to choose the values of ¢ on non-conjugate simple reflections
independently. Although this might appear to be an innocent generalization, much
less is known about affine Hecke algebras with unequal parameters. The reason
is that Lusztig’s constructions in equivariant K-theory [KaLul] allow only one de-
formation parameter. Kato [Kat2] invented a more complicated variety, called an
exotic nilpotent cone, which plays a similar role for the three parameter affine Hecke
algebra of type ngl). From this one can extract a classification of the tempered dual,
for an arbitrary parameter function ¢ [CiKal.

Like equal parameter affine Hecke algebras, those with unequal parameters also
arise as intertwining algebras in the smooth representation theory of reductive p-adic
groups. One can encounter them if one looks at non-supercuspidal Bernstein com-
ponents (in the smooth dual) [LusT, Mor]|. Even for split groups unequal parameters
occur, albeit not in the principal series [Rocl]. It is expected that every Bernstein
component of a p-adic group can be described with an affine Hecke algebra or a slight
variation on it. In [BaMoll, [BaMo2, [BaCli] it is shown, in increasing generality, that
under certain conditions the equivalence between the module category of an affine
Hecke algebra and a Bernstein block (in the category of smooth modules) respects
unitarity. Thus affine Hecke algebras are an important tool for the classification of
both the smooth dual and the unitary smooth dual of a reductive p-adic group.

The degenerate versions of affine Hecke algebras are usually called graded Hecke
algebras. Their role in the representation theory of reductive p-adic groups [Lus6l
Lus7, BaMo2, [Ciul, is related to affine Hecke algebras in the way that Lie algebras



stand to Lie groups. They have a very simple presentation, which makes is possible
to let them act on many function spaces. Therefore one encounters graded Hecke
algebras (with possibly unequal parameters) also independently from affine Hecke
algebras, for instance in certain systems of differential equations [HeOp| and in the
study of the unitary dual of a real reductive group [CiTx].

In view of the above connections, it is of considerable interest to classify the
dual of an affine or graded Hecke algebra with unequal parameters. Since H(R,q)
is a deformation of the group algebra C[W], it is natural to expect strong similar-
ities between the duals Irr(H(R,¢)) and Irr(WW). Indeed, for equal parameters the
Deligne-Langlands-Kazhdan-Lusztig parametrization provides a bijection between
these duals [KaLu2, [Lus5]. For unequal parameters we approach the issue via har-
monic analysis on affine Hecke algebras, which forces us to consider only parameter
functions g with values in R~y. We will assign to every irreducible H-representation
7 in a natural way a representation (*(7) of the extended affine Weyl group W.
Although this construction does not always preserve irreducibility, it has a lot of
nice properties, the most important of which is:

Theorem 1. (see Theorem [2.3.1])
The collection of representations {(*(m) : m € Irr(H(R,q))} forms a Q-basis of the
representation ring of W.

Since the Springer correspondence for finite Weyl groups realizes Irr(W)), via
Kazhdan—Lusztig theory, as a specific subset of Irr(H(R,q)), Theorem [l can be
regarded as an affine Springer correspondence without irreducibility. By picking
suitable irreducible subquotients of the (*(7) one can refine Theoremto a bijection
Irr(H(R,q)) — Irr(W). This is related to a conjecture of Aubert, Baum and Plymen
[ABP1, [ABP2] (ABP-conjecture for short) which we sketch here.

Recall that W = Wy x X and let T be the complex torus Homyz (X, C*). Clifford
theory says that the irreducible W-representations with an X-weight ¢ € T are in
natural bijection with the irreducible representations of the isotropy group Wy .
Write T% = {t € T': w(t) = t}. The extended quotient of T" by W is defined as

T/W() = LleWO{w} X Tw/Wo,

with respect to the Wy-action w - (w', ) = (ww'w™!, wt). We endow f/Wo with the
topology coming from the discrete topology on Wy and the Zariski topology on T
It is a model for Irr(V[N/) with the Jacobson topology, in the sense that there exist
continuous bijections T'/Wy — Irr(W) which respect the projections to T'/Wj.

The Bernstein presentation (included as Theorem shows that C[X] =
O(T) is naturally to isomorphic to a commutative subalgebra A C H(R,q), and
that the center of H(R,q) is A"0 = O(T/Wy). Hence we have a natural map
Irr(H(R,q)) — T /Wy, sending a representation to its central character. It is con-
tinuous with respect to the Jacobson topology on Irr(H(R,q)). A simplified version
of the ABP-conjecture for affine Hecke algebras reads:

Theorem 2. (see Theorem [5.4.2))
Let H(R,q) be an affine Hecke algebra with positive, possibly unequal, parameters.



Let Q(R) be the variety of parameter functions W — C*, endowed with the Zariski
topology. There exist a continuous bijection p : T /Wy — Trr(H(R,q)) and a map
h:T/Wyx Q(R) — T such that:

e h is locally constant in the first argument;

o for fized ¢ € T/Wy, h(c,v) is a monomial in the variables v(s)*!, where s

runs through all simple affine reflections;
e the central character of p(Wy(w,t)) is Wo h(Wo(w, t), ¢*/?)t.

The author hopes that Theorem [2] will be useful in the local Langlands program.
This could be the case for a Bernstein component s of a reductive p-adic group G for
which Mods(G) is equivalent to Mod(H(R,q)) (see Section for the notations).
Recall that a Langlands parameter for G is a certain kind of group homomorphism ¢ :
WrxC — LG, where LG is the Langlands dual group and W is the Weil group of the
local field F over which G is a variety. Let us try to extract a Langlands parameter
from Wy(w,t) € T/Wy. The image of the distinguished Frobenius element of Wy
describes the central character, so modulo conjugacy it should be h(Wpy(w, t), q1/2)t €
T cla.

Problematic is that the map g from Theorem [2]is not canonical, its construction
involves some arbitrary choices, which could lead to a different w € Wy. Yet it is
precisely this element w that should determine the unipotent conjugacy class that
contains the image of C\ {0} under ¢. Recently Lusztig [Lus9] defined a map from
conjugacy classes in a Weyl group to unipotent classes in the associated complex
Lie group. Whether this map yields a suitable unipotent class for our hypothetical
¢ remains to be seen, for this it is probably necessary to find a more canonical
construction of p. The rest of such a Langlands parameter ¢ is completely beyond
affine Hecke algebras, it will have to depend on number theoretic properties of the
Bernstein component s.

Now we describe the most relevant results needed for Theorems [Il and 2l A
large step towards the determination of Irr(#(R,q)) is the Langlands classification
(see Theorem , which reduces the problem to the tempered duals of parabolic
subalgebras of H(R,q). This is of course a well-known result, for graded Hecke
algebras due to Evens [Eve], but the proof for affine Hecke algebras has not been
published before.

In line with Harish-Chandra’s results for reductive groups, every tempered ir-
reducible H(R, g)-representation appears as a direct summand of a representation
that is induced from a discrete series representation of a parabolic subalgebra, a
point of view advocated by Opdam [Opd2]. We note that in this setting tempered
and discrete series representations can be defined very easily via the A-weights of
a representation. For affine Hecke algebras with irreducible root data, Opdam and
the author classified the discrete series in [OpSo2|, but we emphasize that we do not
use that classification in the present paper.

To every set of simple roots P C Fjy we associate a root subsystem Rp C Ry and
a parabolic subalgebra Hp C H, which generated by H(W (Rp),q) and by a com-
mutative subalgebra Ap = C[X/X N QP]. Induction from Hp allows an induction



parameter in T, the subtorus of T orthogonal to PY. So we consider induction
data £ = (P,0,t) where P C Fy,t € T P and ¢ is a discrete series representation of
Hp. Such a triple gives rise to a parabolically induced representation

m(€) = m(P,6,t) = Indlp (6 0 ¢y).

Here H” C H is more or less a central extension of Hp by O(TF) and ¢; : HY — Hp
is a twisted projection. The representation () is tempered if and only if t € T},
the unitary part of TF. For the classification of the dual it remains to decompose all
tempered parabolically induced representations and to determine when they have
constituents in common.

These phenomena are governed by intertwining operators between such represen-
tations [Opd2l Section 4]. It is already nontrivial to show that these operators are
well-defined on all 7(¢) with ¢ € T'F | and it is even more difficult to see that they
span Homy, (§,&’). For reductive groups this is known as Harish-Chandra’s com-
pleteness theorem, and for affine Hecke algebras it is a deep result due to Delorme
and Opdam [DeOpl]. The intertwining operators can be collected in a groupoid
G, which acts on the space = of induction data (P, d,t). With these tools one can

obtain a partial classification of the dual of H(R, q):

Theorem 3. (see Theorem [3.3.2))
There exists a natural map Irr(H(R,q)) — Z/G, p— GET(p), such that:

e the map is surjective and has finite fibers;
e p is a subquotient of w(£1(p));

e p does not occur in w(£) when & is larger than £1(p), where the size of & =
(P,,t) is the norm of the absolute value of the central character of 0.

We note that this part of the paper is rather similar to [Sol5] for graded Hecke
algebras. The results here are somewhat stronger, and most of them can not be
derived quickly from their counterparts in [Sol5].

Yet all this does not suffice for Theorem |1}, because we do not have much control
over the number of irreducible constituents of parabolically induced representations.
Ultimately the proof of Theorem[I]is reduced to irreducible tempered representations
with central character in Homy(X,R~¢). The author dealt with this case in [Sol6],
via the periodic cyclic homology of graded Hecke algebras.

What we discussed so far corresponds more or less to chapters 1-3 of the article.
From Theorem(I]to Theorem [2]is not a long journey, but we put Theorem[2at the end
of the paper because we prove it together with other parts of the ABP-conjecture.

Chapters 4 and 5 are of a more analytic nature. The main object of study is the
Schwartz algebra S(R,q) of H(R,q) [Opd2, DeOpl], the analogue of the Harish-
Chandra—Schwartz algebra of a reductive p-adic group. By construction a H(R, q)-
representation extends continuously to S(R,q) if and only if it is tempered. The
Schwartz algebra is the ideal tool for the harmonic analysis of affine Hecke algebras,
among others because it admits a very nice Plancherel theorem (due to Delorme
and Opdam, see [DeOpl] or Theorem , because the discrete series of H(R, q)



is really discrete in the dual of S(R, ¢), and because the inclusion H(R, q) — S(R,q)
preserves Ext-groups of tempered representations [OpSol].

If we vary the parameter function ¢, we obtain families of algebras H(R, ¢) and
S(R,q). It is natural to try to connect the representation theory of H(R,q) with
that of H(R,q') for ¢’ close to q. For general parameter deformations this is too
difficult at present, but we can achieve it for deformations of the form ¢ — ¢¢ with
€ € R. On central characters of representations, this ”scaling” of ¢ fits well with the
map

o T =T, tt|t|L

Notice that o(t) = t for t € T},,, = Homgz(X, S1). Let {N,, : w € W} be the standard

basis of H(R,q) and let Mod¢w,:(H(R,q)) be the category of finite dimensional
H(R, q)-representations with central character Wyt € T'/W,.

Theorem 4. (see Corollary |4.2.2))
There exists a family of additive functors

55,1& : MOdf,Wot(H(Rv Q)) - MOdf,Wooe(t) (H(R7 qe)) €€ [_17 1]7
such that:

o forall (m,V) € Modswy(H(R,q)) and allw € W, the map € — Gc¢(7)(Nyw) €
Endc (V) is analytic;

o fore#0, oc; is an equivalence of categories;
® 0. preserves unitarity.

For € > 0 this can already be found in [Opd2], the most remarkable part is
precisely that it extends continuously to e = 0, that is, to the algebra H(R,q°) =
C[W]. In general the functors &, cannot be constructed if we work only inside the
algebras H (R, q), they are obtained via localizations of these algebras at certain
sets of central characters. We can do much better if we replace the algebras by their
Schwartz completions:

Theorem 5. (see Theorem [4.4.2))
For e € [0,1] there exist homomorphisms of Fréchet *-algebras (. : S(R,q) —
S(R,q), such that:

o (. is an isomorphism for all € > 0, and (1 s the identity;
o for allw € W the map € — ((Ny) is piecewise analytic;

o for every irreducible tempered H(R, q)-representation m with central character
Wot, the S(R, ¢°)-representations G¢+(Ny,) and 7o (. are equivalent.

There are some similarities with the role played by Lusztig’s asymptotic Hecke
algebra [Lus3| in [KaLu2|]. In both settings an algebra is constructed, which contains
H(R,q) for a family of parameter functions q. The asymptotic Hecke algebra is of
finite type over O(T /W), so it is only a little larger than H(R,q). So far it has
only been constructed for equal parameter functions ¢, but Lusztig [Lus8] conjectures



that it also exists for unequal parameter functions. On the hand, the algebra S(R, ¢)
is of finite type over C°°(Ty,), so it is much larger than H(R,q). Although (. is
an isomorphism for € € (0, 1], the algebras H(R, ¢¢) are embedded in S(R,q) in a
nontrivial way, in most cases ((H(R,q)) is not contained in H(R, q).

Of particular interest is the homomorphism

Go: S(W) =S(R.¢°) = S(R,q). (1)

It cannot be an isomorphism, but it is injective and for all irreducible tempered
H(R,q)-representations 7 with central character Wyt we have 7o {y = Go4(m) =
¢*(m). Together with Theorem |[1| this results in:

Corollary 6. (see Corollary [4.4.3)
The functor Mod(S(R,q)) — Mod(S(W)) : m +— o gy induces an isomorphism be-

tween the Grothendieck groups of finite dimensional representations, tensored with Q.

So Theorem [I] does not stand alone, but forms the end of a continuous family
of representations (of a family of algebras). Actually the author first discovered the
algebra homomorphism (p and only later realized that the corresponding map on
representations can also be obtained in another way, thus gaining in naturality.

Apart from representation theory, the aformentioned results have some inter-
esting consequences in the noncommutative geometry of affine Hecke algebras. Let
C*(R,q) be the C*-completion of H(R,q). It contains S(R,q) and (. extends to a
C*-algebra homomorphism (. : C*(R, ¢°) — C*(R, q), for which Theorem remains
valid. It follows quickly from this and Corollary [6] that ¢y induces an isomorphism
on topological K-theory, see Theorem More precisely,

K.(Go) ®idg : Ko (C*(W) % T) @2 Q — K.(C*(R,q) % T) ®7 Q 2)

is an isomorphism, while for equal parameters the argument also goes through with-
out ®zQ. This solves a conjecture that was posed first by Higson and Plymen
[Ply1], BCH].

Furthermore C*(R, ¢q) and S(R, q) have the same topological K-theory, and via
the Chern character the complexification of the latter is isomorphic to the periodic
cyclic homology of S(R,q). As already proved in [Sol4], H(R,q) and S(R,q) have
the same periodic cyclic homology, so we obtain a commutative diagram

HP.(C[W]) — HP.(S(W)) « K.(SW))®zC — K. (C*(W)) ®zC

1 LHP.(¢) LK.(Co) K. (o)
HP,(H(R,q)) - HP.(S(R,q)) + K«(S(R,q)) ®zC — K.(C*(R,q)) ®zC,

where all the arrows are natural isomorphisms (see Corollary. Notice that the
Schwartz algebra S(R, q) forms a bridge between the purely algebraic H(R,q) and
the much more analytic C*(R, q).

For the sake of clarity, the introduction is written in less generality than the
actual paper. Most notably, we can always extend our affine Hecke algebras by
a group I' of automorphisms of the Dynkin diagram of R. On the one hand this
generality is forced upon us, in particular by Lusztig’s first reduction theorem (see



Theorem , which necessarily involves diagram automorphisms. On the other
hand, one advantage of having H (R, q) X" instead of just H(R, ¢) is that our proof of
the Aubert-Baum—Plymen conjecture applies to clearly more Bernstein components
of reductive p-adic groups.

For most of the results of this paper, the extension from H(R,q) to H(R,q) x T’
is easy, mainly a matter of some extra notation. An exception is the Langlands
classification, which hitherto was only known for commutative groups of diagram
automorphisms [BaJal]. In our generalization (see Corollary we add a new
ingredient to the Langlands data, and we show how to save the uniqueness part.

A substantial part of this article is based on the author’s PhD-thesis [Sol3],
which was written under the supervision of Opdam. We refrain from indicating all
the things that stem from [Sol3], among others because some of proofs in [Sol3] were
not worked out with the accuracy needed for research papers. Moreover, in the years
after writing this thesis many additional insights were obtained, so that in the end
actually no part of [Sol3] reached this article unscathed. The technical Chapter 4
comes closest. It should also be mentioned that the conjecture formed a central
part of the author’s PhD-research. At that time it was still too difficult for the
author, mainly because Theorem [I| was not available yet.

Acknowledgements. The author learned a lot about affine Hecke algebras from
Eric Opdam, first as a PhD-student a later as co-author. Without that support, this
article would not have been possible. The author also thanks Roger Plymen for pro-
viding background information about several conjectures, and Anne-Marie Aubert
for many detailed comments, in particular concerning Section [1.6] Finally, two
anonymous referees read the paper very carefully and made many useful suggestions
for improvements.



Chapter 1

Preliminaries

This chapter serves mainly to introduce some definitions and notations that we will
use later on. The results that we recall can be found in several other sources, like
[Lus6, Reell (Opd2]. By default, our affine Hecke algebras are endowed with unequal
parameters and may be extended with a group of automorphism of the underlying
root datum.

In the section dedicated to p-adic groups we recall what is known about the
(conjectural) relation between Bernstein components and affine Hecke algebras. On
one hand this motivates the generality that we work in, on the other hand we will
use it in Section to translate a conjecture of Aubert, Baum and Plymen to the
setting of affine Hecke algebras.

1.1 Root systems

Let a be a finite dimensional real vector space and let a* be its dual. Let Y C a be
a lattice and X = Homgz(Y,Z) C a* the dual lattice. Let

R = (X, Ry, Y, Ry, Fy).

be a based root datum. Thus Ry is a reduced root system in X, Rj C Y is the
dual root system, Fy is a basis of Ry and the set of positive roots is denoted R(J{ .
Furthermore we are given a bijection Ry — Ry, @ — " such that (o, @) = 2 and
such that the corresponding reflections s, : X — X (resp. s : Y — Y) stabilize Rq
(resp. Ry). We do not assume that Ry spans a*.

The reflections s, generate the Weyl group Wy = W(Rp) of Ry, and Sp := {s4 :
a € Fy} is the collection of simple reflections. We have the affine Weyl group and
its extended version:

wat = WA(R) = ZRyx Wy,
W = W([R) = XxW.

Both can be considered as groups of affine transformations of a*. We denote the
translation corresponding to # € X by t,. As is well known, W2 is a Coxeter
group, and the basis of Ry gives rise to a set S of simple (affine) reflections.

10



More explicitly, let Fy; be the set of maximal elements of Ry, with respect to the
dominance ordering coming from Fj. Then

st — 5o U {tasa : v € Fyr}.
We write
Xti={zeX:(z,a’)>0Vac Fp},
X ={reX:(r,a")<0Vac FRp}=-X".
It is easily seen that the center of W is the lattice
ZW)=XtnXx".

We say that R is semisimple if Z(W) = 0 or equivalently if Ry spans a*. Thus a
root datum is semisimple if and only if the corresponding reductive algebraic group
is so.

The length function ¢ of the Coxeter system (W2, 521} extends naturally to W,
such that [Opdl] (1.3)]

U(wty) = O(w) + ZaeRg(x, vy weWyreXT. (1.1)

The elements of length zero form a subgroup Q@ C W, and W = W x Q. With R
we also associate some other root systems. There is the non-reduced root system

Rur = RoU{2a: a¥ € 2Y}.

Obviously we put (2a)¥ = oV /2. Let Ry be the reduced root system of long roots
in R,

Ry :={a € Ry : a¥ ¢2Y}.

We denote the collection of positive roots in Ry by Rar , and similarly for other root
Systems.

1.2 Affine Hecke algebras

There are three equivalent ways to introduce a complex parameter function for R.
(1) A map ¢ : S — C* such that q(s) = q(s') if s and s’ are conjugate in W.
(2) A function g : W — C* such that

qw) =1 if f(w) =0, (1.2)
g(wv) = qw)g(v) fw,veW and Lwv)=~Lw)+L(v). '

\

(3) A Wy-invariant map ¢ : R, — C*,a" + guv.

11



One goes from (2) to (1) by restriction, while the relation between (2) and (3) is
given by
dov = q(Sa) = q(tasa) if a€ RyNRy,
dov = q(taSa) if o€ Ry \ Ry, (1.3)
dav /2 = Q(SQ)Q(tasa)_l if a€ Ry \ Ry.

We speak of equal parameters if ¢(s) = ¢(s') Vs, s’ € S and of positive parameters
if g(s) € Rug Vs € S2f.

We fix a square root ¢'/2 : §&f — C*. The affine Hecke algebra H = H(R,q) is
the unique associative complex algebra with basis {N,, : w € W} and multiplication

rules
Ny Ny = Ny if L(wv) =L(w) +L(v),

(N — q(s)/2) (N + q(s)"1/2) =0 if 5§27, (1.4)

In the literature one also finds this algebra defined in terms of the elements q(s)l/ 2N,
in which case the multiplication can be described without square roots. This explains
why ¢'/2 does not appear in the notation H(R,q).

Notice that N, — N,-1 extends to a C-linear anti-automorphism of H, so H
is isomorphic to its opposite algebra. The span of the N, with w € Wy is a finite
dimensional Iwahori-Hecke algebra, which we denote by H (WY, q).

Now we describe the Bernstein presentation of H. For x € Xt we put 0, =
Ni,. The corresponding semigroup morphism X+ — H(R,q)* extends to a group
homomorphism

X —>H(R,q)" :x— 0.
Theorem 1.2.1. (Bernstein presentation)
(a) The sets {Nwby : w € Wy, x € X} and {0,Ny : w € Wy, x € X} are bases of H.
(b) The subalgebra A := span{, : € X} is isomorphic to C[X].

(c) The center of Z(H(R,q)) of H(R,q) is AV, where we define the action of Wy
on A by w(b;) = Oy

(d) For fe Aand o € FyN Ry
fNs, — Ny, sa(f) = (Q(Sa)1/2 - Q(sa)_l/z) (f = sa(f)) (00 — e—a)_17
while for a € Fy \ Ry:

[ = 3a(f)

fN5a - NSaSOé(f) = (Q(Sa)l/Q - Q(sa)il/Z + (qi/v2 B q;vl/2)0—a) (90 —0 2 '

Proof. These results are due to Bernstein, see [Lus6, §3]. O

The following lemma was claimed in the proof of [Opdl, Lemma 3.1].
Lemma 1.2.2. Forx € X
span{ N0, N, : u,v € Wy} = span{N,, : w € Wyt,Wp}. (1.5)
Let W, be the stabilizer of x in Wy and let W* be a set of representatives for Wy /W,,.
Then the elements N0, N, with u € W* and v € Wy form a basis of .

12



Proof. By (L.1) l(uty) = €(u) + £(tg), so Nyby = Ny,. Recall the Bruhat
ordering on a Coxeter group, for example from [Huml Sections 5.9 and 5.10]. With
induction to £(v) it follows from the multiplication rules (|1.4) that

Ny Ny — Ny € span{ Ny : 0 < v in the Bruhat ordering}.

Hence the sets { N0, N, : v € Wy} and {N,, : w € ut, Wy} have the same span. They
have the same cardinality and by definition the latter set is linearly independent, so
the former is linearly independent as well. Clearly Wyt Wy = Uyeweut, Wo, so

span{ Ny, : w € Wyt, Wy} = EBueWw span{ Ny, : w € ut, Wy}
= EB cw span{N,0, N, : v € Wy} = span{N,0, N, : u € W* v € Wy}.
Uu xT

The number of generators on the second line side equals the dimension of the first
line, so they form a basis. O

Let T be the complex algebraic torus
T = Homy(X,C*) 2 Y ®y C*,

so A= O(T) and Z(H) = Ao = O(T/W,). From Theorem we see that H
is of finite rank over its center. Let t = Lie(7") and t* be the complexifications of a
and a*. The direct sum t = a @ ia corresponds to the polar decomposition

T = Tys X Typ = Homz(X,R+g) x Homz (X, S1),

where T, is the real split (or positive) part of T and Ty, the unitary part. The
exponential map exp : t — T is bijective on the real parts, and we denote its inverse
by log : Trs — a.

An important role in the harmonic analysis of H (R, q) is played by the Macdon-
ald c-functions ¢, € C(T') (cf. [Lus6l 3.8] and [Opdl), Section 1.7]), defined as

0o+ 9(50) 2017 0o — a(sa) Vg0
0, +1 0, —1 '

«

(1.6)

Notice that ¢, = 1 if and only if ¢(sa) = ¢(tasa) = 1. For a € Ry N Ry we have
q(5a) = qav, so (1.6) simplifies to co = (0o — q(5a) 1) (00 — 1)~L. With these
c-functions we can rephrase Theorem d as

sta - Nsasa(f> = Q(sa>7l/2 (f - Sa(f)) <Q(sa)ca - 1)'

An automorphism of the Dynkin diagram of the based root system (Rjp, Fp) is a
bijection v : Fy — Fy such that

(v(@),v(B)Y) = (a, BY)  Va,B € Fy. (1.7)

Such a 7 naturally induces automorphisms of Ry, Ry, W, and W2 Tt is easy to
classify all diagram automorphisms of (R, Fp): they permute the irreducible compo-
nents of Ry of a given type, and the diagram automorphisms of a connected Dynkin
diagram can be seen immediately.
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We will assume that the action of v on W2 has been extended in some way to
W. For example, this is the case if v belongs to the Weyl group of some larger root
system contained in X. We regard two diagram automorphisms as the same if and
only if their actions on W are equal.

Let T' be a finite group of diagram automorphisms of (Ry, Fj) and assume that
dav = Gy(av) for all v € I';a € Ryr. Then I acts on H by algebra automorphisms
1., that satisfy

Uy(Nw) = Nyw) weW,

Py(0z) = Oy wEX
Hence one can form the crossed product algebra I' x H = H x I', whose natural basis
is indexed by the group (X x Wy) x I' = X x (W x I'). It follows easily from
and Theorem C that Z(H x ') = AWo*I'| We say that the central character of
an (irreducible) H x I-representation is positive if it lies in 77 /(W x T).

We always assume that we have an I' x Wy-invariant inner product on a. The
length function of W2 also extends to X x Wy x T, and the subgroup of elements
of length zero becomes

{weWxT : l(w)=0}=Tx{weW:lw)=0}=Tx Q.

(1.8)

More generally one can consider a finite group I that acts on R by diagram auto-
morphisms. Then the center of # x I can be larger than A"o*I" but apart from
that the structure is the same.

Another variation arises when I' — Aut(#) is not a group homomorphism, but
a homomorphism twisted by a 2-cocycle k : I' x I' — C*. Instead of H x I" one can
construct the algebra H ® C[I', k], whose multiplication is defined by

Ny Ny = K1Y )Ny,

_ v €T, heH.
NyANGY = y(h), n

By [Morl Section 7] such algebras can appear in relevant examples, although it is
no explicit nontrivial are known. Let I'* be the Schur multiplier of I', also known as
representation group [CuRel. It is a central extension of I" that classifies projective
[-representations, and its group algebra C[I"*] contains C[I', ] as a direct summand.
The algebra H x I'* is well-defined and contains H ® C[I', k] as a direct summand.
Thus we can reduce the study of affine Hecke algebras with twisted group actions
the case of honest group actions.

1.3 Graded Hecke algebras

Graded Hecke algebras are also known as degenerate (affine) Hecke algebras. They
were introduced by Lusztig in [Lus6]. We call
R = (a*, Ro, a, Ry, Fy) (1.9)

a degenerate root datum. We pick complex numbers k, for o € Fp, such that
ko = kg if o and 8 are in the same Wy-orbit. The graded Hecke algebra associated
to these data is the complex vector space

H = H(R, k) = S(t*) ® C[Wy),
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with multiplication defined by the following rules:
e C[Wp] and S(t*) are canonically embedded as subalgebras;
e for z € t* and s, € S we have the cross relation

TS — Sa - Sa(T) = kalz, ). (1.10)
Multiplication with any e € C* defines a bijection m, : t* — t*, which clearly
extends to an algebra automorphism of S(t*). From the cross relation ((1.10) we see
that it extends even further, to an algebra isomorphism

me : H(R, zk) — H(R, k) (1.11)
which is the identity on C[Wy)].
The c-functions are considerably easier than for affine Hecke algebras:
Go=(a+ ko)t =14ka ! eCt). (1.12)

They can be used to rewrite (1.10]) as

TSq — Sa Sa(z) = (2 — sa(z))(¢a — 1) a € Fy,x et

Let T' be a group of diagram automorphisms of R and assume that ky(a) = ko for
all « € Ryg,y € I'. Then I" acts on H by the algebra automorphisms

Yy H — H,

Py (250) = Y(2)5(a) (1.13)

reth,aell.

By [Sol6l, Proposition 5.1.a] the center of the resulting crossed product algebra is
ZMHxT) = St )Vl = O(t/(Wy x I)). (1.14)

We say that the central character of an H x I'-representation is real if it lies in

a/(Wo xT).

