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Abstract. Let G be a reductive group over a non-archimedean local field F .
Consider an arbitrary Bernstein block Rep(G)s in the category of complex smooth
G-representations. In earlier work the author showed that there exists an affine
Hecke algebra H(O, G) whose category of right modules is closely related to
Rep(G)s. In many cases this is in fact an equivalence of categories, like for
Iwahori-spherical representations.

In this paper we study the q-parameters of the affine Hecke algebras H(O, G).
We compute them in many cases, in particular for principal series representations
of quasi-split groups and for classical groups.

Lusztig conjectured that the q-parameters are always integral powers of qF
and that they coincide with the q-parameters coming from some Bernstein block
of unipotent representations. We reduce this conjecture to the case of absolutely
simple p-adic groups, and we prove it for most of those.
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Introduction

It is well-known that affine Hecke algebras play an important role in the rep-
resentation theory of a reductive group G over a non-archimedean local field F .
In many cases a Bernstein block Rep(G)s in the category of smooth complex G-
representations is equivalent with the module category of an affine Hecke algebra
(maybe extended with some finite group). This was first shown for Iwahori-spherical
representations [IwMa, Bor] and for depth zero representations [Mor]. With the
theory of types [BuKu2] such an equivalence of categories was established for repre-
sentations of GLn(F ), of inner forms of GLn(F ) [SéSt1, SéSt2] and for inner forms
of SLn(F ) [ABPS].

An alternative approach goes via the algebra of G-endomorphisms of a progenera-
tor Πs of Rep(G)s. The category of right modules of EndG(Πs) is naturally equivalent
with Rep(G)s. Heiermann [Hei2, Hei3] showed that for symplectic groups, special
orthogonal groups, unitary groups and inner forms of GLn(F ), EndG(Πs) is always
Morita equivalent with an (extended) affine Hecke algebra.

Recently the author generalized this to all Bernstein components of all reductive
p-adic groups [Sol4]. In the most general setting some subtleties have to be taken into
account: the involved affine Hecke algebra must be extended with the group algebra
of a finite group, but that group algebra might be twisted by a 2-cocycle. Also,
the resulting equivalence with Rep(G)s works for finite length representations, but
maybe not entirely for representations of infinite length. Nevertheless, the bottom
line is that Rep(G)s is largely governed by an affine Hecke algebra from EndG(Πs).

Let M a Levi factor M of a parabolic subgroup P of G such that Rep(G)s arises
by parabolic induction from a supercuspidal representation σ of M . We denote
the variety of unramified twists of σ by O ⊂ Irr(M), and the affine Hecke algebra
described above by H(O, G). If at the same a s-type (J, ρ) is known, then the Hecke
algebra H(G, J, ρ) is Morita equivalent with EndG(Πs)op. (In fact [BaSa, Appendix
A] shows that in most cases indGJ (ρ) is isomorphic with Πs.) In this setting H(O, G)
can also be constructed from H(G, J, ρ).

The next question is of course: what does H(O, G) look like? Like all affine
Hecke algebras, it is determined by a root datum and some q-parameters. The
lattice X (from that root datum) can be identified with the character lattice of O,
once the latter has been made into a complex torus by choosing a base point. The
root system Σ∨O (also from the root datum) is contained in X and determined by the
reducibility points of the family of representations {IGP (σ′) : σ′ ∈ O}. Then H(O, G)
contains a maximal commutative subalgebra C[X] ∼= C[O] and a finite dimensional
Iwahori–Hecke algebra H(W (Σ∨O), qλF ) such that

H(O, G) = C[O]⊗C H(W (Σ∨O), qλF ) as vector spaces.

Here qF denotes the cardinality of the residue field of F , while λ will be defined
soon. For every Xα ∈ Σ∨O there is a qα ∈ R>1 such that

IGP (σ′) is reducible for all σ′ ∈ O with Xα(σ′) = qα.

Sometimes there is also a number qα∗ ∈ (1, qα] with the property

IGP (σ′) is reducible for all σ′ ∈ O with Xα(σ′) = −qα∗.
When such a real number does not exist, we put qα∗ = 1. These q-parameters qα
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and qα∗ appear in the Hecke relations of H(W (Σ∨O), qλF ):

0 = (Tsα + 1)(Tsα − q
λ(α)
F ) with q

λ(α)
F = qαqα∗ ∈ R>1.

Further, we define λ∗(α) ∈ R≥0 by

q
λ∗(α)
F = qαq

−1
α∗ .

Knowing qα, qα∗ is also equivalent to knowing the poles of the Harish-Chandra µ-
function on O associated to α. See Section 1 for more details on the above setup.

The representation theory ofH(O, G) depends in a subtle way on the q-parameters
qα, qα∗ for Xα ∈ Σ∨O, so knowing them helps to understand Rep(G)s. That brings us
to the main goal of this paper: determine the q-parameters of H(O, G) for as many
Bernstein blocks Rep(G)s as possible.

Like for all affine Hecke algebras, there are some constraints on the qα and qα∗:

• if Xα, Xβ ∈ Σ∨O are W (Σ∨O)-associate, then qα = qβ and qα∗ = qβ∗,
• qα∗ > 1 is only possible if Xα is a short root in a type Bn root system.

Notice that qα and qα∗ can be expressed in terms of the ”q-base” qF and the labels
λ(α), λ∗(α). It has turned out [KaLu, Sol1] that the representation theory of an
affine Hecke algebra hardly changes if one replaces qF by another q-base (in R>1)
while keeping all labels fixed. If we replace the q-base qF by qrF and λ(α), λ∗(α)
by λ(α)/r, λ∗(α)/r for some r ∈ R>0, then qα and qα∗ do not change, and in fact
H(O, G) is not affected at all. In this way one can always scale one of the labels to 1.
Hence the representation theory of H(O, G) depends mainly on the ratios between
the labels λ(α), λ∗(α) for Xα ∈ Σ∨O.

• For irreducible root systems of type An, Dn and En, λ(α) = λ∗(α) = λ(β),
for any roots Xα, Xβ ∈ Σ∨O. There is essentially only one label λ(α), and it
can be scaled to 1 by fixing qα but replacing qF by qα.
• For the irreducible root systems Cn, F4 and G2, again λ(α) always equals
λ∗(α). There are two independent labels λ(α): one for the short roots and
one for the long roots.
• For an irreducible root system of type Bn, λ∗(α) need not equal λ(α) if Xα

is short. Here we have three independent labels: λ(β) for Xβ long, λ(α) for
Xα short and λ∗(α) for Xα short.

Lusztig [Lus5] has conjectured:

Conjecture A. Let G be a reductive group over a non-archimedean local field, with
an arbitrary Bernstein block Rep(G)s. Let Σ∨O,j be an irreducible component of the

root system Σ∨O underlying H(O, G). Then:

(i) the q-parameters qα, qα∗ are powers of qF , except that for a short root α in

a type Bn root system the q-parameters can also be powers of q
1/2
F (and then

qαq
±1
α∗ is still a power of qF ).

(ii) the label functions λ, λ∗ on Σ∨O,j agree with those obtained in the same way
from a Bernstein block of unipotent representations of some adjoint simple
p-adic group, as in [Lus3, Lus4].

Conjecture A.(i) is related to a conjecture of Langlands about Harish-Chandra
µ-functions [Sha, §2]. For generic representations of quasi-split reductive groups
over p-adic fields, [Sha, §3] translates Conjecture A.(i) to a question about poles of
adjoint γ-factors. (We do not pursue that special case here.)
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Motivation for Conjecture A.(ii) comes from the local Langlands correspondence.
It is believed [AMS1] that Irr(G) ∩ Rep(G)s corresponds to a Bernstein component

Φe(G)s
∨

of enhanced L-parameters for G. To Φe(G)s
∨

one can canonically associate

an affine Hecke algebra H(s∨, q
1/2
F ), possibly extended with a twisted group algebra

[AMS3, §3.3]. It is expected that the module category of H(s∨, q
1/2
F ) is very closely

related to Rep(G)s, at least the two subcategories of finite length modules should
be equivalent.

The nonextended versionH◦(s∨, q1/2
F ) of H(s∨, q

1/2
F ) can be constructed with com-

plex geometry from a connected reductive group H∨ (the connected centralizer in
G∨ of the image of the inertia group IF under the Langlands parameter) and a
cuspidal local system ρ on a unipotent orbit for a Levi subgroup L∨ of H∨. The
exact same data (H∨, L∨, ρ) also arise from enhanced Langlands parameters (for
some reductive p-adic group G′) which are trivial on IF . By the local Langlands
correspondence from [Lus3, Lus4, Sol5, Sol6], a Bernstein component of such en-

hanced L-parameters corresponds to a Bernstein component Rep(G′)s
′

of unipotent
G′-representations.

It follows that H◦(s∨, q1/2
F ) is isomorphic to H◦(s′∨, q1/2

F ′ ). By [Sol5, Theorem 4.4],

H◦(s′∨, q1/2
F ′ ) is isomorphic to H(O′, G′), which is an affine Hecke algebra associated

to a Bernstein block of unipotent representations of G′. If desired one can replace G′

by its adjoint group, by [Sol5, Lemma 3.5] that operation changes the affine Hecke
algebras a little but preserves the root systems and the q-parameters.

Thus, if there exists a local Langlands correspondence with good properties, Con-
jecture A is a consequence of what happens on the Galois side of the correspondence.
Conversely, new cases of Conjecture A might contribute to new instances of a lo-
cal Langlands correspondence, via a comparison of possible Hecke algebras on both
sides as in [Lus3].

We note that the affine root systems in Lusztig’s notation for affine Hecke algebras
correspond to affine extensions of our root systems ΣO. Now we list all possible label
functions from [Lus3, Lus4], for a given irreducible root system (taken a remark at
the end of Paragraph 4.6 into account):

Table 1. Labels for affine Hecke algebras from unipotent representations

Σ∨O λ(long root) λ(short root) λ∗(short root)
An, Dn, En − ∈ Z>0 λ∗ = λ

Bn 1 or 2 ∈ Z>0 ∈ Z≥0

Cn ∈ Z>0 1 or 2 λ∗ = λ
F4 1 or 2 1 1
F4 1 2 2
F4 4 1 1
G2 1 or 3 1 1
G2 1 3 3
G2 9 1 1

An important and accessible class of representations is formed by the principal
series representations of quasi-split groups G. When G is F -split, the Hecke algebras
for Bernstein blocks of such representations were already analysed in [Roc1] via
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types, under some mild restrictions on the residual characteristic. To every root
of a quasi-split group G (relative to a maximal F -split torus) one can associate a
splitting field Fα, a finite extension of F .

Theorem B. (see Theorem 4.4 and Corollary 4.5)
Conjecture A holds for all Bernstein blocks in the principal series of a quasi-split
connected reductive group over F . For Xα ∈ Σ∨O (with one exception in type 2A2n

that we analyse as well) qα∗ = 1 and qα is the cardinality of the residue field of Fα.

Theorem B will be employed to establish a canonical local Langlands correspon-
dence for principal series representations of quasi-split F -groups [Sol7].

For parameter computations in Hecke algebras associated to more complicated
Bernstein components, we need a reduction strategy. That is the topic of Section 2,
which culminates in:

Theorem C. (see Corollary 2.5)
Suppose that Conjecture A holds for the simply connected cover Gsc of Gder. Then
it holds for G.

This enables us to reduce the verification of Conjecture A to absolutely simple,
simply connected groups. For (absolutely) simple groups quite a few results about
the parameters of Hecke algebras can be found in the literature, e.g. [BuKu1, Séc,
Hei1]. With our current framework we can easily generalize those results, in partic-
ular from one group to an isogenous group.

Sécherre and Stevens [Séc, SéSt1, SéSt2] determined the Hecke algebras for all
Bernstein blocks for inner forms of GLn(F ). Together with Theorem C that proves
Conjecture A for all inner forms of a group of type A.

For classical groups (symplectic, special orthogonal, unitary) we run into the
problem that some representation theoretic results have been proven over p-adic
fields but not (yet) over local function fields. We overcome this with the method
of close fields [Kaz], which Ganapathy recently generalized to arbitrary connected
reductive groups [Gan1, Gan2].

Theorem D. (see Corollary 3.7)
Let Rep(G)s be a Bernstein block for a reductive group G over a local function field.

Then there exists a Bernstein block Rep(G̃)s̃ for a reductive group G̃ over a p-adic
field, such that:

• G and G̃ come from ”the same” algebraic group,
• Rep(G)s ∼= Rep(G̃)s̃ and H(O, G) ∼= H(Õ, G̃),
• the parameters for both these affine Hecke algebras are the same.

For classical groups over p-adic fields the parameters of the Hecke algebras were
determined in [Hei1, Hei3], in terms of Mœglin’s classification of discrete series
representations [Mœ3]. With a generalization of this method and a closer analysis
of the resulting parameters we prove:

Theorem E. (see Paragraph 4.4)
Conjecture A holds for all pure inner forms of quasi-split classical groups, and for
all groups isogenous with one of those. This includes all simple groups of type
An, Bn, Cn, Dn, except those associated to Hermitian forms on vector spaces over
quaternion algebras.
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Theorem E is useful to study Hecke algebras and the local Langlands correspon-
dence for general spin groups [AMS4]. Among classical groups associated to Hermit-
ian forms, Conjecture A only remains open for the non-pure inner forms of quasi-split
classical groups. Unfortunately, the current understanding of their representations
does not suffice to carry out the strategies we applied to other groups.

Finally, we consider exceptional groups. For most Bernstein components we can
reduce the computation of the Hecke algebra parameters to groups of Lie type
An, Bn, Cn and Dn, but sometimes that does not work. We establish partial re-
sults for all simple exceptional groups, most of which can be summarized as follows:

Theorem F. (see Paragraphs 4.5, 4.6 and 4.7)

Conjecture A holds for all simple F -groups of type G2, F4, E6,
2E6, E

(3)
6 , 3D4.

If (for any reductive p-adic group G) Σ∨O has an irreducible component Σ∨O,j of

type F4, then Conjecture A holds for Σ∨O,j.

Our results about F4 are useful in combination with [Sol3, §6]. There we related
the irreducible representations of an affine Hecke algebra with arbitrary positive q-
parameters to the irreducible representations of the analogous algebra that has all
q-parameters equal to 1. The problem was only that we could not handle certain
label functions for type F4 root systems. Theorem F shows that the label functions
which could be handled well in [Sol3, §6] exhaust the label functions that can appear
for type F4 root systems among affine Hecke algebras coming from reductive p-adic
groups.

Acknowledgements.
We are grateful to Anne-Marie Aubert, Geo Tam and Stefan Dawydiak for their
comments on earlier versions, and in particular for pointing out some problems.

1. Progenerators and endomorphism algebras for Bernstein blocks

We fix some notations and recall relevant material from [Sol4]. Let F be a non-
archimedean local field with ring of integers oF . Pick a uniformizing element $F ∈
oF . We denote the cardinality of the residue field kF = oF /$oF by qF . Let | · |F be
the norm on F , normalized so that |$F |F = q−1

F .
Let G be a connected reductive F -group and let G = G(F ) be its group of F -

rational points. We briefly call G a reductive p-adic group. We consider the category
Rep(G) of smooth G-representations on complex vector spaces. Let Irr(G) be the
set of equivalence classes of irreducible objects in Rep(G), and Irrcusp(G) ⊂ Irr(G)
the subset of supercuspidal representations.

Let M be a F -Levi subgroup of G and write M = M(F ). The group of unra-
mified characters of M is denoted Xnr(M). We fix (σ,E) ∈ Irrcusp(M). The set of
unramified twists of σ is

O = {σ ⊗ χ : χ ∈ Xnr(M)} ⊂ Irr(M).

It can be identified with the inertial equivalence class sM = [M,σ]M . Let s = [M,σ]G
be the associated inertial equivalence class for G.

Recall that the supercuspidal support Sc(π) of π ∈ Irr(G) consists of a Levi sub-
group of G and an irreducible supercuspidal representation thereof. Although Sc(π)
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is only defined up to G-conjugacy, we shall only be interested in supercuspidal sup-
ports with Levi subgroup M , and then the supercuspidal representation is uniquely
defined up to the natural action of NG(M) on Irr(M).

This setup yields a Bernstein component

Irr(G)s = {π ∈ Irr(G) : Sc(π) ∈ (M,O)}
of Irr(G). It generates a Bernstein block Rep(G)s of Rep(G), see [BeDe].

Let M1 ⊂ M be the group generated by all compact subgroups of M , so that
Xnr(M) = Irr(M/M1). Then

(1.1) indMM1(σ,E) ∼= E ⊗C C[M/M1] ∼= E ⊗C C[Xnr(M)],

where C[M/M1] is the group algebra of the discrete group M/M1 and C[Xnr(M)] is
the ring of regular functions on the complex torus Xnr(M). Supercuspidality implies
that (1.1) is a progenerator of Rep(M)sM . Let P ⊂ G be a parabolic subgroup with
Levi factor M , chosen as prescribed by [Sol4, Lemma 9.1]. Let

IGP : Rep(M)→ Rep(G)

be the parabolic induction functor, normalized so that it preserves unitarity. As a
consequence of Bernstein’s second adjointness theorem [Ren],

Πs := IGP (E ⊗ C[Xnr(M)])

is a progenerator of Rep(G)s. That means [Roc2, Theorem 1.8.2.1] that the functor

Rep(G)s −→ EndG(Πs)−Mod
V 7→ HomG(Πs, V )

is an equivalence of categories. This motivates the study of the endomorphism
algebra EndG(Πs), which was carried out in [Roc2, Hei2, Sol4]. To describe its
structure, we have to recall several objects which lead to the appropriate root datum.
The set

Xnr(M,σ) = {χ ∈ Xnr(M) : σ ⊗ χ ∼= χ}
is a finite subgroup of Xnr(M). The map

Xnr(M)/Xnr(M,σ)→ O : χ 7→ σ ⊗ χ
is a bijection, and in this way we provide O with the structure of a complex variety
(a torus, but without a canonical base point). The group

M2
σ :=

⋂
χ∈Xnr(M,σ)

kerχ

has finite index in M , and there are natural isomorphisms

Irr(M2
σ/M

1) ∼= Xnr(M)/Xnr(M,σ),

C[M2
σ/M

1] ∼= C[Xnr(M)/Xnr(M,σ)].

