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Abstract.
Let H be a graded Hecke algebra with complex deformation parameters and Weyl
group W . We show that the Hochschild, cyclic and periodic cyclic homologies of H
are all independent of the parameters, and compute them explicitly. We use this
to prove that, if the deformation parameters are real, the collection of irreducible
tempered H-modules with real central character forms a Q-basis of the representation
ring of W .

Our method involves a new interpretation of the periodic cyclic homology of
finite type algebras, in terms of the cohomology of a sheaf over the underlying com-
plex affine variety.
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Introduction

Let t∗ be a complex vector space containing a root system R with Weyl group W .
Then W acts on the symmetric algebra S(t∗) of t∗, so one can construct the crossed
product algebra W n S(t∗). Graded Hecke algebras are deformations of W n S(t∗),
depending on several parameters kα ∈ C.

Lusztig [Lus2, Lus3] showed that graded Hecke algebras play an important role
in the representation theory of affine Hecke algebras and of simple p-adic groups.
For this reason it pays to understand the representations of graded Hecke algebras,
and in particular to determine their irreducible representations.

We will approach this goal via the noncommutative geometry of these algebras.
Every graded Hecke algebra H is endowed with a natural filtration, whose associated
graded algebra is W n S(t∗). This gives rise to spectral sequences converging to
various homologies of H, and allows us to prove that:

Theorem 0.1. (See Theorems 3.3 and 3.4.)
The Hochschild and (periodic) cyclic homologies of H and WnS(t∗) are isomorphic:

HHn(H) ∼= HHn(W n S(t∗)),
HCn(H) ∼= HCn(W n S(t∗)),
HPn(H) ∼= HPn(W n S(t∗)).

Moreover the inclusion C[W ]→ H induces an isomorphism on HP∗.

However, the representation theoretic content of this result is not so obvious, for
instance because the bijection on HH∗ is not an isomorphism of S(t∗)W -modules.
To clarify this we introduce a new interpretation of the periodic cyclic homology of
an algebra. It is not specific for graded Hecke algebras, in fact it applies to all finite
type algebras. Let X be a complex affine algebraic variety. It is known [KNS] that

HPn(O(X)) ∼=
⊕

m∈ZH
n+2m(Xan; C), (1)

where Xan is X with the analytic topology. Now let A be a finite type O(X)-algebra.
To it we associate a sheaf SA over Xan, which encodes the space of irreducible A-
modules. We will establish an isomorphism

HPn(A) ∼=
⊕

m∈ZȞ
n+2m(Xan;SA), (2)

where Ȟ stands for the Čech cohomology of a sheaf. The main advantage of (2) is
that the extensive machinery of sheaf cohomology becomes available for the calcu-
lation of periodic cyclic homology.

For graded Hecke algebras we can really put (2) into effect, provided that the
root system R is crystallographic and the parameters kα are real. Probably these
assumptions are not necessary for the final results, but we do use them in our proofs.

The representations of such graded Hecke algebras naturally come in series. Ev-
ery such series is induced from a discrete series representation of a parabolic subal-
gebra and parametrized by a subspace of t. The individual representations in such a
series can be equivalent, and they may be reducible. All this is described by the the-
ory of intertwining operators, which the author discussed in the prequel [Sol3] to the
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present paper. The upshot is that these series partition the primitive ideal spectrum
of H in disjoint subsets, and that every single such subset is in first approximation
a vector space modulo a finite group.

This relatively simple shape allows us to compute the cohomology of the sheaf SH
from (2). As could be expected, there is no cohomology in strictly positive degrees.
In degree zero we find that Ȟ0(t/W ;SH) is naturally isomorphic to the complex
vector space whose basis is formed by the irreducible tempered H-modules with real
central character (these notions are defined in Section 5).

Thus we have two different ways to determine HP∗(H):

• via a spectral sequence coming from the filtration of H by degree,

• via the cohomology of a sheaf encoding the primitive ideal spectrum of H.

The first method relates HP0(H) to HP0

(
C[W ]

)
, and hence to the irreducible W -

representations. The second strategy results in a comparison between HP0(H) and
the collection Irr0(H) of irreducible tempered H-modules with real central character
(modulo equivalence). Combining both strategies, we arrive at the main result of
the paper:

Theorem 0.2. (See Theorem 6.5.c.)
Let R be a cystallographic root system with Weyl group W and let kα (α ∈ R) be
real parameters. The representations {V |W : V ∈ Irr0(H)} form a Q-basis of the
representation ring R(W )⊗Z Q.

Hitherto this result was only known for “geometric” graded Hecke algebras, for
which Ciubotaru [Ciu, Corollary 3.6] derived it from deep results of Lusztig. Here
“geometric” means that these are the graded Hecke algebras that arise as the equiv-
ariant homology of specific algebraic varieties, as in [Lus2].

Moreover in these cases the expression of {V |W : V ∈ Irr0(H)} with respect to
the natural basis of R(W ) (suitably ordered) is a unitriangular matrix with inte-
gral coefficients. As Ciubotaru remarks, unitriangularity gives rise to a generalized
Springer correspondence, via [Lus1]. Therefore it would be quite interesting to know
whether this unitriangularity remains valid in our more general setting. Unfortu-
nately the methods in this paper are unsuitable to detect it, since the complex
coefficients of periodic cyclic homology destroy the torsion information.

Theorem 0.2 can be used to study several problems:

• determination of the unitary dual of graded Hecke algebras. Indeed, Theorem
0.2 (for geometric Hecke algebras) plays an important role in [Ciu].

Lusztig’s reduction theorems [Lus3] provide a concrete connection between repre-
sentations of H and of related affine Hecke algebras. This opens the road to

• the analogue of Theorem 0.1 for affine Hecke algebras.

Such an analogue would be useful to classify all irreducible representations of affine
Hecke algebras, especially those with unequal parameters. Pursuing this line of
thought even further, to the smooth representation theory of p-adic groups, could
provide
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• a promising tool to attack many cases of a conjecture of Aubert, Baum and
Plymen [ABP1, ABP2], which describes Bernstein components in the smooth
dual of a reductive p-adic group.

The author intends to study the last two applications in a forthcoming paper.
We conclude this introduction with a description of the various sections. The

first Section recalls some general results on crossed products of commutative alge-
bras with finite groups, in particular their representation theory and their homology.
We state the definitions of graded Hecke algebras in Section 2. As Lusztig’s reduc-
tion theorems involve groups of diagram automorphisms of R, we incorporate such
groups in our algebras right from the start. This changes the notations somewhat,
but does not make the proofs really more complicated. Section 3 is dedicated to
proving Theorem 0.1. In the fourth Section we show how to relate the periodic cyclic
homology of a finite type algebra to the cohomology of a sheaf, as in (2). Moreover
we provide some examples of such sheaves. In Section 5 we recall the relevant results
from [Sol3], which deal mostly with parabolically induced representations of graded
Hecke algebras. In the final Section 6 we compute the cohomology of the sheaf SH,
which leads to Theorem 0.2.

1 Crossed product algebras

We start with a discussion of a rather general kind of algebras, obtained from an
action of a finite group on a commutative algebra. A lot is known about such crossed
product algebras, and here we recall the results that we will use later on.

Let G be any group and A be an algebra over a field F. Let β : G→ Aut(A) be
an action of G on A by algebra automorphisms. We endow the vector space A⊗F FG
with the multiplication

(a⊗ g) ·
(
a′ ⊗ g′

)
= a βg(a′)⊗ gg′ a, a′ ∈ A, g, g′ ∈ G. (3)

This defines an associative F-algebra, denoted AoG or GnA and called the crossed
product of A and G.

We specialize this in the direction of the algebras that are of most interest to us.
Let X be a topological space and suppose that A is a subalgebra of C(X; C) whose
maximal ideal spectrum is precisely X. Furthermore we suppose that G is finite and
acts on X by homeomorphisms, such that the induced action on C(X; C) preserves
A. Let Cx be the onedimensional A-module with character x ∈ X and write

Gx := {g ∈ G : g(x) = x},
Ix := IndAoG

A Cx .

The representation theory of such algebras is not complicated, and can be obtained
from classical results that go back to Frobenius and Clifford, see [Cli] or [CuRe,
Theorem 11.1].

Theorem 1.1. a) Ix ∼= Ix′ if and only if Gx = Gx′.
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b) Ix ∼= IndAoG
AoGx

(
C[Gx]

)
, where A acts on C[Gx] through the evaluation at x.

c) Ix is completely reducible.

d) Every irreducible AoG-module is a direct summand of some Ix.

e) The number of inequivalent irreducible constituents of Ix equals the number of
conjugacy classes in Gx.