1.4 Parabolic subalgebras

For a set of simple roots P C Fy we introduce the notations

Rp =QPnN Ry R} =QRY\N Ry,

ap = RPY af’ = (ap),

ah =RP al* = (ap)*,

tp = CPV t7 = (th) 4,

th, =CP th = (tp)*, |15
Xp=X/(Xn(PY)") XP=X/(XNnQP), (1.15)
Yp =Y NQPY YP =Y NP,

Tp = Homz(Xp,CX)
Rp = (Xp,Rp,Yp, R}, P)
72’P = (O*P,RP,C(P7R1\/3,P)

15
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We denote the image of x € X in Xp by xp. Although T,y = T, X T

sy the product
Tun = TpﬂmTlﬁL is not direct, because the intersection

Kp:=Tpu NTL =TpNT"

can have more than one element (but only finitely many).

We define parameter functions ¢p and ¢ on the root data Rp and RY, as
follows. Restrict ¢ to a function on (Rp),, and use to extend it to W (Rp)
and W(RF). Similarly the restriction of k to P is a parameter function for the
degenerate root data Rp and RY, and we denote it by kp or k¥'. Now we can define

the parabolic subalgebras

HP = H(,]N?’Pv QP) HP = H(,]Nepa qP)7
Hp = H(Rp,kp)  HF = H(RP,EkP).

We notice that HY = S(t7*) ® Hp, a tensor product of algebras. Despite our termi-
nology H” and H p are not subalgebras of , but they are close. Namely, H(R", ¢")
is isomorphic to the subalgebra of H(R, q) generated by A and H(W (Rp),qp). We
denote the image of z € X in Xp by xp and we let Ap C Hp be the commutative
subalgebra spanned by {6, : zp € Xp}. There is natural surjective quotient map

HE = Hp : 0,Ny +— 0,,N,,. (1.16)

Suppose that v € T' x Wy satisfies v(P) = @ C Fy. Then there are algebra isomor-
phisms

"IIZ)»Y :Hp — HQ, prNw = H'y(mp)N’YU)’y_17

”l,Zny : HP — HQ, 0 Nw = O'ya?nyw'y*h (1 17)
% :Hp — HQ, fpw — (fP o 7_1)w7 .
Yy Hp = He, fw = (fory Hw,

where fp € O(tp) and f € O(t). Sometimes we will abbreviate W x I" to W’ and
Wy x T to W{. For example the group

Wpi={yeTl x Wy:v(P)= P} (1.18)

acts on the algebras Hp and H'. Although Wzlvo = T, for proper subsets P C Fj
the group W} need not be contained in I'. In other words, in general W}, strictly
contains the group

Ip:={yel:y(P)=P}=WpnNT.

To avoid confusion we do not use the notation Wp. Instead the parabolic subgroup
of Wy generated by {s, : @ € P} will be denoted W(Rp). Suppose that v € W}
stabilizes either the root system Rp, the lattice ZP or the vector space QP C a*.
Then ~(P) is a basis of Rp, so v(P) = w(P) and w1y € W}, for a unique w €
W(Rp). Therefore

Wyp = {y € W} : vy(ZP) = ZP} equals W (Rp) x Wp. (1.19)
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For all x € X and o € P we have
z—sq(z) = (v, a")a € ZP,

30 t(sq(z)) = t(x) for all t € T, Hence t(w(z)) = t(x) for all w € W(Rp), and we
can define an algebra automorphism

b HE = HE ¢4(0,N,) = t(x)0,N, teTF. (1.20)
In particular, for ¢t € Kp this descends to an algebra automorphism
vyt Hp — Hp, Qg;PNw — t(xp)QxPNw te Kp. (1.21)

We can regard any representation (o, V) of H(Rp, qp) as a representation of H(RY, ¢7)
via the quotient map (|1.16]). Thus we can construct the H-representation

(P, o,t) := Indzgz}g’)qp)(a o ).

Representations of this form are said to be parabolically induced. Similarly, for any

H p-representation (p, V,,) and any A € t¥ there is an H -representation (py, V,®C,).
The corresponding parabolically induced representation is

(P, p,\) := Indgzr (py) = Indggp (V, ® C,).

1.5 Analytic localization

A common technique in the study of Hecke algebras is localization at one or more
characters of the center. There are several ways to implement this. Lusztig [Lus6]
takes a maximal ideal I of Z(?) and completes H with respect to the powers of this
ideal. This has the effect of considering only those H-representations which admit
the central character corresponding to I.

For reasons that will become clear only in Chapter [d we prefer to localize with
analytic functions on subvarieties of T/W{. Let U C T be a nonempty W/-invariant
subset and let C**(U) (respectively C"¢(U)) be the algebra of holomorphic (respec-
tively meromorphic) functions on U. There is a natural embedding

Z(HxT) =A% = o(T)Wo — con ()W
and isomorphisms of topological algebras
CMU @ wy A= CTU), CTU) @ g A= CTEU).
Thus we can construct the algebras

HOU) 3D = C™U)Wo Qg0 H T
H™U)«u T = O™ (U)o @g0ur) H 1 T

C(U) ®c CW(],

cmey oe iy, 122

~
>~

The isomorphisms with the right hand side are in the category of topological vector
spaces, the algebra structure on the left hand side is determined by

(fr@h)(f2 @ ha) = fifao @ hihy  fi € C™(U)Wo, h; € H x T. (1.23)
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By [Opd2| Proposition 4.5] Z(H*(U) x I') = C*(U/)W6, and similarly with mero-
morphic functions.

For any 7" C T, let Mod 7/ (#H x T') be the category of finite dimensional H x T'-
modules all whose A-weights lie in 7”. By [Opd2}, Proposition 4.3] Mod (1" (U) xT)
is naturally equivalent to Modsy(H x I'). (On the other hand, H"¢(U) x I" does
not have any nonzero finite dimensional representations over C.)

Of course graded Hecke algebras can localized in exactly the same way, and
the resulting algebras have analogous properties. By the center of the algebra
H % T is isomorphic to O(t/W}) = O(t)"o. For nonempty open Wi-invariant subsets
V of t we get the algebras

H™(V) x T = CV)"o @y HxT
H™ (V)T = C™ (V)"0 @ (ger) Hx T

C(V) &c C[Wy),

o)y eccwy. Y

111

Let C(T'/W{) be the quotient field of Z(H x T') = O(T /W) and consider
C(T/Wp) @z(axr)y H @ T

As a vector space this is C(T) ® 4 H x ' = C(T') ®c C[W{], while its multiplication
is given by (1.23). Similarly, we let C(t/W) be the quotient field of O(t/W}) and
we construct the algebra

C(t/Wy) Qzmxr) Hx I

Its underlying vector space is
C(t) Xo() HxT =C(t) ®c C[Wé],

and its multiplication is the obvious analogue of (|1.23). Given a simple root o € Fy
we define elements ) € C(T/Wy) ®z3) H and iy, € C(t/Wo) @z H by

q(sa)ca(l+22 ) = 1+ q(sa)/%Ns,., (1.25)
ca(l+75,) = 1+ s4. )
Proposition 1.5.1. The elements zga and s, have the following properties:

(a) The map sq — 13 (respectively so — s, ) extends to a group homomorphism
from Wg to the multiplicative group of C(T/Wg) @zxry H x T (respectively
C(t/Wp) @ zmxry Hx T').

(b) Forw e W and f € C(T) = C(T/I/VN(S) Ro/wy) A (respectively f € C(t)) we
have 19, f12 _1 = w(f) (respectively iy fi,-1 = w(f)).

(¢) The maps

C(T) = Wé — C(T/Wé) @ Z(HxT) HxT: ]iw — j;z?v,
(C(t) X Wé — (C(t/Wé) ®Z(H><1F) HxI : fw — fiw

are algebra isomorphisms.
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(d) Let P C Fy and v € W{ be such that v(P) C Fy. The automorphisms 1)~ from
(L.17) satisfy

Uy(h) = Zthg_l heHF orheHp,
wﬂf(il) = zwiﬁyfl iLEHP.

Proof. (a), (b) and (c) with Wy instead of W{ can be found in [Lus6l, Section 5].
Notice that Lusztig calls these elements 7, and 7,,, while we follow the notation of
[Opd2, Section 4]. We extend this to W by defining, for v € I and w € Wp:

0 0 = ~
qw =V ANd Ty = Y.

For (d) see [Lus6l, Section 8] or [Sol5, Lemma 3.2]. O

?

We remark that by construction all the o)) lie in the subalgebra C(T/T*0)H (W, q) x
' and that the 7, lie in the subalgebra C(t/t/o)C[W(]. As was noticed in [Opd2,
Theorem 4.6], Proposition can easily be generalized:

Corollary 1.5.2. Proposition [1.5.1] remains valid under any of the following re-
placements:

o C(T) by C™c(U) or, if all the functions cq are invertible on U, by C*"(U);
o C(t) by C™c(V) or, if all the functions ¢q are invertible on V', by C*™ (V).
In particular

Ce(U) x W, — cme ()W © iy H T s fw— fif, (1.26)

is an isomorphism of topological algebras.

1.6 The relation with reductive p-adic groups

Here we discuss how affine Hecke algebras arise in the representation theory of
reductive p-adic groups. This section is rather sketchy, it mainly serves to provide
some motivation and to prepare for our treatment of the Aubert—-Baum—Plymen
conjecture in Section The main sources for this section are [BeDel, BeRul, [Roc2l
Heil, TwMal, [Mox].

Let F be a nonarchimedean local field with a finite residue field. Let G be a
connected reductive algebraic group defined over F and let G = G(F) be its group
of F-rational points. One briefly calls G a reductive p-adic group, even though the
characteristic of F is allowed to be positive.

An important theme, especially in relation with the arithmetic Langlands pro-
gram, is the study of the category Mod(G) of smooth G-representations on complex
vector spaces. A first step to simplify this problem is the Bernstein decomposition,
which we recall now. Let P be a parabolic subgroup of G and M a Levi subgroup of
P. Although G and M are unimodular, the modular function dp of P is in general
not constant. Let o be an irreducible supercuspidal representation of M. In this
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situation we call (M, o) a cuspidal pair, and with parabolic induction we construct
the G-representation
IS(0) == Indg(5113/2 ® o).

This means that first we inflate o0 to P and then we apply the normalized smooth
induction functor. The normalization refers to the twist by 6]13/ 2, which is useful
to preserve unitarity. Let Irr(G) be the collection of irreducible representations in
Mod(G), modulo equivalence. For every 7 € Irr(G) there is a cuspidal pair (M, o),
uniquely determined up to G-conjugacy, such that 7 is a subquotient of Ig(a).

Let GY be the normal subgroup of G generated by all compact subgroups. Recall
that a character x : G — C* is called unramified if its kernel contains G°. The group
Xur(G) of unramified characters forms a complex algebraic torus whose character
lattice is naturally isomorphic to the lattice X*(G) of algebraic characters G — F*.
We say that two cuspidal pairs (M, o) and (M’ o’) are inertially equivalent if there
exist g € G and }’ € X,,-(M’) such that

M =gMg™' and o' @y o9,
where 09(m’) = o(g~'m’g). With an inertial equivalence class 5 = [M, o] one
associates a full subcategory Mods(G) of Mod(G). It objects are by definition those
smooth representations m with the property that for every irreducible subquotient p
of 7 there is a (M, o) € s such that p is a subrepresentation of 1§ (). The collection
B(QG) of inertial equivalence classes is countably infinite (unless G = {1}).

The Bernstein decomposition [BeDel Proposition 2.10] states that

Mod(G) =[] Mod, (@), (1.27)

s€B(G)
a direct product of categories. The subcategories Mods(G) (or rather their subsets of
irreducible representations) are also called the Bernstein components of the smooth
dual of G.

The Hecke algebra H(G) is the vector space of locally constant, compactly sup-
ported functions on G, endowed with the convolution product. Mod(G) is naturally
equivalent to the category Mod(H(G)) of essential H(G)-modules. (A module V is
called essential if #(G)V =V, which is not automatic because H(G) does not have
a unit.) Corresponding to there is a decomposition

H(G) =D,y G

of the Hecke algebra of G into two-sided ideals. In several cases H(G)s is known to
be Morita-equivalent to an affine Hecke algebra.

In the classical case [IwMal Bor] G is split and Mods(G) is the category of
Iwahori-spherical representations. That is, those smooth G-representations V' that
are generated by V!, where I is an Iwahori-subgroup of G. Then H(G)s is Morita
equivalent to the algebra H(G, I) of I-biinvariant functions in H(G), and H(G, I) is
isomorphic to an affine Hecke algebra H (R, q). The root datum R = (X, Ry, Y, R, Fp)
is dual to the root datum of (G, T), where T(F) is a split maximal torus of G = G(F).
More explicitly
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X is the cocharacter lattice of T;

Y is the character lattice of T}

RY is the root system of (G, T);

Ry is the set coroots of (G, T);
e [ and F) are determined by I;
e ¢ is the cardinality of the residue field of F.

For a general inertial equivalence class s = [M, o] it is expected that H(G)s is
Morita equivalent to an affine Hecke algebra or to a closely related kind of algebra.
We discuss some ingredients of this conjectural relation between the representation
theory of reductive p-adic groups and that of affine Hecke algebras.

Let 0¥ be an irreducible subrepresentation of a‘ 1o and define 3 = ind}7, (a0).
According to [BeRul, Theorem 23] I§(X) is a finitely generated projective generator
of the category Mods(G). By [BeRu, Lemma 22] Mods(G) = Mod(H(G)s) is natu-
rally equivalent to the category of right Endg(I§(X))-modules. So if Endg (1§ (%))
would be isomorphic to its opposite algebra (which is likely), then it is Morita equiv-
alent to H(G)s.

Let us describe the center of Endg(1§(X)). The map

Xur(M) — Irr[Mvg]M(M) X XQo

is surjective and its fibers are cosets of a finite subgroup Stab(c) C X,,.(M). Let

M, = ﬂxeStab(J)ker(X) c M.

Roche [Roc2l Proposition 5.3] showed that End/(X) is a free O(Xy, (M, ))-module
of rank m?, where m is the multiplicity of ¢° in 0‘ a0- Moreover the center of
End)y (X)) is isomorphic to O(X,,(M,)), and Endy; () embeds in Endg(I§(2)) by
functoriality. The group

Ng(M,0):={g€G: gMg_1 = M,09 = x ® o for some x € X, (M)}

acts on the family of representations {I$(x ® X) : x € Xy(M)}, and via this on
Xur(My). The subgroup M C Ng(M,o) acts trivially, so we get an action of the
finite group

W, := Na(M,o)/M.

According to [BeDe, Théoréme 2.13], the center of Endg(I§(X)) is isomorphic to
O(Xur(M,))Vo = O(Xur(My)/Wy). By [Roc2, Lemma 7.3] Endg(I§ (X)) is a free
Endjs(X¥)-module of rank [W,|.

Next we indicate how to associate a root datum to Endg(I§(X)). See [Heil,
Section 6] for more details in the case of classical groups. Let A be the maximal
split torus of Z(M), let X*(A) be its character lattice and X,(A) its cocharacter
lattice. There are natural isomorphisms

Xop (M) = X*(A) @7 C* 2 Hom(X,(A),C¥).
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In X*(A) we have the root system R(G, A) and in X, (A) we have the set RV(G, A)
of coroots of (G, A). The parabolic subgroup P determines positive systems R(P, A)
and RY(P, A). Altogether we constructed a (nonreduced) based root datum

Rar = (X.(A),R¥(G, A), X*(A), R(G, A), R (P, A)),

from which one can of course deduce a reduced based root datum.
Yet Rys is not good enough, it does not take o into account. Put

X, := Hom(X, (M,),C*) = Hom(X,(M,NA),C*) C X.(A),
Y, = Hom(X,,Z) = X*(M,NA) D X*(A).

Assume for simplicity that 0‘ g0 1s multiplicity free, or equivalently that End Mm(X) =
O(Xyur(M,)). Then the above says that Endg(I$(X)) is a free module of rank |W, |
over C[X,]. We want to associate a root system to W,. In general W, does not
contain W (G, A) = Ng(M)/M, so we have to replace R(G, A) by

Ropnr :={a € R(G,A) : s € Wy},

and RY(G,A) by RY,,. Let Ry be the reduced root system of Ry, and R, the
dual root system, which consists of the non-multipliable roots in R, .. Let F, be
the unique basis of R, contained in R(P, A). Then W(R,) is a normal subgroup of

W, and
W, =2 W(R,) xT, where T, ={weW,:w(F,)=F,}.

As o is not explicit, it is difficult to say which diagram automorphism groups I',
can occur here. A priori there does not seem to be any particular restriction.

All this suggests that, if Endg(I§(2)) is isomorphic to some affine Hecke algebra,
then to

Hy 3Ty = H(Re, @o) X Ty 1= H(Xo, RY, Yy, Ry, FY , ¢5) % T (1.28)

In fact it also possible that the I',-action is twisted by a cocycle [Morl Section 7],
but we ignore this subtlety here. We note that little would change upon replacing
G by a disconnected group, that would only lead to a larger group of diagram
automorphisms.

We note that this description of Endg(I$(X)) is compatible with parabolic in-
duction. Every parabolic subgroup Q C G containing P gives rise to a subalgebra

Endg(I£()) € Endg(I§(X)),
which via (1.28) and
R%,. = R(Q,A) C R(P,A) = Ry pnr

o,nr

corresponds to a parabolic subalgebra ’H? XT's0 CHs xTs.
By analogy with the Iwahori case the numbers ¢,(w) are related to the affine
Coxeter complex of X, (A) x W(RY(G, A)). After fixing a fundamental chamber Cj,
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every w € X,(A) x W, determines a chamber w(Cy). This affine Coxeter complex
can be regarded as a subset of the Bruhat-Tits building of G, so Cy has a stabilizer
K C G. In view of [Morl, Section 6], a good candidate for ¢,(w) is [KwK : K]|. In
particular, for a simple reflection s, € W(RY) this works out to ¢,(s4) = g%, where
q is cardinality of the residue field of F and d,, is the dimension of the a-weight space
in the A-representation Lie(G). Hence g, is a positive parameter function and, if A
is not a split maximal torus of G, ¢, tends to be non-constant on the set of simple
reflections.

As said before, most of the above is conjectural. The problem is that in general
it is not known whether one can construct elements N,, (w € W,) that satisfy the
multiplication rules of an extended affine Hecke algebra. To that end one has to
study the intertwining operator between parabolically induced representations very
carefully.

Let us list the cases in which it is proven that Endg (1§ (X)) is isomorphic to an
(extended) affine Hecke algebra:

e G split, s the Iwahori-spherical component [IwMal, Bor];

e G = GL,(F) s arbitrary - from the work of Bushnell and Kutzko on types
[BuKull BuKu2l BuKu3;

G = SL,(F), many s [GoRo| (for general s the Hecke algebra is known to have
a closely related shape);

G a (special) orthogonal group, a symplectic group or an inner form of G L, (F),
s arbitrary [Heil;

G = GSpy(F) or G =U(2,1), s arbitrary [Moyl, Moy2];

G classical, certain s [Kim1l [Kim2l Blol;

G split (with mild restrictions on the residual characteristic), s in the principal
series [Rocl];

G arbitrary, o induced from a level 0 cuspidal representation of a parahoric
subgroup of G' [Morl, MoPr), [Lus7];

Of course there is a lot of overlap in this list. For GL,,SL,,GSps and U(2,1)
the above references do much more, they classify the smooth dual of G. In the
level 0 case, Morris [Mor] showed that the parameters ¢, are the same as those
for analogous Hecke algebras of finite Chevalley groups. Those parameters were
determined explicitly in [Lusl], and often they are not equal on all simple roots.

Apart from this list, there are many inertial equivalence classes s for which
Endg(I§ (X)) is Morita-equivalent a commutative algebra. This is the case for super-
cuspidal G-representations ¢ such that J‘ oo 1s multiplicity-free, and more generally
it tends to happen when R, is empty.
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Chapter 2

Classification of irreducible
representations

This chapter leads to the main result of the paper (Theorem . It is an affine
analogue of the Springer correspondence. Together with Kazhdan—Lusztig-theory,
the classical Springer correspondence parametrizes the irreducible representations
of a finite Weyl group with certain representations of an affine Hecke algebra with
equal parameters [BaMol]. This correspondence is known to remain valid for affine
or graded Hecke algebras with certain specific unequal parameters [Ciul.

We construct a natural map from irreducible H-representations to representa-
tions of the extended affine Weyl group W. Not all representations in the image are
irreducible, but the image does form a Q-basis of the representation ring of W.

The proof proceeds by reduction to a result that the author previously obtained
for graded Hecke algebras [Sol6]. To carry out this reduction, we need variations
on three well-known results in representation theory of Hecke algebras. The first
two are due Lusztig and allow one to descend from affine Hecke algebras to graded
Hecke algebras. We adjust these results to make them more suitable for affine Hecke
algebras with arbitrary positive parameters.

Thirdly there is the Langlands classification (Theorem , which comes from
reductive groups and reduces the classification of irreducible representations to that
of irreducible tempered ones. For affine Hecke algebras it did not appear in the
literature before, although it was of course known to experts. Because we want to
include diagram automorphisms in our affine Hecke algebras, we need a more refined
version of the Langlands classification (Corollary 2.2.5). It turns out that one has
to add an extra ingredient to the Langlands parameters, and that the unicity claim
has to be changed accordingly.

However, these results do not suffice to complete the proof of Theorem for
nontempered representations, that will be done in the next chapter.

2.1 Two reduction theorems

The study of irreducible representations of H x I' is simplified by two reduction
theorems, which are essentially due to Lusztig [Lus6]. The first one reduces to the
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case of modules whose central character is positive on the lattice ZR;. The second
one relates these to modules of an associated graded Hecke algebra.
Given t € T and « € Ry, [Lus6, Lemma 3.15] tells us that

1 ifa¥¢2y

+1 if a¥ €2Y. (2.1)

Sq(t) =t if and only if a(t) = {
We define R; := {a € Ry : sq(t) = t}. The collection of long roots in Ry, is
{B € Ry :B(t) = 1}. Let F; be the unique basis of R; that is contained in Ry. Then

Wgo i ={weWyxT:wt)=tw) = F}

is a group of automorphisms of the Dynkin diagram of (R, F;). Moreover the
isotropy group of ¢ in Wy x I' is

W/ =WyxT)=W(R) % Wf%t-
We can define a parameter function ¢; for the based root datum
Rt = (X7 Rt7Y7 Rz/aFt)

via restriction from Ry, to Ry,,.

Since F; does not have to be a subset of Fy, R; does not always fit in the setting
of Subsection but this can be fixed without many problems. For u € T, we
define

P(u) = Fy NQR,.

Then Rp(,) is a parabolic root subsystem of Ry that contains R, as a subsystem of
full rank. Although this definition would also make sense for general elements of T,
we use it only for Ty, to avoid a clash with the notation of [Opd2| Section 4.1]. We
note that the lattice

ZP(u) = ZRy N QR,

can be strictly larger than ZR,,.
To study H-representations with central character Wjuc we need a well-chosen
neighborhood of uc € T, T} .

Condition 2.1.1. Let B C t be such that
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Since W acts isometrically on t, (a) implies that B is W/-invariant. There
always exist balls satisfiying these conditions, and if we have one such B, then eB
with € € (0, 1] also works.

We will phrase our first reduction theorem in such a way that it depends mainly
on the unitary part of the central character, it will decompose a representation in
subspaces corresponding to the points of the orbit Wju. We note that R,. C R,
and W), C W),. Given B satisfying the above conditions, we define

U = Woucexp(B), Up(,) = Wip(u)ucexp(B) and U, = W, ucexp(B).

We are interested in the algebras H(R, ¢)*(U)xT', H(RF™, qP(“))‘m(Up(u)) xWp,
and H(Ru, qu)™" (Uu) ¥ W, . Their respective centers

(u)

CmUYW, CM (Upgy)EP@ and o (U,) W

are naturally isomorphic, via the embeddings U, C Up(,) C U. For any subset
w C Wlue we define 1, € C(U) by

1(f) = 1 if t € wexp(B)
F1 0 if te U\ wexp(B).

Theorem 2.1.2. (First reduction theorem)

(a) There are natural isomorphisms of C(U)Wo-algebras

ucH

HRPM),qP ) (Up(y) 3 Whiy = s, wo(H™(U) % ) Ly,

(u) ZP(u) ZP(u)
H(Ru, qu)™™(Uy) % Wllfu,u 1W4uc(7-[‘m(U) x I) W e

Il

(b) These can be extended (not naturally) to isomorphisms of C¥(U)Wo-algebras

ue(H"(U) % T) Ly

Han(U)NF = M[Wé:WZ/P(u>](1WiP(u) Zp<u)uc)a

H™U) % T = My (Awgue(H(U) X T) Twue),

where My, (A) denotes the algebra of n X n-matrices with coefficients in an alge-

bra A.
(¢) The following maps are natural equivalences of categories:

Modfy(H(R,q)xT") < MOdf,Up(u) (HP(u) X Wl’j(u)) < Modyy, (H(Ru, qu) @ Wl’puu)

4 = 1W£P(u)uc = 1W&ucv

HP(u) w!
D) (m) < ™

HxT
Ind? (m) = Indyg, gy,

H(Ru,qu) Wi,

Proof. (a) This is a variation on [Opd2, Theorem 4.10], which itself varied on
[Lus6l Theorem 8.6]. Compared to Lusztig we replaced Y ® (vg) C T by T,s =
Y ® Ry, we substituted his R; by a larger root system, we added the group I' and
we localized with analytic functions instead of formal completions at one central
character.
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The first change is allowed because we localize only on 7', and not simultaneously
in the g-direction like Lusztig. Hence the structure of the subgroup (vg) C C*
becomes irrelevant to the arguments of [Lus6, Section 8]. With this modification
Lusztig’s R; becomes our R, and his equivalence classes ¢ € P correspond to the
orbits W, uc C Wyuc. The root system Rp(,) and the orbits W, Puytc C Wiue fall
into the same framework, so the constructions from [Lus6l Section 8] can still be
carried out. Since ZR, C ZRp(,) there are fewer orbits in the second case, so it
actually becomes somewhat easier.

By [Lus6, Lemma 8.13.b] Lusztig’s version of the isomorphisms (a) sends v € I'(c)
to 102310, for some ¢ € P. Translated to our setting this means that we can include

the appropriate diagram automorphisms by defining

/ 0
Wp(u) > 9 = 1WZ’P<u>uc Ly 1WZIP(u)uc’ (22)
WI/*_‘”,U > 7 = 1W&uc Zg 1W1;uc

Finally, that Lusztig’s arguments also apply with analytic localization was already
checked by Opdam [Opd2, Section 4.1].

(b) Knowing (a), this can proved just as in [Lus6l 4.16].

(c) By [Opd2, Proposition 4.3] the categories in the statement are of the categories
of finite dimensional modules of the algebras figuring in (a) and (b). Therefore the
maps in (c) are just the standard equivalences between the module categories of B
and M, (B), translated with (a) and (b). O

Remark 2.1.3. This reduction theorem more or less forces one to consider diagram
automorphisms: the groups Wip(u) and Wl’%u can be nontrivial even if T' = {id}.

The notation with induction functors in part (c) is a little sloppy, since Wf;mu
need not be contained in I" or in WZ P(u)’ In such cases these induction functors are
defined via part (a).

The first reduction theorem also enables us to make sense of Indz(x,lgp’qp)xrjp for
any P C Fy and any subgroup I, C Wp,. Namely, first induce from H(RE, ¢") x I's
to H(RP,q") x W}, then choose u € Ty, such that P(u) = P and finally use (c).

By we have a(u) = 1 for all &« € Ry N QRy, so a(t) = a(u)a(c) > 0 for
such roots. By definition u is fixed by W/, so Theorem allows us to restrict
our attention to H x I'-modules whose central character is positive on the sublattice
ZR; C X.

Next we want to reduce to graded Hecke algebras. We define a parameter func-
tion k, for the degenerate root datum Ry = (a, Ry,a*, R, F,) by

kua = (logq(sa) + a(u)log q(tasa))/2. (2.3)

Recall that « € R,, implies that s,(u) = u and a(u)? = 1. We will see in ([{.4)) that
for this choice of k,, the function ¢, can be regarded as the first order approximation
of ¢(Sa)cq in a neighborhood of ¢ =1 and u € T

Let us pick u € TKO, so a(u) = £1 for all « € Ry. Then the map

exp, : t = T, A — uexp(N) (2.4)
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is W-equivariant. To find a relation between H(R,q) x T’ and H(R., k,) x T, we
first extend these algebras with analytic localization. For every open nonempty
W{-invariant V' C t we can define an algebra homomorphism

Dy H™(exp, (V) T — H(Ruy, ky)™(V) x T,
f18 = (f o expy)iw- (2.5)
Theorem 2.1.4. (Second reduction theorem)

Let u € TJZO and let V' be as above, such that moreover exp,, is injective on V.

(a) The map exp, induces an isomorphism C%(exp,, (V))Vo — co(V)Wo,

(b) Suppose that every \ € V satisfies

(a, X), (o, A) +kyo ¢ 2miZ\ {0} forae€ RyN Ry,

(@, Nl N+ ke &  mZ\{0} forac Ro\Ri. (2:6)

Then ®,, restricts to an isomorphism of C*(V)Wo-algebras

Dyt H (exp, (V) X T — H(Ry, k) (V) x T.