Here and later on, the notation C[?] must be interpreted as in (1.1). The group

W (G,M) := NG(M)/M

is a Weyl group in most cases (and if it is not, then it is still very close to a Weyl
group). The natural action of NG(M) on Rep(M) induces an action of W (G,M)
on Irr(M). Let NG(M,O) be the stabilizer of O in NG(M) and write

W (M,O) = NG(M,O)/M.
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Thus W (M,O) acts naturally on the complex algebraic variety O. This finite group
figures prominently in the Bernstein theory, for instance because the centres of
Rep(G)s and of EndG(Πs) are naturally isomorphic with C[O]W (M,O).

Let AM be the maximal F -split torus in Z(M), put AM = AM (F ) and let
X∗(AM ) = X∗(AM ) be the cocharacter lattice. We write

aM = X∗(AM )⊗Z R and a∗M = X∗(AM )⊗Z R.

Let Σ(G,AM ) ⊂ X∗(AM ) be the set of nonzero weights occurring in the adjoint
representation of AM on the Lie algebra of G, and let Σred(AM ) be the set of
indivisible elements therein.

For every α ∈ Σred(AM ) there is a Levi subgroup Mα of G which contains M and
the root subgroup Uα, and whose semisimple rank is one higher than that of M .
Let α∨ ∈ aM be the unique element which is orthogonal to X∗(AMα) and satisfies
〈α∨, α〉 = 2.

Recall the Harish-Chandra µ-functions from [Sil2, §1] and [Wal, §V.2]. The re-
striction of µG to O is a rational, W (M,O)-invariant function on O [Wal, Lemma
V.2.1]. It determines a reduced root system [Hei2, Proposition 1.3]

(1.2) ΣO,µ = {α ∈ Σred(AM ) : µMα(σ ⊗ χ) has a zero on O}.

For α ∈ Σred(AM ) the function χ 7→ µMα(σ ⊗ χ) factors through the quotient
map Xnr(M)→ Xnr(Tα), where Tα is the onedimensional subtorus of AM with Lie
algebra spanned by (a multiple of) α∨. The associated system of coroots is

Σ∨O,µ = {α∨ ∈ aM : µMα(σ ⊗ χ) has a zero on O}.

By the aforementioned W (M,O)-invariance of µG, W (M,O) acts naturally on ΣO,µ
and on Σ∨O,µ. Let sα be the unique nontrivial element of W (Mα,M). By [Hei2,

Proposition 1.3] the Weyl group W (ΣO,µ) can be identified with the subgroup of
W (G,M) generated by the reflections sα with α ∈ ΣO,µ, and as such it is a normal
subgroup of W (M,O).

The parabolic subgroup P = MU of G determines a set of positive roots Σ+
O,µ

and a basis ∆O,µ of ΣO,µ. Let `O be the length function on W (ΣO,µ) specified by
∆O,µ. Since W (M,O) acts on ΣO,µ, `O extends naturally to W (M,O), by

`O(w) = |w(Σ+
O,µ) ∩ −Σ+

O,µ|.

The set of positive roots also determines a subgroup of W (M,O):

(1.3)
R(O) = {w ∈W (M,O) : w(Σ+

O,µ) = Σ+
O,µ}

= {w ∈W (M,O) : `O(w) = 0}.

The simple transitivity of the action of W (ΣO,µ) on the set of positive systems of
ΣO,µ [Hum, Theorem 1.8] implies that

(1.4) W (M,O) = R(O) nW (ΣO,µ).

Recall that Xnr(M)/Xnr(M,σ) is isomorphic to the character group of the lattice
M2
σ/M

1. Since M2
σ depends only on O, it is normalized by NG(M,O). In particular

the conjugation action of NG(M,O) on M2
σ/M

1 induces an action of W (M,O) on
M2
σ/M

1.
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Let h∨α be the unique generator of (M2
σ ∩M1

α)/M1 ∼= Z such that |α(h∨α)|F > 1.
Recall the injective homomorphism HM : M/M1 → aM defined by

q
〈HM (m),γ〉
F = |γ(m)|F for m ∈M,γ ∈ X∗(M).

Remark. This definition is motivated by the correction to [Sol4]. In earlier versions
we used alternative conventions, which differ from the above by multiplying h∨α and
HM by a factor -1. That does not change the Hecke algebras, it only amounts to a
different choice of generators.

In these terms HM (h∨α) ∈ R>0α
∨. Since M2

σ has finite index in M , HM (M2
σ/M

1)
is a lattice of full rank in aM . We write

(M2
σ/M

1)∨ = HomZ(M2
σ/M

1,Z).

Composition withHM and R-linear extension of mapsHM (M2
σ/M

1)→ Z determines
an embedding

H∨M : (M2
σ/M

1)∨ → a∗M .

Then H∨M (M2
σ/M

1)∨ is a lattice of full rank in a∗M .

Proposition 1.1. [Sol4, Proposition 3.5]
Let α ∈ ΣO,µ.

(a) For w ∈W (M,O): w(h∨α) = h∨w(α).

(b) There exists a unique α] ∈ (M2
σ/M

1)∨ such that H∨M (α]) ∈ Rα and 〈h∨α, α]〉 = 2.
(c) Write

ΣO = {α] : α ∈ ΣO,µ},
Σ∨O = {h∨α : α ∈ ΣO,µ}.

Then (Σ∨O,M
2
σ/M

1,ΣO, (M
2
σ/M

1)∨) is a root datum with Weyl group W (ΣO,µ).
(d) The group W (M,O) acts naturally on this root datum, and R(O) is the stabilizer

of the basis ∆∨O determined by P .

We note that ΣO and Σ∨O have almost the same type as ΣO,µ. Indeed, the roots

H∨M (α]) are scalar multiples of the α ∈ ΣO,µ, so the angles between the elements of
ΣO are the same as the angles between the corresponding elements of ΣO,µ. It follows
that every irreducible component of ΣO,µ has the same type as the corresponding
components of ΣO and Σ∨O, except that type Bn/Cn might be replaced by type
Cn/Bn.

For α ∈ Σred(M) \ ΣO,µ, the function µMα is constant on O. In contrast, for
α ∈ ΣO,µ it has both zeros and poles on O. By [Sil2, §5.4.2]

(1.5) sα · σ′ ∼= σ′ whenever µMα(σ′) = 0.

As ∆O,µ is linearly independent in X∗(AM ) and µMα factors through AM/AMα ,

there exists a σ̃ ∈ O such that µMα(σ̃) = 0 for all α ∈ ∆O,µ. In view of [Sil3, §1]
this can even be achieved with a unitary σ̃. We replace σ by σ̃, which means that
from now on we adhere to:

Condition 1.2. (σ,E) ∈ Irr(M) is unitary supercuspidal and µMα(σ) = 0 for all
α ∈ ∆O,µ.
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By (1.5) the entire Weyl group W (ΣO,µ) stabilizes the isomorphism class of this
σ. However, in general R(O) need not stabilize σ. We identify Xnr(M)/Xnr(M,σ)
with O via χ 7→ σ ⊗ χ and we define

(1.6) Xα ∈ C[Xnr(M)/Xnr(M,σ)] by Xα(χ) = χ(h∨α).

For any w ∈W (M,O) which stabilizes σ in Irr(M), Proposition 1.1.a implies

(1.7) w(Xα) = Xw(α) for all α ∈ ΣO,µ.

According to [Sil2, §1] there exist qα, qα∗ ∈ R≥1, c′sα ∈ R>0 for α ∈ ΣO,µ, such that

(1.8) µMα(σ ⊗ ·) =
c′sα(1−Xα)(1−X−1

α )

(1− q−1
α Xα)(1− q−1

α X−1
α )

(1 +Xα)(1 +X−1
α )

(1 + q−1
α∗Xα)(1 + q−1

α∗X
−1
α )

as rational functions on Xnr(M)/Xnr(M,σ) ∼= O. We may modify the choice of σ
in Condition 1.2, so that, as in [Hei2, Remark 1.7]:

(1.9) qα ≥ qα∗ for all α ∈ ∆O,µ.

Then [Sol4, Lemma 3.4] guarantees that the maps ΣO,µ → R≥0 given by qα and
qα∗ are W (M,O)-invariant. Comparing (1.8), Condition 1.2 and (1.9), we see that
qα > 1 for all α ∈ ΣO,µ. In particular the zeros of µMα occur at

{Xα = 1} = {σ′ ∈ O : Xα(σ′) = 1}

and sometimes at

{Xα = −1} = {σ′ ∈ O : Xα(σ′) = −1}.
When µMα has a zero at both {Xα = 1} and {Xα = −1}, the irreducible component
of Σ∨O containing h∨α has type Bn (n ≥ 1) and h∨α is a short root [Sol4, Lemma 3.3].

For another characterization of µα, we write down an explicit construction. Let
δP : P → R>0 be the modular function. We realize IGP (σ⊗χ,E) on the vector space{
f : G→ E | f is smooth, f(umg) = σ(m)(χδ

1/2
P )(m)f(g) ∀u ∈ U,m ∈M, g ∈ G

}
,

with G acting by right translations. Let P ′ = MU ′ be another parabolic subgroup
of G with Levi factor M . Following [Wal, §IV.1] we consider the map

(1.10)
JP ′|P (σ ⊗ χ) : IGP (σ ⊗ χ,E) → IGP ′(σ ⊗ χ,E)

f 7→ [g 7→
∫

(U∩U ′)\U ′ f(u′g)du′].

Here du′ denotes a quotient of Haar measures on U ′ and U ∩ U ′. This integral
converges for χ in an open subset of Xnr(M) (independent of f). As such it defines
a map

Xnr(M)× IGP (E) → IGP ′(E),
(χ, f) 7→ JP ′|P (σ ⊗ χ)f,

which is rational in χ and linear in f [Wal, Théorème IV.1.1]. Moreover it intertwines
the G-representation IGP (σ ⊗ χ) with IGP ′(σ ⊗ χ) whenever it converges. Then

JP |P ′(σ ⊗ χ)JP ′|P (σ ⊗ χ) ∈ EndG(IGP (σ ⊗ χ,E)) = C id,

at least for χ in a Zariski-open subset of Xnr(M). For any α ∈ Σred(M) there exists
by construction [Wal, §IV.3] a nonzero constant such that

(1.11) JMα∩P |sα(Mα∩P )(σ ⊗ χ)Jsα(Mα∩P )|Mα∩P (σ ⊗ χ) =
constant

µMα(σ ⊗ χ)
,
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as rational functions of χ ∈ Xnr(M). We note that

(U ∩ sα(U))\sα(U) = U−α and (U ∩ sα(U))\U = Uα,

where U±α denotes a root subgroup with respect to AM . That allows us to simplify
(1.11) to

(1.12)
Jsα(Mα∩P )|Mα∩P (σ ⊗ χ)f = [g 7→

∫
U−α

f(u−g)du−],

JMα∩P |sα(Mα∩P )(σ ⊗ χ)f = [g 7→
∫
Uα
f(u+g)du+],

where du± is a Haar measure on U±α. The numbers qα, q
−1
α (and qα∗, q

−1
α∗ when

qα∗ 6= 1) are precisely the values of Xα(χ) = Xα(σ ⊗ χ) at which µMα(σ ⊗ χ) has a
pole, and in view of (1.11) these are also given by the χ for which

JMα∩P |sα(Mα∩P )(σ ⊗ χ)Jsα(Mα∩P )|Mα∩P (σ ⊗ χ) = 0.

For other non-unitary σ ⊗ χ ∈ O the operators (1.12) are invertible, and by the

Langlands classfication [Ren, Théorème VII.4.2] IMα
P∩Mα

(σ ⊗ χ) is irreducible.

Corollary 1.3. The poles of µMα are precisely the non-unitary σ⊗χ ∈ O for which
IMα
P∩Mα

(σ ⊗ χ) is reducible.

We endow the based root datum(
Σ∨O,M

2
σ/M

1,ΣO, (M
2
σ/M

1)∨,∆∨O
)

with the parameter qF and the labels

λ(α) = log(qαqα∗)/ log(qF ), λ∗(α) = log(qαq
−1
α∗ )/ log(qF ).

To avoid ambiguous terminology, we will call the qα and qα∗ q-parameters and refer
to qF as the q-base. Replacing the q-base by another real number > 1 hardly changes
the representation theory of Hecke algebras.

To these data we associate the affine Hecke algebra

H(O, G) = H
(
Σ∨O,M

2
σ/M

1,ΣO, (M
2
σ/M

1)∨, λ, λ∗, qF
)
.

By definition it is the vector space

C[M2
σ/M

1]⊗C C[W (ΣO,µ)]

with multiplication given by the following rules:

• C[M2
σ/M

1] ∼= C[O] is embedded as subalgebra,
• C[W (ΣO,µ)] = span{Tw : w ∈ W (ΣO,µ)} is embedded as the Iwahori–Hecke

algebra H(W (ΣO,µ), qλF ), that is,

TwTv = Twv if `O(w) + `O(v) = `O(wv),

(Tsα + 1)(Tsα − q
λ(α)
F ) = (Tsα + 1)(Tsα − qαqα∗) = 0 if α ∈ ∆O,µ,

• for α ∈ ∆O,µ and m ∈M2
σ/M

1 (corresponding to Xm ∈ C[M2
σ/M

1]):

XmTsα − TsαXsα(m) =
(
qαqα∗ − 1 +X−1

α (qα − qα∗)
)Xm −Xsα(m)

1−X−2
α

.

This affine Hecke algebra is related to EndG(Πs) in the following way. Let End◦G(Πs)
be the subalgebra of EndG(Πs) built, as in [Sol4, §5.2], using only C[Xnr(M)],
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Xnr(M,σ) and W (ΣO,µ) – so omitting R(O). By [Sol4, Corollary 5.8] there exist
elements Tr ∈ EndG(Πs)× for r ∈ R(O), such that

(1.13) EndG(Πs) =
⊕

r∈R(O)
End◦G(Πs)Tr.

The calculations in [Sol4, §6–8] apply also to End◦G(Πs) and they imply, as in [Sol4,
Corollary 9.4], an equivalence of categories

(1.14) End◦G(Πs)−Modf ←→ H(O, G)−Modf .

Here −Modf denotes the category of finite length right modules. To go from
End◦G(Πs) −Modf to EndG(Πs) −Modf is basically an instance of Clifford theory
for a finite group acting on an algebra. In reality it is more complicated [Sol4, §9],
but still relatively easy. Consequently the essence of the representation theory of
EndG(Πs) (and thus of Rep(G)s) is contained in the affine Hecke algebra H(O, G).

Slightly better results can be obtained if we assume that the restriction of (σ,E)
to M1 decomposes without multiplicities bigger than one – which by [Roc1, Remark
1.6.1.3] holds for very large classes of reductive p-adic groups. Assuming it for (σ,E),
[Sol4, Theorem 10.9] says that there exist:

• a smaller progenerator (Πs)Xnr(M,σ) of Rep(G)s,

• a Morita equivalent subalgebra EndG
(
(Πs)Xnr(M,σ)

)
of EndG(Πs),

• a subalgebra End◦G
(
(Πs)Xnr(M,σ)

)
of EndG

(
(Πs)Xnr(M,σ)

)
, which is canoni-

cally isomorphic with H(O, G),

• elements Jr ∈ EndG
(
(Πs)Xnr(M,σ)

)×
for r ∈ R(O), such that

EndG
(
(Πs)Xnr(M,σ)

)
=
⊕

r∈R(O)
End◦G

(
(Πs)Xnr(M,σ)

)
Jr.

As announced in the introduction, we want to determine the parameters qα, qα∗ for
α ∈ ∆O,µ, or equivalently the label functions λ, λ∗ : ΣO,µ → R≥0 of H(O, G).

When ΣO,µ is empty, H(O, G) ∼= C[O] and it does not have parameters or labels.
When ΣO,µ = {α,−α}, it can already be quite difficult to identify qα and qα∗. For
instance, when G is split of type G2 and M has semisimple rank one, we did not
manage to compute qα and qα∗ for all supercuspidal representations of M . (This
was achieved recently in [AuXu].)

Yet, for H(O, G) this is hardly troublesome. Namely, any affine Hecke algebra H
with ΣO,µ = {α,−α} and qα, qα∗ ∈ C \ {0,−1} can be analysed very well. Firstly,
one can determine all its irreducible representations directly, as done in [Sol3, §2.2].
Secondly, with [Lus2] the representation theory of H can be reduced to that of
two graded Hecke algebras Hk with root system of rank ≤ 1. One of them has
label kα = log(qα)/ log(qF ) and underlying vector space T1(O), the other has label
kα∗ = log(qα∗)/ log(qF ) and underlying vector space Tχ−(O) (for some χ− ∈ O with
Xα(χ−) = −1).

For graded Hecke algebras with root system {α,−α} and a fixed underlying vec-
tor space, there are just two isomorphism classes: one with label k 6= 0 and one
with label k = 0. For both there is a nice geometric construction of the irreducible
representations of Hk, see [Lus1] and [AMS2, Theorem 3.11]. This is an instance of
a construction that underlies the representation theory of affine Hecke algebras asso-
ciated to unipotent representations of p-adic groups [Lus3, Lus4]. Let us summarise
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that:

(1.15) for H(O, G) with rk(ΣO,µ) = 1,

Conjecture A holds on the level of the underlying graded Hecke algebras.

