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Abstract.
In this paper we study homological properties of modules over an affine Hecke
algebra H. In particular we prove a comparison result for higher extensions
of tempered modules when passing to the Schwartz algebra S, a certain topo-
logical completion of the affine Hecke algebra. The proof is self-contained and
based on a direct construction of a bounded contraction of certain standard
resolutions of H-modules.
This construction applies for all positive parameters of the affine Hecke alge-
bra. This is an important feature, since it is an ingredient to analyse how the
irreducible discrete series representations of H arise in generic families over
the parameter space of H. For irreducible non-simply laced affine Hecke alge-
bras this will enable us to give a complete classification of the discrete series
characters, for all positive parameters (we will report on this application in a
separate article).
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Introduction

Affine Hecke algebras are useful tools in the study of the representation theory
and harmonic analysis of a reductive p-adic group G, cf. [BuKu1, BuKu2, Lus2,
Mor1, Mor2]. A central theme in this context is the Morita equivalence of Bernstein
blocks of the category of smooth representations of G with the module category of
suitable Hecke algebras, often closely related to affine Hecke algebras. This could
be thought of as an affine analogue of the role played by finite dimensional Iwahori–
Hecke algebras in the representation theory of finite groups of Lie type, a theory
which was developed in great detail by Howlett and Lehrer [HoLe]. An important
point of Howlett–Lehrer theory is the fact that the Hecke algebras which arise are
semisimple specializations of a generic algebra. The affine Hecke algebras which
arise in the study of reductive p-adic groups are specializations of generic algebras
as well. This time however, it is much more delicate to relate the representation
theory of different specializations of the generic algebra. The theory developed in
this paper gives an important handle on such problems.

Various aspects of the harmonic analysis on G can be transferred to Hecke alge-
bras [HeOp]. In particular the Hecke algebra comes equipped with a Hilbert algebra
structure defined by an anti-linear involution and a tracial state whose spectral mea-
sure (also called Plancherel measure) corresponds to the restriction of the Plancherel
measure of G to the Bernstein block under the Morita equivalence. This should be
compared to the role of generic degrees of representations of finite dimensional Hecke
algebras in Howlett–Lehrer theory.

Let q be a positive parameter function for a (based) root datum R, and let H =
H(R, q) be the corresponding affine Hecke algebra. The Schwartz algebra completion
S = S(R, q) ofH plays a role which is similar to that of the Harish-Chandra Schwartz
space C(G) in the representation theory of G. In particular the support of the
Plancherel measure of H consists precisely of the irreducible representations which
extend continuously to S (the irreducible tempered representations).

More restrictively we say that an irreducible H-module belongs to the discrete
series if it is contained in the left regular representation ofH on its own Hilbert space
completion. Every irreducible representation can be constructed from a discrete
series representation, with a suitable version of parabolic induction. Therefore the
discrete series is of utmost importance in the representation theory of H and of S.

Although S is larger than H, its representation theory is actually simpler. The
spectrum of S (also called the tempered spectrum of H) is much smaller than the
spectrum of H. For example, the discrete series corresponds to isolated points in
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the spectrum of S, while the spectrum of H is connected. This observation leads
to an especially nice property of S, namely that discrete series representations are
projective and injective as S-modules. In contrast, H does not have finite dimen-
sional projective modules. Yet with quite some representation theory [DeOp] one
can reconstruct the entire spectrum of H from its tempered spectrum.

A priori there could exist higher extensions of tempered H-modules which are
themselves not tempered. But this does never happen. More precisely we prove in
Corollary 3.7 that

ExtnH(U, V ) ∼= ExtnS(U, V ) (1)

for all finite dimensional temperedH-modules U and V and all n ≥ 0. Our belief that
something like (1) might be true was inspired by the work of Vignéras, Schneider,
Stuhler and Meyer [Vig, ScSt, Mey3].

To prove (1) we construct explicit resolutions of U and V by projective H-
modules. The remarkable part of the proof is that we can turn these into projective
S-module resolutions in the most naive way, simply by tensoring them with S overH.

One instance of (1) is particularly important. Suppose that U is a discrete series
representation and that V is an irreducible tempered H-module. Theorem 3.8 states
that

ExtnH(U, V ) ∼=
{

C if U ∼= V and n = 0
0 otherwise.