Proof. (a) This is clear, it serves mainly to formulate (b).
(b) The case I' = {id} is essentially [Lus6l, Theorem 9.3]. The difference is that our
conditions on A replace the conditions [Lus6, 9.1]. The general case follows easily
under the assumption that I' fixes u. O

Given t' C t we denote by Mod ¢ (H(R, k) x T') the category of finite dimensional
H(R, k) x I'-modules all whose O(t)-weights lie in t'.

Corollary 2.1.5. Let q be positive and let uc € TynTrs. The following categories
are equivalent:

(a) Modgwuc(H(R,q) @ T') and Mody,w (g, )xwy, ) 10g(e) H(Ru, ku) X W, ),
(b) Modywsur,, (H(R,q) x T) and Mod s o (H(Ry, ku) x W}, ).

These equivalences are compatible with parabolic induction.

Proof. (a) follows from Theorems[2.1.2lb and [2.1.4]b. Notice that the conditions
are automatically satisfied because ¢ is positive and log(c) € a, so ky, o € R and
(o, log(c)) € R. If we sum that equivalence over all Wjc € T,;/W{, we find (b). By
[BaMo2, Theorem 6.2] or [Sol5, Proposition 5.3.a] these equivalences of categories
are compatible with parabolic induction. O
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2.2 The Langlands classification

In this section we discuss Langlands’ classification of irreducible representations.
Basically it reduces from general representations to tempered ones, and from there
to the discrete series. Actually Langlands proved this only in the setting of real
reductive groups, but it holds just as well for p-adic reductive groups, affine Hecke
algebras and graded Hecke algebras. We will only write down the results for affine
Hecke algebras, the graded Hecke algebra case is completely analogous and can be
found in [Eve, KrRal [Sol5].

An important tool to study H-representations is restriction to the commutative
subalgebra A = O(T'). We say that t € T is a weight of (m,V) if there exists a
v € V\ {0} such that w(a)v = a(t)v for all a € A. It is easy to describe how the
collection of A-weights behave under parabolic induction. Recall that

WP = {weWy:w(P)CRJ} (2.7)
is the set of minimal length representatives of Wy /W (Rp).

Lemma 2.2.1. Let I, be a subgroup of T'p and let o be a representation of HY xT'p.
The A-weights of Ind%ﬁiwp(a) are the elements yw(t) € T, where v € T',w € WF
and t is an A-weight of o.

Proof. From [BaMoll Theorem 6.4] and the proof of |[Opd2, Proposition 4.20]
we see that this holds in the case I' = I, = {id}. For the general case we only
have to observe that the operation 7+ 7o ¢ I on H-representations has the effect
t — 7(t) on all A-weights ¢. O

Temperedness of a representation is defined via its A-weights. Given P C Fj,
we have the following positive cones in a and in T.4:

at = {p€a:{a,p)>0Vae Fy}, " = exp(a™),

af = {pecap:{a,p) >0Vae P} 5 = exp(ap), (2.8)
aft = {pead’:(a,p) >0Vac Fy\ P}, TP+ = exp(al™),

ol = {peal:(a,p) >0Vac [\ P}, TFH = exp(aT)

The antidual of a* := {z € a* : (z, @) > 0Va € Fy} is

o ={Aca:(z,\)<0Vzeat}={) . Ao’ 10 <0} (209)
acto

Similarly we define
ap = {Zaep Ao’ € ap: Ay <0} (2.10)

The interior a~~ of a~ equals {EQGFO)\aaV A < ()} if Fy spans a*, and is empty
otherwise. We write T~ = exp(a™) and T-~ = exp(a~ ). Let t = [t| - t|t|! €
T.s X Ty, be the polar decomposition of ¢.

An H-representation is called tempered if |t| € T~ for all its A-weights ¢, and
anti-tempered if [t|~! € T~ for all such ¢. For infinite dimensional representations
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this is not entirely satisfactory, but we postpone a more detailed discussion to Section
Since all irreducible H-representations have finite dimension, this vagueness
does not cause any problems. Notice that our definition mimics Harish-Chandra’s
definition of admissible smooth tempered representations of reductive p-adic groups
[Wal, Section II1.2]. In that setting the crucial condition says that all exponents of
such a representation must lie in certain cone.

More restrictively we say that an irreducible H-representation belongs to the
discrete series (or simply: is discrete series) if [t| € T, for all its A-weights ¢. In
particular the discrete series is empty if Fy does not span a*. This is the analogue
of Casselman’s criterium for square integrable representations of semisimple p-adic
groups [Cas, Theorem 4.4.6].

The notions tempered and discrete series apply equally well to H x I', since that
algebra contains 4 and the action of I' on T preserves T~. It follows more or less
directly from the definitions that the correspondence of Theorem preserves
temperedness and provides a bijection between discrete series representations with
the appropriate central characters, see [Slo2, (2.11)].

It easy to detect temperedness for H(R,1) x I' = C[W'] = C[X x W[].

Lemma 2.2.2. A finite dimensional C[X x W{|-representation is tempered if and
only if all its A-weights lie in Ty,.
This algebra has no discrete series representations, unless X = 0.

Proof. Suppose that V is a representation of this algebra, and that ¢t € T is an
A-weight with weight space V;. For every g € Wy, gVi = V) is the g(t)-weight
space of V', which shows that every element of the orbit Wt is an A-weight of V.
But W{|t| can only be contained in T~ if it equals the single element 1 € T,5. Hence
V can only be tempered if || = 1 for all its weights, or equivalently if all its weights
lie in T},,,. By definition the latter condition also suffices for temperedness.

Unless X = 0, the condition |¢t| = 1 implies [¢t| € T~ ~, so C[X x W{] has no
discrete series representations. O

The Langlands classification looks at parabolic subalgebras of H and irreducible
representations of those that are essentially tempered. We will describe such repre-
sentations with two data: a tempered representation and a ”complementary” part
of the central character. This is justified by the following result.

Lemma 2.2.3. Let P C Fy,tp € Tp and t¥ € TT.

(a) The map o — o o ¢p defines an equivalence between the categories of Hp-
representations with central character W(Rp)tp € Tp/W(Rp) and of HT-
representations with central character W (Rp)tpt? € T/W (Rp).

(b) Every irreducible H' -representation is of the form o o ¢,p, where o is an ir-
reducible Hp-representation and t¥ € TT. Both these data are unique modulo
twists coming from Kp = TP N Tp, as in (1.21)).

Proof. (a) The kernel of ¢,r followed by the quotient map H” — Hp is generated
(as an ideal) by {0, — t(z) : 2 € X N (PY)*}. If p is an HP-representation with
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central character W(Rp)tpt?, then the kernel of p clearly contains these generators,
so p factors via ¢,p and this quotient map.

(b) Let p be an irreducible H*-representation with central character W (Rp)t €
T/W(Rp). Decompose t = tpt!’ € TpT¥. Then part (a) yields a unique irreducible
‘H p-representation o such that p = o o ¢,». The only freedom in this constuction
comes from elements u € Kp. If we replace t” by ut”, then part (a) again gives a
unique o’ with p = ¢’ 0 ¢, and its follows directly that ¢’ o ¢, = 0. O

A Langlands datum for H is a triple (P, o,t) such that
e P C Fj and o is an irreducible tempered H p-representation;

o tc TP and |t| € TP+,

We say that two Langlands data (P, o,t) and (P’,0’,t") are equivalent if P = P’ and
the HP-representations o o ¢; and o’ o ¢y are equivalent.

Theorem 2.2.4. (Langlands classification)

(a) For every Langlands datum (P, o,t) the H-representation w(P,o,t) = Ind;'_fp (oo
¢¢) has a unique irreducible quotient L(P,o,t).

(b) For every irreducible H-representation m there exists a Langlands datum (P, o,t),
unique up to equivalence, such that m = L(P,o,t).

Proof. The author learned this result from a preliminary version of [DeOp2|, but
unfortunately Delorme and Opdam did not include it in the final version. Yet the
proof in the setting of affine Hecke algebras is much easier than for reductive groups.
It is basically the same as the proof of Evens [Eve| for graded Hecke algebras, see
also [KrRal Section 2.4]. For later use we rephrase some parts of that proof in our
notation.

(a) The dominance ordering on a is defined by

A < wif and only if (A, ) < (u, «a) for all a € Fy. (2.11)
For o € Fy we define 0, € ap, by

1 i a=p
<5"5a>_{0 if aBeF.

According to Langlands [Lan, Lemma 4.4], for every A € a there is a unique subset
F(X\) C Fy such that A can be written as

A= Mo Z Cala + Z dea”  with A0 € af0 ¢, > 0,d, <0. (2.12)
a€F)\F()\) a€F(N\)

We put Ao = 3, cp\ p()) Cada € at. According to [KrRal (2.13)]

(wp)o < po for all p € ap @ a” T we W\ {1} (2.13)
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By the definition of a Langlands datum log |s| € ap @ aP’TF for every A-weight s of
oo¢;. Choose s such that (log |s|)o is maximal with respect to the dominance order.
By Lemma [2.2.1{and (2.13) (log|s|)o is also maximal for s regarded as an .A-weight
of m(P,o,t).

Suppose that p is an H-submodule of 7 (P, 0,t) of which s is an A-weight. By the
maximalty of s, p must contain the s-weight space of o o ¢;. The irreduciblity of o
implies that p contains the H-submodule 1 ®4,r V, C Indz:f p(00¢y), and therefore
p = 7(P,o,t). Thus the sum of all proper submodules is again proper, which means
that 7(P,o,t) has a unique maximal submodule and a unique irreducible quotient.
(b) Let s be an A-weight of 7 such that (log|s|)o € a is maximal and put P =
F(log|s|). Let p be the H-subrepresentation p of m generated by the s-weight
space. Then log |s| € ap@al’* and according to [KrRal p. 38] (log|s'|)o = (log |s|)o
for all A-weights s’ of p. By Lemma we can write every irreducible Hp-
subrepresentation of p as ¢ o ¢, where ¢ is an irreducible H p-representation and
log [t| = (log |s|)o. The Ap-weights of o are of the form s't~! and by construction

log |s't™| = log |s| — (log |s|)o € ap,

so o is tempered. The inclusion map co¢; — m induces a nonzero H-homomorphism
m(P,o,t) — 7. Since 7 is irreducible, this map is surjective. Together with part (a)
this shows that 7 is the unique quotient of 7(P, o, t).

The proof that (P, o o ¢¢) is uniquely determined by 7 is easy, and exactly the same
as in the graded Hecke algebra setting, see [Eve, Theorem 2.1.iii] or [KrRal Theorem
2.4.b]. O

Theorem [2.2.4] can be regarded as the analogue of the Langlands classification
for connected reductive p-adic groups. For disconnected reductive groups the clas-
sification is no longer valid as such, it has to be modified. In the case that the
component group is abelian, this is worked out in [BaJal], via reduction to cyclic
component, groups.

We work with a diagram automorphism group I' which is more general than a
component group and does not have to be abelian. For use in Section we have
to extend Theorem [2.2.4] to this setting.

There is a natural action of I' on Langlands data, by

V(P o, t) = (v(P), 0 093" (1)) (2.14)

Every Langlands datum yields a packet of irreducible quotients, and all data in one
I-orbit lead to the same packet. For v € I'p the Langlands classification for H”
shows that the irreducible H' -representations o o Yy 0 ¢ (1) and o o ¢y are equivalent
if and only if v(P,0,t) = (P, 0,t).

To get a more precise statement one needs Clifford theory, as for example in
[RaRal or [CuRel, Section 53]. Let I'p,; be the isotropy group of the Langlands
datum (P, 0,t). In [Sol5, Appendix A] a 2-cocycle k of I'p,; is constructed, giving
rise to a twisted group algebra C[I'p,4, £]. We define a Langlands datum for # x T’
as a quadruple (P, 0,t, p), where
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e (P,o,t) is a Langlands datum for #;
e p is an irreducible representation of C[['p,+, &].

The action extends naturally to Langlands data for H x I', since ¢ I induces
an isomorphism between the relevant twisted group algebras.

From such a Langlands datum we can construct the Hp x I'p, ;-representation
o ® p and the H x ['-representation

(P, o,t,p) := Indgﬁgrga,t ((co¢) @p) = Indg,ﬁgrpm ((c®p)ogd). (2.15)

If @ D P, then (P,o,t, p) can also be considered as a Langlands datum for HO x Ig,
and we denote the corresponding H? x ['g-representation by 7%1TQ(P,o,t,p). In
particular 7717 (P, o,t, p) is an irreducible H x I'p-representation.

Corollary 2.2.5. (extended Langlands classification)
(a) The HxT-representation - (P, o,t,p) has a unique irreducible quotient L' (P, o,t, p).

(b) For every irreducible H x I'-representation 7 there exists a Langlands datum
(P,o,t, p), unique modulo the action of I', such that m = LY (P, 0,t, p).

(¢) LY(P,o,t,p) and 7" (P, 0,t, p) are tempered if and only if P = Fy and t € TL?.
Proof. (a) and (b) By [Sol5, Theorem A.1] the H x I'-representation
Indz:lrﬂpﬂa’t(L(P, o,t) ® p) (2.16)

is irreducible, and every irreducible H x I'-representation is of this form, for a Lang-
lands datum which is unique modulo I'. By construction is a quotient of
m(P,o,t,p). It is the unique irreducible quotient by Theorem a and because p
is irreducible.

(c) If P C Fpy, then L(P,o,t,p) and 7' (P,o,t,p) are never tempered. Indeed
|t| & T—, so |rt| ¢ T~ for any Ap-weight r of o. But the construction of L(P,o,t)
in the proof of a is precisely such that the A-weight rt of (P, o,t) survives
to the Langlands quotient. Since the group I' preserves T, its presence does not
affect temperedness.

Now assume that P = Fy. Since TF't+ ¢ T and T~ N T = {1}, this repre-
sentation can only be tempered if [t| = 1. In that case o and 7' (P,0,t, p) have the
same absolute values of A-weights, modulo I'. But I'T~ = T, so the temperedness
of 7' (P,o,t,p) and LY (P, a,t,p) follows from that of o. 0

For connected reductive p-adic groups the Langlands quotient always appears
with multiplicity one in the standard representation of which it is a quotient. Al-
though not stated explicitly in most sources, that is already part of the proof, see
[Kon] or [Sol4l Theorem 2.15]. This also holds for reductive p-adic groups with a
cyclic component group [BaJa2].
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Closer examination of the proof of Theorem allows us to generalize and im-
prove upon this in our setting. Let W(Rp)r, € Tp/W (Rp) be the central character
of o. Then |r,| € Tpys = exp(ap), so we can define

ccp(o) =W (Rp)log|rs| € ap/W(Rp). (2.17)
Since the inner product on a is W/-invariant, the number ||ccp(o)|| is well-defined.
Lemma 2.2.6. Let (P, o,t,p) and (P,o’,t,p') be Langlands data for H x T.

(a) The functor Indz}x;grp induces an isomorphism

Homy, e, (7P1P (P o, t, p), nPTP (P 1, p')) =

Homyyr (7! (P, 0, t, p), 70 (P, o', t, p')).

These spaces are one-dimensional if (o,t, p) and (o', t,p') are T p-conjugate, and
zero otherwise.

(b) Suppose that LY (Q, T, s,v) is a constituent of 7' (P, o,t, p), but not L* (P, 0,t, p).
Then P C @Q and |[ccp(o)|| < [[ccg(T)]l.

Proof. (a) We use the notation from (2.12)). For any weight s of o o ¢y we
have log|st™!| € ap and (log|s|)o = (log |t|) ,, where the subscript Fy refers to the
decomposition of elements of t with respect to t = tg, © t0. Let s’ be a weight of

o' o ¢r. By (213)
(wlogs')o < (log|s'No = (log[t))r,  Ywe WP\ {id},  (2.18)

with respect to the dominance order on af, . Since (yA)o = 7(Ao) for all A € a and
v eI, we get

|(ywlog|s'ol| < l(log || ¥y eTowe WP\ {fid).  (219)

In particular yw(s’) with w € W can only equal the weight s of o o ¢; if w = 1.
Let vs € Vog, be a nonzero weight vector. Since 7PTP (P o,t,p) is an irreducible
HE x T p-representation, 1 @ v, € (H xT') QPulp,,, Voop is cyclic for a'(P,o,t,p).
Therefore the map

HomHNF(WF(P, O',t,p),?TF(P, o t,p)) — TI'F(P, o tp): f— fl®vs) (2.20)

is injective. By (2.19) the s-weight space of 7' (P, 0’,t, p') is contained in 1 ® Vg,
So f(1®vs) € 1® Vyrgy and multiplying by HP 3 T'p yields

f((C[Fp] ®FP,J¢ Vg®p) C C[PP] ®1“P70,7)5 Vgl®pl.
Thus any f € Homyr (7! (P,o,t,p), 7" (P, 0’,t, p')) lies in

% (Homyr oo, (2777 (.0, 1,9), 7277 (P01 0))). (221)
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From we see that this induction functor is injective on homomorphisms. The
modules in are irreducible, so the dimension of is zero or one. By
Corollary [2.2.5]b it is nonzero if and only if (o,t, p) and (o', t, p') are I p-conjugate.
(b) The proofs of Theorem a and Corollary a show that LY'(P, o,t,p)
is the unique irreducible subquotient of 7'(P, o,t, p) which has an A-weight ¢r,
with (log|tr)o = (loglt|)m,- Moreover of all A-weights s’ of proper submodules
of 7'(P, 0,t, p) satisfy (log|s'|)o < (log|t|)r,, with the notation of (2.12). In partic-
ular, for the subquotient L' (Q, 7, s,v) of 7' (P, 0,t, p) we find that

(log |s])r, = (log|s')o < (log|t|)r,-
Since log |s| € a®*™ and log |t| € aP*7, this implies P C Q and

I(log [s[) 7 | < [l (log [¢]) r, ] - (2.22)

According to Lemma all constituents of 7' (P, o,t,p) have central character
W{(rot) € T/W{. The same goes for (Q,7,s,v), so r,t and r;s lie in the same
Wy « I'-orbit. Thus also

Wo(log |ret|) m, = Wo(log [r-s]) -

By definition (log |t|) g, L tp and (log|s|)m, L tg, so

1R(cep (o)1 + [[(log [t r 17 = [I(log [rat]) 5, I
= [|(og[r+s)) s [I* = [Rlceq(M)I* + l|(log |s)r |17 (2:23)

Finally we use (2.22)). O

2.3 From H-representations to IV -representations

Given an algebra or group A, let Irr(A) be the collection of (equivalence classes
of) irreducible complex A-representations. Let Gz(A) = Gz(Mod(A)) denote the
Grothendieck group of the category of finite length complex representations of A,
and write Gp(A) = Gz(A) ®z F for any field F.

The classical Springer correspondence [Spr| realizes all irreducible representation
of a finite reflection group Wy in the top cohomology of the associated flag variety.
Kazhdan—Lusztig theory (see [KaLu2, Xi|) allows one to interpret this as a bijec-
tion between Irr(Wj) and a certain collection of irreducible representations of an
affine Hecke algebra with equal parameters. As such, the finite Springer correspon-
dence is a specialisation of an affine Springer correspondence between Irr(W(R))
and Irr(H (R, q)), see [Lushl Section 8]. The proof of Kazhdan and Lusztig requires
that R is of simply connected type and that ¢ is an equal parameter function whose
value is either 1 or not a root of unity. Reeder [Ree2, Theorem 3.5.4] showed that
the resulting parametrization of irreducible H(R, ¢)-modules remains valid without
simple connectedness. We will prove an analogue of this result for all extended affine
Hecke algebras with unequal (but positive) parameters.
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For any H x I'-representation 7, let W‘er be the restriction of 7 to

= 7|y

0
the subalgebra C[W)] = C[Wy xT'] C H x I'. Let Irrg(H x I') be the collection of
(equivalence classes of) irreducible tempered H x I'-representations with real central
character. In [Sol6, Theorem 6.5.c] the author proved that the set

{W‘WMF cmelrg(H = T)} (2.24)

is a Q-basis of Go(Wp x I'). When I is trivial, this is a kind of Springer corre-
spondence for finite Weyl groups. The only problem is that W’WO may be reducible,
but that could be solved by picking a suitable (a priori not canonical) irreducible
subrepresentation of m ! Wo'

In fact it is known from [Ciu, Corollary 3.6] that in many cases the matrix
that expresses in terms of irreducible Wy x I'-representations is unipotent and
upper triangular (with respect to a suitable ordering). That would provide a natural
Springer correspondence for graded Hecke algebras with arbitrary parameters, but
unfortunately that improvement is still open in our generality.

Theorem 2.3.1. There exists a unique system of maps
¢*:Irr(H x T) — Mod (X »x W),
for all extended affine Hecke algebras H x I' with positive parameters, such that:
(a) The image of C* is a Q-basis of Go(X x W{).
b

(b) C* preserves the unitary part of the central character.
(¢) C*(m) is tempered if and only if w is tempered.
(d)

d) Let u € Ty,, let @ € Irro(H(qu, k) x Wllt«“uu) and let o @, be the H(Ruy, qu) ¥
W, -representation associated to it via Theorem (2.1.4.b. Then

C(Indfly o (Fo®,)) =Tndy i (Cy @ 7y, ),

Fy,u

where C, denotes the one-dimensional X -representation with character u.

(e) If (P,o,t,p) is a Langlands datum for H x T, then

* XxW¢ *
(LN (P,o,t, p)) = IndX:(v[g(RP)xer)(C (0 ®p)odr).

Proof. In view of Corollary properties (b) and (d) determine ¢* uniquely
for all irreducible tempered representations. A glance at Lemma [2.2.2] shows that
¢* preserves temperedness.

Next Corollary b and property (e) determine ¢* for all irreducible repre-
sentations. By Corollary every nontempered irreducible H x I'-representation
7 is of the form L(P,o,t,p) for some Langlands datum with ¢ & Ty,,. By construc-
tion all A-weights of (*(o ® p) lie in T\, so by property (e) the absolute values of
A-weights of (*(7) lie in W{|t|. Together with Lemma this shows that ¢*(m)
is not tempered.
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Now we have (b)—(e), let us turn to (a). By Corollary and the result
mentioned in , (a) holds if we restrict to tempered representations on both
sides. The proof that this restriction is unnecessary is more difficult, we postpone
it to Section B.41

We will see in Corollary that on tempered representations ¢* is given by
composition with an algebra homomorphism between suitable completions of C[X x
(Wo x I')] and H x I'. That is not possible for all irreducible representations, since
sometimes (* does not preserve the dimensions of representations. More precisely,
(* preserves the dimension of an irreducible tempered representation, since property
(d) does so. By contrast, the right hand side of property (e) has the same dimension
as m(P,o,t,p). Thus ¢* preserves the dimension of L(P,o,t,p) if this Langlands
quotient equals 7(P,0,t, p), and increases the dimension otherwise.

Since the principal series representations M (t) = Indi\MFCt and Indf(xwé(ct are
irreducible for all ¢ in a Zariski-open dense subset of T, (* preserves irreducibility
on a large part of Irr(H x I'). To make a nice affine Springer correspondence out of
¢*, one would have to modify it so that it always respects irreducibilty. This would
boil down to refining (preferably in a canonical way) to map that preserves
irreducibilty.

For some applications the following variation on (* is more convenient:

Corollary 2.3.2. Theorem also holds with condition (e) replaced by

XxW}

(6\/) CV(WF(Pa o,t, P)) = Indxx(w(RP)er’m)(Cv(U ® p) o ¢t).

The resulting map

¢V :Gg(HxT) — Gz(X x WY)
commutes with parabolic induction.

Proof. This follows from Theorem and Lemma b. O

The disadvantage of ¢V compared to ¢* is that it sends some irreducible H x
I'-representations to virtual W x I'-representations. Suppose for example that a
principal series representation M (t) with ¢ € T has only one quotient 7 and only
one subrepresentation &, which is tempered. (This occurs already for R of type
Agl).) Then

¢V(m) = ¢V(M(#)) — ¢¥(6) = Tndy "™0C, — ¢V (8) € Gu(X n W),

and the right hand side is no ordinary representation because ¢V(4) is tempered and
Indixwol(ct has no X-weights in T,,.

Of course there also exist versions of Theorem[2.3.1]and Corollary [2.3.2]for graded
Hecke algebras. They can easily be deduced from the above using Theorem [2.1.4]b.
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Chapter 3

Parabolically induced
representations

Parabolic induction is a standard tool to create a large supply of interesting rep-
resentations of reductive groups, Hecke algebras and related objects. In line with
Harish-Chandra’s philosophy of the cusp form, every irreducible tempered represen-
tation of an affine Hecke algebra can be obtained via unitary induction of a discrete
series representation of a parabolic subalgebra. With the Langlands classification
we can also reach irreducible representations that are not tempered.

Hence we consider induction data £ = (P,d,t), where 0 is a discrete series rep-
resentation of Hp and t € TF is an induction parameter. With this we associate a
representation w(§) = Indz p(00¢y). Among these are the principal series represen-
tations, which already exhaust the dual space of H. But that is not very satisfactory,
since a principal series representation can have many irreducible subquotients, and
it is not so easy to determine them, see [Reel].

Instead we are mostly interested in induction data £ for which [t| is positive (in
an appropriate sense) and in irreducible quotients of 7(&), because the Langlands
classification applies to these. In Theorem we construct, for every irreducible
H-representation p, an essentially unique induction datum £¥(p), such that p is a
quotient of m(£%(p)). However, in general m(£1(p)) has more than one irreducible
quotient.

Another important theme in this chapter are intertwining operators between
induced representations of the form 7(£). Their definition and most important
properties stem from the work of Opdam and Delorme [Opd2] [DeOp]]. Like in the
setting of reductive groups, it is already nontrivial to show that normalized inter-
twining operators are regular on unitary induced representations. Under favorable
circumstances such intertwining operators span Homy (7(£),7(¢)). This was al-
ready known [DeOpl] for unitary induction data &, &', in which case m(€) and m(&')
are tempered representations. We generalize this to pairs of positive induction data
(Theorem [3.3.1)). Crucial in all these considerations is the Schwartz algebra S of H,
the analogue of the Harish-Chandra—Schwartz algebra of a reductive p-adic group.

For the geometry of the dual space of H it is important to understand the number
n(€) of irreducible H-representations p with £7(p) equivalent to £. This is governed

38



by a groupoid G that keeps track of all intertwining operators. Indeed, if t — & is a
continuous path of induction data such that all & have the same isotropy group in
G, then n(&) is constant along this path (Proposition [3.4.1).

From this we deduce that the dual of H is a kind of complexification of the
tempered dual of H. As a topological space, the tempered dual is built from certain
algebraic subvarieties of compact tori, each with a multiplicity. In this picture the
dual of H is built from the corresponding complex subvarieties of complex algebraic
tori, with the same multiplicities. This geometric description is used to finish the
proof of Theorem [2.3.1}

3.1 Unitary representations and intertwining operators

Like for Lie groups, the classification of the unitary dual of an affine Hecke algebra
appears to be considerably more difficult than the classification of the full dual or of
the tempered dual. This is an open problem that we will not discuss in this paper,
cf. [BaMo2, BaCi]. Nevertheless we will use unitarity arguments, mainly to show
that certain representations are completely reducible. The algebra H x I is endowed
with a sesquilinear involution * and a trace 7, defined by

(zNyy)* = 2y 1N, zeCiweW,veTl,
i) = {

z fy=w=e,

0 otherwise. (3.1)

Since ¢ is real-valued, this * is anti-multiplicative and 7 is positive. These give rise
to an Hermitian inner product on H x I':

(h, WYy, =7(h*K)  hh' € HxT. (3.2)

A short calculation using the multiplication rules shows that the basis { N, :
w e W,y €T} of H xT is orthonormal for this inner product.

We note that I' acts on H by *-automorphisms, and that H,H (W, q) and C[I]
are *-subalgebras of H x I'. In general A is not a *-subalgebra of H. For z € X
[Opd2|, Proposition 1.12] tells us that

0 = N0 (2) Ny (3.3)

wo

where wy is the longest element of the Coxeter group Wy.
Let I, be a subgroup of I'p and let 7 be a HE x ['p-representation on an inner
product space V. By default we will endow the vector space

HxT ®7_[P>41"/P V. = (C[FWP] ®C[FH V.
with the inner product
(h@wv, N @) =71(h*h){v, ) h,h' € CTWT), v, € V. (3.4)

Recall that a representation m of H x I" on a Hilbert space is unitary if w(h*) is the
adjoint operator 7(h)* of w(h), for all h € H xT'. In particular, such representations
are completely reducible.
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Lemma 3.1.1. Let I, be a subgroup of I'p, let o be a finite dimensional Hp x I'p-
representation and let t € TF.

(a) If o is unitary and t € T, then Tnd? 3L (00 ¢y) is unitary with respect to the

un’ HE X,
inner product (3.4)).
(b) Indz?;l;% (o o @) is (anti-)tempered if and only if o is (anti-)tempered and
teTh.

Proof. Since T' acts by *-algebra automorphisms and I' - T~ = T, it does not
disturb the properties unitarity and temperedness. Hence it suffices to prove the
lemma in the case I' = I, ={id}. Then (a) and the ”if’-part of (b) are [Opd2,
Propositions 4.19 and 4.20].