While this does not settle Conjecture A for all affine Hecke algebras in the rank one
cases, it looks like a satisfactory outcome.

2. Reduction to simply connected groups

In this section we reduce the analysis of the parameters of H(O, G) to the case
where G is absolutely simple and simply connected. Consider a homomorphism
between connected reductive F -groups η : G̃ → G such that:

• the kernel of dη : Lie(G̃)→ Lie(G) is central,
• the cokernel of η is a commutative F -group.

These properties imply [Sol2, Lemma 5.1] that on the derived groups η restricts to

(2.1) a central isogeny ηder : G̃der → Gder

Such a map induces a homomorphism on F -rational points

η : G̃ = G̃(F )→ G(F ) = G

and a pullback functor η∗ : Rep(G)→ Rep(G̃).

Lemma 2.1. Let π ∈ Irr(G). Then η∗(π) is a finite direct sum of irreducible G̃-
representations.

Proof. According to [Tad, Lemma 2.1] this holds for the inclusion of Gder in G.

Taking that into account, [Sil1] says that pullback along ηder : G̃der → Gder has the

desired property. This shows that ResG̃
G̃der

η∗(π) is a finite direct sum of irreducible

G̃der-representations. As in the proof of [Tad, Lemma 2.1], that implies the same
property for η∗(π). �

By (2.1), η induces a bijection

{Levi subgroups of G} → {Levi subgroups of G̃}
M 7→ M̃ = η−1(M)

.

One also sees from (2.1) that η induces a bijection

Σ(G,AM ) → Σ(G̃, AM̃ )
α 7→ α̃ = α ◦ η .

For each α ∈ Σred(AM ) this yields an isomorphism of F -groups

ηα : Uα̃ → Uα.
This implies that η∗ preserves cuspidality [Sil1, Lemma 1]. Further, pullback along

η restricts to an algebraic group homomorphism η∗ : Xnr(M)→ Xnr(M̃).

Proposition 2.2. Let (σ,E) ∈ Irrcusp(M) and let σ̃ ∈ Irrcusp(M̃) be a constituent
of η∗(σ). For α ∈ Σred(AM ) there exists c̃α ∈ C× such that

µMα(σ ⊗ χ) = c̃αµ
M̃α̃(σ̃ ⊗ η∗(χ))

as rational functions of χ ∈ Xnr(M).
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Proof. In view of the explicit shape (1.8), it suffices to show that the two rational
functions have precisely the same poles. Using the relation (1.11), it suffices to show
that

JMα∩P |sα(Mα∩P )(σ ⊗ χ)Jsα(Mα∩P )|Mα∩P (σ ⊗ χ) = 0 ⇐⇒(2.2)

Jη−1(Mα∩P )|η−1(sα(Mα∩P ))(σ̃ ⊗ η∗(χ))Jη−1(sα(Mα∩P ))|η−1(Mα∩P )(σ̃ ⊗ η∗(χ)) = 0.

Since ηα : Uα̃ → Uα is an isomorphism, we may choose Haar measures on Uα and
Uα̃ such that the latter is pullback along ηα of the former. Then (1.12) shows that
the J-operators on both lines of (2.2) do the same thing, namely

f 7→
[
g 7→

∫
U
f(ug)du

]
,

where U stands for Uα or U−α. The only real difference between the two lines of
(2.2) lies in their domain. Since σ̃ ⊗ η∗(χ) is a subrepresentation of η∗(σ ⊗ χ), it is
clear that the implication ⇒ holds.

Conversely, suppose that the second line of (2.2) is 0, for a particular χ. Let

Ẽ ⊂ E be the subspace on which σ̃ is defined, so that IG̃η−1P (Ẽ) ∼= IGP (Ẽ) is the

vector space underlying IG̃η−1P (σ̃⊗η∗(χ)). It is a linear subspace of IGP (E), on which

IGP (σ ⊗ χ) is defined. Then

(2.3) JMα∩P |sα(Mα∩P )(σ ⊗ χ)Jsα(Mα∩P )|Mα∩P (σ ⊗ χ)

coincides on IGP (Ẽ) with

Jη−1(Mα∩P )|η−1(sα(Mα∩P ))(σ̃ ⊗ η∗(χ))Jη−1(sα(Mα∩P ))|η−1(Mα∩P )(σ̃ ⊗ η∗(χ)),

so annihilates IGP (Ẽ). But by (1.11) the operator (2.3) is a scalar on IGP (E), so it
annihilates that entire space. �

From Proposition 2.2 and (1.2) we deduce:

Corollary 2.3. In the setting of Proposition 2.2, write Õ = Xnr(M̃)σ̃. Then ΣÕ,µ
equals

η∗(ΣO,µ) = {α̃ = α ◦ η : α ∈ ΣO,µ}.

We warn that Proposition 2.2 and Corollary 2.3 do not imply that qα = qα̃. The
problem is that Xα need not equal Xα̃ ◦ η∗. To make the relation precise, we have
to consider h∨α, h∨α̃ and their images (via HM and HM̃ ) in aM and aM̃ . We note that
dη : Lie(AM̃ )→ Lie(AM ) induces a linear map aη : aM̃ → aM . Further, η induces a
group homomorphism

(2.4) η : (M̃ ∩ M̃1
α̃)/M̃1 → (M ∩M1

α)/M1.

Both the source and the target of (2.4) are isomorphic to Z, so the map is injective.

Proposition 2.4. (a) For α ∈ ΣO,µ, there exists a Nα ∈ {1/2, 1, 2} such that

HM (h∨α) = Nαaη
(
HM̃ (h∨α̃)

)
.

(b) If (2.4) is bijective, then Nα ∈ {1, 2}. This happens for instance when η re-

stricts to an isomorphism between the almost direct F -simple factors of G̃ and
G corresponding to α̃ and α,

(c) If η∗(σ) is irreducible, then Nα ∈ {1/2, 1}.
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(d) Let Σ∨O,j be an irreducible component of Σ∨O, and regard it as a subset of aM via
HM . Consider the irreducible component

Σ∨Õ,j = {h∨α̃ : h∨α ∈ Σ∨O,j}

of Σ∨Õ. There are three possibilities:

(i) Nα = 1 for all h∨α ∈ Σ∨O,j.

(ii) Σ∨O,j
∼= Bn, Σ∨Õ,j

∼= Cn, Nα = 1 for h∨α ∈ Σ∨O,j long and Nβ = 1/2 for

h∨β ∈ Σ∨O,j short. Then

qβ̃∗ = 1, qβ = qβ∗ = q
1/2

β̃
, λ∗(β) = 0 and λ(β) = λ(β̃) = λ∗(β̃).

(iii) Σ∨O,j
∼= Cn, Σ∨Õ,j

∼= Bn, Nα = 1 for h∨α ∈ Σ∨O,j short and Nβ = 2 for

h∨β ∈ Σ∨O,j long. Then

qβ∗ = 1, q2
β̃

= q2
β̃∗ = qβ, λ

∗(β̃) = 0 and λ(β̃) = λ(β) = λ∗(β).

(e) The modifications of the labels in part (d) preserve the class of labels in Table 1.

Proof. (a) As both sides of (2.4) are isomorphic to Z, the definition of h∨α implies

that the statement holds for some Nα ∈ Q>0. Then η(Xα̃) = X
1/Nα
α , and this is a

well-defined function on Xnr(M) because it equals evaluation at η(h∨α̃). We plug this
into the equality of µ-functions from Proposition 2.2, and we use the formula (1.8)

both for M and for M̃ . That yields an equality of two rational functions on Xnr(M),

one built from Xα and one built from X
1/Nα
α . The equality of the numerators of

these two functions reads

(2.5) c′sα(1−Xα)(1−X−1
α )

[
(1 +Xα)(1 +X−1

α )
]

=

c̃αc
′
sα̃

(1−X1/Nα
α )(1−X−1/Nα

α )
[
(1 +X1/Nα

α )(1 +X−1/Nα
α )

]
.

Here the term (1+Xα)(1+X−1
α ) must be omitted when qα∗ = 1. On the other hand

qα > 1 because α ∈ ΣO,µ, so the zeros at Xα = 1 do not cancel against something
in the denominator of (1.8). Analogous considerations apply to the second line of
(2.5). Now we see that there are only three values of Nα for which (2.5) is possible:

Nα = 1, Nα = 1/2 (when the factor (1 + X
1/Nα
α )(1 + X

−1/Nα
α ) is not there) and

Nα = 2 (when (1 +Xα)(1 +X−1
α ) is omitted).

(b) By (2.1) η induces an isomorphism between the respective adjoint groups. From

G → Gad → G̃ad we get an action of G on G̃, by “conjugation”. All the M̃ -
constituents of η∗(σ) are associated (up to isomorphism) by elements of M . For

m ∈ M , Ad(m) : M̃ → M̃ does not affect unramified characters of M̃ . It follows

that any χ ∈ Xnr(M̃) which stabilizes σ̃, also stabilizes η∗(σ). That implies

η−1
(
(M2

σ ∩M1
α)/M1

)
⊂ (M̃2

σ̃ ∩ M̃1
α̃)/M̃1.

That and the assumed bijectivity show that

h∨α ∈ η(M̃2
σ̃ ∩ M̃1

α̃)/M̃1.

By definition h∨α̃ generates (M̃2
σ̃ ∩M̃1

α̃)/M̃1, so an integer multiple of its image under
η equals h∨α. By part (a) the multiplication factor is at most 2.
(c) If χ ∈ Xnr(M,σ), then η∗(σ) ⊗ η∗(χ) = η∗(σ ⊗ χ) is isomorphic with η∗(σ).
Hence

η∗(Xnr(M,σ)) ⊂ Xnr(M̃, η∗(σ)),
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which implies that η(M̃2
η∗(σ)) ⊂M

2
σ . As h∨α generates (M2

σ ∩M1
α)/M1 and η(hα̃) lies

in that group, η(hα̃) is a multiple of h∨α. Combine that with part (a).
(d) In case Nα = 2, 2η(Xα̃) = Xα. Then Proposition 2.2 and (1.8) entail qα = 1

and qα̃ = qα̃∗ = q
1/2
α . Notice that this is only possible when Σ∨Õ,j

∼= Cn.

When Nα = 1/2, we have η(Xα̃) = 2Xα. For the same reasons as above, qα̃ = 1

and qα = qα∗ = q
1/2
α̃ . By [Sol4, Lemma 3.3] this is only possible if Σ∨O,j has type Bn.

(e) Parts (d,ii) and (d,iii) just switch the second line (with λ∗ = 0) and the third
line of Table 1. �

We remark that examples of case (ii) are easy to find, it already occurs for
SL2(F ) → PGL2(F ) and the unramified principal series (as worked out in Para-
graph 4.1). For an instance of case (iii) see Example 4.8.

We can apply Propositions 2.2 and 2.4 in particular with G̃ equal to the simply
connected cover Gsc of Gder, that yields:

Corollary 2.5. Suppose that Conjecture A holds for G̃ = Gsc and [M̃, σ̃]Gsc. Then
it holds for G and [M,σ]G.

Every simply connected F -group is a direct product of F -simple simply connected
groups, say

Gsc =
∏

i
G(i)

sc .

Everything described in Section 1 decomposes accordingly, for instance any σ̃ ∈
Irrcusp(Gsc) can be factorized as

σ̃ = �i σ
(i) with σ(i) ∈ Irrcusp(G(i)

sc ).

For every F -simple simply connected F -group G(i)
sc there exists a finite separable field

extension F ′/F and an absolutely simple, simply connected F ′-group G
′(i)
sc , such that

G(i)
sc is the restriction of scalars from F ′ to F of G

′(i)
sc . Then

G(i)
sc = G(i)

sc (F ) = G′(i)sc (F ′) = G
′(i)
sc ,

so σ(i) can be regarded as a supercuspidal representation of G
′(i)
sc . Of course that

last step does not change the parameters qα and qα∗ associated to σ(i). On the other
hand, that step does replace qF by qF ′ and changes the labels λ(α) and λ∗(α) by a
factor log(qF )/ log(qF ′). As this is the same scalar factor for all α ∈ ΣÕ(i),µ, it is in-

nocent. With these steps we reduced the computation of the parameters qα, qα∗, λ(α)
and λ∗(α) to the case where G is absolutely simple and simply connected.

Sometime it is more convenient to study, instead of a simply connected simple
group, a reductive group with that as derived group. For instance, the groups
GLn, Un,GSpinn are often easier than, respectively, SLn, SUn,Spinn. In such situ-
ations, the following result comes in handy.

Proposition 2.6. [Tad, Propositions 2.2 and 2.7]

Suppose that G̃ is a connected reductive F -subgroup of G that contains Gder. For

every π̃ ∈ Irr(G̃) there exists a π ∈ Irr(G) such that ResG̃G(π) contains π̃. Moreover
π̃ is supercuspidal if and only if π is supercuspidal.

We note that in this setting the inclusion ı : G̃ → G satisfies the conditions stated
at the start of the paragraph.
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Corollary 2.7. Let G, G̃ be as in Proposition 2.6. Then Conjecture A holds for G
if and only if it holds for G̃.

Proof. Let M be a Levi subgroup of G and let π̃ ∈ Irrcusp(M ∩G̃). An appropriate π

is obtained from Proposition 2.6 applied to ı :M∩G̃ →M. Then π̃ is a constituent
of ı∗(π). This also works the other way round: if we start with π ∈ Irrcusp(M) we
can choose as π̃ any constituent of ı∗(π). Now we can apply Proposition 2.4, which

says that the Hecke algebras H(Xnr(M ∩ G̃)π̃, G̃) and H(Xnr(M)π,G) have root
systems and parameters related as in cases (i) or (iii) of Proposition 2.4.d. �

3. Reduction to characteristic zero

For several classes of reductive groups, stronger results are available over p-adic
fields than over local function fields. With the method of close local fields [Kaz,
Gan2], will show that all relevant results about affine Hecke algebras associated
to Bernstein components can be transferred from characteristic zero to positive
characteristic.

We start with an arbitrary local field of characteristic p. Choose a p-adic field F̃
which is `-close to F , that is

(3.1) oF /$
`
F oF

∼= oF̃ /$
`
F̃
oF̃ as rings.

As remarked in [Del], such a field F̃ exists for every given ` ∈ Z>0. If (3.1) holds,
then it is also valid for every m < `, and in particular the residue fields oF /$F oF
and oF̃ /$F̃ oF̃ are isomorphic. We note that

(3.2) F×/(1+$`
F oF ) ∼= Z×o×F /(1+$`

F oF ) ∼= Z×o×
F̃
/(1+$`

F̃
oF̃ ) = F̃×/(1+$`

F̃
oF̃ ).

Let I`F be the `-th ramification subgroup of Gal(Fs/F ). By [Del, (3.5.1)] there is a
group isomorphism (unique up to conjugation)

(3.3) Gal(Fs/F )/I`F
∼= Gal(F̃s/F̃ )/I`

F̃
,

and similarly with Weil groups. According to [Del, Proposition 3.6.1], for m < `
this isomorphism is compatible with the Artin reciprocity map

WF /I
`
F → F×/(1 +$m

F oF ).

Let G be a connected reductive F -group. We want to exhibit “the same” group over
a p-adic field. The quasi-split inner form G∗ of G is determined by the action of
Gal(Fs/F ) on the based absolute root datum of G. That action factors through a
finite quotient of Gal(Fs/F ), so there exists a ` ∈ Z>0 such that I`F acts trivially.
The group G is an inner twist of G∗, and the inner twists of G∗ are parametrized
naturally by

(3.4) H1(F,G∗ad) ∼= Irr
(
Z(G∗∨sc )WF

)
.

Now we pick a p-adic field F̃ which is `-close to F , and we define G̃∗ to be the quasi-
split F̃ -group with the same based root absolute root datum as G∗ and Galois action
transferred from that of G∗ via (3.3). Then G∗ and G̃∗ have the same Langlands dual
group (in a form where I`F has been divided out) and hence

(3.5) Z(G̃∗∨sc )WF̃ ∼= Z(G∗∨sc )WF .

We define G̃ to be the inner twist of G̃∗ parametrized by the character of Z(G̃∗∨sc )WF̃

that is transformed by (3.5) into the character of Z(G∗∨sc )WF that parametrizes G.
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The following descriptions are based on recent work of Ganapathy [Gan1, Gan2].

It applies when F and F̃ are `-close with ` large enough. The relation between G
and G̃ is the same as in these papers, although over there it is reached in a slightly
different way, without (3.4). Let T ⊂ G be the maximal F -torus from which the root
datum is built, and let S ⊂ T be the maximal F -split subtorus. In the Bruhat–Tits
building B(G, F ), S = S(F ) determines an apartment AS .

The same constructions can be performed for G̃. Then X∗(S) ∼= X∗(S̃) extends
to an isomorphism of polysimplicial complexes AS ∼= AS̃ . For every special vertex
x ∈ AS , we get a special vertex x̃ ∈ AS̃ . For m ∈ Z≥0, there is a refined version of
the Moy–Prasad group Gx,m, see [Gan1]. It is a compact open normal subgroup of
Gx, the G-stabilizer of x. More precisely, there is an oF -group scheme Gx (a slightly
improved version of the parahoric group schemes constructed in [BrTi]), such that

Gx,m = Gx($m
F oF ) ∀m ∈ Z≥0.