Proof. a) As an A-module

Ix =
⊕

g∈G Cgx =
⊕

g∈G Cvgx ,

and G acts by g′ · vgx = vg′gx. Similarly Ix′ =
⊕

g∈G Cṽgx′ . If Gx = Gx′ then

Ix → Ix′ : vgx 7→ ṽgx

is an isomorphism of A o G-modules. On the other hand, if Gx 6= Gx′, then Ix′

contains no A-weight spaces with weight x, so Ix′ 6∼= Ix.
b)

IndAoG
AoGx

(
C[Gx]

)
= (AoG)⊗AoGx

(⊕
g∈Gx Cvgx

)
=
⊕

g∈G Cvgx = Ix .

c) The group G permutes the A-weight spaces of Ix transitively, and the x-weight
space is just C[Gx]. Hence the functor IndAoG

AoGx provides a bijection between Gx-
subrepresentations of C[Gx] and AoG-submodules of Ix. Since C[Gx] is completely
reducible, so is Ix.
d) Let (π, V ) be an irreducible AoG-module. There exists an x for which V contains
a nonzero A-weight vector vx. Then

φ : Ix → V,

φ((a⊗ g)vx) = π(a⊗ g)vx

is a surjective homomorphism of AoG-modules and hence V ∼= Ix/ kerφ is a quotient
of Ix. But Ix is completely reducible, so V is also isomorphic to a direct summand
of Ix.
e) The map IndAoG

AoGx above remains bijective on the level of isomorphism classes
of irreducible modules. As is well known, the number of inequivalent irreducible
constituents of the left regular representation C[Gx] equals the number of conjugacy
classes in Gx. 2

Extended quotients are very useful to describe the homology of crossed products,
so us recall these. Write

X̃ = {(g, x) ∈ G×X : g(x) = x}. (4)

Then G acts on X̃ by g(g′, x) = (gg′g−1, g(x)), and the extended quotient of X by
G is defined as X̃/G. Write Xg = {x ∈ X : g(x) = x}, let ZG(g) be the centralizer
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of g in G and let G/ ∼ be the collection of conjugacy classes in G. We can also
construct the extended quotient as a disjoint union:

X̃/G =
( ⋃
g∈G

(g,Xg)
)
/G =

⋃
c∈G/∼

(⋃
g∈c

(g,Xg)/G
)

∼=
⋃

g/∼∈G/∼

(g,Xg/ZG(g)) ∼=
⊔

g/∼∈G/∼

Xg/ZG(g).
(5)

Suppose now that X is a nonsingular affine complex variety, and that G acts on
it by algebraic isomorphisms. Then Xg is an algebraic variety as well, and with
the slice theorem one deduces that Xg is a smooth manifold. Hence Xg and X̃ are
nonsingular affine varieties, although usually the latter has components of different
dimensions.

For A we take the algebra O(X) of regular functions on X. Let Ωn(X) denote the
space of algebraic n-forms on X, and Hn

DR(X) the (algebraic) De Rham-cohomology
of X. The following result generalizes the classical Hochschild–Kostant–Rosenberg
theorem:

Theorem 1.2. Let X and G be as above. The Hochschild, cyclic and periodic cyclic
homologies of O(X) oG are given by

HHn(O(X) oG) = Ωn
(
X̃
)G
,

HCn(O(X) oG) =
(
Ωn
(
X̃
)
/dΩn−1

(
X̃
)
⊕Hn−2

DR

(
X̃
)
⊕Hn−4

DR

(
X̃
)
⊕ · · ·

)G
,

HPn(O(X) oG) =
(⊕

m∈ZH
n+2m
DR

(
X̃
))G

.

Proof. This result and various generalizations were proven by Brylinski and Nis-
tor, see [Bry] and [Nis, Theorem 2.11]. 2

To make the above isomorphisms more explicit we need to recall the definitions
of Hochschild and cyclic homology. For any unital algebra A and any A-bimodule
M there is a differential complex (C∗(A,M), b), where Cn(A,M) = M ⊗ A⊗n and
b : Cn(A,M)→ Cn−1(A,M) is defined on elementary tensors by

b(m⊗ a1 ⊗ . . .⊗ an) =
∑n−1

i=1 (−1)im⊗ a1 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an +
ma1 ⊗ a1 ⊗ . . .⊗ an + (−1)nanm⊗ a1 ⊗ . . .⊗ an−1.

(6)

This is known as the Hochschild complex, and its homology is denoted by H∗(A,M).
When M = A, we omit it from the notation and get Hn(C∗(A), b) = HHn(A).

We can extend C∗(A) to a so-called mixed complex B∗(A):

↓ ↓ ↓
A⊗3 B←− A⊗2 B←− A
↓ b ↓ b
A⊗2 B←− A
↓ b
A

(7)
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The degree on this complex is the sum of the horizontal and vertical positions. The
operator B : A⊗(n+1) → A⊗(n+2) satisfies bB +Bb = 0 and is given explicitly by

B(a1⊗· · ·⊗an) =
n∑
i=0

(−1)ni(1⊗ai−ai⊗ 1)⊗ai+1⊗· · ·⊗an⊗a1⊗· · ·⊗ai−1. (8)

The cyclic homology of A is HCn(A) = Hn(B∗(A), b, B).
The remainder of this section, which will only be used in Theorem 3.4 and not

for Sections 4–6, provides a more detailed analysis of Theorem 1.2. For A and G as
in (3), Cn(AoG) has a subspace

Cn(A)g := span{ga0 ⊗ a1 ⊗ · · · ⊗ an : ai ∈ A}.

Notice that (C∗(A)g, b) is a subcomplex of C∗(AoG), b). Its homology is

Hn(C∗(A)g, b) = Hn(A,Ag),

where the A-bimodule structure on M = Ag is given by a · m · a′ = g−1(a)ma′.
According to [GeJo, Proposition 4.6]

HHn(AoG) ∼= Hn

(⊕
g∈GC∗(A)g, b

)
G
∼=
(⊕

g∈GHn(A,Ag)
)G
, (9)

where the sub- and superscripts G mean coinvariants and invariants, respectively.
The G-action is defined via the inclusion C∗(A)g → C∗(AoG):

h · (ga0 ⊗ a1 ⊗ · · · ⊗ an) = (hgh−1)h(a0)⊗ h(a1)⊗ · · · ⊗ h(an).

Moreover for A = O(X) and G as in Theorem 1.2, [Nis, Corollary 2.12] says that
the inclusion Xg → X induces an isomorphism

Hn(O(X),O(X)g) ∼= HHn(O(Xg)) ∼= Ωn(Xg). (10)

The antisymmetrization map εn from [Lod, Section 1.3] gives a commutative diagram

Ωn(Xg) ←− Ωn(O(X)g)
↓ εn ↓ εn

HHn(O(Xg)) ←− HHn(O(X)g),
(11)

where Ωn(B) denotes the module of Kähler n-forms over a commutative algebra
B. Since Xg is nonsingular, the famous Hochschild–Kostant–Rosenberg theorem
assures that the left εn is a bijection.

Since Xg is closed in X, the restriction map O(X) → O(Xg) is surjective, and
since g has finite order it admits a linear splitting s : O(Xg)→ O(X)g. This induces
a splitting

Ωn(s) : Ωn(Xg)→ Ωn(O(X)g)

of the upper line of (11). Now εn ◦ Ωn(s) ◦ ε−1
n in (11) defines a splitting of

HHn(O(X)g)→ HHn(O(Xg)), (12)
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which therefore is surjective. We can embed C∗(O(X)g) in C∗(O(X))g, simply by
writing a g on the left. Together with (9), (10) and (12) this shows that the inclusion⊕

g∈G gC∗(O(X)g)→ C∗(O(X) oG) (13)

induces a surjection on homology. Moreover, because HH∗(O(X)oG) consists of G-
coinvariants, it suffices to restrict the direct sum to one element in every conjugacy
class of G.

Let 〈g〉 ⊂ G be the cyclic group generated by g ∈ G, so that g and O(X)g lie in
the commutative algebra Og := C[〈g〉]⊗O(X)g. There is a natural surjection

πn : Cn(Og)→ Ωn(Og),
πn(a0 ⊗ a1 ⊗ · · · ⊗ an) = a0 da1 · · · dan.

According to [Lod, Lemma 1.3.14 and Proposition 2.3.4] we have

πn ◦ b = 0 and πn+1 ◦B = (n+ 1) d ◦ πn.

Therefore πn/n! induces a map from (B∗(Og), b, B) to the mixed complex

↓ ↓ ↓
Ω2(Og) d←− Ω1(Og) d←− Ω0(Og)
↓ 0 ↓ 0

Ω1(Og) d←− Ω0(Og)
↓ 0

Ω0(Og)

(14)

Since Ωn(O(X)g)→ Ωn(O(Xg)) = Ωn(Xg) is surjective, the comparison of Theorem
1.2 with the homology of (14) shows that this gives us a surjection

HCn(Og)→ HCn(O(Xg)).