For the only if’-part of (b), suppose that ¢t € TF \ T.X'. Since X N (PV)* is
of finite index in X¥ = X/(X N QP), there exists x € X N (PY)*+ with |t(z)| # 1.
Possibly replacing « by —x, we may assume that |¢(z)| > 1. But §(¢¢(0))(v) = z(t)v
for all v € Vs and o € Z(X x Wp), so the HF-representation § o ¢; is not tempered.
Hence its induction to H cannot be tempered. Similarly, if ¢ is not tempered, then
the restriction of o o ¢ to H(X NQP, Rp,Y/Y N P+, RY,, P,qp) is not tempered.

The same proof works in the anti-tempered case, we only have to replace |t(z)| >
1 by |t(x)| < 1. O

Remark. 1t is possible that Indzﬁgr, (0 o ¢) is unitary with respect to some inner
P

product other than (3.4)), if the conditions of part (a) are not met.

We intend to partition Irr(H x I') into finite packets, each of which is obtained
by inducing a discrete series representation of a parabolic subalgebra of H. Thus
our induction data are triples (P, d,t), where

e P C Fy;
e (0,Vs) is a discrete series representation of H p;
o tc TP,

Let = be the space of such induction data, where we regard ¢ only modulo equivalence
of H p-representations. We say that & = (P, §,t) is unitary if t € I’ | and we denote
the space of unitary induction data by =Z,,. Similarly we say that £ is positive if
|t| € TP+, which we write as ¢ € Z*. Notice that, in contrast to Langlands data,
we do not require |t| to be strictly positive. We have three collections of induction

data:

(1]
[1]

Eun CET C

. (3.5)

By default we endow these spaces with the topology for which P and ¢ are discrete
variables and T'F carries its natural analytic topology. We will realize every irre-
ducible H x I'-representation as a quotient of a well-chosen induced representation

7' (€) == Ind}*" 7 (P,6,t) = Ind} 3" (5 0 ¢y).
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We note that for all s € TWoxI',
7l (P, 6,ts) = - (P, 6,t) o ¢s. (3.6)

As vector space underlying 7! (¢) we will always take C[[TW ] ® V. This space does
not depend on ¢, which will allow us to speak of maps that are continuous, smooth,
polynomial or even rational in the parameter ¢ € T .

The discrete series representations of affine Hecke algebras with irreducible root
data were classified in [OpSo2]. Here we recall only how their central characters can
be determined, which is related to the singularities of the elements 2. Consider the
Wy x I-invariant rational function

_ -1
n= HaeRo ¢, € C(T),

where ¢, is as in . Notice that n depends on the parameter function ¢, or more
precisely on ¢'/2. A coset L of a subtorus of T is said to be residual if the pole order
of n along L equals dim¢(7") — dime (L), see [Opd4]. A residual coset of dimension
0 is also called a residual point. Such points can exist only if R is semisimple,
otherwise all residual cosets have dimension at least rank Z(W) > 0.

According to [Opd2, Lemma 3.31] the collection of central characters of discrete
series representations of H(R,q) is exactly the set of Wy-orbits of residual points
for (R,q). Moreover, if ¢ is a discrete series representation of Hp with central
character W(Rp)r, then rT¥ is a residual coset for (R,q) [Opd2, Proposition 7.4].
Up to multiplication by an element of Wy, every residual coset is of this form [Opd2
Proposition 7.3.v].

The map that assigns to £ € = the central character of 7(£) € Mod¢(H(R,q)) is
an algebraic morphism E — T'/W,. The above implies that the image of

((P.6,t) €E:|Fy\ P| = d} (3.7)

is the union of the d-dimensional residual cosets, modulo Wj.
Let dp be the unique onedimensional representation of Hy = C and consider

M(t) :== 7" (0, 89,t) = Ind’F*F (8p 0 ¢y) = Indg(xg)(Ct, teT.

The family consisting of these representations is called the principal series of H x I’
and is of considerable interest. For example, by Frobenius reciprocity every irre-
ducible H x I'-representation is a quotient of some principal series representation.

Lemma 3.1.2. Suppose that h € H x T and that M(t,h) = 0 for all t in some
Zariski-dense subset of T. Then h = 0.

Proof. Since M(t,h) € Endc(C[I'Wy]) depends algebraically on ¢, it is zero for
all t € T. Write h = waeFxWO ANy With ay,, € A and suppose that h # 0.
Then we can find w’ € Wy that a,,s # 0 for some v € T', and such that /(w’) is
maximal for this property. From Theorem [I.2.1}d we see that

M(#,h)(Ne) = > byuNyy
ywel' x Wy

41



for some by, With by = @y 7# 0. Therefore M(t, h) is not identically zero. This
contradiction shows that the assumption h # 0 is untenable. O

By [Opd2, Corollary 2.23] discrete series representations are unitary. (Although
Opdam only worked in the setting I' = {id}, his proof also applies with general I".)
From this and Lemma [3.1.1] we observe:

Corollary 3.1.3. Let £ = (P,5,t) € . Ift € T | then 7' (€) is unitary and
tempered. Ift € TY \ T | then 7 (€) is not tempered.

un’

For any subset Q C Fp, let 29,79, ... denote the things =, , ..., but for the
algebra HY instead of H. For £ = (P,§,t) € Z we define

P):={a€ Ry: |a(t)| =1}. (3.8)
Proposition 3.1.4. Let £ = (P,0,t) € ET.
(a) The HP© x [ p(¢)-representation 7P €L (&) is completely reducible.

(b) Ewvery irreducible summand of wP T pe (&) is of the form 7POTre (P(&),0,t7©) p),
where (P(€),0,t7©) | p) is a Langlands datum for H x T and t"©t1 ¢ Tp(e)-

(¢) The irreducible quotients of 7' (&) are the representations LY (P(€),0,t7©€) p),
with (P(€),0,t7©) p) coming from (b).

(d) Every irreducible H x I'-representation is of the form described in (c).

HxT . . .
(e) The functor Indﬂp(g)xrp(g) induces an isomorphism

EndHP(E)pr(g) (ﬂ'P(é)’FP(é) (f)) =~ Eﬂdyxr(ﬂ(f))-

Remarks. Part (a) holds for any & € Z. In (b) tP© is uniquely determined
modulo Kpg).
Proof. (a) By construction there exists 7€) € TP such that

t(tp(g))_l € Tp(g)ﬂm. (39)

Then &) (P,6,t) o qSt}l(E) = 7P (P, 6,t(tp(§))_1) is unitary by Corollary m In
particular it is completely reducible, which implies that 7 © (P, 0, t(tP (5))_1) is also
completely reducible. By [Sol5, Theorem A.1.c]

P(¢)
7P OTr@ (¢) = 7POTPO (P, 1) = IndZP@ TP PP, ) (3.10)

remains completely irreducible.
(b) By Corollary 7P©) (P, s, t(tf (5))_1) is tempered and unitary, so by Lemma
2.2.6] all its irreducible summands are of the form

”P(f)(P(f)aU, k) = Lp(g)(P(f),o, k), where k € Tf(g).

n
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Moreover £ () (P, 5at(tp(£))7l) |<C[XO(P(£)V)l]

X N (P(€)Y)*-representation, so k € Kpg) = TE© n Tp(¢),un- Together with (3.9)
this implies ktF©¢1 ¢ Tp(¢),un- Hence every irreducible summand of (3.10) is an
irreducible summand of some

consists only of copies of the trivial

HPEO T p
nd
HP(E)

By Clifford theory (see the proof of Corollary these are of the required form
P OTre (P(€), 0, kt"©), p).

(c) Follows immediately from (b) and Corollary

(d) By Corollary b it suffices to show that every H! x I p-representation of
the form (o o ¢;) ® p is a direct summand of some 757t (¢+). Without loss of
generality we may assume that P = Fy and that I'p,; = I". The H-representation
0 0 ¢y is irreducible and tempered, so by [DeOpl, Theorem 3.22] it is a direct
summand of 7(¢’) for some & = (P, p/,t') € Zyy. Then (P, 0, t'|t]) € =F and oo ¢y
is a direct summand of 7(P’, p/,t'|t|). By Clifford theory [Sol5, Theorem A.1.b] the
H x I'-representation (o o ¢;) ® p is a direct summand of 7' (P', &', '|t]).

(e) Follows from (a), (b) and Lemma [2.2.6]b. O

OrPO(P(E), 0, kt"E).

The parabolically induced representations 7' (£) are by no means all disjoint.
The relations among them are described by certain intertwining operators, whose
construction we recall from [Opdl], |[Opd2].

Suppose that P,Q C Fy,u € Kp,g € I' x Wy and ¢g(P) = Q. Let § and o be
discrete series representations of respectively Hp and H¢, such that o is equivalent
with § o ¢, 1 o ¢p, 1. Choose a unitary map Iy" : Vs — V, such that

I74(3(h)v) = o(thy 0 Yu(h))(IL(v)) Vv € Vi, h € Hp. (3.11)

Notice that any two choices of I{" differ only by a complex number of norm 1. In
particular I{" is a scalar if o = 4.
We obtain a bijection

Iy : (C(T/Wo) Qz(#) H) x T @qyr Vs — (C(T /W) Qz(H) H) T @qyo Vs,
Iju(h®v) = hzg_l ®I§u(v). (3.12)

Theorem 3.1.5. (a) The map Iy, defines an intertwining operator
r T r
™ (gu, P,6,t) : m (P4, t) = 7 (Q, 0, g(ut)).

As a map CTWT]@c Vs — CTWR] @c V, it is rational int € TT and constant
on TFo-cosets.

(b) This map is reqular and invertible on an open neighborhood of T, in TT (with
respect to the analytic topology).

(c) 7'(gu, P,6,t) is unitary if t € TL .
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Remark. Due to the freedom in the choice of , for composable g1,92 € G
the product m(g1,928)m(g2,€) need not be equal to m(g192,&). The difference is a
locally constant function whose absolute value is 1 everywhere.

Proof. 1f g = yw € I' x Wy, then Iy, = I, o I, modulo this locally constant
function. It follows directly from the definitions that the theorem holds for I, so
the difficult part is I, which is dealt with in [Opd2, Theorem 4.33 and Corollary
4.34]. O

The intertwining operators for reflections acting on the unitary principal series
can be made reasonably explicit:

Lemma 3.1.6. Suppose that 8 € Ry and t € T,,. Then WF(Sﬂ,@,(Sw,t) s a scalar
operator if and only if cgl(t) =0.

Proof. Suppose that o € Fy,t € T and c;'(t) = 0. Then implies that
1449 (t) =0, regarded as an element of H(Wy, q). Hence 7' (sq,0, 8y, t) is a scalar
operator. Conversely, if ¢, !(t) # 0, then shows that 1+ 1) (¢) is not scalar,
because the action of 1 + ¢(s4)"/2N;, on H(Wo, q) has two different eigenvalues.

With Theorem we can see that this is not specific for simple reflections.
Find w € Wy such that w(8) = « is a simple root. Then sz = w™tsqw, so up to a
nonzero scalar

ﬂr(sg, 0,0g,t) = Wp(w_l, 0, 0, wt) WF(Sa, 0, 0p, wt) WF(w, 0,00,t).

Now we notice that cgl(t) = Oifand only if ¢; ' (wt) = 0, and that ¥ (w™!, 0, 6y, wt) =
7t (w, 0, 8p,t) ! up to a scalar. O

Thus it is possible to determine the H-endomorphisms for unitary principal series
representations, at least when the isotropy groups of points ¢ € T, are generated
by reflections. The reducibility and intertwining operators for nonunitary principal
series are more complicated, and have been subjected to ample study [Katl, Rog}
Reel]. For other parabolically induced representations the intertwining operators are
less explicit. They can be understood better with the theory of R-groups [DeOp2].

The action of these intertwining operators on the induction data space = is
described most conveniently with a groupoid G that includes all pairs (g, u) as above.
The base space of G is the power set of Fy, and for P, ) C Fj the collection of arrows
from P to Q is

Grg ={(g9,u) : g €' x Wo,u € Kp,g(P) = Q}. (3.13)
Whenever it is defined, the multiplication in G is
(gl7u,) : (g,U) = (g/gag_l(u,>u)'

Usually we will write elements of G simply as gu. This groupoid acts from the left
on = by
(g,u) - (P,0,t) := (g(P), 6 0tb, oy g(ut)),
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the action being defined if and only if g(P) C Fy. Since T+ D TF+ is a fundamental
domain for the action of Wy on T', every element of = is G-associate to an element
of ZT.

Although 7' (gu(P,6,t)) and 7' (P, d,t) are not always isomorphic, the existence
of rational intertwining operators has the following consequence:

Lemma 3.1.7. The H x D-representations ©' (gu(P,d,t)) and «'(P,6,t) have the
same irreducible subquotients, counted with multiplicity.

Proof. This is not hard, the proof in the graded Hecke algebra setting [Sol5,
Lemma 3.4] also works here. O

3.2 The Schwartz algebra

We recall the construction of various topological completions of H [Opd2|: a Hilbert
space, a C*-algebra and a Schwartz algebra. The latter is the most relevant from
the representation theoretic point of view. All tempered representations of H extend
to its Schwartz completion, and a close study of this Schwartz algebra reveals facts
about tempered representations for which no purely algebraic proof is known.

Let L2(R, q) be Hilbert space completion of H with respect to the inner product
(3-2). By means of the orthonormal basis {N,, : w € W} we can identify L*(R,q)
with the Hilbert space L?(W) of square integrable functions W — C.

For any h € H the map H(R,q) — H(R,q) : i’ — hh' extends to a bounded
linear operator on L%(R,q). This realizes H(R,q) as a *-subalgebra of B(L?(R,q)).
Its closure C*(R, q) is a separable unital C*-algebra, called the C*-algebra of H.

The Schwartz completion of H will, as a topological vector space, consist of
all rapidly decaying functions on W, with respect to some length function. For this
purpose the length function £(w) of the Coxeter system (W&, $2f) is unsatisfactory,
because its natural extension to W is zero on Z(W). To overcome this inconvenience,
recall that

X @zR=0a"=a} & =af, & (Z(W) @z R).

Thus we can decompose any x € X C a* uniquely as x = zp, + zfo ¢ a}o @ a*bo,
Now we define

N(w) = t(w) + [|w(0)™]| w e W.
Since W @ Z(W) is of finite index in W, the set {w € W : N'(w) = 0} is finite.

For n € N we define the following norm on H:

pu( S huNy) = sup [hol(V(w) + 1)".

weW weWw

The completion S = S(R, q) of H with respect to the family of norms {p,, : n € N} is
a nuclear Fréchet space. It consists of all (possibly infinite) sums h =", 1 hwNw
such that py,(h) < oo for all n € N.
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Theorem 3.2.1. There exist Cy > 0, d € N such that Vh,h' € S(R,q),n € N

17l B2 (r.q)) < Capa(h),
pn<h : hl) < qun+d(h)pn+d(h/)-

In particular S(R,q) is a unital locally convex *-algebra, and it is contained in
C*(R,q).

Proof. This was proven first with representation theoretic methods in [Opd2]
Section 6.2]. Later the author found a purely analytic proof [OpSo2, Theorem A.7].
O

It is easily seen that the action of I' on H preserves all the above norms. Hence the
crossed product S x I' = S(R,q) x I' (respectively C*(R,q) x I') is a well-defined
Fréchet algebra (respectively C*-algebra). For ¢ = 1 we obtain the algebras

SR xD = SW) = SX)xW, = C®(Tun) % W,

where S(X) denotes the algebra of rapidly decreasing functions on X.

We can use these topological completions to characterize discrete series and
tempered representations. According to [Opd2, Lemma 2.22], an irreducible H x I'-
representation m is discrete series if and only if it is contained in the left regular
representation of H x I' on L?(R,q) ® C[I'], or equivalently if its character x, :
H x T — C extends to a continuous linear functional on L?(R,q) ® C[I].

By [Opd2, Lemma 2.20] a finite dimensional H x I'-representation is tempered
if and only if it extends continuously to an S x [-representation. More generally,
suppose that 7 is a representation of H X I' on a Fréchet space V', possibly of infinite
dimension. As in |[OpSoll, Proposition A.2], we define 7 to be tempered if it induces
a continuous map (S xI') xV — V.

A crucial role in the harmonic analysis on affine Hecke algebra is played by a
particular Fourier transform, which is based on the induction data space Z. Let
V£ be the vector bundle over =, whose fiber at (P,d,t) € = is the representation
space C[I' x WF]® Vj of 7'(P, 4,t). Let End(VL) be the algebra bundle with fibers
Endc(C[T x W¥]® Vs). The inner product endows Endc(C[T' x W¥]® Vs) and
End(VL) with a canonical involution *. Of course these vector bundles are trivial
on every connected component of =, but globally not even the dimensions need be
constant. Since = has the structure of a complex algebraic variety, we can construct
the algebra of polynomial sections of End(VL):

O(Z;End(VE)) := D O(T") @ Endc(C[T x WP @ V).
P,$

Given a reasonable subset (preferably a submanifold) ' C Z, we define the algebras
L?(Z;End(VL)), C(Z';End(VE)) and C*°(Z';End (VL)) in similar fashion. Further-
more, if p is a sufficiently nice measure on = and Z’ is compact, then the following
formula defines a Hermitian form on L?(Z'; End(VL)):

(e = [ oA (€) die (3.15)
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The intertwining operators from Theorem [3.1.5|give rise to an action of the groupoid
G on the algebra of rational sections of End(VL), by

(g- )& =7"(g,97 ") flg 'O (9,970 7", (3.16)

whenever g71¢ € = is defined. This formula also defines groupoid actions of G on
C(Z;End(VL)) and on C*(Z'; End(VL)), provided that Z’ is a G-stable submanifold
of = on which all the intertwining operators are regular. Given a suitable collection
Y of sections of (2, End(VL)), we write

S9={fex:(g-f)€)=f(€)forallge G, ¢&ecE such that g~'¢ is defined}.
The Fourier transform for H x I' is the algebra homomorphism

F:HxT — O(5;End(VY)),
F(h)(&) = m(&)(h).
The very definition of intertwining operators shows that the image of F is contained

in the algebra O(Z; End (VL ))g The Fourier transform also extends continuously to
various topological completions of H x I':

Theorem 3.2.2. (Plancherel theorem for affine Hecke algebras)
The Fourier transform induces algebra homomorphisms

H(R,q) xT — O(Z; End(VL))?,
S(R,q)xT — C°(Eyn; End(VE))Y,
9

C*(R,q) xT —  C(Eun; End(V,

)"

The first one is injective, the second is an isomorphism of Fréchet *-algebras and
the third is an isomorphism of C*-algebras.
Furthermore there exists a unique Plancherel measure pup; on = such that

o the support of pp; 1S Zyn;
e Lp; is G-invariant;

e the restriction of p, to a component (P, 6, TP is absolutely continuous with

respect to the Haar measure of Tzﬁl;

e the Fourier transform extends to a bijective isometry
- g
(LA(R,q) @ C[T); (, )r) — (L*(Zun; End(VE))”5 (, Yupt)-

Proof. Once again the essential case is I' = {id}, which is a very deep result
proven by Delorme and Opdam, see Theorem 5.3 and Corollary 5.7 of [DeOpl] and
[Opd2, Theorem 4.43].

To include I' in the picture we need a result of general nature. Let A be any
complex I'-algebra and endow A ®c End(C[I']) with the I'-action

v (a® ) =7-a® foy)y? acAyel',veClll, f € End(C[I]). (3.17)

47



There is a natural isomorphism
AxT = (A®cEnd(C[))". (3.18)

This is easy to show, but it appears to be one of those folklore results whose origins
are hard to retrace. In any case a proof can be found in [Sol3, Lemma A.3|. For
A = C(Zun; End(VL)) the action (3.17) corresponds to the action of ' on End(VE)
described in . The greater part of the theorem follows from and the case
I' = {id}. It only remains to see how the inner products (, ), and (, )., behave
when T' is included. Let us distinguish the new inner products with a subscript I'.
On the Hecke algebra side it is easy, as the formula does not change, so

<h,h/>7— if ’Y:’V/v
0 if v #4.

On the spectral side the inclusion of I' means that we replace every H-representation
(&) by Ind%“rw(ﬁ). In such an induced representation the elements of I" permute
the H-subrepresentations ym(£), while h € H acts by n(y1(h)) on y7(¢). The
action of I" on H preserves the trace and the *, so

tr(ﬂr(f,Nwh)*ﬂr(&Nwh/)):{ grermem) L

In view of ([3.15)), this means that the L?-extension of F is an isometry with respect
to the Plancherel measure ur p; = 0|~ upy. O

(Nyh, Nyh)rr = {

Corollary 3.2.3. The center of S(R,q) xI' (respectively C*(R,q) xT") is isomorphic
to C®(Zun)? (respectively C(Zyun)9).

Proof. This is the obvious generalization of [DeOp1l], Corollary 5.5] to our setting.
O

Notice that Z(S x TI') is larger than the closure of Z(H x I') in § x I, for example
Z(S xT') contains a nontrivial idempotent for every connected component of Z,,,/G.
Varying on the notation Mod(H x I') we will denote by

Mod; (S » T)

the category of finite dimensional S xT'-modules with Z(SxI')-weights in ¥ C E,,,/G.

Let us compare Schwartz algebras of affine Hecke algebras with those for reduc-
tive p-adic groups. Suppose that G is reductive p-adic group and that H x I' is
Morita equivalent to H(G)s, in the notation of Section The (conjectural) iso-
morphism described in ([1.28)) is such that a* = X ®z R corresponds to X,(A) @z R.
The conditions for temperedness of finite length representations of H xI'" and H(G)s
are formulated in terms of corresponding negative cones in a* and in X,(A4) ®z R.
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Therefore such a Morita equivalence would preserve temperedness of representations.
Thus Mod (S x I') would be equivalent to the category of finite length modules

Mod;4(S(G)) = Mod (S(G)s), (3.19)

where S(G) is the Harish-Chandra—Schwartz algebra of G and S(G)s is its two-sided
ideal corresponding to the inertial equivalence class s € B(G).

Moreover, is I is an Iwahori subgroup of a split group G, it is shown in [DeOpl],
Proposition 10.2] that the isomorphism H(G,I) = H(R,q) extends to an isomor-
phism S(G,I) = S(R,q). Therefore it is reasonable to expect that more generally
S(G)s will be Morita equivalent to S(R,¢) x T in case of an isomorphism ([L.28). Fur-
ther support of this is provided by Theorem in comparison with the Plancherel
theorem for S(G) [Wal] and for C}(G) [Ply2]. These show that S(R,q) x I'" and
S(G)s, as well as their respective C*-completions, have a very similar shape, which
can almost entirely be deduced from their categories of finite length modules.

3.3 Parametrization of representations with induction
data

Theorem is extremely deep and useful, a large part of what follows depends on
it. It shows a clear advantage of S over H, namely that the Fourier transform con-
sists of all smooth sections. In particular one can use any smooth section, without
knowing its preimage under F. By Corollary [3.:2.3| the irreducible tempered H x I'-
representations are partitioned in finite packets parametrized by Z,,,/G. Moreover,
from Theorem [3.2.2| Delorme and Opdam also deduce analogues of Harish-Chandra’s
Completeness Theorem [DeOpl], Corollary 5.4] and of Langlands’ Disjointness The-
orem [DeOpl], Corollary 5.8].

We will generalize these results to all irreducible representations. For that we do
not need all induction data from =, in view of Lemma, [3.1.7] it suffices to consider
£ € ZT. At the same time this restriction to positive induction data enables us to
avoid the singularities of the intertwiners (g, &).

Theorem 3.3.1. Let £ = (P,0,t),&' = (P8 ,t) e =F.

(a) The H xT-representations 7' (€) and 7' (¢') have a common irreducible quotient
if and only if there exists a g € G such that g€ = &'.

(b) The operators {n"(g,&) : g € G,g€ = &'} are regular and invertible, and they
span Homggr (' (€), 77 (€7)).

Proof. (a) Suppose that there exists a g € G with g¢ = ¢/. Since 7' (v,¢) is
invertible for v € I', we may replace £ by ~v&’, which allows to assume without loss
of generality that g = (w,u) € Wy x Kp.

Recall that 7" is a fundamental domain for the action of Wy on T,.5. Since |¢| and

|t'] are both in T we must have |t| = w(|t|) = |¢/| and hence P(¢) = P(¢’). Thus
wu(P,6,t|t|™1) = (P, ¢, ¢'|t'|~1) and by Theorem b the HF©-representations

PO (P, s, t|t| ™) = aPE(P,5,t) o ¢p and
wP P8 ) = 7O ) 0 g
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are isomorphic. Hence 7€) (P, §,t) = 7P ©) (P’ §' t'), which implies that 7" (¢) and
7t (¢') are isomorphic. In particular 7' (¢) and 7' (¢/) have the same irreducible
quotients.

Conversely, suppose that 7' (¢) and 7!'(¢') have a common irreducible quotient.
Again we may replace & by v¢’ for any v € T'. In view of this, Proposition [3.1.4lc
and Corollary b we may assume that P(£) = P(¢') and that the H©) x
[ p(¢)-representations 7@ Tre (&) and 7€ TP© (&) have a common irreducible
summand 77 TP (P(€),0,tF©) p).

Pick s € T, ﬂ(f)tp ©) such that 7€) and t7©s~1 have the same isotropy group
in Wy x I'. This is possible because TY is a complex algebraic subtorus of 71" for
every g € Wy x I'. The HP®) x [ p(¢)-representations ﬂp(f)’FP@)(P, 5,ts~1) and
P& Lre (P § #'s71) are completely reducible by Proposition a, and they
have the common irreducible summand

HP<5)><FP(5>

P OTr© (P(&),0,t" s p) =Ind, pey 1

—1
00 Pipe) 0Py @ p).
P(£),0,t7(8) ( ! * p)

Moreover, because every irreducible summand is of this form,

Homyre) ur, (WP(S)’FP@)(P, o,ts71), WP(f)’FP(&)(P’,(S',t’s_l)) o

HomHP@xI‘P(O (WP(E),FP(f)(p’ 5 75)’WP@)’FP(E)(P’,&’?t’)) #0. (3.20)
Since t7©s~1 € T,,, we have ts ', t's™' € Ty,,. So |t| = |¢/| and the repre-
sentations 77 ETP© (P8, ts1) and 7@ (P’ ¢ t's1) extend continuously to
S(RFE) ¢P9) x [p(e)- Now Theorem for this algebra shows that the left
hand side of (3.20) is spanned by the intertwiners 77 &1r© (g, P,§ ts71) with
g(P,o,ts™1) = (P, &', t's™1). Since is nonzero, there exists at least one such
g € G. The choice of s guarantees that g(P,d,t) = (P',d,t') as well.

(b) By Theorem the 77€)TP@© (g, P 6,ts7!) are invertible and constant on
TP©)_cosets. Hence the 71 ©):Tre (9, P, d,t) span the right hand side of (3.20), and
they are invertible. O

It is interesting to compare Theorem with [Reel], which describes the H-
endomorphisms of principal series representations M (t). It transpires that the re-
sults of [Reel] simplify considerably when |¢| is in the positive Weyl chamber: then
Endy (M (t)) is semisimple and all its irreducible quotients occur with multiplicity
one.

Now we can prove the desired partition of Irr(#H x I') in packets:

Theorem 3.3.2. Let w be an irreducible H xI'-representation. There exists a unique
association class G(P,0,t) € £/G such that the following equivalent properties hold:

(a) 7 is isomorphic to an irreducible quotient of 7' (¢%), for some &¥ € =t N

g(Pu 57 t);

(b) 7 is a constituent of ©¥ (P, 0,t), and ||ccp(8)|| is mazimal for this property.
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Proof. Proposition [3.1.4ld says that there exists £* = (P',d',t') € =+ satisfying
(a), and by Theorem its G-association class is unique.

Let £ = (P,0,t) € Z such that 7 is a constituent of 7! (¢) and ||ccp(6)]| is maximal
under this condition. By Lemma we may assume that £ € =, Suppose that 7
is not isomorphic to a quotient of 7' (¢). In view of Propositionthis means that
there exist Langlands data (P(¢+), 07, 7€), o) and (P(€), 0, 7@, p) such that 7 =
LE(P(&+), 0", t'PED) o) is a constituent but not a quotient of 7% (P(¢), 0,7, p).
Now Lemma 2.2.6b tells us that

[ecre) ()| < [lecpiery(a)]]-

But ccpe) (o) = Wpeyeep(d) and cep(e+y(0') = Wperycepr (8'), so

lleep(8)] < [[ecp (8],

contradicting the maximality of ||ccp(d)||. Therefore m must be a quotient of 7 (£).

Thus the association class G¢ satisfies not only (b) but also (a), which at the
same time shows that is unique. In particular conditions (a) and (b) turn out to be
equivalent. O

All these constructs with induction data have direct analogues in the setting of
graded Hecke algebras [Sol5, Sections 6 and 8]. Concretely, = is the space of all
triples {N = (Q,0,), where Q C Fy, o is a discrete series representation of Hg and
A € t9. The subsets of unitary (respectively positive) induction data are obtained
by imposing the restriction A € ia®? (respectively A € a®* +ia?). The corresponding
induced representation is

7€) = mdE2 T (Q, 0, )) = Indggr(m\).