(2)

We want to use (2) to count the number of inequivalent discrete series representa-
tions. This requires quite a few steps, which we discuss now. The Euler–Poincaré
characteristic [ScSt] of two finite dimensional H-modules is defined as

EPH(U, V ) =
∑∞

n=0(−1)n dimC ExtnH(U, V ). (3)

This extends to a symmetric, bilinear and positive semidefinite pairing on virtual
H-modules. By (2) the discrete series form an orthonormal set for this pairing.

Suppose that the based root datum R is given by the 5-tuple (R0, X,R
∨
0 , Y, F0),

where X and Y are dual lattices, R0 ⊂ X is a root system, R∨0 ⊂ Y is its dual
root system, and F0 ⊂ R0 is a basis of simple roots of R0. We call W = W0 n X
the (extended) affine Weyl group of R. For the parameter function q ≡ 1 we have
H(R, 1) = C[W ], while S(R, 1) is the Schwartz algebra S(W ) of rapidly decreasing
functions W → C. In particular (3) becomes

EPW (U, V ) =
∑∞

n=0(−1)n dimC ExtnW (U, V ). (4)

This is much simpler than (3), because everything about the Euler–Poincaré charac-
teristic for groups likeW can be made explicit. In Theorem 3.3 we find a conjugation-
invariant “elliptic” measure µell on W such that

EPW (U, V ) =
∫
W
χUχV dµell, (5)

where χ denotes the character of a representation. The support of µell consists
precisely of the elements which have an isolated fixed point in the real vector space
R⊗ZX, with respect to the canonical action of W . The number of conjugacy classes
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of such elements can easily be counted. This can be compared with Kazhdan’s elliptic
integrals [Kaz, ScSt, Bez].

Finally we relate EPH(R,q) to EPW , as follows. The label function q can be
scaled to qε (ε ∈ R), which yields a continuous field of algebras H(R, qε). One
can associate to any finite dimensional H-module V a continuous family of modules
σ̃ε(V ) such that

EPH(R,qε)
(
σ̃ε(U), σ̃ε(V )

)
= EPH(R,q)(U, V ) ∀ε ∈ [−1, 1]. (6)

In particular we can evaluate this at ε = 0, which in combination with the above
yields a important upper bound on the number of discrete series representations of
H, see Proposition 3.9. In [OpSo] we will use this bound to obtain a complete clas-
sification of the discrete series of affine Hecke algebras H(R, q) with R irreducible
and q positive.

Now let us describe the contents of the chapters. In Chapter one we collect
some notations and results that will be used subsequently. We do not prove any
deep theorems in this chapter, but some of the results have not been published in
research papers before.

Chapter two is the technical heart of the paper, here we prove everything needed
for (1). In fact we do something better, we construct an explicit projective H-
bimodule resolution of H. The crucial point is that this becomes a resolution of
S if we tensor it with S ⊗ Sop over H ⊗ Hop and subsequently complete it to a
complex of Fréchet spaces. As an immediate consequence we calculate that the
global dimensions of H and S are equal to the rank of the underlying root datum R.

Although the proof of (1) uses the combinatorial structure of affine Hecke alge-
bras in an essential way, the result itself is of a more analytical nature. The inclusion
H → S can be compared to embeddings of the type F1(G) → F2(G), where G is a
locally compact group and the Fi(G) are certain convolution algebras of functions
on G. In many situations of this type there is a comparison result

Ext∗F1(G)(U, V ) = Ext∗F2(G)(U, V ) (7)

for very general modules U and V [Mey3].
We choose to formulate our results in the category of bornological S-modules.

Bornologies are the best technique to cover both non-topological algebras like H
and Fréchet algebras like S, in a natural way. However, we would like to point
out that the technical language of bornologies is inessential when dealing with finite
dimensional modules of H or S. In this case it suffices to work with algebraic tensor
products, and all proofs can be adapted in such a way so as to avoid the use of
results on bornologies. In particular the results on the discrete series do not rely on
bornologies. We have put some necessary information on bornological modules in
the Appendix.