As C[〈g〉] barely plays a role here, the map remains surjective when we restrict it to
elements coming from gB∗(O(X)g) ⊂ B∗(Og). From this, Theorem 1.2 and (13) we
deduce the result that we were after:

Lemma 1.3. Let X and G be as in Theorem 1.2. All elements of HHn(O(X) oG)
and of HCn(O(X) oG) can be represented by cycles in

⊕
g∈G gC∗(O(X)g). It also

suffices to take the direct sum over representatives of the conjugacy classes in G.

2 Graded Hecke algebras

For the construction of graded Hecke algebras we will use the following objects:

• a finite dimensional real inner product space a,

• the linear dual a∗ of a,
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• a (reduced) root system R in a∗,

• the dual root system R∨ in a,

• a basis Π of R.

We call
R̃ = (a∗, R, a, R∨,Π) (15)

a degenerate root datum. We neither assume that R is crystallographic, nor that Π
spans a∗. In fact R is even allowed to be empty. Our degenerate root datum gives
rise to

• the complexifications t and t∗ of a and a∗,

• the symmetric algebra S(t∗) of t∗,

• the Weyl group W of R,

• the set S = {sα : α ∈ Π} of simple reflections in W ,

• the complex group algebra C[W ].

Choose formal parameters kα for α ∈ Π, with the property that kα = kβ if α and
β are conjugate under W . The graded Hecke algebra H̃(R̃) corresponding to R̃ is
defined as follows. As a complex vector space

H̃(R̃) = C[W ]⊗ S(t∗)⊗ C[{kα : α ∈ Π}].

The multiplication in H̃(R̃) is determined by the following rules:

• C[W ] , S(t∗) and C[{kα : α ∈ Π}] are canonically embedded as subalgebras,

• the kα are central in H̃(R̃),

• for x ∈ t∗ and sα ∈ S we have the cross relation

x · sα − sα · sα(x) = kα〈x , α∨〉 . (16)

We define a grading on H̃(R̃) by requiring that t∗ and the kα are in degree one,
while W has degree zero.

In fact we will only study specializations of this algebra. Pick complex numbers
kα ∈ C for α ∈ Π, such that kα = kβ if α and β are conjugate under W . Let Ck be
the onedimensional C[{kα : α ∈ Π}]-module on which kα acts as multiplication by
kα. We define

H = H(R̃, k) = H̃(R̃)⊗C[{kα:α∈Π}] Ck (17)

With some abuse of terminology H(R̃, k) is also called a graded Hecke algebra.
Notice that as a vector space H(R̃, k) equals C[W ] ⊗ S(t∗), and that the cross
relation (16) now holds with kα replaced by kα:

x · sα − sα · sα(x) = kα〈x , α∨〉. (18)
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More generally, for any sα ∈ S and p ∈ S(t∗) we have

p · sα − sα · sα(p) = kα
p− sα(p)

α
. (19)

An automorphism γ of the Dynkin diagram of the based root system (R,Π) is a
bijection Π→ Π such that

〈γ(α) , γ(β)∨〉 = 〈α , β∨〉 ∀α, β ∈ Π . (20)

Such a γ naturally induces automorphisms ofR,R∨ andW . Moreover we will assume
that the action of γ on the linear span of the coroots is extended somehow to an
orthogonal endomorphism of t. If γ and γ′ act in the same way on R but differently
on t, then we will sloppily regard them as different diagram automorphisms.

Let Γ be a finite group of diagram automorphisms of (R,Π). Groups like

W ′ := Γ nW (21)

typically arise from larger Weyl groups as the isotropy groups of points in some
torus, or as normalizers of some parabolic subgroup [How]. Assume that kγ(α) =
kα ∀α ∈ Π, γ ∈ Γ. Then Γ acts on H by the algebra homomorphisms

ψγ : H→ H ,

ψγ(xsα) = γ(x)sγ(α) x ∈ t∗, α ∈ Π .
(22)

Thus we can form the crossed product

H′ := Γ n H = Γ n H(R̃, k) , (23)

which we call an extended graded Hecke algebra.
We define a Z-grading on H′ by deg(w) = 0 ∀w ∈ W ′ and deg(x) = 1 ∀x ∈ t∗.

However, the algebra H′ is in general not graded, only filtered. That is, the product
h1h2 of two homogeneous elements h1, h2 ∈ H′ need not be homogeneous, but all its
homogeneous components have degree at most deg(h1) + deg(h2). More precisely,
from (19) we see that the part of h1h2 that depends on the parameters kα has degree
strictly lower than deg(h1) + deg(h2).

Let us mention some special cases in which H′ = Γ n H(R̃, k) is graded:

• if R = ∅ then H′ = Γ n H̃(R̃) = Γ n S(t∗),

• if kα = 0 ∀α ∈ Π then Γ n H(R̃, k) is the crossed product W ′nS(t∗), with the
cross relations

w · x = w(x) · w w ∈W ′, x ∈ t∗. (24)

Multiplication with any z ∈ C× defines a bijection mz : t∗ → t∗, which clearly
extends to an algebra automorphism of S(t∗). From the cross relation (18) we see
that it extends even further, to an algebra isomorphism

mz : Γ n H(R̃, zk)→ Γ n H(R̃, k) (25)

which is the identity on C[W ′]. Notice that the homomorphism (25) remains well-
defined for z = 0, only then it ceases to be bijective.

In particular, if all α ∈ R are conjugate under W ′, then there are essentially only
two graded Hecke algebras attached to (R̃,Γ): one with k = 0 and one with k 6= 0.
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3 The homology of graded Hecke algebras

In this section we will prove that the periodic cyclic homology of a graded Hecke
algebra is the same as that of its underlying finite Weyl group. In fact we imme-
diately generalize this to the extended graded Hecke algebras from (23), since this
does not make the proof more difficult. Throughout we will use the notations from
Section 2.

Lemma 3.1. Consider the extended graded Hecke algebra ΓnH(R̃, 0) = W ′nS(t∗)
with parameter k = 0.

a) HHn

(
W ′ n S(t∗)

)
= 0 for all n > dimC(t∗).

b) HCn
(
W ′ n S(t∗)

)
= HPn

(
W ′ n S(t∗)

)
= 0 for all odd n > dimC(t∗).

c) The inclusion C[W ′] → W ′ n S(t∗) induces an isomorphism on periodic cyclic
homology.

Proof. a) follows immediately from Theorem 1.2.
b) Every component of t̃ is a vector space, and in particular contractible as a topo-
logical space. Therefore Hn

DR

(̃
t
)

= 0 for all n > 0. Now apply Theorem 1.2.
c) By the above we only have to show this in degree 0. Again by Theorem 1.2

HP0

(
W ′ n S(t∗)

) ∼= H0
DR

(̃
t
)W ′ ∼= (⊕w∈W ′H

0
DR

(
tw
))W ′

∼=
(
C[W ′]

)W ′ ∼= HP0

(
C[W ′]

)W ′
.

According to [Nis, Theorem 2.11] all the above isomorphisms can be made natural.
In particular C[W ′]→W ′ n S(t∗) induces an isomorphism on HP∗. 2

To transfer these results to H′ = Γ n H(R̃, k) with k 6= 0, we will use spectral
sequences. For d ∈ Z≥0 let H′≤d denote the vector space of elements of degree ≤ d
in H′. We generalize this filtration to the tensor power (H′)⊗n by

(H′)⊗n≤d :=
∑

d1+···+dn≤d
H′≤d1 ⊗ · · · ⊗H′≤dn . (26)

Equivalently one can take the sum over all n-tuples (d1, . . . , dn) of nonnegative
integers with d1 + · · ·+ dn = d.

Lemma 3.2. HHn

(
Γ n H(R̃, k)

)
= 0 for n > dimC(t∗).

Proof. The Hochschild complex (C∗(H′), b) from (6) is filtered by (26). That is,
we put

FpCn(H′) = (H′)⊗(n+1)
≤p .

This gives rise to a spectral sequence converging to HH∗(H′), see for example [CaEi,
Chapter XV]. Its first term is

E1
p,q = Hp+q

(
FpC∗(H′)/Fp−1C∗(H′)

)
.

11



The boundary map on FpC∗(H′)/Fp−1C∗(H′) is given by (6), but we may ignore
all terms that are not in top degree. From equations (18) and (22) we see that
the resulting map is actually independent of k. So we can determine E1

p,q for all
parameters, just by looking at the case k = 0.

But for k = 0 the algebra Γ n H(R̃, 0) = W ′ n S(t∗) is really graded, so filtering
the Hochschild complex does not add anything, and the spectral sequence stabilizes
already at E1

∗,∗. From Lemma 3.1.a we deduce that E1
p,q = 0 if p+ q > dimC(t∗).