The groupoid G and its action on = are defined like G, but without the parts Kp.
We would like to understand the relation between induction data for H x I and for
H x I". We consider, for every u € T,,, the induction data for (ﬁu, ky) with A € a.
Thus we arrive at the space Z of quadruples & = (u, P, 5, A) such that:

o u € Typ;
e PCFy;

e 0 is a discrete series representation of H(ﬁu Pk, p);

o \eal.
The H x I'-representation associated to é is

7 (u, P, 6, \) = Indgfgu qu)w(ﬁ, 5N,

where the H(Ry, ky)-representation (P, 5, A) is considered as a representation of
H(Ru, qu), via Theorem
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For g € G the map ¢, from and induces an algebra isomorphism
H(Ru, ku) — H(Ry(u), kg(u)), and the stabilizer in G of u € Ty, is the groupoid G,
associated to (Ry, ky). This leads to an action of G on =

The collections of H x I'-representations corresponding to = and to = are almost
the same, but not entirely:

Lemma 3.3.3. There exists a natural finite-to-one surjection
2/ — E/G, G G,

with the following property. Given é € Z one can find & € E (not necessarily all
different) such that |J; G&; is the preimage of GE and ' (§) = @, 7' (&).

Proof. Given ¢ = (P,§,t) € Z, let t = u”'c? € TP x T be the polar decomposi-
tion of ¢ and let upcp € Tpy, x Tp,s be an Ap-weight of §. Put
Wf{up ={w € W(Rp) : w(up) = up, w(R}

Pup

y=RS. 1. (3.21)

— “*Pup

By Theorem there exists a unique discrete series representation

01 of H(RPup:qPup) » W;{UP such that § = Indz” (61).

(RP,uP 7qP,uP ) X Wli:up

Then automatically

P

(RE

~ H
do ¢t = Il’ld,H up}qu)

wWE (61 0 ¢r).

Pup

Let ¢’ be an irreducible direct summand of the restriction of 61 to H(Rpup, qPup)s
such that upcp is a weight of §’. Then d; o ¢, is a direct summand of

H(RE ,ah ) W

IndH(Rg:qu) PP (0 0 ), (3:22)
so wl'(€) is a direct summand of
HXI /
IndH(pr»fpr)(é o Py). (3.23)

By Theorem 0’ can also be regarded as a discrete series representation & of
H(Rp.up,kpup) with central character W(Rp.,)cp. Then & o ¢ corresponds to
the representation Slog(cp) of H(?éfp,kfjp). Let P be the unique basis of Rpa,
contained in Ra' .

All in all (P,8,t) gives rise to the induction datum & = (P, 4,log(c¢P)) for the
graded Hecke algebra H(Rp.up, kpup). Since Rp,, is a parabolic root subsystem
of Ry, ,5 can also be regarded as an induction datum for H(?@u, k,). Let us check
the possible freedom in the above construction. All Ap-weights of § are in the same
Wp-orbit, so another choice of upcp differs only by an element of Wp. All possible
choices of ¢’ above are conjugated by the action of the group W];t upe and (WoxT)u

is the unitary part of the central character of 7' (¢). Therefore & determines the
quadruple

= (u, P,5,log(c")) € E
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uniquely modulo the action of G. That yields a map = — = /G, & — G¢, and since
the actions of G are defined in the same way on both sides, this map factors via =Z/G.

By reversing the above steps one can reconstruct the representations ¢’ o ¢; and
from &, up and uf’. In fact it suffices to know & and the product u = upu? €
Tyun. Namely, the only additional ambiguity comes from the group Kp, but this is
inessential since

(6" 0 thy—1) 0 gy = 6" 0 ¢y for k € Kp.

H(RPupquup)NW;
J ) up (sl
HR b pstpnp) (6"), and the other

constituents ¢; (1 < j < n) are also discrete series representations. Hence (3.23)) is
a direct sum of finitely many parabolically induced representations

By construction 47 is a direct summand of Ind

' (P, Tnd}” (6;),1).

(RP,uP 7qP,uP)><1W;:uP

Now Corollary assures that our map Z/G — é/ G is surjective and that the
preimage of G(u, P,d,log(c’)) consists precisely of the association classes

G(P,Ind%" (6;),t) (1<j<n). O

(RP,uP 7qP,up)>4W1i:uP

Remark. Things simplify considerably if the group W up = {id} in (3.21]), then the

map Z/G — E/g is bijective on (P,§,T7)/G. In many cases this group is indeed
trivial, but not always. See [OpSo2), Section 8], where W;UP is denoted I'y(e).

3.4 The geometry of the dual space

For any algebra A the set Irr(A) has a natural topology, the Jacobson topology.
This is the noncommutative generalization of the Zariski topology, by definition all
its closed sets are of the form

V(S) :={relrr(A):n(s) =0Vs € S} S cC A

In this section we discuss the topology and the geometry of Irr(H x I'), and we
compare it with the dual of S x I". This will be useful for the proof of Theorem [2.3.1
and for our discussion of periodic cyclic homology in Section [5.2
Parabolic induction gives, for every discrete series representation § of a parabolic
subalgebra H p, a family of H xT'-representations 7 (P, 6, ), parametrized by t € T .
The group
Grsi={g€G:g(P) = P.3ou;" =5}

acts algebraically on 77, and by Lemma points in the same orbit lead to
representations with the same irreducible subquotients.

Theorem allows us to associate to every 7 € Irr(H xI') an induction datum
¢+(m) € EF, unique modulo G, such that 7 is a quotient of 7' (¢ (7)). For any
subset U C TT we define

Irpsg(HxT)={relr(H =xT): G (m)N(P,6,U) # 0}
For U =TT or U = {t} we abbreviate this to Irrps(H x ') or Irrps+(H x I).
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Proposition 3.4.1. Let U be a subset of TPTTE such that every g € Gps with
gUNU # 0 fizres U pointwise. For arbitrary t € U there are canonical bijections

Tirps(Hp ¥ Upss) x U — Trrp s (HY 1 Tpsy) — Trrp gy (H x T).

Remark. It is not unreasonable to expect that the Jacobson topology of H x I’
induces the Zariski topology on Irrps(Hp x I'ps¢) x U, where Irrps(Hp X I'psy) is
regarded as a discrete space. However, while it is easy to see that all V' (k) become
Zariski-closed in Irrps(Hp % I'ps¢) x U, it is not clear that one can obtain all
Zariski-closed subsets in this way. That might require some extra conditions on U.

Proof. By assumption every ¢ € U has the same stabilizer Gps; C Gps. Accord-
ing to Theoremthe operators {7 (g, P,d,t) : g € Gps,} span Endyyyr (7! (P, 6,1)).
By definition all elements of Irrps,(H x I') occur as a quotient of ' (P,§,t), but
the latter representation also has other constituents if it is not completely re-
ducible. We have to avoid that situation if we want to find a direct relation between
Endy (7t (P, 6,t)) and Irrp s (H x T).

Since 7' (P, 6,t) and 7''(g, P,d,t) are unitary for ¢t € T.X' . there exists an open
Gp s-stable tubular neighborhood T of T'L in T?, such that 7' (P, d,t) is completely
reducible and 7' (g, P, §,t) is regular and invertible, for all t € T and g € Gps. For
every t € U we can find r € Rsq such that t[t|"~! € TF. Let U. C TF be the
resulting collection. For every t € U, the algebras

{7"(P,6,t)(h) : h € H x T'} and span{n' (g, P,3,t) : g € Gps+}
are each others’ commutant in
Endc(n" (P, 4,t)) = Endc (C[IT?] ®c V3).
Hence there is a natural bijection between
e isotypical components of 7' (P, d,t) as a H x I-representation;
e isotypical components of 7! (P, 6,t) as a Gps-representation.

The operators ﬂ'F(P, 0,t) are rational in t € T P and regular on T GP . As there are
only finitely many inequivalent Gp s -representations of a fixed finite dimension, the
isomorphism class of 7' (P, d,t) as a G p,s--representation does not depend on ¢ € U,.
This provides a natural bijection

Irrpspy (H X T) «— Irrps(H x T') x Ue t e U.. (3.24)

The extended Langlands classification (Corollary [2.2.5)) shows that there is a canon-
ical bijection Irrp sy r—1(H x I') <> Irrpgs(H 2 T') for every r € Rxo, which allows
us to extend (3.24)) uniquely to

Il"l“p757U(’H X F) — Il"l“p,(;’to (7‘[ X F) x U to € U. (3.25)

The above also holds with the algebras H xI'ps; or Hp xI'ps; in the role of H x T
Since the construction of the intertwiners corresponding to g € Gps; is the same in
all three cases, we obtain natural isomorphisms

Endy;purp,, (IndZﬁNFP’S’tcS) =~ Endyr (xPTPoi (P 6,t)) = Endy (7t (P, 6,1)).

xps
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Now the above bijection between isotypical components shows that the maps

Irps(Hp x Tpsy) — Trrps(HY xTpsy) — Irrps(H % T)
p > po oy = Ind?20  (pogy)

HEXTp s,

are bijective, and (3.25)) allows us to extend this from one ¢ to U. O

Theorem shows that Irrps(H x I') and Irrg ,(H x I') are either equal or
disjoint, depending on whether or not (P,d) and (@, o) are G-associate. The sets
Irrps(H x I') are usually not closed in Irr(H x I'), because we did not include all
constituents of the representations 7' (P,§,t). We can use their closures to define
a stratification of Irr(H x I'), and a corresponding stratification of Irr(S x I'). By
Corollarywe may identify Irrps(SxI") with the tempered part Irrp 5 p (H XTI
of Irrps(H % T).

Let A be a set of representatives for the action of G on pairs (P,d). Then
the cardinality of A equals the number of connected components of Z,,/G and by

Theorem B.2.2]
~ oo (P P Gp,s
SxT @(Ram (C>(TE) @c End(C[TWF] @c V5)) 7. (3.26)
Lemma 3.4.2. There exist filtrations by two-sided ideals

HXT=F(HxT) D Fi(HxD)
SxI'=FSxI) > F((SxT)

> F‘A‘(’H X F) =0,
> F‘A‘(S X F) =0,

>

>
with Fy(H x T) C Fy(S x T), such that for all i > 0:
(a) Irr(Fi1(S x T)/F;(S % T)) 2 Trrp, 5,(S % T),
(b) Irr(Fy—1(H x D) /F;(H xT)) =Irrp, 5, (K xT).

Remark. Analogous filtrations of Hecke algebras of reductive p-adic groups are
described in [Sol4, Lemma 2.17]. The proof in our setting is basically the same.
Proof. We number the elements of A such that

leer, (Il > [lecr, (6] it 5 <, (3.27)

and we define

FiHxT) = {heHxT:x(h)=0forall 7 €lrrp, s (H xT),j <i},
Fi(§xT) = {heSxT:xw(h)=0forall m €lirp, s, (SxT),j<i}.

Clearly F;(H xT') C F;(S xT') and
Fiy(S % D)/F(S % T) = (C™(TF,) @ End(C[T x WP) @c Vi) 77,
which establishes (a). For (b), we first show that

Ujgi Irrp, s, (H % T) (3.28)
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is closed in the Jacobson topology of Irr(H x I'). Its Jacobson-closure consists of
all irreducible subquotients 7 of WF(Pj,5j,t), for j < i and t € TP . Suppose that
7 & Irrp, 5,(H % T'). By Theorem |3.3.2) 7 € Irrps(H x I') for some discrete series
representation § of Hp with [ccp(0)[] > ||ccp, (6;)]]. Select (Pn,d,) and g € G such
that g(P,d) = (Pp,6,). Then w € Irrp, 5, (H x I') and

—

lece, (3a)ll = llecp ()| > |[cep, (65)]],
son < j <i by (3.27). Therefore (3.28) is indeed Jacobson-closed and
Irr(Fy(H % T)) = UM Irrp, 5, (H » T),

which implies (b). O

The filtrations from Lemma help us to compare the dual of H x I" with its
tempered dual, which can be identified with the dual of SxT". The space Irrp s(H xI")
comes with a finite-to-one projection onto

TPTE 1Gps =TT /(W(Rp) % Gps). (3.29)

The subspace Irtps(SxI') C Irrp s(H D) is the inverse image of T, /(W (Rp)xGp )
under this projection. By Proposition the fiber at t € T essentially depends
only on the stabilizer Gps;. Since Gps acts algebraically on TP the collection of
points t € T such that the fiber at (Wp x Gpg)t has exactly m points (for some
fixed m € N) is a complex affine variety, say T7™. As the action of G p,s stabilizes
TP | the variety TT™ is already determined by its intersection with 7.7 . Hence one
can reconstruct the set Irrps(H x I') from Irrps(S x I').

To complete the proof of Theorem [2.3.1la we will introduce some terminology.
We know from Lemma that representations of the form

HPNFP,é,u

wPTra(P 5, u) = Ind)l P (50 6,)  with (P,6,u) € Sy

are tempered and unitary. Let o be an irreducible summand of such an H' x
I'p 5 y-representation and let 17 be the connected component of TW(EP)Upsu that

contains 1 € T. Notice that 7% C TF because T]ZV (Rr) ig finite. Following [Opd3]
we call
{Ind}5" Ppga(T0B) 1t E 7} (3.30)

a smooth d-dimensional family of representations, where d is the dimension of the
complex algebraic variety TW (5P Trsu  If we restrict the parameter ¢ to 7o =
T N Tyn, then we add the adjective tempered to this description. Since there are
only finitely many pairs (P,d) and since two u’s with the same w717 give rise to
the same smooth family, there exist only finitely many smooth families of H x I'-
representations.

Correction (2022): To guarantee that the union of all smooth families of rep-
resentations spans Gg(H x I'), we need to allow more general 0. Namely, we need
all irreducible tempered elliptic representations of a parabolic subalgebra HE x I'p,
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where I, is an arbitrary subgroup of I'p. Here elliptic means that the image in
GQ(’HP x I",) does not belong to the span of the representations induced from
proper parabolic subalgebras of H x I'o. Such a o is a direct summand of the
HE Ip-representation associated to a triple (P, d,u) € Z,,,. With that, the below
arguments hold in the necessary generality.

For t € T such that Gpsut = Gps. and all the intertwiners 7' (g, P, 8, ut) with

g € Gpsu are invertible, the representation Ind%ﬁgrm (o o ¢) is irreducible by

Proposition Hence the family (3.30)) consists of representations which are
irreducible on a Zariski-open dense subset of the parameter space 1.
The proof of Proposition [3.1.4lb shows that
HxIT
IndHENFP’M (o0 y)
is always a direct sum of representations of the form #''(P’, o/, ¢, p’), where (P', o', t, p)
is almost a Langlands datum for H x T', the only difference being that |t/| € T)%

need not be positive. Nevertheless we can specify a ”Langlands constituent” of
T‘-F(P/7 O—/7t/7 pl):

Lemma 3.4.3. Let Q C Fy,t € T9, let 7 be an irreducible tempered Hq-represen-
tation and let p be an irreducible representation of C['g 4, k). The representation
m™(Q, 1,t, p) defined by has a unique ”Langlands” constituent L(ﬂ’F(Q, T,t, p))
which is minimal in the sense of Lemma .b. Moreover L(ﬂ'F(Q,T,t, p)) occurs
with multiplicity one in 7 (Q, 7,1, p).

Proof. Choose g € G such that g(Q,7,t) € 2. By Propositionb 9(Q,T,t,p)
is a Langlands datum for H x I' and by Theorem it does not matter which
g € G with this property we take. Like in Lemma 7' (9(Q, 7,t,p)) has the
same trace and the same semisimplication as 7' (Q, 7,t, p). Using Corollary a
we define

L(WF(Q,T,t, p)) = LF(g(Q, T,t, p)). (3.31)

Lemma [2.2.6]b characterizes this as the unique constituent which is minimal in
the appropriate sense, and it shows that L(WF(Q,T,t, p)) appears only once in

™(Q,7.t,p). O

Let L(Indﬁ’l{XF (o0 ¢¢)) be the direct sum of the Langlands constituents of

HPNFP’(;,
the irreducible summands of Indzﬁgrm’u (0 0 ¢¢). The family
{L(IndZ?,EFRM (cody):teT?} (3.32)

cannot be called smooth, because the traces of these representations do not depend
continuously on ¢. Let us call it an L-smooth d-dimensional family of representations.

Continuation of the proof of Theorem
We have to show that the Q-linear extension

G s Go(H % T) — Go(X x (Wo = T)). (3.33)
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of ¢* is a bijection. By properties (d) and (e) of Theorem [2.3.1]

* W *
C@L(IndzEZFgm (cogy)) = Indijgwo(;?)xrp@u)(CQ(U) o ¢Py). (3.34)

The right hand side is almost a smooth d-dimensional family of X x (W, x I')-
representations. Not entirely, because C@(U) is in general reducible and because a
priori this family could be only a part of a higher dimensional smooth family.

Let G{é(?—l xI') be the Q-submodule of Gg(H xI') spanned by the representations
, for all L-smooth families of dimension at least d € Z>¢. This is a decreasing
sequence of Q-submodules of Gg(H x I'), by convention

GPQ(’H XT')=Go(H =T

and Gé(?—[ xI') = 0 when d > dim¢(7T) = rank(X). We define G(S xT") analogously,
with tempered smooth families of dimension at least d. Now (13.34]) says that

C@(G?(H xT)) C G§(X x Wy % T),

G(GES®T)) C GLS(X) % Wy = T). (3.35)

Let us consider the graded vector spaces associated to these filtrations. For tempered
representations C@ induces Q-linear maps

GH(S % T)/GHHS 1 T) = GHS(W) x T)/GLTH(S(W) = T). (3.36)
We proved in Section that
(p: Go(SxT) = Go(S(W) xT) (3.37)

is bijective. Since there are only finitely many smooth families, it is impossible to
fill up a d-dimensional tempered smooth family with smooth families of dimension
smaller than d. Therefore (3.36]) is bijective for all d € Z>o. We will show that

GHH X T)/GETH(H % T) = GH(X x Wy x T)/GHH (X x Wy xT) (3.38)

is bijective as well. For d > dimc(7T') there is nothing to prove, so take d < dimg(T).
Pick smooth d-dimensional families {m;; : ¢ € I,t € V;} such that

{migriel,te (VinTy)/ ~} (3.39)
is a basis of Gé(S X F)/G(‘éﬂ(é’ x T), where t ~ ¢ if and only if m;; = m; 4.
Correction (2022): Rather, ¢ ~ ¢’ must mean that m;; and 7,y are linearly

dependent in Gé(é’ X F)/Gle+1(8 x I'). When m;; € Repps(S x T'), such linear
dependence can only occur if t' € Gpst.

The bijectivity of (3.36]) implies that

{G(miy)iel,te(VinTwm)/ ~}
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is a basis of Gle(S(W) X F)/GleH(S(W) x T'). The discussion following ((3.29) shows
that L-smooth d-dimensional families and tempered smooth d-dimensional families
are in natural bijection. Hence

{L(miy):ielteVi/~}
is a basis of Gé(?—l X F)/Géﬂ(}[ «T) and
{G(mig)rielteVi/~}

is a basis of G(‘é(X x Wy % I‘)/G(‘SFI(X x Wy xT). Therefore (3.38)) is indeed bijective.
From this we deduce, with some standard applications of the five lemma, that (3.33])
is a bijection. 0.
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Chapter 4

Parameter deformations

Let H = H(R,q) be an affine Hecke algebra associated to an equal parameter func-
tion q. Varying the parameter ¢ € C* yields a family of algebras, whose members are
specializations of an affine Hecke algebra with a formal variable q. The Kazhdan—
Lusztig-parametrization of Irr(H(R, q)) [KaLu2l Ree2] provides a bijection between
the irreducible representations of H(R,q) and H(R,q¢'), as long as ¢q,q' € C* are
not roots of unity. Moreover, every m, € Irr(H(R,q)) is part of a family of repre-
sentations {7, : ¢ € C*} which depends algebraically on g.

It is our conviction that a similar structure underlies the representation theory of
affine Hecke algebras with unequal parameters. However, at present a proof seems
to be out of reach. We have more control when we restrict ourselves to positive
parameter functions and to parameter deformations of the form ¢ — ¢ with € € R.
We call this scaling of the parameter function, because it corresponds to multiplying
the parameters of a graded Hecke algebra with e. Notice that H (R, ¢°) = C[W].

We can relate representations of H(R, q) to H(R, ¢¢)-representations by applying
a similar scaling operation on suitable subsets of the space T' = Irr(.4). We construct
a family of functors

Ge : Modf(H(R,q)) — Mod(H(R, ¢))

which is an equivalence of categories for € # 0, and which preserves many prop-
erties of representations (Corollary . In particular this provides families of
representations {g¢(m) : € € R} that depend analytically on e.

The Schwartz algebra S(R, q) behaves even better under scaling of the parameter
function ¢q. As ¢ can be varied in several directions, we have a higher dimensional
family of Fréchet algebras S(R,q), which is known to depend continuously on ¢
[OpSo2, Appendix A]. This was exploited for the main results of [OpSo2|, but the
techniques used there to study general deformations of ¢ are specific to discrete series
representations.

To get going at the other series, we only scale ¢q. Via a detailed study of the
Fourier transform of S(R,q) (see Theorem we construct homomorphisms of
Fréchet *-algebras

(:S(R,q°) = SR,q)  €€l0,1],

which depend piecewise analytically on € and are isomorphisms for € > 0 (Theorem
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[4.4.2). It is not known whether this is possible with H(R,q) instead of S(R,q),
when ¢ is not an equal parameter function.

The most remarkable part is that these maps extend continuously to € = 0, that
is, to a map (o : S(W) — S(R,q). Of course {y cannot be an isomorphism, but it
is injective and and some ways behaves like an isomorphism. In fact, we show that
for irreducible tempered H(R, ¢)-representations the map ¢* from Section agrees
with the functors 6y and 7 — 7 o {y (Corollary .

4.1 Scaling Hecke algebras

As we saw in Section[2.3], there is a correspondence between tempered representations
of H x T and of W x I'. On central characters this correspondence has the effect
of forgetting the real split part and retaining the unitary part. These elements of
T/(Wy x I') are connected by the path (Wy x I')cu, with € € [0,1]. Opdam [Opd2|
Section 5] was the first to realize that one can interpolate not only the central
characters, but also the representations themselves. In this section we will recall
and generalize the relevant results of Opdam. In contrast to the previous sections
we will not include an extra diagram automorphism group I' in our considerations,
as the notation is already heavy enough. However, it can be checked easily that all
the results admit obvious generalizations with such a I'.

First we discuss the situation for graded Hecke algebras, which is considerably
easier. Let V C t be a nonempty open Wy-invariant subset. Recall the elements
i € CME(V)Wo ® 217k H(R, k) from Proposition m Given any € € C we
define a scaling map

Ae: V=€V, v ev.

For € # 0 it induces an algebra isomorphism
me: OV @, HR K) = CT (V)™ @52, 19) HR, K),
fw.e = (f © Ae)tw. (4.1)

Let us calculate the image of a simple reflection s, € Sp:

(14 7o)

€Q
ekq + e

me(l+ sq) = mG(E;}E(l + 5sa,E)) = m€< (1+7,)

€ko + @
= '143,,) =1+ s,.

That is, mc(w) = w for all w € Wy C H(R, €k), so m, is indeed the same as (T.11)).
In particular we see that m. can be defined without using meromorphic functions.
These maps have a limit homomorphism

mo: H(R,0)=0{) x Wy — H(R, k),

fw = f(0)w, (4.2)

with the property that

C = O™ (V)™ @) HIR K) : € = me(fw)
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is analytic for all f € O(t) and w € Wj.

From now we assume that € is real. Let ¢° be the parameter function ¢“(w) =
q(w)€, which is well-defined because ¢(w) € Rs for all w € W. We obtain a family
of algebras H, = H(R, ¢°) with H(R, ¢") = C[W]. To relate representations of these
algebras we use their analytic localizations, as in Section

Let ¢q,¢ be the c-function with respect to (72 ¢°), as in . For e € [-1,1]\ {0}
the ball eB C t satisfies the conditions 1] with respect to uc® € T and the
parameter function ¢¢ (which enters via the functlon Cae). For € = 0 the point
eB = {0} trivially fulfills all the conditions, except that it is not open. We write

Ue = Wouct exp(eB) ee[—1,1]
and we abbreviate U := U;. We define a Wy-equivariant scaling map
oc: U — Ue, w(ucexp(b)) — w(uct exp(eb)).

As was noted in [Opd2, Lemma 5.1], o, is an analytic diffecomorphism for e # 0,
while og is a locally constant map with range Uy = Wyu. Let 22)75 be the element
constructed in Proposition [L.5.1] By (|1.26]) o induces an algebra isomorphism

pe: HI(U) — H™(U) e [-1,1]\{0},

. e (Food, (4.3)

where f € C™¢(U) and w € Wy. We will show that these maps depend continuously
on € and have a well-defined limit as e — 0.

Lemma 4.1.1. Fore € [-1,1]\{0} and a € Ry write dp = (cae00e)cyt € C™(U).
This defines a bounded invertible analytic function on U x ([=1,1] \ {0}), which
extends to a function on U x [—1, 1] with the same properties.

Proof. This extends [Opd2, Lemma 5.2 to € = 0. By the definition (|1.6])

1+60_a(t) 1+44q(sa)” i q(ta 04)6/2‘9—04(06@))

dae(t) =
W= T o) T+ dlsa) Pg(tasa) 01
—0_4(t) 1- Q(Sa)_e/QQ(taSa)_E/Qefa(Ue(t))
1- 9 a(0c(®) 1 —q(sa)"V2q(tasa) 120 a(t)
Let us abbreviate to dg, = gigﬁ gii;“ We see that dq (t) extends to an invertible

analytic function on U x [—1,1] if none of the quotients f,/g, has a zero or a
pole on this domain. By Condition c there is a unique b € w(log(c) + B)
such that t = w(u) exp(b). This defines a coordinate system on w(uc) exp(B), and
oc(t) = w(u) exp(eb). By Condition [2.1.1]d, if either f,(t) =0 or g,(t) = 0 for some
t € w(ucexp(B)) C U, then f,(w(uc)) = gn(w(uc)) = 0. One can easily check that

in this situation -
fn(t) B 1— e—a(b)e =1
gn(t) R 0] '

Again by Condition d the only critical points of this function are those for
which a(b) = 0. For € # 0 both the numerator and the denominator have a zero of
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order 1 at such points, so the singularity is removable. For the case ¢ = 0 we need
to have a closer look. In our new coordinate system we can write

fa(t) fa(t)

Corele(t)) 91(t) gs(t)
u(w™a) + (q(sa) " q(tasa) e ) u(wa) = (¢(s0) M ?q(tasa) e O
u(w o) + e~albe u(wla) — e~albe )

What happens when ¢ goes to 0 depends on u(w~!a). The rational function

f2(t)/g1(t) has no zeros or poles in a neighborhood of ¢ = 0 if u(w=la) # —1,
so then lim, o fo(t)/g1(t) = 1. For u(w™'a) = —1 we have fo(t) = g1(t) = 0, so by
L’Hospital’s rule

h) _ . 8b® 1og (4(50)~2q(tasa)/2e=2®)

— = 1 X
eg% g1 (t) e—0 %91 (t) 6% —Oé(b)
(a(sa) " 2a(tasa) e @) —logq(sa)/2 +1og q(tasa)/2 — a(b)
e—a(b)€ o —Oé(b) ’

Similarly f4(t)/gs(t) has no zeros or poles in a neighborhood of € = 0 if u(w=ta) # 1,
so lime_y0 f4(t)/g3(t) = 1 in that case. For u(w ta) =1 we have f4(t) = g3(t) = 0,
so again by L’Hopital:

P 50 BIO 108 (as0) alase) e )

i = lim = lim X
e—0 g3(t) =0 £ ga(t) 0 a(b)
q(sa) M 2q(tase) 2™ ®)"  logg(sa) /2 +log q(tasa) /2 + a(b)
e a(b)e o O[(b) ’
Summarizing, we have
1 if u(wla)? #£ 1
a(b) + (log ¢(sa) — log q(tasa))/2 if u(w_loz) T
1% Cae(0e(t)) = a(b)
a®) + (ogq(sa) +1084(tasa)) /2 -1y =
a(b) '

For later use we record that with (2.3)) we can interpret this as
lim co.c (0 (w(w) exp(5))) = (kuuye + a(D)/a(b) = (D) @ € Rupy.  (44)

Now we know that at least d,, 0 = lim¢_,0 dq ¢ exists as a meromorphic function on U.
For u(w™ta)? # 1, doo = c;* is invertible by Condition [2.1.1}d. For u(w™la) = -1
we have

1— e ®) a(b) + log (q(sa)/q(tasa))ﬂ 1+ ea®)
ad) 1 —q(sa)"Y2q(tasa) 2O 1 4 q(s0) "H2q(tasa) "1/ 2e—®)’

da,O (t) =

while for u(w=ta) =1

1— e 1+e 0 a(b) + log (Q(Sa)Q(taSa))/z
ad) 14 q(sa)"Y2q(tasa)/2e72®) 1 — q(s0) 1/ 2q(tasq) " H/2ea®)

dao(t) =
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These expressions define invertible functions by Condition c. We conclude that
dae(t) and d L (t) are indeed analytic functions on U x [—1,1]. Since this domain is
compact, they are bounded. O

Lemma enables us to show that the maps p. preserve analyticity:

Proposition 4.1.2. The maps restrict to isomorphisms of topological algebras
pe : HI(Ue) — H™(U)
There is a well-defined limit homomorphism
po = lim pe : CIW] — H™(U)
such that for every w € W the map
[—1,1] = H™(U) : € = pe(Ny)
s analytic.