By construction [Gan1, §2.D.3], Gx,m is totally decomposed in the sense of [Bus,
§1]. This means that, for any ordering of the root system Σ(G,S), the product map

(Gx,m ∩ ZG(S))×
∏

α∈Σ(G,S)
(Gx,m ∩ Uα) −→ Gx,m

is a bijection. Here Uα is the root subgroup of G with respect to α ∈ Σ(G,S) (to be
distinguished from the earlier Uα when M is not a minimal Levi subgroup of G).

All the above applies to G̃ as well. The following results generalize [Kaz] to non-
split groups.

Theorem 3.1. [Gan1, Corollary 6.3]
Fix m ∈ Z>0 and let ` ∈ Z>0 be large enough. The isomorphisms (3.1) induce an
isomorphism of group schemes

Gx ×oF oF /$
m
F oF ∼= Gx̃ ×oF̃

oF̃ /$
m
F̃
oF̃

and group isomorphisms

Gx,0/Gx,m = Gx(oF /$
m
F oF ) ∼= Gx̃(oF̃ /$

m
F̃
oF̃ ) = G̃x̃,0/G̃x̃,m.

We endow G with the Haar measure that gives the parahoric subgroup Gx,0
volume 1. The vector space Cc(Gx,m\G/Gx,m) with the convolution product is an
associative algebra, denoted H(G,Gx,m).

Theorem 3.2. [Gan2, Theorem 4.1]
Fix m ∈ Z>0 and let ` ∈ Z>0 be large enough. The isomorphisms from Theorem 3.1
and the Cartan decomposition give rise to a bijection

ζm : Gx,m\G/Gx,m → G̃x̃,m\G̃/G̃x̃,m.
This map extends to an algebra isomorphism

ζGm : H(G,Gx,m)→ H(G̃, G̃x̃,m).

In particular ζm induces a group isomorphism G/G1 → G̃/G̃1, and hence a group
isomorphism

(3.6) ζGm : Xnr(G) = Irr(G/G1)→ Irr(G̃/G̃1) = Irr(G̃).

Let Rep(G,Gx,m) be the category of smooth G-representations that are generated
by their Gx,m-fixed vectors. Recall that Gx,m is a totally decomposed open normal
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subgroup of the good maximal compact subgroup Gx of G. From [BeDe, §3.7–3.9]
we know that there is an equivalence of categories

(3.7)
Rep(G,Gx,m) −→ Mod(H(G,Gx,m))

V 7→ V Gx,m .

From (3.7) and Theorem 3.2 one obtains equivalences of categories

(3.8)
(ζGm)∗ : Mod(H(G,Gx,m)) −→ Mod(H(G̃, G̃x̃,m))

ζGm : Rep(G,Gx,m) −→ Rep(G̃, G̃x̃,m)
,

which constitute the core of the method of close local fields. We will need many
properties of these equivalences, starting with two easy ones about characters.

Lemma 3.3. (a) Via (3.6), the equivalence of categories ζGm preserves twists by
unramified characters.

(b) ζm induces an isomorphism

AG/(AG ∩Gx,m) −→ AG̃/(AG̃ ∩ G̃x̃,m).

The effect of ζGm on AG-characters of G-representations is push-forward along
this isomorphism.

Proof. (a) This is clear from (3.6).
(b) Notice that

(3.9) AG/AG ∩Gx,m ∼= X∗(AG)⊗Z (F×/1 +$m
F oF ),

and similarly for G̃. Since ζm comes from the isomorphism X∗(S) ∼= X∗(S̃), it
induces a linear bijection X∗(AG)→ X∗(AG̃), and hence an isomorphism from (3.9)

to its counterpart for G̃. The AG-characters of representations in Rep(G,Gx,m) are

precisely the characters of (3.9), and ζGm pushes them forward along ζm. �

Let P be a parabolic subgroup of G with a Levi factor M , which contains
S. By [Bus, §1.6] the normalized parabolic functor IGP sends Rep(M,Mx,m) to
Rep(G,Gx,m). We will exploit an expression for this functor [Bus] in terms that can

be transferred to G̃ with Theorems 3.1 and 3.2.
Let P op be the parabolic subgroup of G that is opposite to P with respect to M .

Let Mx,m = Gx,m ∩M be the version of Gx,m for M . Recall that an element g ∈M
is called (P,Gx,m)-positive if

g(Gx,m ∩ P )g−1 ⊂ Gx,m ∩ P and g(Gx,m ∩ P op)g−1 ⊃ Gx,m ∩ P op.

Let H+(M,Mx,m) be the subalgebra of H(M,Mx,m) consisting of functions that are
supported on (P,Gx,m)-positive elements. In [Bus, §3.3], which is based on [BuKu2],
a canonical injective algebra homomorphism

jP : H+(M,Mx,m)→ H(G,Gx,m)

is given. Let P̃ and M̃ be the subgroups of G̃ corresponding to P and M via the
equality of based root data. All the above constructions also work in G̃, and we
endow the resulting objects with tildes.

Lemma 3.4. (a) ζMm restricts to an algebra isomorphism from H+(M,Mx,m) to

H+(M̃, M̃x̃,m).
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(b) The following diagram commutes:

H(G,Gx,m)
ζGm−−→ H(G̃, G̃x̃,m)

↑ jP ↑ jP̃
H+(M,Mx,m)

ζMm−−→ H+(M̃, M̃x̃,m)

.

Proof. (a) The property ”(P,Gx,m)-positive” can be expressed in terms of the Cartan
decomposition of M . Namely, the elements of a double coset Mx,0gMx,0 with g ∈
ZM (S) are (P,Gx,m)-positive if and only if

(3.10) |α(g)|F ≤ 1 for all α ∈ Σ(G,S) that appear in Lie(P ).

(Notice that |α|F extends naturally to a character of ZG(S) because S is cocompact
in ZG(S).) The map ζm from Theorem 3.2 for M preserve the property (3.10),

because it comes from the isomorphism X∗(S) ∼= X∗(S̃), which preserves positivity

of roots. Thus ζm maps (P,Gx,m)-positive elements to (P̃ , G̃x̃,m)-positive elements,
and then Theorem 3.2 provides the desired isomorphism.
(b) We endow M (resp. M̃) with the Haar measure that gives Mx,0 (resp. M̃x̃,0)
volume 1. Suppose that f ∈ H+(M,Mx,m) has support Mx,mgMx,m with g ∈ M .
The map jP is characterized by: jP f has support Gx,mgGx,m and

(3.11) jP f(g) = f(g)δP (g)µM (Mx,m)µG(Gx,m)−1.

By Theorem 3.1

µG(Gx,m) = [Gx,0 : Gx,m]−1 = [G̃x̃,0 : G̃x̃,m]−1 = µG̃(G̃x̃,m),

and similarly for µM (Mx,m). It is well-known that δP (g) is the product, over all

α ∈ Σ(G,S) that appear in Lie(P ), of the factors |α(g)|dimUα/U2α

F . The root sub-
group Uα contains the root subgroup U2α if 2α is also a root, and otherwise U2α = {1}
by definition. See [Ren, Lemme V.5.4] for a proof (although there a different con-
vention is used, which results in replacing g by g−1). By Theorem 3.1 dimUα equals

dimUα̃, where α̃ ∈ Σ(G̃, S̃) corresponds to α. Furthermore δP is trivial on compact
subgroups, so δP (g) depends only on Mx,mgMx,m. It follows that

(3.12) δP (Mx,mgMx,m) = δP̃ (ζm(Mx,mgMx,m)).

Knowing that, we take another look at (3.11) and we see that ζGm ◦jP = jP̃ ◦ζ
M
m . �

Let IP,m : Mod(H(M,Mx,m))→ Mod(H(G,Gx,m)) be the composition of

Res
H(M,Mx,m)

H+(M,Mx,m)
and

Mod(H+(M,Mx,m)) → Mod(H(G,Gx,m))
V 7→ HomH+(M,Mx,m))(H(G,Gx,m), V )

,

where H(G,Gx,m) is regarded as a left H+(M,Mx,m)-module via jP .

Theorem 3.5. (a) The equivalences of categories (3.8) are compatible with normal-
ized parabolic induction, in the sense that the following diagram commutes:

Rep(G,Gx,m)
ζGm−−→ Rep(G̃, G̃x̃,m)

↑ IGP ↑ IG̃
P̃

Rep(M,Mx,m)
ζMm−−→ Rep(M̃, M̃x̃,m)

.
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(b) The equivalences of categories (3.8) are compatible with normalized Jacquet re-
striction, in the sense that the following diagram commutes:

Rep(G,Gx,m)
ζGm−−→ Rep(G̃, G̃x̃,m)

↓ JGP ↓ J G̃
P̃

Rep(M,Mx,m)
ζMm−−→ Rep(M̃, M̃x̃,m)

.

(c) ζGm and its inverse send supercuspidal representations to supercuspidal represen-
tation. The same holds for unitary supercuspidal representations.

(d) ζGm and its inverse preserve temperedness and essential square-integrability.

Proof. (a) Lemma 3.4 ensures that the diagram

Mod(H(G,Gx,m))
(ζGm)∗−−−→ Mod(H(G̃, G̃x̃,m))

↑ IP,m ↑ IP̃ ,m
Mod(H(M,Mx,m))

(ζMm )∗−−−−→ Mod(H(M̃, M̃x̃,m))

commutes. According to [Bus, §4.1], the unnormalized parabolic induction functor
IndGP fits in a commutative diagram

Rep(G,Gx,m) → Mod(H(G,Gx,m))

↑ IndGP ↑ IP,m
Rep(M,Mx,m) → Mod(H(M,Mx,m))

,

where the horizontal arrows are the equivalences of categories from (3.7). Of course

the same holds for G̃. These two commutative diagrams entail that

ζGm ◦ IndGP = IndG̃
P̃
◦ ζMm .

In view of (3.12), if we twist this equality on the left hand side by δ
1/2
P and on the

right hand side by δ
1/2

P̃
, it remains valid. That yields exactly the desired relation

with normalized parabolic induction.

(b) By Frobenius reciprocity JGP is left adjoint to IGP , so by part (a) ζMm ◦ JGP ◦ ζGm
−1

is left adjoint to IG̃
P̃

. Now we use the uniqueness of adjoints.

(c) The first claim follows from part (a), or alternatively from part (b). For the
second claim, we note that a supercuspidal G-representation is unitary if and only
if its central character is unitary. As AG is cocompact in Z(G), that is equivalent

to: the AG-character is unitary. By Lemma 3.3.b, ζGm preserve the latter property.
(d) For the property ”square integrable modulo centre” one can follow the proof
of [Badu, Théorème 2.17.b], reformulated in the setting of [Gan2]. Combining that

with Lemma 3.3.a, we find that ζGm also preserves essential square-integrability.
By [Wal, Proposition III.4.1], every irreducible tempered representation

τ ∈ Rep(G,Gx,m) is a direct summand of a completely reducible representation of
the form IGP (π), where π ∈ Rep(M,Mx,m) is square-integrable modulo centre. By
the above and part (a),

(3.13) ζGm
(
IGP (π)

) ∼= IG̃
P̃

(
ζMm (π)

)
is also a direct sum of irreducible tempered representations. As ζGm(τ) is a direct
summand of (3.13), it is tempered. �



22 PARAMETERS OF HECKE ALGEBRAS

Consider an inertial equivalence class s = [M,σ]G, where S ⊂ M . Choose m ∈
Z>0 such that Rep(G)s ⊂ Rep(G,Gx,m), and similarly for all Levi subgroups of G
containing M . This is easy for supercuspidal Bernstein components and possible
in general because parabolic induction preserves depths [MoPr, Theorem 5.2]. Fix
` ∈ Z>m so that Theorems 3.1, 3.2 and 3.5 apply. We may and will assume that σ

fulfills Condition 1.2. By Theorem 3.5.d the M̃ -representation σ̃ = ζMm (σ) is unitary

and supercuspidal. We write s̃, Õ etc. for objects constructed from σ̃.

Proposition 3.6. (a) The bijection Σ(G,AM )→ Σ(G̃, AM̃ ), induced by the equal-

ity of the root data of G and G̃, sends ΣO,µ onto ΣÕ,µ.

(b) Let α ∈ ΣO,µ with image α̃ ∈ ΣÕ,µ. The pullback of Xα̃ along (3.6) is Xα and
qα = qα̃, qα∗ = qα̃∗.

Proof. Let α ∈ Σred(AM ), with image α̃ ∈ Σred(AM̃ ). The groups Mα and M̃α̃

correspond via the equality of root data of G and G̃. For χ ∈ Xnr(Mα), Theorem
3.5.a implies that

ζMm (σ ⊗ χ) = σ̃ ⊗ ζMm (χ).

By (3.8), IMα
P∩Mα

(σ ⊗ χ) is reducible if and only if IM̃α̃

P̃∩M̃α̃

(
σ̃ ⊗ ζMm (χ)

)
is reducible.

If α /∈ ΣO,µ, then IMα
P∩Mα

(σ ⊗ χ) is irreducible for all non-unitary χ ∈ Xnr(Mα). It

follows that IM̃α̃

P̃∩M̃α̃

(
σ̃ ⊗ χ̃

)
is irreducible for all non-unitary χ̃ ∈ Xnr(M̃α̃), and by

Corollary 1.3 α̃ /∈ ΣÕ,µ.

On the other hand, suppose that α ∈ ΣO,µ. Then IMα
P∩Mα

(σ⊗χ) is reducible for a
χ ∈ Xnr(Mα) with Xα(χ) = qα > 1. It is clear from the construction of Xα in (1.6)

that Xα̃ ◦ ζMα
m is a multiple of Xα. Consequently IM̃α̃

P̃∩M̃α̃

(
σ̃ ⊗ ζMm (χ)

)
is reducible

and Xα̃(ζMm (χ)) ∈ R>0 \ {1}. With Corollary 1.3 we conclude that α̃ ∈ ΣÕ,µ.

(b) By (3.8) and Theorem 3.2, the bijection ζm induces a bijection

(M2
σ ∩M1

α)/M1 −→ (M̃2
σ̃ ∩ M̃1

α̃)/M̃1 ∼= Z.

The element h∨α generates (M2
σ ∩ M1

α)/M1, while h∨α̃ generates (M̃2
σ̃ ∩ M̃1

α̃)/M̃1.
These generators are determined by conditions νF (α(h∨α)) > 0 and νF̃ (α̃(h∨α̃)) > 0,
respectively. As νF̃ ◦ α̃ ◦ ζm = νF ◦ α, we can conclude that

(3.14) ζm(h∨α) = h∨α̃ and Xα = Xα̃ ◦ ζMα
m .

Then Xα̃(ζMα
m (χ)) = qα and IM̃α̃

P̃∩M̃α̃

(
σ̃ ⊗ ζMm (χ)

)
is reducible, so qα = qα̃.

If qα∗ > 1, then IMP∩Mα
(σ ⊗ χ′) is reducible for a χ′ ∈ Xnr(Mα) with Xα(χ′) =

−qα∗. In that case IM̃α̃

P̃∩M̃α̃

(
σ̃ ⊗ ζMm (χ′)

)
is also reducible and Xα̃(ζMα

m (χ′)) = −qα∗,
so by Corollary 1.3 qα̃∗ = qα∗. When qα∗ = 1, IMP∩Mα

(σ ⊗ χ′) is irreducible for all

χ′ ∈ Xnr(Mα) with Xα(χ′) ∈ R<−1. That translates to M̃α̃, and then Corollary 1.3
implies that qα̃∗ = 1. �

We summarise the conclusions of this sections:

Corollary 3.7. Let Rep(G)s be an arbitrary Bernstein block for a connected reduc-
tive group G over a local function field F . There exist:

• a p-adic field F̃ , sufficiently close to F ,
• a connected reductive F̃ -group G̃ with the same based root datum as G,
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• a Bernstein block Rep(G̃)s̃ for G̃,

such that:

• Rep(G)s is equivalent with Rep(G̃)s̃,

• H(O, G) is isomorphic with H(Õ, G̃),
• whenever α ∈ ΣO,µ and α̃ ∈ ΣÕ,µ correspond (via Proposition 3.6), λ(α) =

λ(α̃) and λ∗(α) = λ∗(α̃).

Proof. It only remains to establish the isomorphism of affine Hecke algebras. From
(3.8) and Theorem 3.2 we get the bijection M2

σ/M
1 → M̃2

σ̃/M̃
1. From (3.14) we

obtain the bijection Σ∨O → Σ∨Õ. Dualizing these two bijections, we obtain an iso-

morphism from the root datum underlying H(O, G) to the root datum underlying

H(Õ, G̃). It respects the bases because G and G̃ have the same based root datum.
By Proposition 3.6.b the parameters qα, qα∗ are the same on both sides. As

qF = [oF : $F oF ] = [oF̃ : $F̃ oF̃ ] = qF̃ ,

also the label functions λ, λ∗ on both sides correspond via α 7→ α̃. �

4. Hecke algebra parameters for simple groups

4.1. Principal series of split groups.
The affine Hecke algebras for Bernstein blocks in the principal series of split

groups were worked out in [Roc1], under some mild assumptions on the residual
characteristic of F . In particular, for roots α ∈ ΣO,µ one finds qα = qF and qα∗ = 1.
We will derive the same conclusion in a different way, which avoids any restrictions
on the residual characteristic. Using a little input from [BeDe] we will evaluate the
intertwining operators (1.10) directly, which is instructive but unfortunately seems
infeasible outside the principal series. While the results in this paragraph are not
original and the kind of calculation is also not new, we have been unable to locate
such computations in the literature in the generality that is required for [Sol7].
The closest we found is [Cas, §3], which however applies only when the underlying
characters of tori are unramified.

Let G be a split connected reductive F -group. We may assume that G is a Cheval-
ley group, so defined over Z. Let T be a maximal F -split torus of G and write
T = T (F ). We consider an inertial equivalence class s = [T, σ]G, where σ is a
character of T that fulfills Condition 1.2.