For general parameters kα we cannot say immediately whether our spectral se-
quence stabilizes at the first term, but in any case Erp,q is a subquotient of E1

p,q.
Hence E∞p,q = 0 whenever p+ q > dimC(t∗), and the lemma follows. 2

As a corollary of Lemma 3.2 we find that for n > dimC(t∗):

HCn
(
Γ n H(R̃, k)

) ∼= HPn
(
Γ n H(R̃, k)

)
. (27)

Indeed, this can be seen from Connes’ periodicity exact sequence, which relates
Hochschild and cyclic homology. On the other hand, we can also try to compute the
cyclic homology with a spectral sequence, and this leads to the following result.

Theorem 3.3. For n > dimC(t∗) we have

HPn
(
Γ n H(R̃, k)

) ∼= HCn
(
Γ n H(R̃, k)

) ∼= HCn
(
C[Γ nW ]

)
.

The inclusion C[Γ nW ] → Γ n H(R̃, k) induces an isomorphism on periodic cyclic
homology.

Proof. Recall from (7) thatHCn(H′) is computed by the mixed complex (B∗(H′), b, B).
Its space of n-chains is

Bn(H′) := H′⊗(n+1) ⊕H′⊗n ⊕ · · · ⊕H′.

We introduce a filtration on this differential complex by

FpBn(H′) := (H′)⊗(n+1)
≤p ⊕ (H′)⊗n≤p ⊕ · · · ⊕H′≤p.

As in the previous proof, this yields a spectral sequence Erp,q converging toHCp+q(H′).
In particular

E1
p,q = Hp+q

(
FpB∗(H′)/Fp−1B∗(H′)

)
, (28)

By (18) and (22) the boundary maps in FpB∗(H′)/Fp−1B∗(H′) are independent of
the parameters kα. Hence the vector spaces E1

p,q do not depend on k, and we can
determine them from the special case k = 0.

Because the algebra Γ n H(R̃, 0) = W ′ n S(t∗) is graded, the spectral sequence
for this algebra already stabilizes at E1

∗,∗, and E1
p,q is just the degree p part of

HCp+q(W ′nS(t∗)). Unlike Hochschild homology, HCn(W ′nS(t∗)) does not vanish
for (sufficiently) large n, but from Lemma 3.1.b we do know that HCn(W ′nS(t∗)) =
0 when n > dimC(t∗) is odd. Moreover, for even n > dimC(t∗) Theorem 1.2 says
that

HCn
(
W ′ n S(t∗)

)
= HPn

(
W ′ n S(t∗)

)
.

12



It follows from Lemma 3.1.c that, for all n > dimC(t∗), HCn(W ′ n S(t∗)) has no
parts in degrees p > 0, and that its degree p = 0 part is HH0

(
C[W ′]

)
.

Now we return to general k and consider various p and q. By definition Erp,q = 0
if p < 0 or p+q < 0. We can not yet say much about E1

p,q when 0 ≤ p+q ≤ dimC(t∗),
but we can do without.

Finally, we pick p, q ∈ Z such that p + q > dimC(t∗). By the above E1
p,q = 0

unless p = 0 and q is even, in which case E1
p,q = HH0

(
C[W ′]

)
. For every r ∈ Z≥0

there is a boundary map ∂rp,q : Erp,q → Erp−r,q+r−1, and Er+1
∗,∗ is the homology of(

Er∗,∗, ∂
r
∗,∗
)
. We claim that ∂rp,q = 0 whenever r ≥ 1 and p + q > dimC(t∗). Indeed,

for p > 0 the domain is zero, while for p = 0 the range is Er−r,q+r−1, which is zero
because −r < 0.

We conclude that in the range p+ q > dimC(t∗) our spectral sequence stabilizes
at r = 1, for all k. Moreover, we already showed that the vector spaces E1

p,q do
not depend on k. Taking the limit r →∞ and using the convergence, we find that
HCp+q(H′) does not depend on k. In view of (27) the same goes for HPp+q(H′).
But the functor HP∗ is 2-periodic, so actually HPn(H′) is independent of k for all
n ∈ Z. Together with Lemma 3.1.c this shows that

HPn
(
Γ n H(R̃, k)

) ∼= HPn
(
C[Γ nW ]

)
∀n ∈ Z.

Furthermore we noticed that for large n the representatives of

HCn
(
Γ n H(R̃, k)

) ∼= HPn
(
Γ n H(R̃, k)

)
all lie in the image of

HPn
(
C[Γ nW ]

)
→ HPn

(
Γ n H(R̃, k)

)
. (29)

Therefore (29) is a linear bijection. 2

Our next result is a clear improvement on Lemma 3.2 and Theorem 3.3. Although
the proofs of these three results could have been combined in one, we decided against
this. The previous results are relatively general and the proofs probably can be
applied to similar algebras as well. The upcoming result however uses more subtle
properties of root systems and crossed products.

Theorem 3.4. For all n ∈ Z≥0 there are isomorphisms

HHn(Γ n H(R̃, k)) ∼= HHn(W ′ n S(t∗)),
HCn(Γ n H(R̃, k)) ∼= HCn(W ′ n S(t∗)),
HPn(Γ n H(R̃, k)) ∼= HPn(W ′ n S(t∗)).

Proof. In the proofs of Lemma 3.2 and Theorem 3.3 we constructed spectral
sequences Erp,q converging to HHp+q(ΓnH(R̃, k)) and HCp+q(ΓnH(R̃, k)), respec-
tively. We showed that the spaces E1

p,q do not depend on k, but it is conceivable that
boundary maps ∂rp,q do. With a clever choice of representatives for the homology
classes we will show that ∂rp,q = 0 for all r ≥ 1. We will only write this down for

13



HC∗, the Hochschild homology can be handled in the same way. Recall from page
12 that ⊕

p+q=nE
1
p,q
∼= HCn(W ′ n S(t∗)). (30)

By Lemma 1.3 every element of HCn(W ′ n S(t∗)) can be represented by a cycle in⊕
g∈W ′

gC∗
(
O(t)g

)
=
⊕
g∈W ′

g
⊕
m≥1

(
O(t)g

)⊗m
.

Moreover we need only one g from every conjugacy class in W ′, and the map from
cycles to homology classes factors through O(t)g → O(tg).

Recall that the closed Weyl chamber

a+ := {λ ∈ a : 〈α , λ〉 ≥ 0 ∀α ∈ Π}

is a fundamental domain for the action of W on a. Take any g ∈W ′ and write

Rg = {α ∈ R : α ⊥ ag},
aRg = {λ ∈ a : 〈α , λ〉 = 0 ∀α ∈ Rg}.

Clearly ag ⊂ aRg . By [Hum, Theorem 1.12] there exists u ∈W such that

u(aRg) = aP := {λ ∈ a : 〈α , λ〉 = 0 ∀α ∈ P}

for some set P ⊂ Π of simple roots. Replacing g by ugu−1, we may assume that
ag ⊂ aP . Then

ag = (ag ∩ a+) + (ag ∩ −a+).

Since Γ permutes Π, it stabilizes a+. So if we write g = γw with γ ∈ Γ and w ∈W ,
then

w(ag ∩ a+) = γ−1(ag ∩ a+) ⊂ a+.

Hence w must fix ag ∩ a+, and we deduce that both w and γ fix ag pointwise.
Moreover by [Hum, Theorem 1.12] w lies in the parabolic subgroup WP ⊂ W . Let
tP ⊂ t be the complex span of {α∨ : α ∈ P}. This is a complement to tP = aP + iaP

in t and it is stable under γ and WP . Clearly the natural map O(t/tP ) → O(tg) is
surjective. Hence every element of HCn(W ′ n S(t∗)) can be represented by a cycle

z ∈
⊕

g gC∗(O(t/tP )),

where we sum only over g = γw as above. Now consider z as an element of the mixed
complex B∗(ΓnH(R̃, k)). Since γ stabilizes tP and all the simple reflections sα with
α ∈ P act trivially on t/tP , the multiplication of g = γw ∈ ΓWP with elements of
O(t/tP ) does not depend on k. Consequently z is also a cycle in B∗(Γ n H(R̃, k))
and ∂r∗,∗(z) = 0 for all r ≥ 0.

By (30) every element of E1
∗,∗ can be obtained in this way, so ∂r∗,∗ = 0 for all

r ≥ 1 and the spectral sequence Er∗,∗ stabilizes at r = 1. This proves the theorem for
HH∗ and HC∗, the statement for HP∗ was already contained in Theorem 3.3. 2

14



We remark that

HHn(Γ n H(R̃, k)) ∼= HHn(W ′ n S(t∗))

is not an isomorphism of S(t∗)W
′
-modules. For k 6= 0 this structure is distorted in the

process of choosing suitable representatives of homology classes. However, it is still
a little more than just a linear bijection between vector spaces. The direct summand
Ωn(tg)ZW ′ (g) of HHn(W ′ n S(t∗)) is a module over O(tg)ZW ′ (g) ⊂ S(t∗)W

′
, and this

module structure persists to the corresponding summand of HHn(Γ n H(R̃, k)).