Proof. The first statement is [Opd2, Theorem 5.3], but for the remainder we
need to prove this anyway. It is clear that p. restricts to an isomorphism between
C(Ue) and C*"(U). For a simple reflection s, € Sy corresponding to o € Fyy we
have

N, + q(s)~/?
pE(NS)

q(S)E/QCa,e(ZS,e +1)

(8)/*(Cae 0 0e) (10 + 1) — q(s)~/?

()D/2(cq e 0 0)cqt (Ns + q(s) /%) — q(s)~</?
q(s) D 2dg ¢ (Ns + q(s)71/2) — q(s) /2

Il
<

(4.5)

Il
<

By Lemma such elements are analytic in € € [-1,1] and ¢ € U, so in particular
they belong to H*"(U). Moreover, since every d, ¢ is invertible and by , the
set {pe(Nw) : w € Wy} is a basis for H(U) as a C**(U)-module. Therefore p,
restricts to an isomorphism between the topological algebras H"(U,) and H*(U)
for € # 0.

Given any w € W, there is a unique z € Xt such that w € WyzWj. By Lemma
there exist unique coefficients ¢, ,.,(q) € C such that

Ny = Z Cw,u,v(Q)NuexNv-
ueW?z veWy

From (T.4) we see that in fact cyu0(q) € Q({g(s)/? : s € 5?}), so in particular

these coefficients depend analytically on ¢q. Moreover pe(6,) = 6, o o, depends
analytically on €, as a function on U, so
pe(Ny) = Z Cw,uw(4°) pe(Nu) (0 © pe) pe(Ny)
ueW?e veWy

is analytic in € € [—1,1]. Thus py exists as a linear map. But, being a limit of
algebra homomorphisms, it must also be multiplicative. O
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Suppose that u € T, is Wy-invariant, so that R, = Ry and
exp,, : Wo(log(c) + B) — U = ulWycexp(B)
is a Wy-equivariant bijection. Then clearly
O¢ © exp,, = exp, oA : eWp(log(c) + B) — U.. (4.6)

Let ®,, be as in (2.5)), with V' = Wy log(c) + B. It follows from (4.6)), (4.1) and (4.3))
that

meo(bu,e:(puops €€ [_171]\{0}

as maps H™¢(U.) — C™¢(Wylog(c) + B)Vo ® Z(H(Rou k0)) H(Ry, ky). The maps @,
can also be defined for € — 0, simply by

®u0(fNw) = (foexp,)w € C™ O™ @4z, ko)) B(Rus ku),
where f € C*"(T) and w € Wy. By for a € Fj
me o By e(Noy) = me 0 Do (g(50) a1 +1) = q(5a)7?)
= me(q(50)"*(Care © expy,) (Tsac + 1) = q(50)7?)
= 4(50)7?(Care © €xp, 0N (75, + 1) — ¢(50)
= ¢(50)?(Cae © €xP, OA)E, (50 + 1) — ¢(5a)
Since R, = Ry, tells us that li_lr}r(l)(ca’6 o exp, 0A¢)C, 1 = 1. Hence

€/2

lim me o @, (N, ) = sq = mg © Py 0(Ns,)-
e—0

On the other hand, it is clear that for f € C[X] = O(T)
11_{% Me © Q)u@(f) - lg%f O €XDPy, OAe = f(u) =Moo (I)u,()(f)
Since pg = lim¢_;¢ pe exists, we can conclude that

mp o @, 0= Py 0 pp : C[X x W] — H(ﬁu, ky). (4.7)

4.2 Preserving unitarity

Proposition [4.1.2) shows that for e € [—1, 1]\ {0} there is an equivalence between the
categories Modf 7 (H) and Mody . (He). It would be nice if this equivalence would
preserve unitarity, but that is not automatic. In fact these categories are not always
closed under taking duals of H-representations.

From e see that an H-representation with central character Wyt can only
be unitary if t—1 € Wyt, where t~1(z) = t(—x) for z € X. To define a * on H*"*(U)
we must thus replace U by

Utl.=Uu{tl:teU}.

Let =W be the group {41} x Wy, which acts on T by —w(t) = w(t)~!. The above
means that we need the following strengthening of Condition [2.1.1]e:
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(e’) As Condition e, but with £Wj x I instead of W/.

Lemma 1jand Proposition 4.1.2|remain valid under this condition, with the same
proof. Equatlons ) and - show that the involution from H extends naturally
to H™e(UT) x T by

(N9 f)* = Nuy(f 0 —wo)Nog Nyt v € Wg, f € C™(UH), (4.8)
where wy is the longest element of Wy. According to [Opd2] (4.56)]
* COC —
) =Nu, [ -~ 20, Ny (4.9)
aERJﬂw’R

where w € Wy and w' = wow ™ 'wy. We extend the map from Proposition to
pe : H(Ue) x T' = H*™(U) x I" by defining pe(Ny) = Ny for v € I'. Usually the
maps pe do not preserve the *, but this can be fixed. For € € [—1,1] consider the
element

M = 0N Ny [T e e € 0

We will use M, to extend [Opd2, Corollary 5.7]. However, this result contained a
small mistake: the element A, in [Opd2| is not entirely correct, we replace it by M.

Theorem 4.2.1. For all ¢ € [~1,1] the element M, € H(U*) is invertible,

positive and bounded. It has a positive square root Mel/2 and the map € — Mel/2 18
analytic. The map

 HUN) XD — H™UTY) 3T, b MY2p (h) M2

is a homomorphism of topological *-algebras, and an isomorphism if € # 0. For any
w e W x T the map

[—1,1] = H™(UF) % T : €= pe(Ny)
s analytic.

Proof. By Lemma [4.1.1] and Proposition 4.1.2] the M, are invertible, bounded
and analytic in e. Con81der for € # 0, the automorphism p. of H™¢(U jEl) given by

pe(h) = pe(pc(R)")".

We will discuss its effect on three kinds of elements. Firstly, for f € C™¢(U*!) we
have, by (4.8)) and the Wy-equivariance of o:

,U/e(f) = pe((foae) ) .
= Pe (N”LUO wo) ° JE)NwOIE)
= pG(N_()lE) (fo_w0) PE(Nwo, )"
= pE( 7;01,5) wof ( wo,€ )* (4'10)
= pe 1;01,5) N, H da f 11 dg 1Nz;01Pe(Nwo,6)*
a€R+ aGR
= M. fM '
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Secondly, suppose that the simple reflections s and s’ = wgswy € Sy correspond to
a and put —wpa € Fy. Using Propostion [1.5.1] mb for ’Hme(Uil and (4.9)) we find

Mel(s)Me_l = p(Nwoe) N, 11 dado I1 d pe(Nwo,e)*
a€RY a€RY
= pE(Nwole)* wo? (s)doaed—a€N7;01pE(Nw0,ﬁ)*
Ceqp n CaeOO _ .
= Pe(Nwo e)*NwolginoleoLnglpe(Nwo,e)
Ca C—q,e ©O0¢
Catc00c \©
= V) () (@.11)
C—a’e ©0¢
Ca’e ©0c ¢ 1 i
= N, L pe (N,
(P ) 2 095
Co/ _
— (v

= Pe (( se)*)* = :U’E(lg)'
Thirdly, for v € I' by definition
NE(N’Y) = pg(pgl(Nv)*)* = pe(N'yil)* = (N';l)* = NW‘
Since elements of the above three types generate H™¢(U*!) x I', we conclude that
pe(h) = MAMTY for all h e H™(UT!) x T

Now we can see that

pE(Nu_)ol,E)* = p€((N’:)0, )_1)* = p€((N1;01,6)*)*
= /‘LG(pG(Nwole)) = M€p6(N1;01,e)Me_1

Ne = Me_ PE( woe)*Nwo H da,e = P(Nv;o, )M leo H daea

aERY aERY
M, = Ny, ]I daGPE(NwO ) = (pe(NwO’) (NU)O [I dae) )
ocER+ aER

= ( (Nwole)*Nwo ]._[OCGRT da,e)* = Me*

Thus the elements M, are Hermitian Ve # 0. By continuity in e, My is also Her-
mitian. Moreover they are all invertible, and M; = N, so they are in fact strictly
positive. We already knew that the element € — M, of

C([~1, 1 H"(UH)) = O ([-1,1] x UH) @4 H

is bounded, so we can construct its square root using holomorphic functional calculus
in the Fréchet algebra C¢"([—1,1] x U*) ® 4 H, where the subscript b denotes

bounded functions. This ensures that € — ]\461 /% g still analytic. Finally, for € # 0
ﬁe(h)* — <M€1/2p€(h)Me_1/2>

= M Ppe(hy Ml (4.12)
. —-1/2 « 1/2
= Mc ""pe(pe(h™)) M

Again this extends to e = 0 by continuity. O
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Corollary 4.2.2. For uc € U and € € [—1,1] there is a family of additive functors

5e,uc : MOdf,Wéuc(H A F) — MOdf,Wéae(uc) (He X F),
(m, V) = (w0 pe, V)

with the following properties:

(a) for allw e W xT and (7,V) the map [—1,1] = Endc(V) : € = Geye(m)(Ny) is
analytic;

(b) fore#0,6cuc is an equivalence of categories;
(¢) Geuc preserves unitarity;

(d) for € < 0,0cyc exchanges tempered and anti-tempered modules, where anti-
tempered means that |s|~* € T~ for all A-weights s € T';

(e) for € >0,6¢yc preserves temperedness;

(f) for e >0,6cuc preserves the discrete series.

Proof. Parts (a), (b) and (c) follow immediately from Theorem Let (7, V)

be a finite dimensional H*(U*!) x I'-representation. Conjugation by M /2 does
not change the isomorphism class of 7, 0 G¢ () has the same Ac-weights as 7o p,
which by construction are o, of the A-weights of 7. Now parts (d), (e) and (f) are
obvious consequences of |o(t)| = || O

As the notation indicates, & 4. depends on the previously chosen base point uc.
For one ¢t € T there can exist several possible base points such that ¢ € U, and these
could in principle give rise to different functors o.;. This ambiguity disappears if
we restrict to t = uc in Corollary Then

Oc 1= @tET/Wo Gt s Modp(H % T') — Mody(He % T')

is an additive functor which also has the properties described in Corollary
The functor 6. was already used in [OpSol], Theorem 1.7].

The image of Gy is contained in Mody,, (C[W]), so this map is certainly not
bijective, not even after passing to the associated Grothendieck groups of modules.
Nevertheless g clearly is related to the map ¢* from Section [2.3] in fact these maps
agree on irreducible tempered H x I'-modules:

Lemma 4.2.3. Suppose that € € [—1,1], uc € Ty, Tys and t € TPW  Let T, be a

subgroup of Wr. ., and m € Modf,(w(ry) 1, yuc(H(Ru, qu) @ T%,).
(a) The following H. x I'-representations are canonically isomorphic:

Oe (Indz(%u,qu)xr; (70 ¢r)), Ind%iﬁiqmm (Ge(m) © depger)),

(Indz(xgu,qu)xfg (ﬂ- © ¢t>) © Pe Indzz%z,qz)xr; ((ﬂ. © gbt) © pﬁ)'
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(b) 6o =C" onIrr(S x T).

Proof. (a) By definition G is given by composition with p., and the difference
between p. and p. is only an inner automorphism. Hence the map

(IndHEgu T, (mo qﬁt)) (Indzégu gu) ¥ T, (mo ¢t)) 0PV > M;l/Zv

is an invertible intertwiner.
The two representations in the right hand column are naturally isomorphic if
and only if the H(R., ¢ ,) x I'},-representations

Ge(m) 0 Pyjpje—1 and o Py 0 pe (4.13)

are so. Notice that ¢ and ¢y -1 are well-defined because ¢ € TPW C TW(R) ~ Ag
we just showed, the left hand side of (4.13)) is naturally isomorphic to o peo ¢y yje-1.
Applying o, once with center uct and once with center uc results in

Oect(uct) = ut|t| et = oc ue(uc)t|t| .

This implies that pe e o ¢t|t|571 = @t © Peuct, Which shows that the representations

(4.13) can indeed by identified.

Now we turn to the most difficult case, the two representations in the bottom
row. In view of Theorem 2.1.21b

( dH(X;gu _— (o gf)t)) op. and IndHE;;I; g )xT (7r o0 Pe)

are isomorphic if only if the

H(RU7qu)>qWFu w (

H(Ru,qy)"" (Ue) % Wﬁu’u—representation IndH(quu)xr,

70610 p.)
corresponds to the
Iwrue(H(R, ¢°)*" (Ue) % T') 1y ye-representation Ly . (IndH(Xgu Gu) =T, (mo gbt)) 0 pe

via the isomorphism from Theorem a. It is clear from the definition (4.3]) that

H(Ru,qu)NW H(quu)NW/

IndH(quu)XF/Fu u ((7I' © ¢t) © ,06) = (IndH(Ru,qu)xF’Fu u(ﬂ' o d)t)) O Pe,

so it suffices to show that the following diagram commutes:

H(Ruan)an(Ue,u) D ng’u,u — 1Wﬁuc(H(R> q€)an(U€) X F)lwliuc

i Pe i Pe
H(Rua Qu)an(Uu) A Wll:‘u,u — 1W{Luc(H(Ra Q)an(U) A F)1W{Luc

For elements of H (R, q;,)*" (Ue,) this is easy, since the effect of the vertical arrows
is only extension of functions from Uy ,, (resp U,) to Ue (resp. U) by 0. For elements
of WF the commutativity follows from (| and .

(b) By Corollary -b every irreducible tempered ‘H x I'-representation 7 is of the
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form Indz(%u’qu)xw%u,u (7 0 @) for some 7 € Irrg(H(Ru, qu)(Uy) x Wl’ruu) By

Theorem 2-3.11d

¢ () = Ind iy (Cu @ 7]p,)-

Using (4.7) we can rewrite
(Cu®7~T|W/ = (Cu®(7~fom0)}w, = Tomgo®Py g = Tod,0py = Tody,0py = do(ToPy).

Now we can apply part (a):

* ~ X Wl ~ jad ~ ~ ~
() = IndX:WZ (5o(7 0 ®y)) = 5o (Indz(x'{mqu)xw, (70 ®y)) = Go(m). O

Fy,u

4.3 Scaling intertwining operators

We will show that the scaling maps . give rise to scaled versions of the intertwining
operators 7' (g,&). We will use this to study the behaviour of the components of the
Fourier transform of & x I under scaling of q.

As we remarked at the start of Section the results of that section can easily
be extended to H xI', and we will use that generality here. Recall that the groupoid
G from includes I' and is defined independently of ¢. Let us realize the

representation
7T£(P, 7¢(8),t) on (C[FWP] ® Vs as Indzjf'r(é O fe O Pr.e).
For all € € [—1, 1] we obtain algebra homomorphisms

FoiH(R,q) xT = P, OT") @ Ende(CTW"] & V),

(4.14)
Fo(h)(P,0,t) = 7L (P, 5.(5),t, h).

Rational intertwining operators «! (g, P, ¢’,t) can be defined as in for all H.-

representations of the form 7l (P,d’,t), where ¢’ is irreducible but not necessarily

discrete series. In particular, for € # 0 the (P,d)-component of the image of F is

invariant under an action of the group

12

Gps.5) =19 € G : g9(P) = P,5.(9) 0%1 Ge(6)}

via such intertwiners. As in (3.16)), the action is not on polynomial but on rational
sections.

Proposition 4.3.1. Let € € [—1,1] \ {0}, let g € G with g(P) C Fy and let &' be a
discrete series representation of Hgypy that is equivalent to & o wg_l.

(a) The Hy(p)-representations 6¢(8') and G¢(6) o, are unitarily equivalent.

(b) Gps.(s) = Gps and Gps (5)4 = Gpss for all t € T,
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(¢) The intertwiners . (g, P,5¢(5),t) € Home (CTWT] ® V3, ClrwIP) @ Vi) de-
pend rationally on t € TY and analytically on €, whenever they are reqular.

(d) Fort € TE therl (g, P,5.(0),t) are reqular and unitary, and 7} (g, P, 50(5),t) :=
lime 7! (g, P,6c(5),t) eists.

Proof. (a) First we show that

wg O Pe = Pe© 7/}9,6- (4.15)

Write g = v~ !u with w € Kp and v € Wy x I'. The automorphism 1, from (T.21))
reflects the translation of T¥ by u € T.F': that changes U to ulU, but apart from
that it commutes with o.. Hence 1, 0 pe = pe © 1y .

The isomorphism 1, : HE — H'P) from is more difficult to deal with,
because it acts nontrivially on the N,, with w € Wp. However, by Propostion [I.5.1}d
this is the restriction to H' of the automorphism

Py i h— Zghzg,l of the algebra (C(T'/Wy) Qz(#) H) x T

Similarly ¢ ¢(h) = zg’ehzg_l .- From these formula it is clear that 1, 0 pe = pe 01y ¢

on H¢(Ue). This establishes (4.15]).
Let I : V5 — Vy be as in (3.11). We claim that

v I (0(, (MY M ?)w) (4.16)
is an intertwiner between . (6)oty, ! and 6¢(¢). Indeed, for v € V5 and h € HI"(U.):

I§ (5(¢g_1(Mel/2)Me_l/2)56(5) °© wg,E(h)U) =

I3 (0(wg (M2 M5 (M pe(tg d) M o) =

I§(8 0 vy (MY pe(h) MV (3 (M) M P ) =

8 (M2 pe(h) M) I (8(ug (M) M2 )0) =

Ge(8") (W)I§ (8(wy " (MIP) M 2)0).
Obviously (4.16]) is invertible, so it is an equivalence between the irreducible rep-
resentations () o 1/);61 and G.(¢"). Since both are unitary, there exists a unitary

intertwiner between, which by the irreducibility must be a scalar multiple of (4.16]).
We define I{_ as the unique positive multiple of (4.16)) that is unitary.

)

(b) By part (a)

9(P,5e(8),t) = (9(P), 5e(8)ot,e, 9(1) = (9(P), 3e(8), (1)) = (9(P), 5e(d0vh, 1), (1)),
so the stabilizer of (P,5¢(0),t) does not depend on € € [—1,1].

(¢) By Theorem I{_ depends analytically on ¢ € [—1,1]. By definition zg is
rational in t € T' and analytic in €, away from the poles. By definition (3.12))

me (9, P.5e(0), 1) (h @yyp v) = Il @, om) I} (v),
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so L (g, P,5.(8),t) has the required properties.

(d) All possible singularities of the intertwining operators come from poles and
zero of the c-functions from (1.6). By Theorem c 7l (g, P,G(0),t) is unitary
for all t € T and € € (0,1]. In particular all the singularities on this domain are
removable. On the other hand, the explicit formula for ¢, shows that the singularities
for ¢¢ (¢ # 0) and t € T, are the same as those for ¢ and ¢t € T,,. Therefore
7l (g, P,G(8),t) is also regular for € € [~1,0) and t € T'F .

Since these linear maps are analytic in € € [—1,1]\ {0} and unitary for € > 0, they
are also unitary for ¢ < 0. Hence all the matrix coefficients of 7l (g, P, 5.(6),t) are
uniformly bounded on 71 x[—1, 1]\ {0}, which implies that every possible singularity
at € = 0 is removable. In particular lime_,o 7. (g, P, 5(6),t) exists. O

We fix a discrete series representation § of Hp and we abbreviate
Apgs = C¥(T}) ®c (CIWT] @ Vy).
Proposition says among others that for g € Gp;
[-1,1] = Aps e 7 (g, P,5.(9), )
is an analytic map. The group Gps, 5y = Gps acts on Aps by

(g-¢ [)(t) =7 (9, P,6e(8), 97 ') f (g~ )l (9, P,Ge(6),97't) . (4.17)

By construction the d-component of the image of F. consists of Gp 5, (5)-invariant
sections for € # 0, and by Proposition this also goes for ¢ = 0. We intend

to show that the algebras A%}’ae(‘s) for € € [—1,1] are all isomorphic. (Although
Gps.(5) = Gps we prefer the longer notation here, because it indicates which action
on Aps we consider.) We must be careful when taking invariants, because

Gps = Aps: g = (9, P,6e(9), ) (4.18)

is not necessarily a group homomorphism. However, the lack of multiplicativity is
small, it is only caused by the freedom in the choice of a scalar in . In other
words, defines a projective representation of Gps on Aps. Recall [CuRel
Section 53| that the Schur multiplier Gps is a finite central extension of Gp s, with
the property that every projective repr,esentation of Gps lifts to a unique linear
representation of Q}';,&. This means that for every lift ¢* € 9}76 of g € Gps there is

a unique scalar multiple 7 (g%, P, 5.(6),-) of wL (g, P,5.(5),-) such that
gf),é - A;‘,(S : g* — Wg(g*,P, 5—6(6)7 )

becomes multiplicative. Since 7!'(g, P,5.(d),-) is unitary, so is 7. (g%, P,G(6),").
Notice that Gps and 9}7 5 fix the same elements of Aps, because the action is
defined via conjugation with 7! (g, P,5.(8),-). According to [CuRe, Section 53] the
way lift from Gps to Gp 5 is completely determined by the cohomology class
of the 2-cocycle ’

1 1
Gps X Gps — C*: (g1, 92) = IJLI2 T2 (4.19)
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This cocycle depends analytically on € and Gps is a finite group, so the class of
in H2(Gps,C) does not depend on €. (In most cases this cohomology class
is trivial, but examples are known in which it is nontrivial, see [DeOp2, Section
6.2].) Hence the ratio between 7 (g*, P,5.(6),-) and 7! (g, P,5(6),-) also depends
analytically on e.

For g* € Gy s we define Ay« : TP — T by Ay« (t) = g(t). In the remainder of this
section we will work mostly with g;;} s5» and to simplify the notation we will denote
its typical elements by g instead of g*. For g € g;; sand t € TP we write

r -1
’LLg7€(t) =T (g? )‘g (t))a
so that the multiplicativity translates into
Ugg! e = Ug,e(Ug e O )\;1). (4.20)

From the above we know that u,. € Aps is unitary and analytic in e. These

elements can be used to identify A}g;}’&e(é) with a corner in a larger algebra. Consider
the crossed product Apgs ) G 5, where the action of G}, 5 on Aps comes only from

the action on C(T})) induced by the A,. In particular this action is independent of
€. On Aps x G5 we can define actions of G 5 by

gea= ug,egag_lu;i. (4.21)

For a € Ap this recovers the action (4.17). An advantage of introducing the Schur
multiplier is that, by (4.20)), g — ug.g is a homomorphism from G} 5 to the unitary
group of Apgs Q}Z’é. Hence

S1,1) = Aps 5 Ghg i€ = pac = [0ps TS0 L wgeg (422
P,5

is a family of projections, depending analytically on €. This was first observed in
[Ros| and worked out in [Sol3, Lemma A.2],

Gpe
Ap; © 5 ps.c(Aps XA Gps)Ps,e @ Pscaps,e (4.23)

is an isomorphism of Fréchet *-algebras. Its inverse is the map
agg — |Gpslae.
2969}3,5 99— | P,é‘ e

Lemma 4.3.2. The Fréchet *-algebras AIQD%&E(‘S) = ps.e(Aps X\ Gps)Ds.e are all iso-

morphic, by C®(TE 975 linear isomorphisms that are piecewise analytic in e.

Proof. According to [Phi, Lemma 1.15] the projections ps(ue) are all conjugate,
by elements depending continuously on e. That already proves that all the Fréchet

algebras Algfzs’&e(a) are isomorphic. Since C°°(TF )97 is the center of both AIQD%E"(‘S)

and psc(Aps Xx G 5)Ds.e, these isomorphisms are C>=(T.F)9Ps-linear.
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To show that the isomorphisms can be made piecewise analytic we construct
the conjugating elements explicitly, using the recipe of [Blal, Proposition 4.32]. For
€,¢ € [—1,1] consider

2(5, €, 6/) = (Qp(;’e/) — 1)(2p5,6) — 1) +1€ AP75 A g7375.
Clearly this is analytic in € and € and
p5,e’2(67 €, 6,) = 2p6,e’p5,6 = Z((5, €, El)pé,e-
The enveloping C*-algebra of Aps X\ G55 is
Cs == Endc (CTWP] @ V3) @ C(Ti) Xx Gps.

Let ||| be its norm and suppose that ||ps(uc) — ps(ul)|| < 1. Then

HZ((S,E,GI)—QH = H4p65’p56_ 2p56
2(ps,e pae) |
< 2

< 2Hp<56 Ps.e ‘

so z(d,¢€,€') is invertible in Cs. But Aps X\ G55 is closed under the holomorphic
functional calculus of Cy, so z(d, €, €') is also invertible in this Fréchet algebra. More-
over, because the Fréchet topology on Ap s>\ Gp s is finer than the induced topology
from Cj, there exists an open interval I, containfng e such that z(d, €, €) is invertible
for all € € I.. For such ¢, ¢ we construct the unitary element

u(d,e,€) = 2(6,6,€)|2(,6,€)| 7t € Aps Xy Gps-
By construction the map
Po.c(Aps X\ Gps)ps.c — Do, (Aps Xx Gps)Pse - @ — u(d,e,€)au(d e, €)™ (4.24)

is an isomorphism of Fréchet *-algebras. Notice that also defines an isomor-
phism between the respective C*-completions.

Let us pick a finite cover {I,}/, of [-1,1]. Then for every €,¢ € [—1,1] an iso-
morphism between ps(Aps X Gps5)Ps,e and ps e (Aps X\ Gp5)Ps,e can be obtained
by composing at most m isomorphisms of the form ([1.24). oo

4.4 Scaling Schwartz algebras

It follows from Corollary that, for e € (0, 1], the functor &, is an equivalence
between the categories of finite dimensional tempered modules of H and of H, =
H(R,q°). We will combine this with the explicit description of the Fourier transform
of S(R, q) from Theorem to construct ”scaling isomorphisms”

Ce:S(R,¢)xT = S(R,q) »T
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These algebra homomorphisms depend continuously on € and they turn out to have
a well-defined limit

Co:SW)xT=8(R,¢°) xT = S(R,q) xT.

Although (j is no longer surjective, it provides the connection between the repre-
sentation theories of S(R,q) and S(W) that we already discussed in Section
Recall from that A is a set of representatives for G-association classes of
discrete series representations of parabolic subalgebras of H, and that

F:S(R.q) =T P (C>(TE) @ Ende(CTWP) @ V5))97  (4.25)

(Po)eA

is an isomorphism of Fréchet *-algebras. Together with (4.14)) and Lemma m
this implies the existence of a continuous family of algebra homomorphisms, with
some nice properties:

Proposition 4.4.1. There exists a collection of injective *~homomorphisms
Ce:HR,¢)XT - S(R,q) xT ee€[-1,1],
such that:

(a) For e < 0 (respectively € > 0) the map © — 7o (. is an equivalence between
Mod;(S(R,q) xT') and the category of finite dimensional anti-tempered (respec-
tively tempered) H(R, q°) x I'-modules.

(b) ¢1:H XD — 8 xT is the canonical embedding.
(¢) Ce(Nw) = Ny for allw € Z(W).
(d) For allw € W the map
[—1,1] = S(R,q) x T : e ((Ny)
is piecewise analytic, and in particular analytic at 0.

(e) Forallm € Mods(S(R,q)xT") the representations mo(. and () are equivalent.
In particular 75 (P, 6,t) o (. = 7L (P,5(0),t) for all (P,6,t) € Zyp.

Proof. Let Cps. : Ai’}&é(‘” — Alg;}‘s be the isomorphism from Lemma 4.3.2l We
already observed that J-component of the image of F¢ is invariant under Gp,(5), SO

we can define
Ge i= Flo (@(P,5)€A CP,(S,s) o Fe.

Now (b) holds by construction and (c) follows from the C>(T.})9Ps-linearity in
Lemma For (d) we use Theorem and Lemma From the last lines
of the proof of Lemma we see how we can arrange that (. is analytic at 0: it

suffices to take ¢; = 0 and to use the elements u(d,0,€') for € in a neighborhood of
e=0.
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Any finite dimensional module decomposes canonically as a direct sum of parts
corresponding to different central characters. Hence in (e) it suffices to consider
(m,V) € Modyg(pss)(S(R,q) x I').That is, 7 : S(R,q) x I' = Endc(V) factors via

evpsi: S(R,q) x T — Ende(C[TWP] @ V5), b 7l (P,6,t,h).
As (. ps is C®(TE)9Pslinear, mo (. : S(R, ) x I' — Endc(V) factors via
evps ()4t S(R,q¢°) » T = Endc(CTWF] & V5).

Moreover, by Lemma [4.3.2] the finite dimensional C*-algebras evps(S(R,q) x I)
and evp Ué( ),t(S(R, q°)xT') are isomorphic, by isomorphisms depending continuously
on € € [—1,1]. We have two families of representations on V, 7o (. and &¢(m), which
agree at ¢ = 1 and all whose matrix coefficients are continuous in €. Since a finite
dimensional semisimple algebra has only finitely many equivalence classes of repre-
sentations on V| such equivalence classes are rigid under continuous deformations.
Therefore 7o (. = () for all € € [-1,1]. Now Lemma (or a simpler version
of the above argument) shows that 7' (P, 6,t) o ¢ = ! (P 05(5) t), concluding the
proof of (e).