For α ∈ Σ(G, T ) the groupMα is generated by T and the root subgroups Uα,U−α.
It has root system Σ(Mα, T ) = {α,−α} and parabolic subgroups Pα = 〈T ,Uα〉,
P−α = 〈T ,U−α〉. Let uα : F → Uα and u−α : F → U−α be the coordinates coming
from the Chevalley model.

We assume that sα · σ = σ, a condition which by (1.5) is necessary for σ ∈ ΣO,µ.
Then σ ◦ α∨ = (σ ◦ α∨)−1, so σ ◦ α∨ has order ≤ 2 in Irr(F×). When the residual
characteristic of F is not 2, this implies that σ ◦ α∨ has depth zero. Of course the
cases with σ ◦ α∨ of positive depth are more involved.

We start the search for qα with elements of IMα
Pα

(σ⊗χ) that are as close as possible
to fixed by the Iwahori subgroup

I = uα(oF )T (oF )u−α($F oF ).

For x ∈ F× we write

sα(x) = uα(−x−1)u−α(x)uα(−x−1) ∈ NMα(T ).
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It follows quickly from the Iwasawa decomposition of Mα that

Mα = PαI t PαsαI, where sα = sα(1).

Consider the elements f1, fs ∈ IMα
Pα

(σ ⊗ χ) defined by

supp(f1) = PαI f1(uα(x)tu−α(y)) = (σχδ
1/2
Pα

)(t) x ∈ F, t ∈ T, y ∈ $F oF ,

supp(fs) = PαsαI fs(uα(x)tu−α(y)sα) = (σχδ
1/2
Pα

)(t) x ∈ F, t ∈ T, y ∈ oF .

We endow F with the Haar measure that gives oF volume 1. We compute

(4.1) JP−α|Pα(σ ⊗ χ)f1(1G) =

∫
F
f1(u−α(x))dx = vol($F oF ) = q−1

F ,

(4.2)

JP−α|Pα(σ ⊗ χ)f1(sα) =

∫
F
fs
(
u−α(x)sα

)
dx =∫

F×
fs
(
uα(−x−1)u−α(x)uα(−x−1)uα(x−1)sα

)
dx =∫

F×
fs
(
sα(x)uα(x−1)sα

)
dx =

∫
F×

fs
(
sα(x)sαu−α(−x−1)

)
dx =∫

F×
fs
(
α∨(−x−1)u−α(−x−1)

)
dx =∫

F×
(σχδ

1/2
Pα

) ◦ α∨(−x−1)fs
(
u−α(−x−1)

)
dx =

∞∑
n=1

∫
$−nF o×F

(σχδ
1/2
Pα

) ◦ α∨(−x−1)dx.

As χδ
1/2
Pα

is unramified and σ ◦ α∨ is quadratic,

(4.3) (σχδ
1/2
P ) ◦ α∨|o×F = σ ◦ α∨|o×F is quadratic.

If (4.3) is nontrivial, then

(4.4)

∫
$−nF o×F

(σχδ
1/2
Pα

) ◦ α∨(−x−1)dx = (σχδ
1/2
Pα

)($n
F )

∫
o×F

σ ◦ α∨(−x−1)dx = 0.

In that case JP−α|Pα(σ ⊗ χ)f1(sα) = 0. On the other hand, when (4.3) is trivial:

JP−α|Pα(σ ⊗ χ)f1(sα) =
∞∑
n=1

∫
$−nF o×F

(σχ)(α∨($n
F ))

∣∣α(α∨($n
F ))
∣∣1/2dx

=
∞∑
n=1

(σχ)(α∨($F ))nvol($−nF o×F ) |$n
F |

=

∞∑
n=1

(σχ)(α∨($F ))n(1− q−1
F ) =

(1− q−1
F )(σχ)(α∨($F ))

1− (σχ)(α∨($F ))
.



PARAMETERS OF HECKE ALGEBRAS 25

Similar calculations show that

JP−α|Pα(σ ⊗ χ)fs(sα) = 1,

JP−α|Pα(σ ⊗ χ)fs(1G) = 0 if σ ◦ α∨|o×F 6= 1,

JP−α|Pα(σ ⊗ χ)fs(1G) =
1− q−1

F

1− (σχ)(α∨($F ))
if σ ◦ α∨|o×F = 1.

Case I: σ ◦ α∨ is unramified
Here Rep(Mα)s is isomorphic with the Iwahori-spherical Bernstein block and
JP−α|Pα(σ ⊗ χ) restricts to a H(Mα, I)-homomorphism

(4.5) IMα
Pα

(σ ⊗ χ)I → IMα
P−α

(σ ⊗ χ)I .

The space IMα
P−α

(σ ⊗ χ)I has a basis f ′1, f
′
s where supp(f ′1) = P−αI and supp(f ′s) =

P−αsαI. Abbreviating zα = (σ⊗χ)◦α∨($F ), the above calculations entail that the
matrix of (4.5) respect to the given bases is q−1

F
1−q−1

F
1−zα

1−q−1
F

z−1
α −1

1

 .

An equivalent result was obtained in [Cas, Theorem 3.4]. Similarly one checks that
JPα|P−α(σ ⊗ χ) restricts to 1

1−q−1
F

zα−1
1−q−1

F

1−z−1
α

q−1
F

 : IMα
P−α

(σ ⊗ χ)I → IMα
Pα

(σ ⊗ χ)I .

We find that JPα|P−α(σ ⊗ χ)JP−α|Pα(σ ⊗ χ) restricts to

(4.6)
(
q−1
F +

(1− q−1
F )2

(1− zα)(1− z−1
α )

)
id : IMα

Pα
(σ ⊗ χ)I → IMα

Pα
(σ ⊗ χ)I .

We already know that JPα|P−α(σ ⊗ χ)JP−α|Pα(σ ⊗ χ) is a scalar multiple of the

identity on IMα
Pα

(σ ⊗ χ), so (4.6) gives that scalar. We note that (4.6) has a pole at

zα = 1 and that (4.6) is zero if and only if zα = qF or zα = q−1
F . As σ is unitary and

χ ∈ Hom(Mα,R>0), this is equivalent to

(4.7) σ ◦ α∨ = 1 and χ ◦ α∨($F ) ∈ {qF , q−1
F }.

Since M2
σ = T , h∨α generates T/T 1. If α∨($−1

F ) = h∨α, (4.7) says that qα = qF and

qα∗ = 1. If α∨($−1
F ) = 2h∨α, then (4.7) means qα = q

1/2
F = qα∗. But in that case we

can also define Xα(χ) = χ(α∨($−1
F )) instead of Xα(χ) = χ(h∨α). These new Xα also

form a root system, which embeds naturally in R(G, T )∨. From the presentation
after Corollary 1.3 one sees that this redefinition does not change the affine Hecke
algebra. Hence we can achieve qα = qF , qα∗ = 1 in all these cases.

Case II: σ ◦ α∨ is ramified
For r ∈ Z>0, Mα has compact open subgroups

Jr = xα($r
F oF )T ($r

F oF )x−α($r
F oF ),

Hr = xα($2r−1
F oF )T ($r

F oF )x−α($F oF ).

Here T ($r
F oF ) is a shorthand for the kernel of T (oF )→ T (oF /$

r
F oF ).
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Lemma 4.1. There exists r ∈ Z>0 such that T ($r
F oF ) ⊂ ker(σ) and Rep(Mα)s is

a direct factor of

Rep(Mα, Hr) ∼= Mod(H(Mα, Hr)).

Proof. Choose an odd r ∈ Z>0 such that T ($r
F oF ) ⊂ ker(σ) and IMα

Pα
(σ)Jr 6= 0.

Then IMα
Pα

(σ ⊗ χ)Jr 6= 0 for any χ ∈ Xnr(T ) because Jr is compact. Hence

Rep(Mα)s ⊂ Rep(Mα, Jr).

We note that Jr is a normal subgroup of the hyperspecial parahoric subgroup
Mα(oF ) of Mα. It is known from [BeDe] that Rep(Mα, Jr) is a direct product
of finitely many Bernstein blocks of Rep(Mα), and that

(4.8) Rep(Mα, Jr)→ Mod(H(Mα, Jr)) : V 7→ V Jr

is an equivalence of categories. Consider conjugation by α∨($
(r−1)/2
F ). This sends

Jr to Hr and induces equivalences of categories

Rep(Mα, Jr) ∼= Rep(Mα, Hr), Mod(H(Mα, Jr)) ∼= Mod(H(Mα, Hr)). �

Lemma 4.1 tells us that most aspects of IMα
Pα

(σ ⊗ χ) can already be detected on

IMα
Pα

(σ ⊗ χ)Hr .

Lemma 4.2. The double cosets in Pα\Mα/Hr can be represented by

{1G} ∪ {(u−α(z)sα : z ∈ oF /$
2r−1
F oF }.

Similarly P−α\Mα/Hr can be represented by {sα} ∪ {uα(oF )/uα($2r−1
F oF )}.

Proof. From the Iwasawa decomposition Mα = PαMα(oF ) we get

(4.9) Pα\Mα/Hr
∼= (Pα ∩Mα(oF ))\Mα(oF )/Hr.

Recall that by the Bruhat decomposition of Mα(kF ):

(4.10) Mα(oF ) = I t IsαI = I t uα(oF )T (oF )u−α(oF )sα.

Furthermore, we note that (Pα ∩Mα(oF ))Hr = I and

(Pα ∩Mα(oF ))u−α(z)sαHr = (Pα ∩Mα(oF ))u−α(z +$2r−1
F oF )sα z ∈ oF .

In combination with (4.9) and (4.10) that yields the desired representatives for (4.9).
The representatives for the second double coset space are found in analogous

fashion, now using

Mα(oF ) = sαI t sαIsαI = u−α(oF )T (oF )uα($F oF )sα t u−α(oF )T (oF )uα(oF )

instead of (4.10). �

It follows from Lemma 4.2 that IMα
Pα

(σ ⊗ χ)Hr has a basis {f1} ∪ {fzs : z ∈
oF /$

2r−1
F oF }. Here supp(f1) = PαHr = PαI as before and

supp(fzs) = Pαu−α(z)Hrsα = Pαx−α(z +$2r−1
F oF )sα,

fzs(uα(x)tu−α(y)sα) = (σχδ
1/2
Pα

)(t) x ∈ F, y ∈ z +$2r−1
F oF , t ∈ T.

The next result can be deduced from [Roc1, Theorem 6.3] when the characteristic
of F is not 2.

Proposition 4.3. Recall that σ ◦ α∨ is ramified and sα · σ = σ.
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(a) The functions JP−α|Pα(σ ⊗ χ)f1 and JP−α|Pα(σ ⊗ χ)fzs (with z ∈ oF /$
2r−1
F oF )

of χ ∈ Xnr(Mα) do not have any poles.
(b) α /∈ ΣO,µ.

Proof. (a) Note that JP−α|Pα(σ ⊗ χ) preserves the Hr-invariance of an element f of
the given basis. By Lemma 4.2 it suffices to check the values of JP−α|Pα(σ ⊗ χ)f
at {sα} ∪ uα(oF ). From the earlier computations (4.1) and (4.2) we know that
JP−α|Pα(σ ⊗ χ)f1 does not have poles at 1G or at sα. For y ∈ oF \ $2r−1

F oF the
multiplication rules in SL2(F ) (which surjects on Mα,der) enable us to compute

(4.11)

JP−α|Pα(σ ⊗ χ)f1(uα(y)) =

∫
F
f1

(
u−α(x)uα(y)

)
dx

=

∫
F
f1

(
uα(

y

1 + xy
)α∨(

1

1 + xy
)u−α(

x

1 + xy
)
)
dx

=

∫
F

(
σχδ

1/2
Pα

)(α∨(
1

1 + xy
)
)
f1

(
u−α(

x

1 + xy
)
)
dx.

In terms of the new variable x′ := 1 + xy this becomes

|y|−1

∫
F

(
σχδ

1/2
Pα

)(α∨(x′)−1
)
f1

(
u−α(

x′ − 1

yx′
)
)
dx′

The integrand is nonzero if and only if x′−1
yx′ ∈ $F oF , which is equivalent to

(x′ − 1)/x′ ∈ y$F oF ⊂ $F oF .

That is only possible when |x′| = 1, so (4.11) becomes an integral of a continuous
function over the compact set o×F . In particular it converges and JP−α|Pα(σ ⊗ χ)f1

does not have any poles.
With calculations as in (4.2) we check the other basis elements fzs:

JP−α|Pα(σ ⊗ χ)fzs(sα) =

∫
F
fzs
(
u−α(x)sα

)
dx = vol(z +$2r−1

F oF ) = q1−2r
F ,

JP−α|Pα(σ ⊗ χ)fzs(uα(y)) =

∫
F
fzs
(
u−α(x)uα(y)

)
dx

=

∫
F×

fzs
(
uα(−x−1)u−α(x)uα(−x−1)uα(y + x−1)

)
dx

=

∫
F×

fzs
(
sα(x)uα(y + x−1)

)
dx(4.12)

=

∫
F×

(σχδ
1/2
Pα

)
(
α∨(x−1)

)
fzs
(
sαuα(y + x−1)

)
dx

=

∫
F×

(σχδ
1/2
Pα

)
(
α∨(x−1)

)
fzs
(
sα(x)uα(y + x−1)

)
dx

=

∫
F×

(σχδ
1/2
Pα

)
(
α∨(x−1)

)
fzs
(
u−α(−y − x−1)sα

)
dx.

When −y /∈ z + $2r−1
F oF , this integral is supported on a compact subset of F ,

and it converges. When −y ∈ z + $2r−1
F oF , the support condition on x becomes
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|x| ≥ q2r−1
F , and the integral reduces to

∞∑
n=2r−1

∫
$−nF o×F

(σχδ
1/2
Pα

)(α∨(x−1))dx.

Since σ ◦ α∨ is ramified and quadratic, it is nontrivial on o×F . Then (4.3) and (4.4)
show that every term of the above sum is zero. We conclude that JP−α|Pα(σ⊗χ)fzs
also does not have any poles.
(b) Part (a) and Lemma 4.2 show that JP−α|Pα(σ ⊗ χ) does not have any poles on

IMα
Pα

(σ ⊗ χ)Hr . Similar computations (which we omit) show that JPα|P−α(σ ⊗ χ)

does not have any poles on IMα
P−α

(σ ⊗ χ)Hr . By Lemma 4.1 they neither have poles

on, respectively, IMα
Pα

(σ ⊗ χ) and IMα
P−α

(σ ⊗ χ). Then (1.11) says that µMα(σ ⊗ χ) is

nonzero for χ ∈ Xnr(T ), which by definition means α /∈ ΣO,µ. �

Let us combine the conclusions for all possible σ ◦ α∨:

Theorem 4.4. Suppose that α ∈ ΣO,µ, for a principal series Bernstein component

of a F -split group G. Define Xα(χ) = χ(α∨($−1
F )). Then σ ◦ α∨ = 1 and qα =

qF , qα∗ = 1.

4.2. Principal series of quasi-split groups.
We consider a quasi-split non-split connected reductive F -group G. By Section 2

we may suppose that G is absolutely simple. Then it is an outer form of Lie type
An, Dn or E6.

Let T be the centralizer of a maximal F -split torus S in G, and let σ be a character
of T satisfying Condition 1.2. Let Gal(Fs/F̃ ) be the normal subgroup of Gal(Fs/F )

that acts trivially on X∗(T ), so that F̃ /F is a minimal Galois extension splitting T .
Consider a root α ∈ ΣO,µ. By a suitable choice of a basis of Σ(G,S) ⊂ Σ(G,AT ),

we may assume that α is simple. It corresponds to a unique Galois orbit WFαT in
Σ(G, T ). Then

(4.13) Uα(F ) =
( ∏
βT∈WFαT

UβT (Fs)
)WF ∼= UαT (Fs)

WF,αT ∼= F
WF,αT
s =: Fα.

The field Fα does not depend on the choice of αT (up to isomorphism) and is known
as a splitting field for α.

By construction the numbers qα, qα∗ depend only on the group Mα. Parts (b–c) of
Proposition 2.4 apply, so we may even replace Mα by its derived subgroup Mα,der.

Suppose for the moment that the elements of WFαT ⊂ Σ(G, T ) are mutually
orthogonal. Then Mα,der is isomorphic to the restriction of scalars, from Fα to F ,
of SL2 or PGL2. Now qα and qα∗ can be computed in SL2(Fα) or PGL2(Fα), as
in Paragraph 4.1. (Recall that even for PGL2 we insisted that Xα is based on α∨

rather than on h∨α.) By Theorem 4.4 σ ◦ α∨ = 1, qα∗ = 1 and qα = qFα is the
cardinality of the residue field of FαT . From Galois theory for local fields [Ser] it is
known that

(4.14) |WFαT | = [WF : WF,αT ] = eFα/F fFα/F =

[IF : IF ∩WF,αT ] · [WF /IF : WF,αT IF /IF ] = |IFαT | · fFα/F .
Since IF is normal in WF , the number

(4.15) qFα = q
fFα/F
F = q

|WFαT |/|IFαT |
F
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Table 2. Dynkin diagrams and parameters for quasi-split groups
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qq

depends only on α, and not on the choice of αT . This leads to the possibilities
for the Dynkin diagrams (with Galois action indicated by arrows), the relative root
systems and the qα in Table 2. We stress that the parameters qα only come into
play when α ∈ ΣO,µ, for α ∈ Σ(AT )\ΣO,µ they are not defined. Recall that the root
system underlying H(O, G) is Σ∨O, which is a rescaled version of Σ∨O,µ, so obtained
from the dual of the root system on the right hand side of the table.