4 Periodic cyclic homology as sheaf cohomology

To draw representation theoretic consequences from knowledge of the periodic cyclic
homology of an algebra, we will relate it to its primitive ideal spectrum. This is
possible for algebras of finite type, as studied in [KNS, BaNi].

Let X be a complex, affine, algebraic variety and O(X) its coordinate ring. A
finite type O(X)-algebra is an algebra A together with a morphism from O(X) to
the center of the multiplier algebra of A, which makes A into an O(X)-module of
finite rank. An algebra is said to be of finite type if it is a finite type O(X)-algebra
for some X. Notice that a unital finite type algebra is always of finite type over its
center.

Recall that a primitive ideal of an algebra A is the annihilator of an irreducible
A-module. We endow the collection Prim(A) of primitive ideals with the Jacobson
topology, whose closed sets are of the form

V (S) := {I ∈ Prim(A) : S ⊂ I},

for any subset S ⊂ A. The resulting topological space is called the primitive ideal
spectrum of A. Notice that Prim(O(X)) is X with the Zariski topology.

Lemma 4.1. The primitive ideal spectrum of a finite type algebra is a T1-space.

Proof. Recall that a topological space is T1 if and only if every one point subset
is closed. Let A be (not necessatily unital) finite type O(X)-algebra, let V be an
irreducible A-module and J ∈ Prim(A) the annihilator of V . We want to show that
V (J) = {J}.

The A-module structure on V extends naturally to the multiplier algebraM(A),
because V = AV . Let φA : O(X)→M(A) be the morphism that defines the O(X)-
algebra structure on A. It enables us to construct the unital finite O(X)-algebra
A+ := A⊕O(X) with multiplication

(a, f)(a′, f ′) = (aa′ + φA(f)a′ + aφA(f ′), ff ′).

The A-module structure on V extends to A+ via

(a, f)v := (a+ φA(f))v.
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Since A+ has (at most) countable dimension over C, the dimension of V is countable
or finite. Therefore Schur’s lemma applies, and it tells us that Z(A+) acts on V via a
character χ : Z(A+)→ C. Since A+ is a unital finite type algebra, it has finite rank
over Z(A+), and consequently the image of A+ → EndC(V ) has finite dimension.
But V is irreducible, so dim(V ) has to be finite. If J+ is the annihilator of V in A+,
then Wedderburn’s theorem says that A+/J+ → EndC(V ) is an isomorphism.

Suppose that there is a primitive ideal I of A such that I ) J . Then (I+J+)/J+

is a nonzero ideal of the simple algebra A+/J+ ∼= EndC(V ), so (I + J+)/J+ =
A+/J+. But then

A = (I + J+) ∩A = I + (J+ ∩A) = I + J = I,

which contradicts the primitivity of I. We conclude that the subset V (J) ⊂ Prim(A),
which by definition is closed, equals {J}. 2

For any unital finite algebra A with center O(X) the map

θ : Prim(A)→ Prim(O(X)) ∼= X,

θ(I) = I ∩ O(X)
(31)

is a finite-to-one continuous surjection [KNS, Lemma 1]. In other words, Prim(A)
may be complicated, but cannot be too different from an algebraic variety. The
periodic cyclic homology of commutative finite type algebras was determined in
[KNS, Theorem 9]:

Theorem 4.2. Let I ⊂ O(X) be an ideal and Y ⊂ X its zero locus. There is a
natural isomorphism

HPn(I) ∼=
⊕

m∈ZȞ
n+2m(Xan, Y an; C).

Here the superscript “an” means that we endow this variety with the analytic
topology, and Ȟ∗ is (relative) C̆ech-cohomology.

It turns out that the periodic cyclic homology of a general finite type algebra
depends only on its primitive ideal spectrum. Following [BaNi] we call a morphism
φ : A→ B of finite type O(X)-algebras spectrum preserving if:

• for each J ∈ Prim(B) there is exactly one I ∈ Prim(A) containing φ−1(J),

• the map Prim(B)→ Prim(A) : J 7→ I is a bijection.

Theorem 4.3. [BaNi, Theorem 8]
Let φ : A → B be a spectrum preserving morphism of finite type O(X)-algebras.
Then HP∗(φ) : HP∗(A)→ HP∗(B) is an isomorphism.

In view of these two Theorems, HP∗(A) can be regarded as a kind of cohomology
of Prim(A). But it requires some care to describe exactly how HP∗(A) can be
determined from the primitive ideal spectrum of A. Let Prim(A)an be the set
Prim(A) with the coarsest topology that makes

Prim(A)an → Prim(A)×Xan : I 7→ (I, θ(I))
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continuous. In this space every point has an open neighborhood homeomorphic to
Rn ×Rm

≥0 for some n,m ∈ Z≥0, so roughly speaking it is a non-Hausdorff version of
an orbifold.

If we would use a classical cohomology theory on Prim(A)an, the homotopy axiom
would imply that we cannot see the entire space, only some Hausdorff quotient.
The solution is to consider not Prim(A)an but Xan, and to encode the additional
structure of Prim(A) in a sheaf SA over Xan. This dictates that the stalk SA(x)
must be the complex vector space Cθ−1(x), whose basis can be identified with the
inequivalent irreducible A-modules with O(X)-character x ∈ X.

Sections of this sheaf will be modelled by idempotents in suitable completions of
the algebra A. More precisely, given an open U ⊂ Xan, pick a connected component
C of θ−1(U) ⊂ Prim(A)an, and let CH be its maximal Hausdorff quotient. We note
that θ : C → U factors as

C
qC−→ CH

θC−→ U.

Let sC : CH → C be a section of qC and put

s : U →
⊔
x∈USA(x),

s(x) =
∑

c∈CH :θC(c)=x

sC(c). (32)

Definition 4.4. Let A be a finite type O(X)-algebra. Then SA is the sheaf over
Xan with stalks SA(x) = Cθ−1(x), whose continuous sections can be written locally
as finite sums

∑
i zisi, with zi ∈ C and si of the form (32).

This construction is functorial in A. Indeed, suppose that φ : A → B is a
morphism of finite type O(X)-algebras. Then V 7→ B ⊗A V is a functor from left
A-modules to left B-modules, and it induces a map SA → SB of sheaves over X.

Examples.
Suppose that A ⊂ O(X) ⊗ EndC(V ) is unital and e ∈ A is idempotent. Then we
can get a global section se ∈ SA(X) as follows. For any x ∈ X let

0 ⊂ V 1
x ⊂ · · · ⊂ V d

x = Vx

be a composition series of the A-module Vx, the vector space V on which O(X) acts
by x. For a primitive ideal I ∈ θ−1(x) let

n(e, I) =
∑

mrank
(
e, V m

x /V m−1
x

)
∈ Z≥0,

where the sum runs over all m for which I ⊂ A is the annihilator of the irreducible
module V m

x /V m−1
x . Then

se(x) :=
∑

I∈θ−1(x)n(e, I) I (33)

defines a continuous section of SA.
For a more concrete example, fix a point x0 ∈ X and consider the algebra

B := {b ∈ O(X)⊗M2(C) : b(x0) is a diagonal matrix}.
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Then Prim(B) is X, but with two points x′0, x
′′
0 instead of x0. The topology of

Prim(B)an is such that every sequence (xn)∞n=1 in X \ {x0}, which converges to x0

in Xan, converges to both x′0 and x′′0 in Prim(B)an. The stalk SB(x) is canonically
isomorphic to C for x ∈ X \ {x0}, while SB(x0) ∼= C2. In particular the sheaf SB
on Xan is not a vector bundle. A global section s of SA is continuous if and only if
the function

Xan → C : x 7→
{
s(x) if x ∈ X \ {x0}
z1 + z2 if x = x0 and s(x0) = (z1, z2)

is locally constant. Thus the continuous sections with s(x0) = (z1, 0) form a copy
of the constant sheaf (with stalks C) on Xan. Furthermore there is a continuous
section s0 with

s(x) =
{

0 if x ∈ X \ {x0}
(−1, 1) if x = x0.

These specific sections provide an isomorphism between SB and the direct sum of
the constant sheaf on Xan and the skyscraper sheaf concentrated at x0. Hence the
sheaf cohomology Ȟ∗(Xan;SB) is isomorphic to

Ȟ∗(Xan; C)⊕ Ȟ∗({x0}; C).

Let us compare this to HP∗(B). We abbreviate Ȟev =
⊕

m∈Z Ȟ
2m and Ȟodd =⊕

m∈Z Ȟ
2m+1. Applying Theorem 4.3 and the excision property of HP∗ to the

extension

0→ {f ∈ O(X) : f(x0) = 0} ⊗M2(C) → B → O({x0})⊗ C2 = C2 → 0

we find an exact hexagon

Ȟev(X, {x0}; C) → HP0(B) → Ȟev({x0}; C2) ∼= C2

↑ ↓
Ȟodd({x0}; C2) = 0 ← HP1(B) ← Ȟodd(X, {x0}; C)

(34)

By comparing (34) with the hexagon associated to the algebra extension

0→ {f ∈ O(X) : f(x0) = 0} → O(X)→ O({x0}) = C→ 0

one sees that the right vertical map in (34) is zero. We deduce that

HP0(B) ∼= Ȟev(Xan; C)⊕ C and HP1(B) ∼= Ȟodd(Xan; C).