Property (a) is a consequence of (e), Corollary and Lemma [3.1.1]b.

As concerns the injectivity of (., suppose that h € ker(¢.). Then M(t,h) = 0
for all unitary principal series representations M (t). Since Ty, is Zariski-dense in T,
Lemma [3.1.2] for H, x I’ shows that h = 0. O

In general ((He x I') is not contained in H x I, for two reasons: (5. usually does
not preserve polynomiality, and not every polynomial section is in the image of F.
For € > 0 the (. extend continuously to S(R,¢¢) x I':

Theorem 4.4.2. For e € [0, 1] there exist homomorphisms of Fréchet *-algebras

C: SMR,¢)xT — SR,q)xT
C: C*(R,¢)xT' — C*(R,q)xT
with the following properties:
a) Ce is an isomorphism for € > 0, and (o s injective.
b) (1 is the identity.

Cc

(a)
(b)
(¢) C(h) =h for all h € S(Z(W)).
(d) Letx € C*(W xT') and let h =) cywr hwlNw with p(h) < oo for all n € N.
Then the following maps are continuous:

0,1] = SR, q) =L, e = C((h),

0,1] = B(L*(R,q). € — ¢ 'Cola).

(e) Forallm € Mod¢(S(R,q)xT') the representations mo(. and () are equivalent.
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Proof. For any (P,d) € A the representation 6.(d), although not necessarily
irreducible if € = 0, is certainly completely reducible, being unitary. Hence by
Theorem every irreducible constituent m; of G.(d) is a direct summand of

He
Inde’lp ((51 o ¢t1,6)

e, P

for a P; C P, a discrete series representation d; of H(Rp,,q) and a
ty € Homy, ((Xp)"1, §1) = Homy, (X/(X N(PY): +QPy), Sl) CT,
Consequently, 7. (P, 71,t) is a direct summand of

He
7%, (1nd”S5 (61 0 6u,.0) 0 bu. ) = m (P, 00, th)
€ e, P

In particular for ¢t € T.F every matrix coefficient of 7! (P,5(5),t) appears in the
Fourier transform of S(R,q°) x I, so extends to the respective Schwartz
and C*-completions, as required. By Corollary b and these maps are
isomorphisms if € > 0. Since extends continuously to the appropriate C*-
completions, so does the algebra homomorphism (. from Proposition

Properties (b), (c¢) and (e) are direct consequences of the corresponding parts of
Proposition [£.4.1]

To see that (y remains injective we vary on the proof of Proposition [£.4.1] By
(e) the family of representations

Iyo( = ﬂ{(@? 66(5@)’t) = WS(@,&@,t)

with ¢ € T,,,, becomes precisely the unitary principal series of W xI" when ¢ — 0. By
Lemma [2.2.2)and Frobenius reciprocity every irreducible tempered representation of
H(R,q°) x T = C[W x I is a quotient of a unitary principal series representation.
Hence every element of C*(R,q") x I' = C*(W x I') that lies in the kernel of (o
annihilates all irreducible tempered W x I'-representations, and must be 0.

The assumptions in (d) mean that we can consider h as an element of S(R, ¢°) xT"
for every e. Moreover the sum ) y-..p hwVy converges uniformly to b in S(R, ¢°)
I'. For every finite partial sum A’ the map e — ¢.(h’) is continuous by Proposition
[d.4T]e, so this also holds for h itself.

For € € (0,1] we consider

(Hola) —x = ]:e_l< P s.lrooFolx)) - fe($))~ (4.26)

PSeA

Since (ps is invertible, both (55 Cpso(Fo(z)) and Fe(z) are continuous in € and
converge to Fo(z) as € | 0. The continuity of F. with respect to € implies that the
F. 1 are also continuous with respect to €, so € — (7 1(p(x) is continuous.

The expression between the large brackets in (4.26)) also depends continuously
on ¢ and converges to 0 as € | 0. Furthermore

Fl @(mm (C(TE) @ Ende(CTWF) @ V5)) 977 — B(IA(R,q))
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is a homomorphism of C*-algebras, so it cannot increase the norms. Therefore

leifgl(g‘;lgo(:c) —z) =0in B(L*(R,q)). O

The homomorphisms from Theorem [4.4.2| are by no means natural, the construc-
tion involves a lot of arbitrary choices. Nevertheless one can prove [Sol3, Lemma
5.22] that it is possible to interpolate continuously between two such homomor-
phisms, obtained from different choices. In other words, the homotopy class of
Ce:S(R,q°) T — S(R,q) x T is canonical.

Corollary 4.4.3. For m € Irt(S(R, q) x I') we have (*(m) = 6o(m) = 7o (o, where
C* is as in Section |2.3. The map (y induces a linear bijection

Go(Co) : Go(S(R,q) x I') = Go(S(W) x T').

Proof. The first claim follows from Theorem [4.4.2]e and Lemma b. The
second statement follows from the first and Theorem 2.3.la O
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Chapter 5

Noncommutative geometry

Affine Hecke algebras have some clear connections with noncommutative geometry.
Already classical is the isomorphism between an affine Hecke algebra (with one
formal parameter q) and the equivariant K-theory of a Steinberg variety, see [Lus2,
KalLu2, [ChGi]. Of a more analytic nature is K-theory of the C*-completion C*(R, q)
of H(R,q). It is relevant for the representation theory of affine Hecke algebras
because topological K-theory is built from finitely generated projective modules.
Since K-theory tends to be invariant under small perturbations, it is expected [Plyl]
BCH] that K.(C*(R,q)) does not depend on gq. We prove this modulo torsion
(Theorem [5.1.4)).

For the algebra H (R, q) periodic cyclic homology is more suitable than K-theory.
Although periodic cyclic homology is not obviously related to representation theory,
there is a link for certain classes of algebras [Sol6]. From [BaNi] it is known that
HP,(H(R,q)) = HP,(C[W]) when q is an equal parameter function, but the proof
is by no means straightforward.

We connect these two theories via the Schwartz completion of H(R,q). For
this algebra both topological K-theory and periodic cyclic homology are meaning-
ful invariants. Notwithstanding the different nature of the algebras H(R,q) and
S(R,q), they have the same periodic cyclic homology (Theorem [5.2.1)). We deduce
the existence of natural isomorphisms

HP(H(R,q)) = HP.(S(R,q)) = K«(S(R, q)) @z C = K.(C*(R, q)) @z C.

Moreover the scaling maps from Chapter |4] provide isomorphisms from these vector
spaces to the corresponding invariants of group algebras of W (Corollary .
Notice the similarity with the ideas of [BHPL [Sol4].

Our method of proof actually shows that S(R,q) and S(W) are geometrically
equivalent (Lemma [5.3.1)), a term coined by Aubert, Baum and Plymen [ABPI] to
formulate a conjecture for Hecke algebras of p-adic groups. This conjecture (which
we call the ABP-conjecture) describes the structure of Bernstein components in the
smooth dual of a reductive p-adic group. Translated to affine Hecke algebras this
conjecture says among others that the dual of H can be parametrized with the ex-
tended quotient T /Wy. The topological space Irr(H(R, q)), with its central character

map to T/Wy, should then be obtained from T'/Wj, with its canonical projection
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onto T'/Wjy, via translating the components of T /Wy in algebraic dependence on gq.
We verify the ABP-conjecture for all affine Hecke algebras with positive parameters,
possibly extended with a group of diagram automorphisms (Theorem . Hence
the ABP-conjecture holds for all Bernstein components of p-adic groups, whose
Hecke algebras are known to be Morita equivalent to affine Hecke algebras.

In the final section we calculate in detail what happens for root data with Ry of
type B2/Cs. Interestingly, this also shows that the representation theory of H(R, q)
seems to behave very well under general deformations of the parameter function gq.

5.1 Topological K-theory

By means of the canonical basis {N,, : w € W x '} we can identify the topological
vector spaces underlying the algebras S(R, ¢) x T for all positive parameter functions
q. It is clear from the rules that the multiplication in affine Hecke algebras
depends continuously on ¢, in some sense. To make that precise, one endows finite
dimensional subspaces of H (R, ¢) xI" with their standard topology, and one defines a
topology on the space of positive parameter functions by identifying them with tuples
of positive real numbers. This can be extended to the Schwartz completions: by
[OpSo2| Lemma A.8] the multiplication in S(R, ¢) xI" is continuous in ¢, with respect
to the Fréchet topology on S(R,q) x I'. This opens the possibility to investigate
this field of Fréchet algebras with analytic techniques that relate the algebras for
different ¢’s, a strategy that was used at some crucial points in [OpSo2].

We denote the topological K-theory of a Fréchet algebra A by K. (A) = Ko(A)®
K1(A). Since S(R,q) x I is closed under the holomorphic functional calculus of
C*(R,q) x T |OpSo2, Theorem A.7]|, the density theorem [Bos, Théoreme A.2.1]
tells us that the inclusion S(R,q) xI' — C*(R,q) x I' induces an isomorphism

K.(S(R,q) xT) = K,(C*(R,q) x T). (5.1)

K-theory for C*-algebras is homotopy-invariant, so it is natural to expect the fol-
lowing;:

Conjecture 5.1.1. For any positive parameter function q the abelian groups
K. (C*(W)xT) and K.(C*(R,q) x T) are naturally isomorphic.

This conjecture stems from Higson and Plymen (see [Plyl], 6.4] and [BCHJ, 6.21)),
at least when I' = {id} and ¢ is constant on S*!. Tt is similar to the Connes-
Kasparov conjecture for Lie groups, see [BCH, Sections 4-6] for more background.
Independently Opdam [Opd2, Section 1.0.1] formulated Conjecturefor unequal
parameters. We will discuss its relevance for the representation theory of affine
Hecke algebras, and we will prove a slightly weaker version, obtained by applying
the functor ®7Q.

Recall [Phi] that for any unital Fréchet algebra A, Ko(A) (respectively Ki(A))
is generated by idempotents (respectively invertible elements) in matrix algebras
M, (A). The K-groups are obtained by taking equivalence classes with respect to
the relation generated by stabilization and homotopy equivalence.
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Lemma 5.1.2. Suppose that
ke : Ki(C*(W) xT) = K. (C*(R,q) x T €€ [0,1]

is a family of group homomorphisms with the following property.

For every idempotent eg € M,(S(R,q°) x T) = M,(S(W) x T) (resp. invertible
element xg € M,(S(R,q°) x T)) there exists a C*-norm-continuous path € v+ e,
(resp. € — x.) in the Fréchet space underlying My (S(R,q) X T'), such that kcl[eg] =
led (resp. selzo] = [zd).

Then ke = K.((T1¢p), with (. : C*(R,q°) x T — C*(R,q) x ' as in Theorem .

By ”C*-norm-continuous” we mean that the path in B(L?(R,q)) defined by
mapping € to the operator of left multiplication by e, (with respect to ¢¢), is contin-
uous. It follows from [OpSo2, Proposition A.5] that every Fréchet-continuous path
is C*-norm-continuous. By Theorem d the maps K. (- '(o) have the property
that the k. are supposed to possess, so at least the statement is meaningful.

Proof. By definition K. (¢ 1¢o)[e0] = [(7'¢o(eo)], where we extend the (. to
matrix algebras over C*(R,¢¢) in the obvious way. The paths ¢ — e, and € —

¢ '¢o(ep) are both C*-norm-continuous, so we can find ¢ > 0 such that

HCG_ICO(eO) — eeH <20 —1|7' = H2CE_1C0(60) — 1H_1 for all e < €.

Then by [Bla, Proposition 4.3.2] e, and (- '(o(eg) are connected by a path of idem-
potents in M, (C*(R,q°) xT'), so

Keleo] = [ee] = K;lg()(eo)] = K*(Cglﬁo)[eo] for all € < €.
For € > €
Ko (¢ Go)leo] = Ku(¢ G K¢ Go)leo] = K¢ Gor)lee’].
By parts (a) and (d) of Theorem K.(¢T1¢) (e > ¢€) is the only family of

€

maps Ko(C*(R,q)) xT) = Ko(C*(R,q) xT') that comes from continuous paths of
idempotents.
Now K;. Choose ¢ > 0 such that

167 o(mo)zt — 1] <1 forall e <€
Then ¢ '¢o(z0)xt is homotopic to 1 in GL,(C*(R,¢°) x T), so
K1(¢T o) o) = [¢T o (z0)] = [zc] = Re[mo] for all e < €.

The argument for € > ¢’ is just as for Kj. a

This lemma says that the map
K. (¢): Ki(C*(W)xT) = K.(C*"(R,q) xT)

is natural: it does not really depend on (y, only the topological properties of idem-
potents and invertible elements in matrix algebras over S(R,¢%) x I' with € € [0, 1].
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To prove that K,({y) becomes an isomorphism after tensoring with Q, we need some
preparations of a more general nature.
For topological spaces Y C X and a topological algebra A we write
Co(X,Y;A)={f: X — A|f is continuous and f‘Y = 0}.

We omit Y (resp. A) from the notation if Y = () (resp. A = C). A C(X)-algebra
B is a C-algebra endowed with a unital algebra homomorphism from C(X) to the
center of the multiplier algebra of B. A morphism of C'(X)-algebras is an algebra
homomorphism that is also a C'(X)-module map.

Lemma 5.1.3. Let 3 be a finite simplicial complez, let A and B be C(X)-Banach-
algebras and let ¢ : A — B a morphism of C(X)-Banach-algebras. Suppose that

(a) for every simplex o of ¥ there are finite dimensional C-algebras A, and B, such
that

Co(o,00)A = Cy(o,00;Ay) and Coy(o,d0)B = Cy(o,d0; By);
(b) for every x € o\ do the localized map ¢(x) : Ay — B, induces an isomorphism
on K -theory.
Then K.(¢) : K.(A) — K.(B) is an isomorphism.
Proof. Let X" be the n-skeleton of ¥ and consider the ideals
Lh=CX)oL=C(%;%) DD, =Cy(5, =" 1 > (5.2)

They give rise to ideals I, A and I, B. Because Y is finite, all these ideals are 0 for
large n. We can identify

LA/ 1 A= Cy(2", 2" 1A =
B aGeio) = P Colodoi A, (5:3)
ceX :dimo=n oY :dimo=n

and similarly for B. Because ¢ is C'(X)-linear, it induces homomorphisms
¢(o) : Co(o,d0; Ay) = Co(o,0; By).

By the additivity of and the excision property of the K-functor (see e.g. [Bla, Theo-
rem 9.3.1]), it suffices to show that every ¢(o) induces an isomorphism on K-theory.
Let x be any interior point of o. Because o \ do is contractible, ¢, is homotopic
to idgy(0.60) @ ¢(75). By assumption the latter map induces an isomorphism on
K-theory. With the homotopy invariance of K-theory it follows that

K. (¢(0)) = Ky (idcy (0,60) © ¢(20))

is an isomorphism. O

Obviously this lemma is in no way optimal: one can generalize it to larger classes
of algebras and one can relax the finiteness assumption on . Because we do not
need it, we will not bother to write down such generalizations. What will need
however, is that Lemma [5.1.3| is also valid for similar functors, in particular for
A— K *(A) ®7, C.
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Theorem 5.1.4. The map
K. (¢) ®idg : Ku(C*"(W) xT) @7 Q = K.(C*(R,q) xI') @7 Q
15 a Q-linear bijection.
Proof. Consider the projection
pr: Zun/G = Tun/W(, G(P,6,t) — Wir|r| ™ t,

where W (Rp)r € Tp/W (Rp) is the central character of §. With this projection and
Theorem we make C*(R,q) into a C(T,/W})-algebra. By Theorem e
Co:C*(W)xT — C*(R,q) T is a morphism of C(Ty, /W) — C*-algebras. Choose
a triangulation X of Ty, such that:

e w(o) € X for every simplex o € ¥ and every w € W{;
e TG is a subcomplex of X, for every subgroup G C Wi

e the star of any simplex o is Wép—equivariantly contractible.

Then X/Wj is a triangulation of T, /W{. From Theorem and the proof of
[Solll Lemma 7] we see that A = C*(W) xI" and B = C*(R,q) x I" and are of the
form required in condition (a) of Lemma For any u € Ty, we write

Ay, = C*(W)xT/kerl,,

B, = @ggezun/g,pr(g):W[;u C*(R,q) x T/ ker ' (€).

Condition (b) of Lemma for K, (?)®7Q means that the map (o(Wju) : A, — By,
should induce an isomorphism

K(Go(Win) : Ku(Au) 82 Q — K. (B,) @2 Q. (5.4)
As for all finite dimensional semisimple algebras,
K.(A,) = Ko(Ay) = Gz(A) and K. (B,) = Ko(By) = Gz(By).

With these identifications Ko ((o(Wju)) sends a projective module eM,(A,) to the
projective module {o(W{u)(e)M,(B,). The free abelian groups Gz(A,) and Gz(By,)
have natural bases consisting of irreducible modules. With respect to these bases
the matrix of Ko((o(Wju)) is the transpose of the matrix of

50 : Gz(By) — Gz(Ay), 7 — mo {o(Wiu).

By Theorem a 09 ® idg : Go(Au) — Go(By) is a bijection, so (5.4) is also a
bijection. Now we can apply Lemma [5.1.3] which finishes the proof. O

So we proved Conjecture [5.1.1] modulo torsion, which raises the question what
information is still contained in the torsion part. It is known that K*(C*(R,q) xT")
is a finitely generated group. Indeed, by [Solll Theorem 6] this is the case for all
Fréchet algebras if the type described in Theorem Hence the torsion subgroup
of K*(C*(R,q) » I') is finite. In fact the author does not know any examples of
nontrivial torsion elements in such K-groups, but it is conceivable that they exist.
It turns out that this is related to the multiplicities of W/-representations in Section

in particular (2.24)).
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Lemma 5.1.5. The following are equivalent:
(a) Ki((p): Ku(C*(W) xT) = K (C*(R,q) xT') is an isomorphism.
(b) Ko(Co) : Ko(C*(W) xT') = Ko(C*(R,q) xT) is surjective.

(¢) For every u € Ty, the map ¢* induces a surjection from the Grothendieck group
of Mody,wrur,,(S(R,q) ¥ I') to that of Mod s yys, (W x I).

(d) The map (* induces a bijection ¢ : Gz(S(R,q) xT') = Gz(S(W) x T').

Proof.
(a) = (b) Obvious.
(b) = (c) We use the notation from the proof of Theorem [5.1.4} in particular Ko(A,)
and Ko(B,) are the Grothendieck groups referred to in (c). We claim that the
canonical map

Ko(C*(R,q) @ T') = Ko(Bu) (5.5)

is surjective. Recall that Ky(B,) is built from idempotents. Given any idempotent
ey € M, (B,) we want to find an idempotent e € M, (C*(R,q) x T') that maps to it.
By Theorem this means that on every connected component (P, d,T7)/Gps of
Eun/G we have to find an idempotent ep; in

M, (C(TE) @ Ende(CTWP) @ V5)) 77,

which in every point of pr=*(W/u) N (P,4,TL,)/Gps takes the value prescribed by
ey. Recall that the groupoid G was built from elements of W and from the groups
Kp = TP N Tp. The latter elements permute the components of Z,, freely, so
pr—t(W/}u) intersects every component of Z,, in at most one G-association class.
Therefore we can always find such a eps, proving the claim .
Together with assumption (b) this implies that
* Ko(Co) *
Ko(C*(W)xT) —= Ko(C*(R,q) » T') = Ky(By,)

is surjective. The underlying C*-algebra homomorphism factors via C*(W) x I' —
Ay, so

is also surjective.
(c) = (d) By Corollary (g(m) = mo(p for all m € Mod¢(S(R,q) x I'). So in
the notation of (5.4) ¢} is the direct sum, over all Wju € T, of the maps

Gz(By) — Gz(Ay) : m— mo {o(Wiu). (5.7)

As we noticed in the proof of Theorem the matrix of this map is the trans-
pose of the matrix of . We showed in the aforementioned proof that the latter
map becomes an isomorphism after applying ®7Q. As Ky(A,) and Ky(B,) are free
abelian groups, this implies that Ko((o(W{u)) is injective. So under assumption (c)
(5.6) is in fact an isomorphism. Hence, with respect to the natural bases it is given
by an integral matrix with determinant +1. Then the same goes for , so that
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map is also bijective. Therefore (; is bijective.
(d) = (a) The above shows that under assumption (d) the maps (5.7) and (5.6) are
bijections. Since Ki(A,) = K1(B,) = 0, we may apply Lemma O

By Corollary 2.1.5|b and property (d) of Theorem condition (c) of Lemma
can be reformulated as follows: for all u € T, the map 7 +— W‘W& induces a
bijection from the Grothendieck group of finite dimensional tempered H(7~2u, ky) X
W, ,modules with real central character to Gz(Wy,).

According to [Ciu, Corollary 3.6] this statement is valid for all graded Hecke
algebras of ”geometric type”. Hence Conjecture holds, including torsion, for
many important examples of affine Hecke algebras.

In particular, let I be an Iwahori subgroup of a split reductive p-adic group G
with root datum R, as in Section By [Ply2] the completion C (G, I) of H(G,I)
is isomorphic to C*(R, ¢), where ¢ is some prime power. It is interesting to combine
Conjecture [5.1.1] with the Baum—Connes conjecture. Let G be the affine Bruhat—
Tits building of G and identify a* with an apartment. The Baum—Connes conjecture
for groups like G and W was proven by V. Lafforgue [Laf], see also [Sol4] (For W it
can of course be done more elementarily.) We obtain a diagram

K (@) — KJ(Cr(W)) — K.J(C*(R.,q) — K.(C}(G, 1))
11 (5.8)
KJ(BG)  —  Ki(CHG) = D) K+(Cr(G)s)

in which all the horizontal maps are natural isomorphisms, while the vertical maps
pick the factor of K,(C}(G)) corresponding to the Iwahori-spherical component in
B(G). For the group G = GL,(F) this goes back to [Plyl]. Notice that
realizes KV (a*) as a direct summand of K&(3G), which is by no means obvious in
equivariant K-homology.

5.2 Periodic cyclic homology

Periodic cyclic homology is rather similar to topological K-theory, but the former
functor is defined on larger classes of algebras. For example one can take the peri-
odic cyclic homology of nontopological algebras like H(R, ¢), while it is much more
difficult to make sense of the topological K-theory of affine Hecke algebras without
completing them. By definition the periodic cyclic homology of an algebra over a
field F is an F-vector space. Whereas topological K-theory for C*-algebras is the
generalization of K-theory for topological spaces, periodic cyclic homology for non-
commutative algebras can be regarded as the analogue of De Rham cohomology for
manifolds.

In [Sol6, Theorem 3.3] the author proved with homological-algebraic techniques
that the periodic cyclic homology of an (extended) graded Hecke algebra H(R, k) xT
does not depend on the parameter function k. Subsequently he translated this into
a representation-theoretic statement, which we already used in : the collection
of irreducible tempered H(R, k) x -representations with real central character forms
a basis of Gig(Wy x I').
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We will devise a reversed chain of arguments for affine Hecke algebras. Via topo-
logical K-theory we will use Theorem [2.3.1]to show that H(R,q) xI" and S(R, q) x T
have the same periodic cyclic homology, and that it does not depend on the (pos-
itive) parameter function g. The material in this section can be compared with
IBHP [Sol4].

Recall that the Chern character is a natural transformation K, — H P,, where
we write HP,(A) = HPy(A) @ HP;(A). By and [Solll Theorem 6] there are

natural isomorphisms
K. (C*(R,q) »T)®z C+ K.(S(R,q) xT')®7z C - HP.(S(R,q)), (5.9)

the first one is induced by the embedding S(R,q) xI' — C*(R,q) x I, the second
one by the Chern character. Here and elsewhere in this paper the periodic cyclic
homology of topological algebras is always meant with respect to the completed
projective tensor product. (One needs a tensor product to build the differential
complex whose homology is H P,.) By contrast, in the definition of the periodic cyclic
homology of nontopological algebras we simply use the algebraic tensor product
over C.

Theorem 5.2.1. The inclusion H(R,q) x ' — S(R, q) x T induces an isomorphism
on periodic cyclic homology.

Proof. In [Sol4l, Theorem 3.3] the author proved the corresponding result for
Hecke algebras of reductive p-adic groups. The proof from [Sol4] also applies in
our setting, the important representation-theoretic ingredients being Theorem |3.2.2
Proposition and Lemma A sketch of this proof already appeared in [Sol2].
O

Corollary 5.2.2. There exists a natural commutative diagram

HP,(C[W]xT) — HP,(S(W)xTD) « K.(S(W)xT) = K,(C*(W)xT)

1 LHP.(¢o) LK. (¢o) YK ()
HP,(H(R,q) xT) — HP.(S(R,q) xT) + K.(S(R,q) ') = K.(C*(R,q) xT)

After applying ®@7C to the K-groups, all these maps are isomorphisms.

Proof. The horizontal maps are induced the inclusion maps
H(R,q) xT' - S(R,q) xI' - C*(R,q) » T

and by the Chern character K, — HP,. The vertical maps (expect the leftmost
one) are induced by the Fréchet algebra homomorphisms (y from Theorem
According to and Theorem all the horizontal maps become isomorphisms
after tensoring the K-groups with C. By Lemma the maps K, ((p) are natural,
and by Theorem they become isomorphisms after applying ®7C. The diagram
commutes by functoriality, so H Py((p) is also a natural isomorphism. Finally, we
define HP,(C[W]|xT') - HP.(H(R,q) xI") as the unique map that makes the entire
diagram commute. O
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Remark 5.2.3. Whether the leftmost vertical map comes from a suitable algebra
homomorphism C[W]| x T — H(R,q) x T is doubtful, no such homomorphism is
known if ¢ # 1.

Suppose that X is the weight lattice of Ry, that ¢ € C\ {0} is any complex
number which is not a root of unity, and that q(s) = ¢ for all s € S*F. In this setting
an isomorphism H P, (C[W]) = HP.(H(R, q)) was already constructed by Baum and
Nistor [BaNi, Theorem 11]. Their proof makes essential use of the Kazhdan-Lusztig
classification [KaLLu2, Theorem 7.12] of irreducible H (R, q)-representations, and of
Lusztig’s asymptotic Hecke algebra [Lus3| Lus4].

For graded Hecke algebras things are even better than in Corollary in
[Sol6, Theorem 3.4] it was proven that not only HP,(H(R,k) x I'), but also the
cyclic homology and the Hochschild homology of ]HI(7~2, k) x T are independent of k.
Whether or not this can be transferred to H(R,q) is unclear to the author. The
point is that the comparison of H(7~2, k) x T with H(R,q) x T' goes only via analytic
localizations of these algebras. Since the effect of localization on the dual space is
very easy, we can translate the comparison between localized Hecke algebras to a
comparison between their dual spaces. By [Sol6, Theorem 4.5] the periodic cyclic
homology of a finite type algebra essentially depends only on its dual space, so it
is not surprising that the parameter independence of H P, can be transferred from
graded Hecke algebras to affine Hecke algebras,

On the other hand, the Hochschild homology of an algebra changes in a non-
trivial way under localization. Therefore one would in the first instance only find a
comparison between the Hochschild homology of two localized affine Hecke algebras
with the same root datum but different parameters g. Possibly, provided that one
would know enough about HH,(H(R,q) x I'), one could deduce that also this vec-
tor space is independent of g. We remark that certainly the Z(H(R, q) x I')-module
structure of HH,(H(R,q) x I') will depend on ¢, because that is already the case
for graded Hecke algebras, see the remark to Theorem 3.4 in [Sol6].

5.3 Weakly spectrum preserving morphisms

For the statement and the proof of the Aubert—-Baum—Plymen conjecture we need
spectrum preserving morphisms and relaxed versions of those. These notions were
developed in [BaNi, Nis]. Baum and Nistor work in the category of finite type k-
algebras, where k is the coordinate ring of some complex affine variety. Since we are
also interested in certain Fréchet algebras, we work in a larger class of algebras.

We cannot do without some finiteness assumptions, but it suffices to impose them
on representations. So, throughout this section we assume that for all our complex
algebras A there exists a N € N such that the dimensions of irreducible A-modules
are uniformly bounded by N. In particular 7 — ker 7 is a bijection from Irr(A) to
the collection of primitive ideals of A. A homomorphism ¢ : A — B between two
such algebras is called spectrum preserving if

e for every primitive ideal J C B, there is exactly one primitive ideal I C A
containing ¢~ 1(J);
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e the map J — I induces a bijection Irr(¢) : Irr(B) — Irr(A).

We can relax these conditions in the following way. Suppose that there exists filtra-
tions

A=Ay D A1 D --- D A,
B=By D Bf D --- DO B,=0

by two sided ideals, such that ¢(A;) C B; for all i. We call ¢ : A — B weakly
spectrum preserving if all the induced maps ¢; : A;/A;+1 — B;/Bi+1 are spectrum
preserving. In this case there are bijections

(5.10)

L; II"I‘(Ai/AH_l) — II'I"(A),
L; II"I“(BZ‘/BZ'_H) — II"I“(B),
Irr(¢) := Uilrr(¢;) : Irr(B) — Irr(A).

Notice that Irr(¢) depends not only on ¢, but also on the filtrations of A and B.