In Table 2 q = qF and q′ ∈ {qF , q2
F }, according to (4.15). For a F -group of type

3D4, [F̃ : F ] can be of degree 3 or 6. In both cases [Fα : F ] = 3 for the roots α not
fixed by WF , so q′′ ∈ {qF , q3

F }. Thus Conjecture A holds in all these cases.
It remains to consider the case where the elements of WFαT are not orthogonal.

From the above diagrams we see that this happens only once (up to Weyl group
conjugacy) for absolutely simple groups, namely for certain pairs of roots in type
2A2n. With Proposition 2.4 we can transfer the determination of qα and qα∗ (which
no longer needs to be 1) to the simply connected cover ofMα,der, which is isomorphic
to SU3. This does not change the q-parameters, by Proposition 2.4.(b–c). Because
we cannot reduce the issue to SL2 or PGL2, the necessary computations are more
involved.

With Section 2 we can further transfer these computations to the F -group U3,
which is a little easier. Indeed, for that group all the Hecke algebras were computed
by means of types by the author’s PhD student Badea [Bade]. In particular, it was
shown in [Bade, §2.7 and §5.2.1] that only the following possibilities can arise:

(i) qα = qFα = qF , qα∗ = 1,
(ii) qα = qF , qFα = q2

F , qα∗ = 1,
(iii) qα = qFα = q2

F , qα∗ = qF .
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The option (i) leads to an affine Hecke algebra with all qα for α ∈ ΣO,µ equal, which
occurs in Table 1. In case (ii) the connected component Σ∨O,j of Σ∨O containing h∨α
has type Bm (for some m ≤ n) and qβ = q2

F for all other simple roots in Σ∨O,j . The

possibility (iii) arises only from the Iwahori-spherical principal series. The latter
consists of unipotent representations, so that Conjecture A is automatic.

We have to be a little careful, because it is assumed in [Bade] that the residual
characteristic of F is not 2. For the Iwahori-spherical principal series that is not a
problem, those affine Hecke algebras are known from [Bor] regardless of the residual
characteristic. For ramified characters of T ⊂ U3(F ) it is troublesome, because some
computations in [Bade] change substantially in residual characteristic 2. To be sure
in those cases as well we refer to Theorem 4.9, where all the q-parameters for Un(F )
are computed in a different way (for arbitrary F but with much heavier machinery).
From Lemma 4.11 one sees are the only options for U3(F ) in residual characteristic
2 are still (i), (ii) and (iii).

Let us state the above conclusions concisely:

Corollary 4.5. Conjecture A holds for all Bernstein blocks in the principal series of
a quasi-split connected reductive group G over F . When we base Xα on α∨, qα∗ = 1
and qα = qFα (except for one root in type 2A2n).

4.3. Inner forms of Lie type An.
We consider simple F -groups G that are inner forms of a split group of type

An−1. The simply connected cover of G is an inner form of SLn, so isomorphic to
the derived subgroup of an inner form of GLn. In view of Section 2 it suffices to
consider the latter case, so with G isomorphic to GLm(D) for a division algebra D
with centre F and dimF (D) = (n/m)2.

For every Bernstein block Rep(G)s there exists a type (J, ρ) [SéSt2]. We can write
s = [M,σ]G in the form

M =
∏

i
GLmi(D)ei , σ = �iσ

⊗ei
i ,

where the various σi differ by more than an unramified character. The associated
Hecke algebra H(G, J, ρ) is a tensor product of affine Hecke algebras of type GLei
[SéSt1], so the underlying root system has irreducible components of type Aei−1,
for suitable ei ≤ n. The same result was obtained around the same time in [Hei2],
using Πs. The parameters of such a type GLei affine Hecke algebra were determined

explicitly in [Séc, Théorème 4.6], they are of the form qα = qfF , qα∗ = 1 for a specific
positive integer f . Thus λ and λ∗ are constant and equal to f on the underlying
root system Aei−1. From [Hei2, 1.13–1.15] or [SéSt2] we also see that

(4.16) W (M,O) = W (ΣO,µ) ∼=
∏

ei
Sei

and R(O) = {1}. From that, (1.14) and

Mod−H(G, J, ρ) ∼= Rep(G)s ∼= EndG(Πs)−Mod

we deduce thatH(G, J, ρ) is Morita equivalent withH(O, G)op. These are both affine
Hecke algebras, and then Morita equivalence implies that H(G, J, ρ) and H(O, G)
and H(O, G)op are isomorphic. We summarise:

Theorem 4.6. [Heiermann, Sécherre–Stevens]
Let G be an inner form of a simple F -split group of type An−1, and let s be an inertial
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equivalence class for G. Then the root system underlying H(O, G) has irreducible
components of type Ae−1 with e ≤ n. The label functions λ, λ∗ are constant on Ae−1,
and equal to an integer f .

We note that such parameters already occur for Iwahori-spherical representations.
Namely, consider GLm(D) where dimF (D) = f2. Its Iwahori–Hecke algebra is

isomorphic with an affine Hecke algebra of type GLe with parameters qfF .
More explicit information about f comes from [SéSt2, Introduction]. Every type

GLe affine Hecke algebra as above comes from a supercuspidal representation π�e

of GLm′/e(D) for some m′ ≤ m. Then f equals the torsion number

tπ = |Xnr(GLm′/e(D), π)|
times the reducibility number sπ. With the Jacquet–Langlands correspondence
[Badu, DKV] one can relate the torsion and reducibility numbers of π to the same
numbers for a specific discrete series representation JL(π) of GLnm′/em(F ). More
information about those numbers is already known from [BeZe, BuKu1]. From that
or from a comparison with Langlands parameters as in [AMS3, p. 57], one sees that

sπ divides nm′

me and that tπ divides nm′

mesπ
. Therefore

(4.17) f = sπtπ divides
nm′

me
≤ n

e
.

We note that in all these cases α∨ generates HM (M1
α/M

1), because the derived
groups are simply connected. The torsion number tπ says precisely that

HM (M2
σ ∩M1

α/M
1) = Ztπα∨.

Consider a F -split connected reductive groupMα with root system of type An+m−1.
LetM be the standard F -Levi subgroup ofMα obtained by omitting a simple root
α, with root system of type An−1×Am−1. Then the simply connected cover of Mder

is isomorphic to SLn(F )× SLm(F ).
Put s = [M,σ]Mα for some σ ∈ Irrcusp(M). The inflation of σ|Mder

to the simply
connected cover Msc of Mder can be written as a finite direct sum⊕

i
σi � σ′i with σi ∈ Irrcusp(SLn(F )), σ′i ∈ Irrcusp(SLm(F )).

From Theorem 4.6, (4.17) and Section 2 we obtain the following criterion for Hecke
algebra parameters in split type A groups:

Corollary 4.7. Let Mα, M and σ be as above.

(a) If n 6= m, then sα does not give rise to an element of NMα(M)/M .
(b) Suppose that n = m and that, for any i, σi and σ′i are not isomorphic. Then sα

does not give rise to an element of W (M,O).
(c) Suppose that n = m and that, for at least one i, σi and σ′ are isomorphic. Then

ΣO,µ = {α,−α} and sα gives rise to an element of W (M,O) that exchanges the
two almost direct simple factors of Mder.

When Mα = GL2n(F ), the q-parameters for H(O,Mα) are qα∗ = 1 and

qα = qfF . Here f is the torsion number tσi ∈ Z>0, which divides n.

Proof. (a) This is clear, because such an element would have to exchange the two
almost direct simple factors of Mder.
(b) Now sα does give an element of NMα(M)/M , which exchanges the two almost
direct simple factors of Mder. By Proposition 2.2 we may lift to the simply connected



32 PARAMETERS OF HECKE ALGEBRAS

coverMsc, picking one irreducible constituent σi⊗σ′i of the inflation of σ|Mder
. AsMsc

does not have nontrivial unramified characters, stabilizing s has become stabilizing
σi ⊗ σ′i. Clearly sα does that if and only if σi and σ′i are isomorphic.
(c) This follows from Theorem 4.6. �

In part (c) for Mα 6= GL2n(F ), it may still be necessary to apply Proposition
2.4.d to obtain the precise parameters.

Example 4.8. Consider the inclusion η : SL4(F )→ GL4(F ) and the Levi subgroups

M = GL2(F )2 and M̃ = S(GL2(F )2). Let σ ∈ Irrcusp(GL2(F )) with

Xnr(GL2(F ), σ) = {1, χ−}.
We may assume that σ|SL2(F ) decomposes as a direct sum of two irreducible represen-

tations, both stable under diag(a, b) ∈ GL2(F ) for all a, b ∈ o×F . Then σ⊗σ ∈ Irr(M)

and η∗(σ⊗ σ) is a direct sum of two irreducible M̃ -representations σ̃1, σ̃2, permuted
by diag($F , 1) ∈M . Here

η∗(Xnr(M,σ ⊗ σ)) = {1, χ− ⊗ 1}
but tensoring by χ− ⊗ 1 exchanges σ̃1 and σ̃2. It follows that

Xnr(M̃, σ̃1) = Xnr(M̃, σ̃2) = {1}.
The root systems of the Hecke algebras are {α,−α} and {α̃,−α̃}, while h∨α =
η(h∨α̃)2 ∈M/M1. So this is an instance of Proposition 2.4.d.(iii).

4.4. Classical groups.
We look at classical groups associated to Hermitian forms on F -vector spaces. Let

G∗ be a symplectic group or a special orthogonal group (not necessarily split). It
was shown in [Hei2] that EndG(Πs) is Morita equivalent with the crossed product of
H(O, G) and R(O), where H(O, G) is a tensor product of affine Hecke algebras with
lattice Ze and root system Ae−1, Be, Ce or De. When G∗ is F -split, the parameters
are computed in [Hei1], relying on [Mœ2]. Later the (quasi-)split assumption in
[Mœ2] was lifted in [MoRe], which means that [Hei1] also applies to pure inner
forms of quasi-split groups.

We also allow G∗ to be a special unitary group. With Section 2 we reduce that
to Un, a unitary group Un which splits over a separable quadratic extension F̃ /F .
According to [Hei3, Theorem 1.8 and §C.5], the above description of H(O, G) is
also valid for Un. Unfortunately there is no real proof of these claims in [Hei3], but
it is similar to [Hei2] and in fact an instance of the more general results of [Sol4].
Also according to [Hei3, §C], the parameters of these affine Hecke algebras can be
computed as in [Hei1]. This uses the results of [Mœ1, Mœ2, Mœ3].

Recall that every F -Levi subgroup of G∗ is of the form

(4.18) M∗(F ) ∼=
∏

i
GLni(F

′)×H∗(F ),

where H∗ is of the same type as G∗, but of smaller rank. Here F ′ = F̃ for (special)
unitary groups and F ′ = F otherwise. Let f be residue degree of F ′/F , so 2 for
unramified (special) unitary groups and 1 otherwise.

Let G be a group isogenous to G∗ and let M be a F -Levi subgroup of G.

Theorem 4.9. Let G be isogenous to G∗ as above, and consider an inertial equiv-
alence class s = [M,σ]G. Fix an irreducible component Σ∨O,j of Σ∨O as in Section
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2. Associate a supercuspidal representation ρ of GLdρ(F
′) to Σ∨O,j as in [Hei1, §2.1

and §3], and let t = tρ ∈ Z>0 be its torsion number, a divisor of dρ.

(a) When Σ∨O,j
∼= Ce and h∨α is a long root, there exists an integer a+ ∈ Z>0 such

that qα = q
ta+
F ′ , qα∗ = 1 and λ(α) = λ∗(α) = fta+.

(b) When Σ∨O,j
∼= Be and h∨α is a short root, there exist integers a ≥ a− ≥ −1 such

that qα = q
t(a+1)/2
F ′ , qα∗ = q

t(a−+1)/2
F ′ and λ(α) = ft(a + a− + 2)/2, λ∗(α) =

ft(a− a−)/2.
(c) For all other h∨α ∈ Σ∨O,j, qα = qtF ′ , qα∗ = 1 and λ(α) = λ∗(α) = ft.

Suppose that M is isogenous to (4.18), and that the complex dual group of H∗
consists of matrices of size N∨. Then⌊

(
a+ 1

2
)2
⌋

+
⌊
(
a− + 1

2
)2
⌋
≤ N∨d−1

ρ

in case (b) and a2
+ ≤ 2N∨d−1

ρ + 1 in case (a).

We note that for a maximal Levi subgroup M∗ = GLdρ(F
′)×H∗ of G∗, the root

system Σ∨O has type B1 or is empty.

Proof. By Corollary 3.7 we may assume that F has characteristic zero.
For G∗ the claims (b) and (c) follow from [Hei1, Proposition 3.4] and [Hei3,

§C.5]. The role of the torsion number t is to replace the sublattice Ze of M/M1

corresponding to Σ∨O,j by (tZ)e, which is a direct summand of M2
σ/M

1. In this

process, all the labels λ(α) and λ∗(α) are multiplied by t.
The numbers a, a− come from [Mœ1, Proposition 4], [Mœ2, §1.3–1.4] and [Mœ3,

Théorème 3.1], where they are computed in terms of reducibility of the parabolic
induction of a supercuspidal representation ρ ⊗ π of GLdρ(F

′) × H∗. This shows
that in general we have to use F ′ instead of F . For (special) unitary groups, the

factors GLdρ(F̃ ) in (4.18) cause another factor f in all the parameters, as explained
in [Hei3, §C].

Recall that the Jordan block of π ∈ Irr(H∗) is built from the pairs (ρ, a) that we
consider (but those with a ≤ 0 omitted), by adding new pairs according to the rule

if (ρ, a) ∈ Jord(π) and a > 2 then (ρ, a− 2) ∈ Jord(π).

It was shown in [Mœ2, §1.4] and [Mœ1, Proposition 4] that

(4.19)
∑

(ρ,a)∈Jord(π)
adρ = N∨.

We fix a ρ and let ρ− be the unramified twist of ρ from which a− is determined.
Isolating the terms with ρ and ρ− in (4.19), we obtain

(4.20) N∨ ≥
∑

a′:(ρ,a′)∈Jord(π)
a′dρ +

∑
a′:(ρ−,a′)∈Jord(π)

a′dρ−

=
⌊
(
a+ 1

2
)2
⌋
dρ +

⌊
(
a− + 1

2
)2
⌋
dρ.

Case (a) for G∗ is not mentioned explicitly in [Hei1], it is an instance of case (b)
when we focus on the Weyl group (not on the root system). As the lattice containing
Σ∨O,j is isomorphic to Ze, the construction of h∨α entails that h∨α /∈ 2Ze, so that Σ∨O,j
does not have type Ce. Still, this root system occurs if Σ∨O,j

∼= Be and qα = qα∗.
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Then we can replace h∨α by h∨α/2 = 2h∨α, Xα by X2
α, Be by Ce, qα by q2

α = qαqα∗ and

qα∗ by 1, without changing the Hecke algebra H(O, G). We find

λ(α/2) = λ∗(α/2) = λ(α) + λ∗(α) = tf(a+ 1),

so the a+ for 2h∨α is 1 plus the a from Be. When a+ is odd, the previously established
bound on a = a− directly yields the new bound on a+. When a+ is even, (4.20) says

2
(

(
a+ 1

2
)2 − 1

4

)
≤ N∨d−1

ρ , so a2
+ = (a+ 1)2 ≤ 2N∨d−1

ρ + 1.

When G is a quotient of G∗, Section 2 enables us to reduce to G∗. According
to Proposition 2.4, in the process the labels for α must be multiplied by some
Nα ∈ {1/2, 1, 2}. But for type A roots nothing really changes along G∗ → G (the
computations can be placed entirely in a general linear group) so Nα = 1. For other
roots β either Nβ = 1 or (if Σ∨O,j

∼= Ce) Nβ = 2 or (if Σ∨O,j
∼= Be) Nβ = 1/2. In

the last two cases types Ce and Be are exchanged, and the relations between the
parameters are the same as between cases (a) and (b) of the theorem.

In the remaining cases G is a spin group (or a half-spin group, but by passing
to the simply connected cover, as allowed by Corollary 2.5, we reduce that case to
a spin group). Then G can be embedded in a general spin group GSpinn – not
necessarily split, but at least a pure inner form of a quasi-split group. The Levi
subgroups of GSpinn follow the same pattern as for SOn, and their discrete series
representations can be classified as for special orthogonal groups, see [Mœ2, §1.3,
§1.5] and [Mœ3, §4.4, §6.3]. Consequently the results of [Hei1, Hei2] also hold for
GSpinn, with the only difference that the lattices in the Hecke algebras have rank one
higher than for SOn. Thus Theorem 4.9 holds for GSpinn, possibly with correction
factors Nβ ∈ {1/2, 1, 2} as above for quotients of G∗. By Corollary 2.7 the theorem
also holds for the derived group G of GSpinn. �

In the generality of Theorem 4.9 it is hard to make the integers a+, a and a−
more explicit, since they depend in a very subtle way on the involved supercuspidal
representations. If one restricts to specific classes of Bernstein components, more
can be said about the Hecke algebra parameters. In particular, for the principal
series representations of quasi-split classical groups the method in Paragraphs 4.1
and 4.2 yields the concrete q-parameters.

To check the integrality of the label functions λ, λ∗, we analyse the parity of a and
a−. As explained in [Hei1, §1], this boils down to comparing the Langlands param-
eter ρ of a supercuspidal representation of GLk(Fα) with the Langlands parameter
of a supercuspidal representation of H (a classical group of the same type as G).

For G of Lie type Bn, Cn, Dn or 2Dn, ρ is self-dual. Then a is odd if and only if ρ
and the complex dual group H∨ of H have the same type (orthogonal or symplectic).