The resulting isomorphism between HP∗(B) and the sheaf cohomology of SB is not
quite canonical, since it depends on the decomposition of SB into a constant sheaf
and a skyscraper sheaf.

In general, let Ȟp(Xan;SA) denote the p-th C̆ech-cohomology group of the sheaf
SA. Since the space Xan is so nice, there is no need to distinguish between the
C̆ech-cohomology and the sheaf cohomology of SA.
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Theorem 4.5. Let A be a finite type O(X)-algebra. There exists a spectral sequence
converging to both HPn(A) and

⊕
m∈Z Ȟ

n+2m(Xan;SA). In particular these finite
dimensional vector spaces are (unnaturally) isomorphic.

Proof. Using the “abelian filtrations” of A studied in [KNS], we can set up
and compare two spectral sequences, one converging to HP∗(A) and the other to
H∗(Xan;SA). They differ in level zero, but agree on all higher levels. The details
can be found in the author’s PhD thesis [Sol1, Section 2.2]. 2

With Theorem 4.5 one can determineHP∗(A) from Prim(A) by geometric means.
In particular it becomes unnecessary to consider ideals as in the abelian filtration of
A, which can be hard to determine explicitly.

Examples.
First the commutative case, where I is an ideal of O(X) and Y ⊂ X is the zero locus
of I. Then SI is the direct image, with respect to the inclusion map X \ Y → X, of
the constant sheaf with fiber C on X \Y . Thus it appears that we recover Theorem
4.2 from Theorem 4.5, but in fact the former is an essential ingredient in the proof
of the latter.

Next suppose that a finite group G acts on the affine variety X, and consider the
finite type O(X/G)-algebra B := O(X)oG. Using Theorem 1.1.e one can construct
a continuous bijection from the extended quotient X̃/G to Prim(O(X) o G). We
note that in general this map is neither canonical nor an homeomorphism.

Consider the constant sheaf with fiber C on X̃/G. We claim that the direct
image F of this sheaf under the natural map X̃/G → X/G is isomorphic to the
sheaf SB. By Theorem 1.1.e both have isomorphic stalks over any point of X/G. To
construct a sheaf map F → SB, consider any section f of F . For Gx ∈ X/G in the
domain of f there is a unique virtual Gx-representation πx ∈ R(Gx)⊗Z C ∼= SB(Gx)
with trace tr(πx, g) = f(g, x). We define a section s of SB by s(x) = πx. Now
f 7→ s is a sheaf map which induces bijections on the stalks, so it is an isomorphism
F → SB.

For later use we will now calculate the cohomology of certain sheaves of the
type SA. Let X be a countable, locally finite, finite dimensional CW-complex space
endowed with an action of a finite group G. Let V be a finite dimensional complex
vector space and put A = C(X) ⊗C EndC(V ). Suppose furthermore that we have
elements ug ∈ A× such that

(g · a)(x) := ug(x)a(g−1x)u−1
g (x) g ∈ G, a ∈ A, x ∈ X

defines an action of G on A by algebra automorphisms. In particular, for every
x ∈ X we get a projective Gx-representation Vx, by g 7→ ug(x) ∈ PGL(V ).

The algebra AG of G-invariant elements in A can be considered as a topological
analogue of a finite type algebra. Its topological K-theory K∗

(
AG
)

behaves much
like the periodic cyclic homology of finite type algebras. Indeed, we can define a
sheaf SAG over X/G in the same way as in Definition 4.4. According to [Sol1,
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Theorem 2.24] there is an isomorphism

Kn

(
AG
)
⊗Z C ∼=

⊕
m∈ZȞ

n+2m(X/G;SAG), (35)

if at least one side has finite dimension.

Lemma 4.6. Suppose that X is G-equivariantly contractible to a point x0 ∈ X.
Then

Ȟn(X/G;SAG) = 0 ∀n > 0

and the evaluation at x0 induces a linear bijection

Ȟ0(X/G;SAG)→ SAG(x0) ∼= HH0

(
EndG(Vx0)

)
.

Proof. By [Sol1, Lemma 2.26] the evaluation map AG → EndG(Vx0) is a homo-
topy equivalence. In particular it induces an isomorphism on topological K-theory,
so by (35)⊕

m∈ZȞ
n+2m(X/G;SAG) ∼= Kn

(
AG
)
⊗Z C ∼= Kn

(
EndC(Vx0)

)
⊗Z C.

For odd n this is vector space is zero, while for even n it is naturally isomorphic to

HH0

(
EndG(Vx0)

) ∼= SAG(x0).

Since the map
Ȟ0(X/G;SAG)→ Ȟ0({x0};SAG) = SAG(x0)

is already surjective, it must be bijective, and Ȟn(X/G;SAG) must be zero for
n > 0. 2

5 Some representation theory

We discuss the representation theory of H and H′, via parabolically induced represen-
tations and intertwining operators. Most results here rely on the author’s previous
work [Sol3].

As on page 10, let Γ be a finite group of diagram automorphisms of (R,Π).
Consider the group W ′ = Γ nW and the algebra H′ = Γ n H.

Proposition 5.1. a) We have

Z
(
H′
)
⊃ S(t∗)W

′
= O(t/W ′),

with equality if the action of W ′ on t∗ is faithful.

b) H′ is a finite type O(t/W ′)-algebra.

Proof. a) Lusztig [Lus2, Theorem 6.5] proved the corresponding statement for
the graded Hecke algebra H̃(R̃) with formal parameters kα. We will adept his
argument to our setting.
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On the one hand, it is clear from the multiplication rules (16) and (22) that
S(t∗)W

′ ⊂ Z(H′). On the other hand, consider any

z =
∑

w′∈W ′ w
′pw′ ∈ Z(H′) , with pw′ ∈ S(t∗).

Assume that W ′ acts faithfully on t∗ and that pw′ 6= 0 for some w′ 6= e. Among
these, pick one w′0 = γ0w0 ∈ Γ n W such that w0 is maximal with respect to the
Bruhat order ≤ for (W,Π). For x ∈ t∗ a repeated application of (16) yields∑

w′∈W ′
w′pw′x = zx = xz =

∑
w′=γw∈W ′

γ
(
ww′(x) +

∑
u≤w

uf(γ(x), w, u)
)
pγw,

for suitable polynomials f(γ(x), w, u) ∈ S(t∗). Comparing the coefficients at w′0 on
both sides, we see that w′0(x) = x. Since x ∈ t∗ was arbitary and the action was
faithful, this implies w′0 = e, contrary to our assumption. Therefore z ∈ Z(H′) ⊂
S(t∗). But now w′z = zw′ for all w′ ∈W ′ shows that z ∈ S(t∗)W

′
.

b) Clearly H′ is an S(t∗)-module of finite rank, so it suffices to show that S(t∗) = O(t)
is of finite rank over S(t∗)W

′
= O(t/W ′). For any f ∈ S(t∗) the monic polynomial

Pf (X) :=
∏

w∈W ′
(X − w(f))

has coefficients in S(t∗)W
′
. Obviously Pf (f) = 0, so S(t∗) is integral over S(t∗)W

′
.

Since S(t∗) is finitely generated as an algebra, it follows that it is an S(t∗)W
′
-module

of finite rank. 2

If an H′-module V admits an S(t∗)W
′
-character W ′λ ∈ t/W ′, then we will refer

to W ′λ as the central character of V . We say that a central character is real if it
lies in a/W ′.

A more subtle tool to study H′-modules is restriction to the commutative sub-
algebra S(t∗) ⊂ H′. Let (π, V ) be an H′-module and pick λ ∈ t. The λ-weight space
of V is

Vλ = {v ∈ V : π(x)v = 〈x , λ〉v ∀x ∈ t∗} .

We call λ a S(t∗)-weight of V if Vλ 6= 0.
Let P ⊂ Π be a set of simple roots. They form a basis of a root subsystem

RP ⊂ R with Weyl group WP ⊂ W . Let aP ⊂ a and a∗P ⊂ a∗ be the real spans of
respectively R∨P and RP . We denote the complexifications of these vector spaces by
tP and t∗P , and we write

tP = (t∗P )⊥ = {λ ∈ t : 〈x , λ〉 = 0 ∀x ∈ t∗P } ,
tP∗ = (tP )⊥ = {x ∈ t∗ : 〈x , λ〉 = 0 ∀λ ∈ tP } .