Lemma 5.3.1. Let ¢ : A — B be a weakly spectrum preserving morphism, and
suppose that the dimensions of irreducible B-modules are uniformly bounded by N €
N. Then Irr(¢)"H(V (1)) = V($(I)N) for every two-sided ideal I C A. In particular

the bijection Irr(¢) is continuous with respect to the Jacobson topology (cf. Section

.
Proof. We proceed with induction to the length n of the filtration. For n = 1

the morphism ¢ is spectrum preserving, so the statement reduces to [BaNi, Lemma
9]. For n > 1 the induction hypothesis applies to the homomorphisms ¢ : A1 — Bj
and ¢1 : A/A; — B/Bj. So for m € Irr(B/By) C Irr(B) we have

7€ Irr(¢) 1 (V(I)) C Trr(B) <=

7€ Irr(¢y) N (V(I + A1 /A1) C Trr(B/By) <=

€ V(p(I)N + By/By)) C Irr(B/By) <

e V(e(I)N)) C Irr(B).

A similar argument applies to 7 € Irr(By) C Irr(B). O

The automatic continuity of Irr(¢) enables us to extract a useful map from the
Fréchet algebra morphism (p:

Lemma 5.3.2. The morphism (o : S(W) xT' - S(R,q) x T' is weakly spectrum
preserving.

Proof. We wil make use of the proofs of Lemma/[5.1.3] and Theorem There

we constructed a Wj-equivariant triangulation of T,,,, which lead to two-sided ideals
=0, 5 Ho O (Tun),

I,S(R,q) x T C SR,q) =T,
IL,S(W)xT C S(W)xT.
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(Here and below we regard the n-skeleton X" both as a simplicial complex and as
a subset of Ty,,,). It suffices to show that the induced map

Con : InSW) % T/, 1 SW)xT = I,S(R,q) xT'/I,4:1S(R,q) x T (5.11)

is spectrum preserving, for every n. Fortunately the dual spaces of these quotient
algebras are rather simple, by (5.3

Irr (I,S(R,q) @ T'/I,41S(R,q) x I) = | ] (0 \ d0) x Irry, (S(R,q) x T),
o€X /W, dimo=n
(5.12)
where z, € 0 \ 60 and Irry, (S(R,q) x I') denotes the dual space of the algebra

P S(R,q) x '/ ker 7' (€). (5.13)

QEEEun/gapr(é):WO/Ia'

By construction (o, is C§°-linear, so in particular it is linear over
Ce (2™, ") o= I, /L 11.

We know from Theorem a and Corollary that Gg(Co,n) is a bijection, so

in particular
Go(Con) : Go(Mod,, (S(R,q) x T')) = Ggp(Mod,, (S(W) xT)) (5.14)

is a bijection. Any ordering (my,ma,...,m) of Irr, (S(R,q) x I') gives rise to a
filtration of (5.13)) by ideals

)
B; = ﬂjzlkerwj- i=0,1,...,k

Since we are dealing with two finite dimensional semisimple algebras of the same
rank k, can be described completely with a matrix M € GLk(Z). Order
Irry, (S(R,q) x T') and Irr,, (S(W) x T') such that all the principal minors of M are
nonsingular. Then the corresponding ideals B; of and A; C S(W)xT'/kerI,,
are such that (o »(z,) induces spectrum preserving morphisms A;/A;11 — B;i/Biy1.
Hence (on(z,) is weakly spectrum preserving.

It follows from this and that for any n-dimensional simplex o € /W we
can construct filtrations by two-sided ideals in

C(2,00)M0S(R, q) x T/C§° (8, 0)V0S(R,q) x T

and in
Ce(2,00)VS(W) x T/C° (S, 0)VoS(W) x T,

with respect to which the map induced by (o, is weakly spectrum preserving. We
do this for all such simplices o, and then ([5.3)) show that (5.11)) is weakly spectrum
preserving. O
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A related notion that we will use in the next section is geometric equivalence of
algebras, as defined in [ABP1] Section 4]. The basic idea is to call A and B geomet-
rically equivalent if they are Morita-equivalent or if there exists a weakly spectrum
preserving morphism ¢ : A — B. Furthermore two finite type k-algebras are geo-
metrically equivalent if they only differ by an algebraic deformation of the k-module
structure. Now one defines geometric equivalence to be the equivalence relation (on
the category of finite type k-algebras) generated by these three elementary moves.

So whenever two algebras A and B are geometrically equivalent, they are so by
various sequences of elementary moves. Every such sequence induces a bijection
between the dual spaces of A and B, which however need not be continuous, since
the map Irr(¢) from Lemma is usually not a homeomorphism. Nevertheless,
by [BaNi, Theorem 8] every weakly spectrum preserving morphism of finite type
algebras ¢ : A — B induces an isomorphism HP,(¢) : HP.(A) — HP.(B). The
other two moves are easily seen to respect periodic cyclic homology, so geometric
equivalence implies H P-equivalence.

5.4 The Aubert—Baum—Plymen conjecture

In a series of papers [ABPI, [ABP2, [ABP3, [ABP4] Aubert, Baum and Plymen de-
veloped a conjecture that describes the structure of Bernstein components in the
smooth dual of a reductive p-adic group. We will rephrase this conjecture for affine
Hecke algebras, and prove it in that setting.

A central role is played by extended quotients. Let G be a finite group acting
continuously on a topological space T'. We endow

T:={(g.t)eGxT:g-t=t}
with the subspace topology from G x T'. Then G also acts continuously on f, by

9-(d,t)=(9g'g ", g-1).

The extended quotient of T by G is defined as T /G. It comes with a projection onto
the normal quotient: B
T/G—T/G:G(g,t) — Gt.

The fiber over Gt € T/G can be identified with the collection (Gy) of conjugacy
classes in the isotropy group Gy.

The relevance of the extended quotient for representation theory comes from
crossed product algebras. Suppose that F'(T') is an algebra of continuous complex
valued functions on T', which separates the points of T and is stable under the action
of G on C(T'). These conditions ensure that the crossed product F(T') x G is well-
defined. The dual space of this algebra was determined in classical results that go
back to Frobenius and Clifford (see [CuRe, Section 49]). Recall that a F(T')-weight
of a representation (7, V') is an element ¢ € T such that there exists a v € V' \ {0}
with 7(f)v = f(t)v for all f € F(T'). The collection of irreducible representations
with a F(T')-weight ¢ € T is in natural bijection with Irr(Gy), via the map

T Indiggjgtﬁjt ® .
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Since |Irr(Gy)| = |(Gy)|, there exists a bijection
T/G — Irr(F(T) x G) (5.15)

which maps G(g,t) to representation with a F(T)-weight t. With a little more
work one can find a continuous bijection. However, it is not natural and a not a
homeomorphism, except in very simple cases.

We return to an extended affine Hecke algebra H(R,q) x I". As described in
Section the parameter function ¢ is completely determined by its values on the
quotient set RY,/WyxT'. Let Q(R) be the complex variety of all maps R,/,/WyxT' —
C*. To every v € Q(R) we associate the parameter function g,v = v(aV)?2.

Conjecture 5.4.1. (ABP-conjecture for affine Hecke algebras)
Suppose that the subgroup of C* generated by {q(s)*'/?} contains no roots of unity
(except 1).

(a) The algebras CIW] x T and H(R,q) X T are geometrically equivalent.
(b) There exists a canonical isomorphism HP,(C[W] xT') =2 HP,(H(R,q) x T).

(¢) There exists a continuous bijection p : T/W} — Irr(H(R,q) x T) such that
(Lo /W) = Tix(S(R, q) % T).

(d) For every connected component ¢ of Tv/Wé there exists a smooth morphism of
algebraic varieties he : Q(R) — T with the following properties.

For all components ¢ we have h.(1) =1, and

Pr /2 (T/W} —T/W§) = {t € T : M(t) is reducible }/ W),
where pr, : T/W} — T/W}, is defined by

pr, (Wi(w,t)) = Wihe(v)t  for ve Q(R), Wi(w,t) € c.

Moreover p can be chosen such that the central character of p(Wi(w,t)) is
Whe(q' )t for Wi(w,t) € c.

The assumption on the roots of unity is probably stronger than necessary, but
it is difficult to predict which roots of unity really cause problems. In any case, it
is known that the above statements are false for some specific of roots unity, for
example ¢ = —1 if R is of type Agl).

We will verify the ABP-conjecture in the following cases:

Theorem 5.4.2. Parts (b), (c) and (d) of Conjecture hold for every extended
affine Hecke algebra with a positive parameter function q. Part (a) holds for the
Schwartz completions of the algebras in question.

Let us discuss the different parts of the ABP-conjecture. As we mentioned at the
end of Section [5.3] every explicit geometric equivalence gives rise to an isomorphism
on periodic cyclic homology. However, this isomorphism need not be natural, so
(b) does not yet follow from (a). In [ABP1l, [ABP3] we see that Aubert, Baum and
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Plymen have a geometric equivalence via Lusztig’s asymptotic Hecke algebra [Lus4]
in mind. The corresponding isomorphism [BaNi, Theorem 11]

HP,(H(R,q)) = HP,(C[W))

can be regarded as canonical, albeit in a rather weak sense.

Unfortunately, for unequal parameter functions this asymptotic Hecke algebra
exists only as a conjecture, see [Lus8, Chapter 18]. Neither does the author know any
other way to construct a geometric equivalence between H(R,q) x ' and C[W] x T,
so this part of the conjecture remains open for unequal parameter functions. As a
substitute we offer Lemma [5.3.2] which has approximately the same strength. It
is weaker because it concerns only topologically completed versions of the algebras,
but it is stronger in the sense that the geometric equivalence consists of only one
weakly spectrum preserving morphism.

Part (b) of Conjecture was already dealt with in Corollary

Proof of Conjecturel|5.4.1.c.

Recall the definition of a (tempered) smooth family of H x I'-representations from
(13.30). By there exist tempered smooth families {m;; : t € V;/ ~} which
together form a basis of Gg(S(R,q) x I'). The parameter space of such a family
is of the form V; = u; exp(a¥%) for some u; € Typ,g9; € Wy By the number
of families with parameter space of the form ¢V; for some g € W/, is precisely the
number of components of ﬁ; J/W{ whose projection onto T, /W{ is W{}V;. Hence
we can find a continuous bijection

Tun/W§ = {mig ri € It € Vi) ~}.

This will be our map p whenever the image m;; is irreducible, which is the case
on a Zariski-dense subset of Ty, JW{. To extend p continuously to all nongeneric
points, we need to find irreducible subrepresentations 7r§7t C ¢, such that {W;,t 1t e
Vi/ ~} = Irr(S(R,q) x T'). For 0-dimensional components all point are generic, so
there is nothing to do. If we have already defined u on all components of Ton JW
of dimension smaller than d, and (,t) corresponds to a nongeneric point Wj(w,t)
in a component of dimension d, than we choose for u(W{(w,t)) any irreducible
subrepresentation of m;; that we did not have yet in the image of the previously
handled components. This process can be carried out completely , and yields
a continuous bijection

(1t T /W§ — Trr(S(R, q) x T). (5.16)
From this and Lemmas and we obtain continuous bijections
Toun/ Wi — Irr(S(R, q) % T) — Irr(S(W) % T).
As explained after (3.29)) and (3.39)), these can be extended canonically to continuous
bijections B
T/W§ — Trr(H(R,q) x T) — Irr(W % T). (5.17)

Proof of Conjecture[5.4.1.d.
Suppose that W{(w,ty) € Tyun/W] is such that the corresponding representation
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mi¢ is irreducible. With Theorem we can find an induction datum £ (m; ;) =
(P,6,t1) € Zyp, such that m;; is a subquotient of 7' (P, 6,¢1). Then u(W{(w,tot2)) is
a subquotient of 7! (P, §,t1t2) for all t € exp(t?), so its central character is Wrtits,
where W(Rp)r € Tp/W(Rp) is the central character of the H p-representation .
According to [Opd2, Lemma 3.31] » € Tp is a residual point for Rp, which by
Proposition 2.63 and Theorem 2.58 of [OpSo2] means that the coordinates of r can
be expressed as an element of Tp,, times a monomial in the variables {q(s)*!/2 :
5 € Sar}. Hence we can write |r| = he(¢'/?), where ¢ is the component of T/Wé
containing W{(w,t) and h. : Q(R) — Tp C T is a smooth algebraic morphism
with he(1) = 1. Now W,he(¢'/?)tots is by construction the central character of
u(W(w, totz)). We note that the discrete series representation dy of Hy = C has
central character 1 € Ty = {1}, so h. = 1 when ¢ has dimension rank(X).

Let pr,i/2 be as in part (d) of Conjecture and temporarily denote the

difference of two sets by —. Then pr1/ (T /W}—T/W}) is the set of central characters

of u(T/ W§ — T/W{). Since p parametrizes irreducible representations, and since
every m € Irr(H(R,q) x I') with central character ¢ is a quotient of the principal
series representation M (t), no element of pr1/> (T /W{—T /W) can be the parameter
of an irreducible principal series representation.

Conversely, suppose that ¢ € T is not in the aforementioned set. In view of
Lemma we may assume that ¢ € T+. Then there is, up to isomorphism, only
one m; € Irr(H(R,q) x I') with central character W/t. In particular all constituents
of M(t) are isomorphic to m;. Restricted to the finite dimensional semisimple alge-
bra H(Wp,q) x I" this means that the regular representation M (t) of H(Wy,q) x T
is a direct sum of copies of Trt}?{(WO,q)xI" But H(Wy, q) ¥ I' has irreducible represen-
tations that appear only once in the regular representation, for example the trivial
onedimensional representation N,y — q(w)l/ 2. Thus there can be only one copy of
7 involved and

Ty = H(Wo,q) x I = M(t)

as representations of H (W, q) x I'. Moreover 7, is a subquotient of M (t) and both
have finite dimension, so they are also isomorphic as H x I'-representations. There-
fore pri/2(T/Wq — T/Wy) is precisely the subset of ¢ € T for which the principal
series representation M (t) is reducible. O

By Pri/2 (T/ W§ — T /W) contains all residual cosets of dimension smaller
than dim¢ (7). However, in general it is larger, because a unitary principal series
representation can be reducible. In fact there is also a more direct criterium for
irreducibility of principal series representations, in terms of the functions ¢, [Katl
Theorem 2.2].

We note that by Proposition the same map pr, also makes part (d) valid
for the scaled parameter functions ¢¢ with e € R. However, for other parameter
functions changes can occur.

Theorem also proves the Aubert—-Baum-Plymen conjecture for many Bern-
stein components of reductive p-adic groups:
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Corollary 5.4.3. Let s be a Bernstein component of a reductive p-adic group G
such that the algebra H(G)s is Morita-equivalent to an extended affine Hecke algebra
H(R,q) x ' in the way described in Section [1.6} (In particular this applies to all
Bernstein components listed at the end of that section.)

The part of the Aubert—Baum—Plymen conjecture [ABP1, |[ABP2] corresponding
to parts (b), (c) and (d) of Conjecture[5.4.1 holds for s. If moreover S(G)s is Morita
equivalent to S(R,q) x T, then it is geometrically equivalent to S(R,1) x I

Proof. Let us write s = [M,0]g. As discussed in , the assumed Morita
equivalence between H(G)s and H(R,q) x I' comes from an isomorphism between
(R,T") and (R,,T5), the latter being naturally associated to (M, o). These yield
isomorphisms W, — Wy x I and X, (M,) — T, such that the latter is equivariant
with respect to the former and restricts to bijections between the unitary and the
positive subsets of X, (M,) and T, see . Moreover we obtain an isomorphism
between Q(R) and the variety of parameter functions for R,-.

With these correspondences at hand, Theorem this proves parts (b), (c)
and (d) of Conjecture for H(G)s. As discussed after (3.19), it is not unlikely
that S(G)s is Morita equivalent to S(R,q) x I'. In that case Lemma m provides
the required geometric equivalence. O

5.5 Example: type Cél)

In the final section we illustrate what the Aubert-Baum—Plymen conjecture looks
like for an affine Hecke algebra with Ry of type Ba/Cy and X the root lattice. More

general results for type C,gl) affine Hecke algebras can be found in [Kat2) [CiKa)]. For
other examples we refer to [Sol3, Chapter 6].
Consider the based root datum R with

X=Y =17,
Ry={reX:lle]=1or o] = v2}.
R ={yeY:lle|=2or o] = vV2},
Fo={on= (1), 02=(9)}

Then a4 = () is the longest root and o = (3) is the longest coroot, so
Saff = {Soq; sagatagsag}'

We write s; = sq, for 1 <14 <4 and s¢g = t435q5- The Weyl group Wy is isomorphic
to D4 and consists of the elements

WO = {67p7r/27 Pmpfw/Z} U {517 52,53, 54}7

where pg denotes the rotation with angle . The affine Weyl group of R is the
Coxeter group

Wag = W = X x Wy = (sg, 51, 52\512 = (3032)2 = (5152)4 = (8081)4 =e).
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Furthermore R, = RgU {*ag, a3} and X* ={() € X :m >n > 0}.

We note that R is the root datum of the algebraic group SOj, while R corre-
sponds to Sp4. Let F be a p-adic field whose residue field has ¢ elements, and let s be
the Iwahori-spherical component of Sps(F). Then Mods(Sps(F)) = Mod(H(R,q))
and Kazhdan—Lusztig theory describes the irreducible representations in this cate-
gory with data from Spy(TF).

But there are many more parameter functions for R. Since sg, s1 and s are not
conjugate in W, we can independently choose three parameters

90 = q(s0) = day/2, @1 = 4(51) = das, @2 = 4(82) = qay-

Several combinations of these parameters occur in Hecke algebras associated to non-
split p-adic groups, see [Lus7]. The c-functions are

_ —1/2 1/2 ~1/2 —1/2
. :9a1—q11 9a2+q2/q0/ 0oy — a4 /qo/
Ty, — 1 Ony + 1 Ony — 1

For gg = g2 the relations from Theorem d simplify to

FNg = Nosi(f) = (07 =D —si(f)(1—0_0)"  i=1,2.  (5.18)

In contrast with graded Hecke algebras, H(R=R(S05),q1,92 = qo) is not isomor-
phic to H(RY=R(Sp4),q2,q1). The reason is that in H(R", q2,q1) the relation

o) = @ = =gy -0 g )T SEA

—2

and cq, =

st :Ns

(2) (9
holds, which really differs from because the root lattice Z (7') + Z () does
not equal X for the root datum RY.

We will work out the tempered dual of H(R, q) for almost all positive parameter
functions ¢q. To this end we discuss for each parabolic subalgebra Hp with P C
{a1, an} separately. Its contribution to Irr(S(R, q)) will of course depend on ¢, and
can even be empty in some cases.

° P=10
Xp={0}, X" =X,Yp={0},Y' =Y,Rp =0, R}, = 0, W(Rp) = {e},
Tp = {1}, T =T,Gp = Wy, Hp = C,HY = A= C[X].
We must determine the reducibility of the unitary principal series representations
M(t) = Ind%Cy = n(0,55,t)  t € Tun.

By Theorem Endy (M (t)) is spanned by the intertwining operators 7(w, @, dy, t)
with w € Wy and w(t) = t. For a root o € Ry with s,(t) = ¢, Lemma tells us
that m(sqa, 0, dp,t) is a scalar if and only if ¢, () = 0.

(-1,1)

Let us write t = (t3,t2) with ¢; = t(a;). A fundamental domain
for the action of Wy on Ty, is {t = ('?,e™): 0 <) < ¢ < 7}

(L1) (-1,1)
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The isotropy groups are trivial for all interior points, so M (t) is irreducible for
such t. Below we list the necessary data for all boundary points:

t Wot conditions Endy (M(t)) +# irreducibles
(€?,1),6 € (0,7) (s2) qoq2 # 1 C 1
‘ qoqz =1 C[(s2)] 2
(—1,e™),9 € (0,7) (s3) g2 # qo C 1
72 = qo Cl(s3)] 2
(€', e1), ¢ € (0,7) (s1) g #1 C 1
q1 = 1 (C[<$1>] 2
(-1,1) (52,83) qo# q2, 0002 #1 C 1
Q0o =q 71 Cl(s3)] 2
Go=q"#1  C[(s)] 2
Go=q=1 C[(s2, s3)] 4
(-1,-1) Wo o Fpqa#l C 1
@ =q,q#1 C[(s2)] 2
=19 #q C[(s1)] 2
@o=qq=1 C[W 5
(1,1) Wo Qo #lL,qg#1 C 1
0=q"an#1 C[(s)] 2
a=1q#q¢" C[(ss)] 2
w=¢" " a=1 CW 5

® P = {O&l}

Xp = X/Z%ay =2 Tay )2, XE = X/Zay,Yp = Zay ,YF = Za), Rp = {1},
RY = {+a)},W(Rp) ={e,s1}, TP ={t € T :t3 =t5},Tp = {t € T : tot3 = 1},
TP NTp={(1,1),(-1,-1)},Gp = {e,s4} x T¥' N Tp,

Hp =H(Rp,q(s1) = q1 = qoy, ' =Hp x C[X7"].
The root datum Rp is of type Cfl), which means that Ry is of type C; = A; and
generates the lattice Yp. For q; = 1 there are no residual points, for ¢; # 1 there
are two orbits, namely W(Rp)(qip, ql_l/Z) and W(Rp)(—qi/Q, —ql_l/2). Both orbits
carry a unique discrete series representation, which has dimension one. The formulas
for these representations are not difficult, but they depend on whether ¢go > 1 or
g2 < 1. So we obtain two families of H(R, g)-representations:

({1}, 01, (t2,t2)) = Ind¥p (67 o Bta,t2)) ¢ # 1ty € S,
71'({0{1},6,1, (t2yt2)) = Indzp((sll © ¢(t2,t2)) q1 7& 17t2 € Sl'

The action of Gp on these families is such that s4(ta, t2) = (t; ', t5 ), while (=1, —1) €
Gp simultaneously exchanges 01 with 0] and (t2, t2) with (—t2, —t2). A fundamental
domain for this action is {({a1},41, (e!?,e™)) : ¢ € [0,7]}. For ¢ € (0,7) these
points have a trivial stabilizer in Gp, so the corresponding H-representations are
irreducible. On the other hand, the element s4 € Gp fixes the points with ¢ = 0
or ¢ = m, so the representations m({a1},d1,(1,1)) and 7({e1},91,(—1,—1)) can be
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reducible. Whether or not this happens depends on more subtle relations between
o, ¢1 and go.

° P = {042}

Xp = X/Zas = Lo, XT' = X/Zay = Zaz,Yp = Zay , YT = Zay /2,
Ry = {#az}, Ry = {£ay}, W(Rp) = {e, 52},

TV ={teT ty=1},Tp={t €T :t3=1},Gp = {e, s3},

Hp =H(Rp,q(s2) = 62,40y = ), H' = Hp @ C[XT).

The root datum Rp is of type Agl), which differs from C’fl) in the sense that Xp

q1/2q;/2)

is the root lattice. There are two orbits of residual points: W (Rp)(1, ¢, and

W(Rp)(1, —qé/qul/Q). That is, these points are residual unless they equal (1,1) or
(1,—1). Both orbits admit a unique discrete series representation, of dimension one,
which denote by d; or 6_. Like for P = {«;}, the explicit formulas depend on which
of the Ap-characters are in T, . Again we find two families of H-representations:

w({az}, 8y, (t3,1)) = Ind}fp (64 0 dy1))  qog2 # Ltz € S,
7['({0[2},(5_, (t37 1)) = IndzP((s— o ¢(t3,1)) QO/QQ 7& 17t3 € Sl'

The group Gp acts on these families by s3(t3, 1) = (t3*,1). A fundamental domain is,
for both families, given by t € {¢ : ¢ € [0,7]}. For ¢ € (0, 17) the representations
7T({C¥2},5+, (€', 1)), because the isotropy group in Gp is trivial. For ¢ € {0,7}
the intertwining operator associated to s3 € Gp is not necessarily scalar, so we find
either one or two irreducible constituents. Remarkably enough, this depends not
only on the parameters gy and gs of Hp, but also on ¢;, as we will see later.

° P = {Oéz} = F()
Here simply H” = Hp = H(R,q). We have to determine all residual points, and
how many inequivalent discrete series they carry. The former can be done by hand,
but that is quite elaborate. It is more convenient to use [Opd2, Theorem 7.7] and
[HeOpl, Proposition 4.2], which say that for generic ¢ there are 40 residual points.
Representatives for the 5 Wy-orbits are
w0 at ),

-1/2 -1/2 1 —-1/2 —1/2
qO/QQ/Q1 ’QO/QQ/)v

1/2 —1/2 1 1/2 —1/2

(@) =(
(9) = (
rs(@) = (=q'"a "~ e ),
(q) = (
(9) = (

-1/2 1/2 1 1/2 —1/2
—qo a0’ Tar =90 " )

3/2 —1/27q51/2q2—1/2)‘

—q4y 49

Since every Wy-orbit of residual points carries at least one discrete series represen-
tation,

dimg (G (H(R, 9))/GH(H(R.q))) = dimg (GG(S(R, 9))/Gy(S(R.q))) = 5.
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On the other hand one can easily check, for example with the calculations for P =
0,q =1, that dimg (G%(W)/G}@(W)) = 5. With we deduce that every Wr;(q)
carries a unique discrete series representation 0(r;). So far for generic parameter
functions.

For nongeneric ¢ the Wr;(q) are still the only possible residual points, but some
of them may cease to be residual for certain ¢. In such cases r;(q) is absorbed by
the tempered part T of some onedimensional residual coset rT'7. (If r;(q) is
absorbed by Ty, which is the tempered part of the twodimensional residual coset
T, then r;(q) is also absorbed by a onedimensional residual coset.) This happens in
the following cases:

residual point ¢ absorbed by

r1(q) we=qa  Wola' q /)T
w090 =q Wo(1, 1/2 2)Ta2

ra(q) Qa2 = q; " Wo(ql/2 _1/2)T°‘1
Qe =q > Wl 7 éﬂq;/Q)TaQ

r3(q) q/q2 = q1 o(q 71/2)TO‘1
w/e=4d Wol,—q 1/2 o ) Tes

ra(q) w/e=a’ Wola ;“%Tal
w0/e2 =% Woll, —q) "y /)T

r5(q) q = G2 Wo(L gy *a*) T2
qoge =1 Wo(1, - 1/2 71/2)Ta2

It is also possible that two orbits of residual points confluence, but stay residual.
The deep result [OpSo2, Theorem 3.4] says that in general situations of this type
the discrete series representations with confluencing central character do not merge
and remain irreducible.

The geometric content of the Aubert-Baum—Plymen conjecture is best illustrated
with some pictures of the tempered dual of H(R, q), for various ¢q. Of course T has
real dimension four, so we cannot draw it. But the unitary principal series can be
parametrized by Ty, /Wy, which is simply a 45-45-90 triangle.

The other components of Irr(S(R, ¢)) will lie close to T, /Wy if q is close to 1,
which we will assume in our pictures. We indicate what confluence occurs when
q is scaled to 1 by drawing any m € Irr(S(R,q)) close to the unitary part of its
central character. To distinguish the three onedimensional components, we denote
the series obtained from inducing 01/4+/6— by L1/Ly/L_.

Finally, we have to represent graphically how many inequivalent irreducible rep-
resentations a given parabolically induced representation () contains. By default,
(&) is itself irreducible. When 7(§) contains two different irreducibles, we draw the
corresponding point fatter. When there are more than two, we write the number of
irreducibles next to it.

Almost everything in Figure can be deduced from the above calculations,
the ABP-conjecture (or rather Theorem and |[OpSo2, Theorem 3.4]. The
only thing that cannot be detected with these methods is what happens at the

(0%, "%) € Ly for g0 = g2 = q/* and r1(q) — (1,q2) € Ly

confluences r1(q) — (¢,"", ¢

98



for gqg = q1 = ¢qo. For these ¢ there are four unitary induction data that give rise to
representations with central character in T,s/Wy. So three of them are irreducible,
and one contains two different irreducibles. We can see that the reducibility does not
occur in the unitary principal series or in the discrete series, which leaves the two
intermediate series. Fortunately one can explicitly determine all subrepresentations
of ({an}, 01, (1,1)) (for go = g2 = qi/2) and of 7 ({az}, 04, (1,1)) (for g0 = ¢1 = ¢2),
see [Sloll Section 8.1.2]. In fact the graded Hecke algebras corresponding to these
parameter functions are precisely the ones assciated to Sps and to SOs. Hence
one may also determine the reducibilty of the aforementioned representations via
the Deligne-Langlands—Kazhdan—Lusztig parametrization. Thirdly, it is possible to
analyse these parabolically induced representations with R-groups, as in [DeOp2].

The comparison of the tempered duals for different parameter functions clearly
shows that this affine Hecke algebra behaves well with respect to general parameter
deformations, not necessarily of the form ¢ — ¢¢. We see that for small pertubations
of ¢ it is always possible to find regions U/Wy C T /W such that the number of
tempered irreducibles with central character in U/W, remains stable. The W-
types of these representations can change however. It is reasonable to expect that
something similar holds for general affine Hecke algebras, probably that would follow
from the existence of an appropriate asymptotic Hecke algebra [Lus§].
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q generic T

L,

_ _ 12 o °
qo_ q2_ ql - = =1

Figure 5.1: the tempered dual for various values of ¢
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