For G of Lie type 2An−1, ρ is conjugate-dual, that is, the contragredient ρ∨ is
isomorphic to s · ρ for s ∈ WF \WF̃ . From [GGP, Theorem 8.1] we see that
the standard representation of H∨ is conjugate-orthogonal or conjugate-symplectic,
depending on the size of H∨. Just as above, a is odd if and only if ρ and this
standard representation have the same type.

The parity of a− is determined by analogous considerations, starting from a differ-
ent self-dual or conjugate-dual representation ρ⊗χ with χ an unramified character.
More specifically, let tρ be the torsion number of ρ ∈ Irr(WF ), that is, the number
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of unramified characters χ such that ρ ∼= ρ ⊗ χ. Then there exist precisely 2tτ un-
ramified characters χ of WF such that ρ⊗χ is self-dual, namely those with χ2tρ = 1.
When moreover χtρ 6= 1, ρ ⊗ χ 6∼= ρ. That provides a unique (up to isomorphism)
ρ− = ρ⊗χ which is self-dual and not isomorphic to ρ. The number a− is computed
from this ρ−. The same applies to conjugate-dual representations of WF̃ .

The following result extends [Hei1, Proposition 1.3].

Proposition 4.10. (a) Let ρ ∈ Irr(WF ) be a self-dual and let ρ− be as above.
• If tρ is odd, then ρ and ρ− have the same type (orthogonal or symplectic).
• If tρ is even, then ρ and ρ− can have the same or opposite type.

(b) Let ρ̃ ∈ Irr(WF̃ ) be a conjugate-dual and let ρ̃− be the unique (up to isomor-
phism) conjugate-dual twist of ρ̃ by an unramified character.

• If F̃ /F is ramified and tρ̃ is odd, then ρ̃ and ρ̃− have the same type
(conjugate-orthogonal or conjugate-symplectic).

• If F̃ /F is ramified and tρ̃ is even, then ρ̃ and ρ̃− can have the same or
opposite type.
• If F̃ /F is unramified, then ρ̃ and ρ̃− have opposite type.

Proof. (a) Since the inertia group IF is normal and WF /IF ∼= Z, ρ can be anal-
ysed well by restriction to IF . Clifford theory tells us that there exist mutually
inequivalent irreducible IF -representations ρ1, . . . , ρt such that

(4.21) ResWF
IF

ρ ∼= ρ1 ⊕ · · · ⊕ ρt
and a Frobenius element Frob of WF permutes the ρi cyclically. The unramified
characters χ that stabilize ρ are precisely those for which χ(Frobt) acts trivially on
ρ1, so t equals the torsion number tρ.

If ρ1 is self-dual, then so are all the ρi, and the WF -invariant bilinear form on ρ
is a direct sum of IF -invariant bilinear forms on the ρi. Then the type of ρ is the
same as the type of ρ1, which depends only on IF and is not affected by twisting
with unramified characters. This can happen for even t and for odd t.

If ρ1 is not-self dual, then none of the ρi is self-dual. In that case t is even and
the dual of (ρi, Vi) is isomorphic to ρi∨ for a unique integer i∨. Further the WF -
invariant bilinear form on ρ restricts on ρi × ρi∨ to z times the canonical pairing,
for some z ∈ C×. Similarly it restricts on ρi∨ × ρi to z∨ times the canonical pairing.
It is easy to check that the representation ρi∨ ⊕ ρi of IF o 〈Frobt/2〉 is self-dual and
z∨ = ±z where ± indicates the type of the representation. Then the type of ρ is the
same as the type of ρi∨ ⊕ ρi.

By self-duality of ρ and ρ− = ρ⊗χ and ρ 6∼= ρ−, we must have χ(Frobt) = −1 and

χ(Frobt/2) = ±i. In particular the representation (ρi∨ ⊕ ρi)⊗ χ of IF o 〈Frobt/2〉 is
not self-dual with respect to the same bilinear form as ρi∨⊕ρi. To make (ρi∨⊕ρi)⊗χ
self-dual, we can take the bilinear form where in the above description z∨ is replaced
by −z∨. This changes the sign of the bilinear form, so ρ and ρ− have opposite type.
(b) When F̃ /F is ramified, we can pick a representative for WF /WF̃ in IF . Then
the notions conjugate-dual, conjugate-orthogonal and conjugate-symplectic can be
defined in the same way for IF̃ -representations. The proof of part (a) applies to
ρ̃ ∈ Irr(WF̃ ), when we replace self-dual by conjugate-dual. The conclusion is that
ρ̃ and ρ̃− have the same type.

When F̃ /F is unramified, we pick a representative s for WF /WF̃ so that s2 is a
Frobenius element of WF̃ . Conjugate-duality is still defined for IF̃ -representations
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(because IF̃ is normal in WF ), but the type of such a representation is not (because

s2 /∈ IF̃ ). Nevertheless, we can still decompose ρ̃ ∈ Irr(WF̃ ) as IF̃ -representation
like in (4.21). We see that the WF̃ -invariant bilinear pairing between ρ̃ and s · ρ̃
restricts to a pairing between (ρ̃i, Vi) and (ρ̃i∨ , Vi∨) for a unique i∨. By definition
[GGP, §3], the type of ρ̃ is given by the sign ± in

(4.22) 〈v, v′〉 = ±〈v′, ρ̃(s2)v〉 ∀v, v′ ∈ Vρ̃.
We consider v in V1 and v′ ∈ V1∨ such that the pairing (4.22) is nonzero. Then
ρ̃(s2)v must also belong to V1, but at the same time ρ̃(s2) permutes the ρ̃i cyclically.
That renders (4.22) impossible, unless tρ̃ = 1. But then ρ̃|IF̃ is irreducible and

isomorphic to s · ρ̃∨|IF̃ . In this situation the bilinear pairing between ρ̃ and s · ρ̃ is
already determined by their structure as IF̃ -representations.

The same applies to ρ̃− = ρ̃⊗ χ̃. Then the conjugate-duality of ρ̃ and ρ̃− implies
that χ̃ is quadratic. It cannot be trivial because ρ̃ and ρ̃− are not isomorphic, so χ̃
is the unique unramified character of WF̃ of order two. By [GGP, Lemma 3.4] χ̃ is
conjugate-symplectic, and by [GGP, Lemma 3.5.ii] ρ̃ and ρ̃− have opposite type. �

Proposition 4.10 is the key to the following result.

Lemma 4.11. We assume the setting of Theorem 4.9.b.

(a) When G∗ is a special unitary group which splits over an unramified extension

F̃ /F , a and a− have different parity.
(b) For all other G∗ eligible in Theorem 4.9: if tρ is odd, then a and a− have the

same parity.
(c) All the labels λ(α), λ∗(α) in Theorem 4.9 are integers.

Proof. (b) Assume first that G does not have Lie type 2An−1. In the proof of
Theorem 4.9 we saw how the issue can be reduced from G to G∗ or GSpinn. To G∗
and GSpinn we apply Proposition 4.10.a and the remarks above it.
(a) When G does have Lie type 2An−1, Section 2 allows to reduce to G∗ = SUn, and
then to Un. Now we apply Proposition 4.10.b and the remarks above it.
(c) It is clear that the labels in parts (a) and (c) of Theorem 4.9 are integers. We
recall that the labels in Theorem 4.9.b are

λ(α) = tρf(a+ a− + 2)/2 and λ∗(α) = tρf(a− a−)/2.

These are integers, except possibly when a and a− have different parity. In the
cases where G∗ is an unramified special unitary group, f = 2 and again the labels
are integers. In the other cases with a and a− of different parity, part (b) of the
current lemma tells us that tρ is even, which makes the labels integral. �

Having checked Conjecture A.(i), we turn to Conjecture A.(ii).

Lemma 4.12. Consider a root system of type Ae−1, Be, Ce or De, with label func-
tions λ, λ∗ as in Theorem 4.9. There exist:

• a simple group G over a nonarchimedean local field F̃ ,
• a Bernstein block Rep(G̃)s, which consists of unipotent representations of

G̃ = G(F̃ ),
• a s-type (J, ρ),

such that H(G̃, J, ρ) is an affine Hecke algebra with the given root system and the
given label functions.
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Proof. When the root system has type Ae−1 (resp. De) we take G = GLe (resp.

SO2e). Choose a non-archimedean local field F̃ with residue field of order qF̃ = qftF .
We take the Iwahori-spherical Bernstein block and let J be an Iwahori subgroup
of G̃. Then (J, triv) is a type and H(G̃, J, triv) is an affine Hecke algebra with
parameters qF̃ . We obtain labels λ(α) = λ∗(α) = ft.

Suppose that the root system is Ce (or Be with a− = −1, that boils down to the

same thing). We choose the q-base qftF , which can be achieved by considering F̃ -
groups. Thus reduce to the situation where the short root α has label 1 and the long
root β has label a+ ∈ Z>0. Now see [Lus3, 7.40–7.42] when a+ is even and [Lus3,
7.56] when a+ is odd. In each case, a type for the associated Bernstein component
is produced in [Lus3, §1].

Suppose that the root system is Be and that a− ≥ 0. Let β be a short root and α

a long root. When a+ a− is even we take the q-base qftF and we reduce to the labels

λ(α) = 1, λ(β) = (a+ a− + 2)/2, λ∗(β) = (a− a−)/2.

Depending on the parities of λ(β) and λ∗(β), see [Lus3, 7.38–7.39] (both even) or
[Lus3, 7.48–7.49] (both odd) or [Lus3, 7.54–7.55] (one even, one odd).

When a+ a− is odd we take the q-base q
ft/2
F (a power of qF by Lemma 4.11) and

we reduce to the labels

λ(α) = 2, λ(β) = a+ a− + 2, λ∗(β) = a− a−.

See [Lus4, 11.2–11.3] for an appropriate Bernstein component consisting of unipotent
representations. �

We covered all simple groups of type An,
2An or Bn, but some simple groups of

Lie type Cn, Dn or 2Dn remain. With the classification of inner twists via Galois
cohomology and the Kottwitz isomorphism [Kot] we can count them, and realizations
of those groups can be found in [Spr, §17.2–17.3]:

• the non-split (non-pure) inner twist of a symplectic group,
• the two non-pure inner twists of a split even special orthogonal group,
• the non-pure inner twist of a quasi-split even special orthogonal group,
• groups isogenous to one of the above.

We note that (apart from the last entry) this list consists of classical groups asso-
ciated to Hermitian forms on vector spaces over quaternionic division algebras. As
far as we are aware, much less is known about the representation theory of these
groups. They are ruled out in [Mœ1, Mœ2, Mœ3], so it is not clear which Hecke
algebra labels can arise.

For unipotent representations, this is known completely [Lus3, Lus4, Sol5, Sol6],
and that indicates that Theorem 4.9 might hold for these groups. The relevant label
functions λ, λ∗, in the tables [Lus3, 7.44–7.46 and 7.51–7.53], occur also in Theorem
4.9 (with a− a− odd, like for unitary groups).

4.5. Groups of Lie type G2.
Up to isogeny, there are three absolutely simple F -groups whose relative root

system has type G2:

• the split group G2,
• the quasi-split group 3D4, which splits over a Galois extension F̃ /F of degree

3 or 6,
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• the non-split inner forms E
(3)
6 , which split over the cubic unramified exten-

sion F (3)/F .

Let G = G(F ) denote the rational points of one of these groups. Let M be a Levi
subgroup of G and write s = [M,σ]G,O = Xnr(M)σ. When the semisimple rank of
M is ≥ 1, ΣO,µ has rank ≤ 1. For those cases we refer to (1.15).

Otherwise M is a minimal F -Levi subgroup of G. For G = G2(F ), Rep(G)s

consists of principal series representations. In Theorem 4.4 we proved that qα = qF
and qα∗ = 1 for α ∈ ΣO,µ. For G = 3D4(F ) Rep(G)s also belongs to the principal
series. We showed in (4.15) that qα∗ = 1, qα = qF for long roots α ∈ ΣO,µ and
qβ∗ = 1, qβ ∈ {qF , q3

F } for short roots β ∈ ΣO,µ. Notice that in Σ∨O the lengths of
the roots are reversed.

The group G = E
(3)
6 involves a central simple F -algebra D of dimension 32 = 9.

We assume for the moment that G is simply connected, so that we can apply some
reduction steps from Section 2 more easily. For a short root α ∈ ΣO,µ, the inclusion
M →Mα is isogenous to

S(GL1(D)2)×GL1(F )→ S(GL1(D)2)× SL2(F ).

In particular the coroot α∨ is orthogonal to Mder and the restriction of σ to the image
of α∨ is a direct sum of finitely many characters. Hence the same computations as
in Paragraph 4.1 apply here, with M instead of T . Thus qα = qF and qα∗ = 1. On
the other hand, for a long root β ∈ ΣO,µ the inclusion M →Mβ is isogenous to

S(GL1(D)2)×GL1(F )→ SL2(D)×GL1(F ).

Again with Section 2 the computation of the parameters can be transferred to
GL1(D)2 → GL2(D), which is discussed in Paragraph 4.3. Then Theorem 4.6 and

(4.17) show that qβ∗ = 1 and qβ = qfF where f divides 3. All this based on an Xα

defined as evaluation at α∨($−1
F ). We still have to take the effect of the isogenies

(4.23) Mβ ← SL2(D)×GL1(F )→ GL2(D)

into account. As worked out in Proposition 2.4, this goes via changing h∨α. Since
the derived groups are simply connected, no α∨/2 can be involved, and this effect
comes only from changes in the torsion number |Xnr(M,σ)|. That boils down to the
torsion number of a representation of GL1(D), so it can only be 1 or 3. In terms of
cocharacter lattices both maps in (4.23) are index 2 inclusions, and 2 is coprime to 3,
so actually the torsion numbers do not change along these inclusions. We conclude
that the labels are λ(α) = 1 and λ(β) ∈ {1, 3} (and the same for λ∗).

When G is not simply connected, we can apply Proposition 2.2 to compare with
its simply connected cover. If ΣO,µ has rank > 1, then it is isomorphic to A1×A1, A2

or G2. In the latter two cases we are not in the instances (ii) or (iii) of Proposition
2.4.d, so Proposition 2.4.d.(i) tells us that the parameters do not change when we
pass from G to its simply connected cover. In the first case there could be a change
as in Proposition 2.4.d.(ii) when we go to a cover of G, but that does not bother
us because we already understand affine Hecke algebras of type A1 completely – see
the discussion before (1.15).

4.6. Groups of Lie type F4.
Just as for G2 we will analyse all possibilities for the parameters, by reduction to

earlier cases. Up to isogeny there are three absolutely simple F -groups with relative
root system of type F4:
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• the split group F4,
• the quasi-split group 2E6, split over a separable quadratic extension F ′/F ,

• the non-split inner form E
(2)
7 , split over the unramified quadratic extension

F (2)/F .

Supported by Section 2, we only consider the simply connected version of these
groups. We number the bases of F4 and E7 as follows:

1 3 5 6
4

F
7

2 4432 7

1

E

Let D be a central simple F -algebra of dimension 22 = 4. The anisotropic kernel

of E
(2)
7 (F ) corresponds to the labels 1, 5, 7 and is isomorphic to SL1(D)3.

Let G = G(F ) denote the rational points of one of the above groups. Fix a
maximal F -split torus S = S(F ) and let ∆ be a basis of Σ(G,S). Let MJ =MJ(F )
be the standard Levi subgroup associated to J ⊂ ∆. Write s = [MJ , σ]G and
O = Xnr(MJ)σ. We will verify Conjecture A for G,MJ , except that in a few cases

for G = E
(3)
7 we cannot work it out.

Recall from [Hei2, Proposition 1.3] that α ∈ ΣO,µ implies sα ∈ W (G,M). Let
ΣW (AMJ

) be the set of α ∈ Σred(AMJ
) for which W (G,M) contains sα. Such sα be-

long to the normalizer of WJ in W (F4), which links our setup to [How]. It is shown
in [How, Theorem 6], that ΣW (AMJ

) is a root system. The type of ΣW (AMJ
), as

well as a lot of other useful data, are collected in [How, p. 74].

J is empty, ΣW(AMJ
) ∼= F4

For F4 and 2E6, Rep(G)s consists of principal series representations. For G = F4(F )
we proved in Theorem 4.4 that qα = qF and qα∗ = 1 for all α ∈ ΣO,µ.

For G = 2E6(F ), we showed in (4.15) that qα∗ = 1, qα = qF for long roots
α ∈ ΣO,µ and qβ∗ = 1, qβ ∈ {qF , q2

F } for short roots β ∈ ΣO,µ. Notice that in Σ∨O
the lengths of the roots are reversed.

For G = E
(2)
7 (F ) and α ∈ {α1, α2}, the inclusion M∅ →M{α} is isogenous to

GL1(F )2 × S(GL1(D)3) −→ GL2(F )× S(GL1(D)3).

The direct factors S(GL1(D)3) do not influence the rest, so can be ignored for the
computation of the parameters. It follows that qα = qF , qα∗ = 1.

For α ∈ {α3, α4}, we can instead consider the inclusion

GL1(F )2 × S(GL1(D)3) −→ GL1(F )× S(GL2(D)×GL1(D)).

With Section 2 we reduce this to GL1(D)2 → GL2(D), and then Paragraph 4.3 tells
us that qα∗ = 1 and qα ∈ {qF , q2

F }.

J = {α3} or J = {α4},ΣW(AMJ
) ∼= B3

These two J ’s are W (F4)-conjugate, so it suffices to consider J = {α4}. The pa-
rameters for α1 and α2 are the same as when J is empty, so qα1 = qα2 = qF and
qα1∗ = qα2∗ = 1.