We define the degenerate root data

R̃P = (a∗P , RP , aP , R
∨
P , P ) , (36)

R̃P = (a∗, RP , a, R∨P , P ) , (37)
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and the graded Hecke algebras

HP = H(R̃P , k) , (38)

HP = H(R̃P , k) . (39)

Notice that the latter decomposes as a tensor product of algebras:

HP = S(tP∗)⊗HP . (40)

In particular every irreducible HP -module is of the form Cλ ⊗ V , where λ ∈ tP and
V is an irreducible HP -module. In general, for any HP -module (ρ, Vρ) and λ ∈ tP

we denote the action of HP on Cλ ⊗ Vρ by ρλ. We define the parabolically induced
module

π(P, ρ, λ) = IndH
HP (Cλ ⊗ Vρ) = IndH

HP (ρλ) = H⊗HP Vρλ . (41)

Since the complex vector space t has a distinguished real form a, we can decompose
any λ ∈ t unambiguously as

λ = <(λ) + i=(λ) with <(λ),=(λ) ∈ a . (42)

We define the positive cones

a∗+ = {x ∈ a∗ : 〈x , α∨〉 ≥ 0 ∀α ∈ Π} ,
a+
P = {µ ∈ aP : 〈α , µ〉 ≥ 0 ∀α ∈ P} ,

aP+ = {µ ∈ aP : 〈α , µ〉 ≥ 0 ∀α ∈ Π \ P} ,
aP++ = {µ ∈ aP : 〈α , µ〉 > 0 ∀α ∈ Π \ P} .

(43)

The antidual of a∗+ is

a− = {λ ∈ a : 〈x , λ〉 ≤ 0 ∀x ∈ a∗+} =
{∑

α∈Πλαα
∨ : λα ≤ 0

}
. (44)

The interior a−− of a− equals {∑
α∈Πλαα

∨ : λα < 0
}

if Π spans a∗, and is empty otherwise. A finite dimensional H-module V is called
tempered if <(λ) ∈ a−, for all weights λ. More restrictively we say that V belongs
to the discrete series if it is irreducible and <(λ) ∈ a−−, again for all weights λ.

For now on we assume that the root system R is crystallographic and that k is
real, that is, kα ∈ R for all α ∈ Π. Of particular importance are the parabolically
induced representations π(P, δ, λ) where (δ, Vδ) is a discrete series representation of
HP . We call such a triple (P, δ, λ) an induction datum and we denote the space of
these by Ξ̃. For ξ, η ∈ Ξ̃ we write ξ ∼= η if ξ = (P, δ, λ) and η = (P, σ, λ) with δ ∼= σ
as HP -modules. The space of unitary induction data is

Ξ̃u := {(P, δ, λ) ∈ Ξ̃ : λ ∈ iaP }.

There exists a natural involution on H such that π(ξ) is a unitary module if and
only if ξ ∈ Ξ̃u, see [Sol3, Section 6]. Moreover, by [Sol3, Proposition 7.2] every
irreducible H-module is a quotient of some π(P, δ, λ) with λ ∈ aP+. Thus discrete
series representations can be considered as the basic objects for constructing H-
modules, and it is certainly useful to know more about them.
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Theorem 5.2. There are only finitely many equivalence classes of discrete series
representations, and the S(t∗)-weights of a discrete series representation all lie in a.

Proof. See Lemma 2.13 and Corollary 2.14 of [Slo], or [Sol3, Theorem 6.2].

The strategy of parabolic induction can be extended from H to H′ = Γ n H. For
an induction datum (P, δ, λ) ∈ Ξ we put

π′(P, δ, λ) = IndH′
H π(P, δ, λ) = IndH′

HP (δλ).

For P,Q ⊂ Π we write

W ′(P,Q) = {w ∈W ′ : w(P ) = Q}.

Any w ∈W ′(P,Q) induces algebra isomorphisms

ψw : HP → HQ

ψw : HP → HQ (45)

ψw(xu) = w(x)wuw−1 x ∈ t∗, u ∈WP .

We agree to call a Γ n H-module tempered if its restriction to H is tempered.
Let (π, V ) be any H-module and let γ ∈ Γ. Because Γ · a− = a−, the H-module
(π ◦ ψ−1

γ , V ) is tempered, respectively discrete series, if and only if π is tempered,
respectively discrete series.

For w ∈W ′(P,Q) and (P, δ, λ) ∈ Ξ̃ we have

w(P, δ, λ) := (Q, δ ◦ ψ−1
w , w(λ)) ∈ Ξ̃.

This defines a partial action of W ′ on Ξ̃, which preserves Ξ̃u. For ξ ∈ Ξ̃ we write

W ′ξ = {w ∈W ′ : w(ξ) ∼= ξ}.

Induction data that are W ′-associate usually, but not always, yield equivalent H′-
modules:

Proposition 5.3. Let w,P, δ and λ be as above. There exists an intertwining op-
erator

π′(w,P, δ, λ) : π′(P, δ, λ)→ π′(w(P, δ, λ)),

which is rational as a function of λ ∈ tP . It is regular and invertible for λ in a
nonempty Zariski-open subset of tP .

Proof. See Proposition 3.3 and page 28 of [Sol3]. 2

Recall that R was crystallographic and that kα ∈ R for all α ∈ Π. For unitary
induction data much more can be said:

Theorem 5.4. Let ξ, η ∈ Ξ̃u.

a) The H′-module π′(ξ) is tempered and completely reducible.
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b) The operators
{π′(w, ξ) : w ∈W ′, w(ξ) ∼= η}

are well-defined and invertible.

c) These operators span HomH′(π′(ξ), π′(η)).

d) {π′(ξ)(h) : h ∈ H′} = {M ∈ EndC(π′(ξ)) : π′(w, ξ)Mπ′(w, ξ)−1 = M ∀w ∈W ′ξ}.

Proof. a) is the combination of Corollary 6.4 and Theorem A.1.c of [Sol3].
b) and c) are [Sol3, Theorem 8.2.c].
d) By parts b) and c) the right hand side is the bicommutant of the left hand side.
By part a) π′(ξ)(H′) is a semisimple algebra, hence equal to its own bicommutant
in EndC(π′(ξ)). 2

6 The primitive ideal spectrum

We will describe the primitive ideal spectrum of H′ = ΓoH as explicitly as possible.
First we stratify it and we describe the strata as topological spaces. After that we
will determine the cohomology of the sheaf corresponding to Prim(H′) and draw
some conclusions about the periodic cyclic homology of H′. Throughout this section
we assume that the root system R is crystallographic and that kα ∈ R for all α ∈ Π.

We denote the central character of an (irreducible) HP -representation by ccP (δ) ∈
tP /WP . Since WP acts orthogonally on t, all S(t∗P )-weights of δ have the same norm,
which allows us to write ‖ccP (δ)‖ without ambiguity.

Theorem 6.1. [Sol3, Theorem 8.3.b]
Let ρ be an irreducible H′-module. There exists a unique W ′-association class W ′ξρ =
W ′(Pρ, δρ, λρ) in Ξ̃/W ′ such that:

• ρ is a constituent of π′(ξρ),

• ‖ccPρ(δρ)‖ is maximal among induction data with the first property.

Lemma 6.2. Let ρ be an irreducible H′-module with W ′ξρ = W ′(Pρ, δρ, λρ).

a) ρ is tempered if and only if ξρ ∈ Ξ̃u, which is equivalent to λρ ∈ ia.

b) The central character of ρ lies in a/W ′ if and only if λρ ∈ a.

Proof. a) follows from Proposition 7.3.c and Theorem 8.3.a of [Sol3].
b) The central character of π′(P, δ, λ) is W ′(ccP (δ)+λ) and by Theorem 5.2 ccP (δ) ∈
a/WP . 2

For every P ⊂ Π, every discrete series representation δ of HP and every U ⊂ tP

we get a subset of Prim(H′):

Prim(P,δ,U)(H′) := {ker ρ ∈ Prim(H′) : W ′ξρ ∩ (P, δ, U) 6= ∅}.
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For U = tP or U = {λ} we abbreviate this to PrimP,δ(H′) or Prim(P,δ,λ)(H′).
The PrimP,δ(H′) form a partition of Prim(H′), but they are not closed. However,

the boundary of PrimP,δ(H′) can only contain elements of PrimQ,σ(H′) if ‖ccQ(σ)‖ >
‖ccP (δ)‖. By [Sol3, Theorem 6.2.b] there are only finitely many W ′-association
classes of pairs (P, δ). Pick one (Pi, δi) from every W ′-association class, and order
them such that

‖ccPi(δi)‖ ≤ ‖ccPj (δj)‖ if j ≤ i.

Then
⋃
j≤i PrimPj ,δj (H′) is closed in Prim(H′) for every i. This defines a stratifi-

cation of Prim(H′), with strata PrimP,δ(H′). This stratification is the analogue of
a stratification of the smooth dual of a reductive p-adic group [Sol2, Lemma 2.17],
which for GLn can already be found in [ScZi, Section 9].