The short simple root of ΣW (AMJ
) is β = α2 + 2α3 + α4, which is orthogonal to

α2 and α4. The inclusion MJ → MJ∪{β} is isogenous to, depending on the type of
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G:

F4 GL1(F )3 × SL2(F ) → GL1(F )2 × SL2(F )2

2E6 GL1(F )2 ×GL1(F ′)× SL2(F ′) → GL1(F )2 × SL2(F ′)2

E
(2)
7 GL1(F )×GL1(D)×GL2(D) → GL1(F )× SL2(D)×GL2(D)

Again the determination of the q-parameters can be simplified with Section 2. Then
we see from Paragraph 4.3 that qβ∗ = 1 and qβ ∈ {qF , q2

F }.

J = {α1} or J = {α2},ΣW(AMJ
) ∼= C3

These two J ’s are W (F4)-conjugate, so it suffices to consider J = {α1}. The param-
eters for α3 and α4 are the same as when J is empty.

The long simple root of ΣW (AMJ
) is β = α1 + 2α2 + 2α3, which is orthogonal to

α1 and α4. The inclusion MJ →MJ∪{β} is isogenous to:

F4 SL2(F )×GL1(F )3 → SL2(F )2 ×GL1(F )2

2E6 SL2(F )×GL1(F )×GL1(F ′)2 → SL2(F )2 ×GL1(F ′)2

E
(2)
7 SL2(F )×GL1(F )× S(GL1(D)3) → SL2(F )2 × S(GL1(D)3)

In each of the three cases, this reduces to GL1(F ) → SL2(F ). Hence qβ = qF and
qβ∗ = 1.

J equals {α1, α4} or {α1, α3} or {α2, α4},ΣW(AMJ
) ∼= A1 ×A1

These three subsets of ∆ are associate under the Weyl group W (F4), so it suffices to
consider J = {α1, α3}. Up to a sign there are just two possibilities for α ∈ ΣO,µ ∼=
A1 ×A1. These can be represented by α2 and β = α2 + 2α3 + 2α4. We note that β
is orthogonal to α2 and α3, but not to α1. The inclusion MJ →MJ∪{β} is isogenous
to:

F4 GL2(F )×GL2(F ) → SL3(F )×GL2(F )
2E6 GL2(F )×GL2(F ′) → SL3(F )×GL2(F ′)

E
(2)
7 GL2(F )× S(GL2(D)×GL1(D)) → SL3(F )× S(GL2(D)×GL1(D))

In all three cases this boils down to GL2(F )→ SL3(F ), so qβ = qF and qβ∗ = 1.
We also list inclusions isogenous to MJ →MJ∪{α2}:

F4 GL2(F )× SO3(F )×GL1(F ) → SO7(F )×GL1(F )
2E6 GL2(F )× SO∗4(F )×GL1(F ) → SO∗8(F )×GL1(F )

E
(2)
7 GL2(F )× SO′6(F )×GL1(D) → SO′10(F )×GL1(D)

Here SO∗2n denotes a quasi-split special orthogonal group, while SO′2n stands for a
non-split inner form of SO2n. For the parameter computations, the direct factors
GL1(F ) and GL1(D) can be ignored. In all three cases Theorem 4.9.b shows that

qα2 = q
t(a+1)/2
F and qα2∗ = q

t(a−+1)/2
F , where t ∈ {1, 2}. A small correction might

still come from the involved isogenies via Proposition 2.4.

J = {α1, α2},ΣW(AMJ
) ∼= G2

Now α3 gives rise to a short root of ΣW (AMJ
), and to a long root of Σ∨O. Analysing
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the inclusion MJ →MJ∪{α4} up to isogeny, we obtain:

group inclusion qα4

F4 SL3(F )×GL1(F )2 → SL3(F )×GL2(F ) qF
2E6 SL3(F )×GL1(F ′)2 → SL3(F )×GL2(F ′) qF ′

E
(2)
7 SL3(F )× SL1(D)×GL1(D)2 → SL3(F )× SL1(D)×GL2(D) qfF

where f ∈ {1, 2}. In all three cases qα4∗ = 1 by Theorem 4.6. Since α∨4 is orthogonal
to MJ,der, the computations behind these q-parameters work equally well in MJ∪{α4},
no corrections from isogenies are needed.

For α3 we find

group inclusion qα3

F4 GL3(F )×GL1(F ) → SO6(F )×GL1(F ) q
t(a+1)/2
F

2E6 GL3(F )× SO∗2(F )×GL1(F ′) → SO∗8(F )×GL1(F ′) q
t(a+1)/2
F

E
(2)
7 GL3(F )× SO′4(F )×GL1(D) → SO′10(F )×GL1(D) q

t(a+1)/2
F

where t ∈ {1, 3}. The parameter qα3∗ equals q
t(a−+1)/2
F . Recall the bound on a and

a− from Theorem 4.9.
When ΣO,µ has type G2, [Sol4, Lemma 3.3] says that qα3∗ = 1. Then a− = −1

and Lemma 4.11 tells us that a is odd. For F4 and E
(2)
6 that means a = −1 and

qα3 = 1, so that actually ΣO,µ does not have type G2. For E
(2)
7 it would still be

possible that a = 1, so that qα3 = qtF . But then the Langlands parameter of a repre-
sentation of SO′4(F ) would be the sum of a three-dimensional and a one-dimensional
representation of WF which is not compatible with the isogeny to SL1(D)2. Hence
this case does not arise, and we conclude that for J = {α1, α2} the root system ΣO,µ
has rank ≤ 1.

J = {α3, α4},ΣW(AMJ
) ∼= G2

Now a long root of ΣW (AMJ
) comes from α1, and in Σ∨O a short root comes from

α1. The inclusion MJ →MJ∪{α1} is isogenous to:

F4 GL1(F )2 × SL3(F ) → GL2(F )× SL3(F )
2E6 GL1(F )2 × SL3(F ′) → GL2(F )× SL3(F ′)

E
(2)
7 GL1(F )2 × SL3(D) → GL2(F )× SL3(D)

In each case the parameters can be analysed already with GL1(F )2 → GL2(F ), and
Theorem 4.6 tells us that qα1 = qF , qα1∗ = 1.

Let us also consider the inclusion MJ →MJ∪{α2} up to isogenies:

group inclusion qα2 qα2∗

F4 GL1(F )×GL3(F ) → GL1(F )× SO7(F ) q
t(a+1)/2
F q

t(a−+1)/2
F

2E6 GL1(F )×GL3(F ′) → GL1(F )× U6(F ) q
t(a+1)/2
F ′ q

t(a−+1)/2
F

E
(2)
7 GL1(F )×GL3(D) → GL1(F )× SO6(D) ? ?

Here t ∈ {1, 3} and by Theorem 4.9 0 ≥ a ≥ a− ≥ −1. When ΣO,µ ∼= G2, we
know from [Sol4, Lemma 3.3] that qα2∗ = 1. With Lemma 4.11 that implies qα2 = 1
for F4 and for 2E6 if F ′/F is ramified. For 2E6 with F ′/F unramified, it is still

possible that a = 0, so that qα2 = q
t/2
F ′ = qtF . For the same reasons as after (4.23),

no corrections from isogenies are needed. For E
(2)
7 the analysis involves quaternionic
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special orthogonal groups, a case which remains open.

J = {α2, α3},Σred(AMJ
) ∼= B2

Here α1 gives rise to a long root and α4 to a short root of Σred(AMJ
). We assume

that α1, α4 ∈ ΣO,µ, otherwise ΣO,µ is isomorphic to a root subsystem of A1 × A1

and the situation is simpler. We would like to say that in Σ∨O the relation between
the lengths of the roots is reversed, but that is not so obvious because h∨αi need not

be exactly α∨i ($−1
F ), maybe it has to scaled.

Up to isogenies, the inclusions MJ →MJ∪{α1} are:

(4.24)

F4 GL1(F )× SO5(F )×GL1(F ) → SO7(F )×GL1(F )
2E6 GL1(F )× SO∗6(F )×GL1(F ′) → SO∗8(F )×GL1(F ′)

E
(2)
7 GL1(F )× SO′8(F )×GL1(D) → SO′10(F )×GL1(D)

Each of the involved isogenies is a twofold cover of the groups listed above, and on
the left hand side that covering does not involve the direct factor GL1(F ). Hence
passing to that cover does not change Xnr(M,σ) ∩ Xnr(GL1(F )). For (4.24) this
intersection is trivial, so also for the analogous setting inside G. This shows that

h∨α1
= α∨1 ($−1

F ) ∈M/M1.

Now the parameters associated with α1 are given by Theorem 4.9.b, namely

λ(α1) = (a+ a− + 2)/2 and λ∗(α1) = (a− a−)/2.

Here a ≥ a− ≥ −1 and a ≤ N∨ with N∨ ∈ {4, 6, 8} depending on G.
Up to isogenies, the inclusion MJ →MJ∪{α4} is:

(4.25)

F4 GL1(F )× Sp4(F )×GL1(F ) → GL1(F )× Sp6(F )
2E6 GL1(F )× U4(F )×GL1(F ′) → GL1(F )× U6(F )

E
(2)
7 GL1(F )× SO4(D)×GL1(D) → GL1(F )× SO6(D)

The same argument as for α1 shows that h∨α4
= α∨4 ($−1

F ). In the root system Σ∨O
we now have the short simple root h∨α1

and the long simple root h∨α4
. We recall from

[Sol4, Lemma 3.3] that qα4∗ = 1 and λ(α4) = λ∗(α4). From (4.25) and Theorem 4.9

we deduce that a− = −1 and qα4 = qaF , at least for F4 and 2E6. For E
(2)
7 this involves

quaternionic special orthogonal groups, which we could not handle in Theorem 4.9.
As explained before Proposition 4.10, a is an odd integer. Moreover, Theorem 4.9
tells us that (a+ 1)2/4 ≤ N∨ ∈ {5, 4}. It follows that a ≤ 3, and then

λ(α4) = λ∗(α4) = (a+ 1)/2 ∈ {1, 2}.
We take this opportunity to point out a typo in [Lus3] relevant to us. Namely, when
we run the above arguments with σ the unique supercuspidal unipotent representa-
tion of MJ ⊂ G = F4(F ), we obtain the parameters λ(α1) = 2, λ∗(α1) = 1, λ(α4) =
2. In [Lus3, §7.31] these are given as λ(α1) = 3, λ∗(α1) = 1, λ(α4) = 3. We already
took this into account by not including labels (3,3,1) for B2 in Table 1.

|J| = 3 or |J| = 4
In these cases ΣO,µ has rank ≤ 1, and we refer to (1.15).

Summarising: we checked our main conjecture for absolutely simple groups with

relative root system of type F4, except that for the group E
(2)
7 we are not sure
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when J = {α3, α4} or J = {α2, α3}. These cases can be settled once we understand
symplectic and special orthogonal groups of quaternionic type better.

4.7. Groups of Lie type E6, E7, E8.
We consider simply connected F -split groups of type En. We number E6 and E8

(or rather their bases ∆) as

3 5 62 4 7

1

E

3 5 62 4

1

E
6 8

8

and E7 similarly (as on page 38). The number of inequivalent Levi subgroups is
quite large, which renders a case-by-case analysis as for G2 and F4 elaborate. An
advantage is of course that all these Levi subgroups are simply connected and F -
split, so the analysis of Hecke algebra parameters for En consists of the principal
series (dealt with in Paragraph 4.1) and contributions from split groups of lower
rank. For Levi subgroups of semisimple rank n − 1 the root system ΣO,µ has rank
≤ 1, and before (1.15) we discussed all such cases.

For E6 and Levi subgroups of semisimple rank at most 4, the q-parameters can
be computed via inclusions M → Mα where Mα has semisimple rank at most 5.
These Mα are not exceptional, so the q-parameters can be found from Paragraphs
4.3 and 4.4. For the irreducible components of ΣO,µ of type A, Conjecture A just
says that every parameter qα is a power of qF . That is readily verified in each case.
Therefore we focus on the subsets J ⊂ ∆ such that ΣW (AMJ

) has a component of
type Bn, Cn, F4 or G2. The possible J can be found by inspecting the tables on
[How, p.75–77].

J = {α1, α3},ΣW(AMJ
) ∼= B3

The long simple roots α ∈ ΣW (AMJ
) correspond to α5, α6 ∈ ∆, which are orthogonal

to MJ,der. Hence the computations reduce to those in Paragraph 4.1, and yield
qα∗ = 1, qα = qF (or α /∈ ΣO,µ).

The short simple root β of ΣW (AMJ
) comes from α4 ∈ ∆. Here Mβ,der

∼= SL4(F )
and M ∩ Mβ,der

∼= S(GL1(F )2). If β ∈ ΣO,µ, then Corollary 4.7 associates to

GL1(F )2 → GL2(F ) the parameters qβ∗ = 1 and qβ = qfF with f ∈ {1, 2}. Un-
der the isogenies that transfer back to M → Mβ, h∨β remains equal to β∨, so the
q-parameters do not change.

J = {α1, α3, α4},ΣW(AMJ
) ∼= B2

The long simple root α of ΣW (AMJ
) comes from α6 ∈ ∆, which is orthogonal to

MJ,der. Hence qα = qF and qα∗ = 1.
The short simple root β ∈ ΣW (AMJ

) comes from α5 ∈ ∆. Here Mβ,der
∼= Spin8(F )

and M ∩Mβ,der is a twofold cover of SO6(F )×GL1(F ). The q-parameters for this
setting are known from Theorem 4.9:

qβ = q
(a+1)/2
F , qβ∗ = q

(a−+1)/2
F where

⌊
(
a+ 1

2
)2
⌋

+
⌊
(
a− + 1

2
)2
⌋
≤ 6,

so a ≤ 4. When we apply Proposition 2.4 to Mβ,der →Mβ, the parameters stay the
same or (only when a = a−) Proposition 2.4.d.(iii) applies.
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J = {α2, α3, α5, α6},ΣW(AMJ
) ∼= G2

The long simple root α ∈ ΣW (AMJ
) comes from α1 ∈ ∆. That one is orthogonal to

MJ,der, so by Paragraph 4.1 qα = qF and qα∗ = 1.
The short simple root β ∈ ΣW (AMJ

) comes from α4 ∈ ∆. Now Mβ,der
∼= SL6(F )

and M ∩Mβ,der
∼= S(GL3(F )2). The same arguments as above for J = {α1, α3}

shows that here (if β ∈ ΣO,µ) qβ∗ = 1 and qα = qfF with f ∈ {1, 3}.

Having checked Conjecture A for E6, we turn to the simply connected split F -
groups of type E7 and E8. For most J ⊂ ∆, the q-parameters of H(O, G) can be
analysed as before. However, some J behave like {α2, α3} for F4, where we found
it hard to relate the parameters of the two simple roots to each other. For other J
(only in E8) the computation of the q-parameters can only be reduced to inclusions
of Lie type A2 × A1 × A2 → E6 or D6 → E7 or E6 → E7, and we do not know an
effective method in these cases. Therefore we settle for a modest goal:

Lemma 4.13. For groups of Lie type E6, E7 or E8, Conjecture A holds whenever
the root system ΣO,µ has a component of type F4.

Proof. From [How, p.75–79] one sees that in only very few cases ΣO,µ has a compo-
nent of type F4. For any root α in a type F4 root system, [Sol4, Lemma 3.3] shows
that qα∗ = 1, and then Proposition 2.4 entails that no involved isogeny can change
the parameters.

For G = E7(F ) there is only one J with ΣW (AMJ
) ∼= F4, namely J = {α1, α5, α7}.

The q-parameters can be obtained in the same way as for E
(2)
7 (F ) and J = ∅, as

treated in Paragraph 4.6. The only difference is that an inclusion S(GL1(D)2) →
SL2(D) must be replaced by an inclusion S(GL2(F )2) → SL4(F ), but from Para-
graph 4.3 we know that exactly the same q-parameters can occur for both these
inclusions. Thus qα = qF , qα∗ = 1 for any long root α ∈ ΣO,µ ∼= F4 and qβ∗ = 1, qβ ∈
{qF , q2

F } for any short root β ∈ ΣO,µ.
For E8(F ) and J = {α1, α5, α7} we also have ΣW (AMJ

) ∼= F4. This case can be
handled just as for E7, and leads to the same q-parameters.

For E8(F ) and J = {α1, α3, α5} we have ΣW (AMJ
) ∼= F4 × A1. The long simple

roots of F4 come from α7, α8 ∈ ∆. These are orthogonal to Mder, so qα = qF and
qα∗ = 1. According to [How, p. 75] the short simple roots β of F4 are associated to
an inclusion S(GL2(F )2) → SL4(F ). We can use the same Xβ as for GL2(F )2 →
GL4(F ), for which Corollary 4.7 shows that qβ∗ = 1 and qβ ∈ {qF , q2

F }.
The only remaining case with ΣW (AMJ

) ∼= F is J = {α1, α3, α4, α5}. Like in the
previous case qα = qF , qα∗ = 1 for any long simple root α ∈ ΣO,µ. Both short simple
roots β of F4 come from a non-simple root in E8, for which M ∩Mβ,der → Mβ,der

is isomorphic to the inclusion of a double cover of SO8(F )×GL1(F ) in Spin10(F ).
According to Theorem 4.9 the resulting q-parameters are

qβ = q
(a+1)/2
F and qβ∗ = q

(a−+1)/2
F , where

⌊
(
a+ 1

2
)2
⌋

+
⌊
(
a+ 1

2
)2
⌋
≤ 8.

Since ΣO,µ has type F4, qβ∗ = 1 and a− = −1. From Lemma 4.11 we know that
a and a− have the same parity, so a is odd. The estimate shows that a < 5, so
a ∈ {1, 3} and qβ ∈ {qF , q2

F } as desired. �
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