The group
W ′δ := {w ∈W ′ : w(P ) = P, δ ◦ ψ−1

w
∼= δ}

acts on tP and λ’s in the same W ′δ-orbit give rise to the same elements of PrimP,δ(H′).
Hence there is a canonical map

PrimP,δ(H′)→ tP /W ′δ,

which is continuous, surjective and finite-to-one.

Proposition 6.3. [Sol3, Proposition 10.1]
Suppose that U ⊂ tP satisfies

• U → {−1, 0, 1} : λ 7→ sign〈<(λ) , α〉 is constant for all α ∈ Π \ P ,

• every λ ∈ U has the same stabilizer in W ′δ.

Then Prim(P,δ,U)(H′) is homeomorphic to U/W ′δ ×Prim(P,δ,λ0)(H′), for any λ0 ∈ U .

Thus PrimP,δ(H′) looks like the quotient of the vector space tP by W ′δ, but with
certain linear subspaces carrying a multiplicity.

Consider the sheaf SH′ over t/W ′, as in Definition 4.4. It has a subsheaf SP,δ
consisting of all those sections of SH′ that use only elements of PrimP,δ(H′). Al-
ternatively we can obtain SP,δ as the sheaf corresponding to a certain subquotient
algebra of H′, but there is no need to use this subquotient.

Lemma 6.4.
Ȟn(t/W ′;SP,δ) = 0 ∀n > 0,

and evaluation at µ = W ′ccP (δ) ∈ t/W ′ induces a linear bijection

Ȟ0(t/W ′;SP,δ) −→ SP,δ(µ) = C{I ∈ Prim(H′) : I ⊃ ker(π′(P, δ, 0))}.

Proof. By construction SP,δ is the direct image of a sheaf Fδ on tP /W ′δ, with
respect to the map

tP /W ′δ → tP : W ′δλ 7→W ′(λ+ ccP (δ)). (46)

According to [Bre, Theorem 11.1] this induces a natural isomorphism

Ȟ∗(t/W ′;SP,δ) ∼= Ȟ∗
(
tP /W ′δ;Fδ

)
. (47)

25



By Proposition 5.3 and Theorem 5.4.b we can find a ball Br ⊂ tP around 0, of radius
r > 0, such that all the operators π′(w,P, δ, λ) with w ∈W ′δ and λ ∈ Br are regular
and invertible. By Proposition 6.3 the homeomorphism

Br → tP : λ 7→ tan
(π‖λ‖

2r

)
λ

induces a sheaf isomorphism Fδ|Br/W ′δ → Fδ. Hence

Ȟ∗(t/W ′;SP,δ) ∼= Ȟ∗(Br/W ′δ;Fδ). (48)

Let V = H′ ⊗HP Vδ be the vector space on which all the representations π′(P, δ, λ)
are realized, and consider the Fréchet algebra A = C(Br)⊗ EndC(V ). For w ∈ W ′δ
we define

uw ∈ C(Br)⊗AutC(V ) by uw(λ) = π′(w,P, δ, w−1λ).

Now W ′δ acts on A by

(w · a)(λ) = π′(w,P, δ, w−1λ)a(w−1λ)π′(w,P, δ, w−1λ)−1,

which can be abbreviated to w · a = uw(a ◦ w−1)u−1
w . Thus we are in the setting of

page 20. We will relate our sheaves to the algebra A′ = AW
′
δ of W ′δ-invariants. By

Theorem 5.4.d we have

{π′(P, δ, λ)(h) : h ∈ H′} =
{
a(λ) : a ∈ A′

}
for all λ ∈ iaP . Hence the sheaves Fδ and SA′ have the same restriction to
(Br ∩ iaP )/W ′δ. For every λ ∈ Br the dimension of SA′(W ′δλ) equals the num-
ber of inequivalent constituents of the projective (W ′δ)λ-representation w 7→ uw(λ).
Since (tP )G is connected for every G ⊂ W ′δ, this number depends only on λ via the
isotropy group (W ′δ)λ. Combining this with Proposition 6.3, we see that the sheaves
Fδ|Br/W ′δ and SA′ are isomorphic. According to Lemma 4.6

Ȟn
(
Br/W

′
δ;SA′

)
= 0 ∀n > 0

and the evaluation map
Ȟ0
(
Br/W

′
δ;SA′

)
→ SA′(0)

is bijection. Consequently

Ȟn(t/W ′;SP,δ) = Ȟn(Br/W ′δ;Fδ) ∀n > 0

and the maps
Ȟ0(tP /W ′;Fδ) = Ȟ0(Br/W ′δ;Fδ)→ Fδ(0)

are isomorphisms. In view of (46) and (47) this shows that the corresponding
evaluation

Ȟ0(t/W ′;SP,δ)→ SP,δ(W ′ccP (δ))

is also bijective. 2
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We denote the finite set of equivalence classes of irreducible tempered H′-modules
with real central character by Irr0(H′). In every such equivalence class we pick one
H′-module (π, V ) and we confuse Irr0(H′) with this set of modules. Let C Irr0(H′)
be the complex vector space with basis Irr0(H′).

By Theorem 5.4.a and Lemma 6.2 Irr0(H′) consists precisely of the irreducible
summands of the modules π′(P, δ, 0), where P ⊂ Π and δ is a discrete series rep-
resentation of HP . Notice that all the primitive ideals appearing in Lemma 6.4
correspond to such modules.

Theorem 6.5. As before we assume that R is crystallographic and that k is real.

a) Ȟn(t/W ′;SH′) = 0 for all n > 0, and there exists a canonical linear bijection

Ȟ0(t/W ′;SH′)→ C Irr0(H′).

b) The natural algebra homomorphisms

C[W ′] −→ H′ −→
⊕

(π,V )∈Irr0(H′)EndC(V )

induce isomorphisms on periodic cyclic homology.

c) The W ′-representations {V |W ′ : (π, V ) ∈ Irr0(H′)} form a Q-basis of the repre-
sentation ring R(W ′)⊗Z Q.

Proof. a) On page 25 we defined a stratification of Prim(H′) with terms

Fi :=
⋃
j≤iPrimPj ,δj (H

′).

These give rise to subsheaves Si of SH′ , consisting of all sections of SH′ that use only
elements of Fi. By construction Si/Si−1 is isomorphic to the sheaf SPi,δi studied
in Lemma 6.4. This filtration of SH′ yields a spectral sequence that converges to
Ȟ∗(t/W ′;SH′) and has initial terms E1

i,j = Ȟ i+j
(
t/W ′;SPi,δi

)
. By Lemma 6.4 E1

i,j =
0 unless i + j = 0. Hence all the boundary maps δri,j : Eri,j → Eri−r,j+r−1 are 0 for
r ≥ 1, and the spectral sequence degenerates at E1

∗,∗. Lemma 6.4 tells us that

Ȟ0(t/W ′;SH′) ∼=
⊕

iȞ
0(t/W ′;SPi,δi)

∼=
⊕

i C{I ∈ Prim(H′) : I ⊃ ker(π′(Pi, δi, 0))} ∼= C Irr0(H′),

where the composite isomorphism is given by evaluating a global section of SH′ at
all points corresponding to Irr0(H′).
b) follows from a) and Theorems 4.5 and 3.3.
c) Since C[W ′] is finite dimensional and semisimple,

HP∗
(
C[W ′]

) ∼= HH0

(
C[W ′]

)
= C[W ′]/

[
C[W ′],C[W ′]

] ∼= Z
(
C[W ′]

) ∼= R(W ′)⊗Z C.

Under these isomorphisms an irreducible W ′-representation ρ corresponds to the
class of the central idempotent eρ ∈ Z

(
C[W ′]

)
in HH0

(
C[W ′]

)
. Similarly

HP∗
(⊕

(π,V )∈Irr0(H′)EndC(V )
)

=
⊕

(π,V )∈Irr0(H′)HH0(EndC(V ))
∼=
⊕

(π,V )∈Irr0(H′)Z(EndC(V )) ∼= C Irr0(H′).
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Let HP∗(φ) be the map induced by the algebra homomorphism

φ : C[W ′]→
⊕

(π,V )∈Irr0(H′)EndC(V ).

By construction

HP∗(φ)(eρ) =
∑

(π,V )∈Irr0(H′)tr(π(eρ)) (π, V )

By part b) this is a bijection

R(W ′)⊗Z C ∼= Z
(
C[W ′]

)
→ C Irr0(H′).

We declare the canonical bases Ŵ ′ and Irr0(H′) of these vector spaces to be or-
thonormal. Then the adjoint map

HP∗(φ)∗ : C Irr0(H′)→ R(W ′)⊗Z C

is also bijective, and it sends (π, V ) to π ◦ φ ∈ R(W ′). Hence{
π ◦ φ : (π, V ) ∈ Irr0(H′)

}
is a C-basis of R(W ′)⊗Z C and a Q-basis of R(W ′)⊗Z Q. 2
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