In Chapter three we first study the Euler–Poincaré characteristic for crossed
products of lattices with finite groups. This leads among others to (5). Clearly the
results hold for affine Weyl groups, but they do not rely on root systems. In the last
two sections we combine everything to derive the aforementioned properties of the
Euler–Poincaré characteristic for affine Hecke algebras.
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Chapter 1

Preliminaries

1.1 Root data

First we introduce some well-known objects associated to root data. For more
background the reader is referred to [BrTi, Hum, IwMa].

Let R0 be a reduced root system of rank r in an Euclidean space E ∼= Rr. Let
W0 be the Weyl group of R0 and

F0 = {α1, . . . , αr}

an ordered basis. This determines the set of positive (resp. negative) roots R+
0 (resp.

R−0 ). We suppose that R0 is part of a based root datum

R = (X,R0, Y, R
∨
0 , F0).

For I ⊂ F0 we write

C+
I := {x ∈ E : 〈x , α∨i 〉 = 0 ∀αi ∈ I, 〈x , α∨j 〉 ≥ 0 ∀αj ∈ F0 \ I},

C++
I := {x ∈ E : 〈x , α∨i 〉 = 0 ∀αi ∈ I, 〈x , α∨j 〉 > 0 ∀αj ∈ F0 \ I}.

We call C++
∅ the positive chamber. Its closure C+

∅ is a fundamental domain for the
action of W0 on E. The isotropy group (in W0) of any point of C++

I is the standard
parabolic subgroup WI of W0.

Recall that Y × Z is the set of integral affine linear functions on X. Let Raff be
the affine root system R∨0 × Z ⊂ Y × Z. The subsets of positive and negative affine
roots are

Raff
+ = R∨,+0 × {0} ∪ R∨0 × Z>0,

Raff
− = R∨,−0 × {0} ∪ R∨0 × Z<0.

The affine Weyl group of Raff is W aff = ZR0 oW0, usually considered as a group of
affine linear transformations of X. It acts on Raff by

w · (α∨, k)(x) = (α∨, k)(w−1x).

For a = (α∨, k) ∈ Raff consider the affine hyperplane

Ha := {x ∈ E : 〈x , a〉 = 〈x , α∨〉+ k = 0}.
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By definition sa is the reflection in this hyperplane, given by the formula

sa(x) = x− 〈x , α∨〉α− kα.

Let FM be the set of maximal elements of R∨0 for the dominance ordering. Label its
elements α∨j , j = r+ 1, . . . , r+ r′, where r′ is the number of irreducible components
of R0. We write

aj :=
{

(α∨j , 0) if α∨j ∈ F∨0
(−α∨j , 1) if α∨j ∈ FM .

Then
F aff := {aj : j = 1, . . . , r′}

is a basis of Raff and
(
W aff , Saff

)
is a Coxeter system, where

Saff := {sa : a ∈ F aff}.

For J ⊂ Saff we put

AJ := {x ∈ E : 〈x , aj〉 = 0 ∀aj ∈ J, 〈x , ai〉 > 0 ∀ai ∈ F aff \ J}.

All the AJ are facets of the fundamental alcove A∅. Its closure A∅ is a fundamental
domain for the action of W aff on E. The isotropy group (in W aff) of a point of AJ
is the standard parabolic subgroup 〈J〉 of W aff . We will also write facets as f = AJ ,
in which case the pointwise stabilizer is Wf = 〈J〉. Notice that this is consistent
with the above notation, in the sense that W0 is the isotropy group of the facet {0}.

All the hyperplanes H(α∨,k) together give E the structure of a polysimplicial
complex Σ. The interior of a polysimplex of maximal dimension is called an alcove.

Example.
Let R0 be the root system B2 in E = R2:

R0 = {±(1,−1),±(0, 1),±(1, 0),±(1, 1)}.

The Weyl group W0 is isomorphic to the dihedral group D4. A basis of R0 is

F0 = {α1 = (1,−1), α2 = (0, 1)}.

The positive chamber and its walls are
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If furthermore α3 = (1, 0) then

F aff = {(α∨1 , 0), (α∨2 , 0), (−α∨3 , 1)} = {a1, a2, a0}.
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The affine Weyl group W aff is generated by the simple reflections

s1 : (x1, x2) 7→ (x2, x1),
s2 : (x1, x2) 7→ (x1,−x2),
s0 : (x1, x2) 7→ (1− x1, x2).

The simplicial complex Σ and the fundamental alcove look like
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A{a2}
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A{a1}

A{a0,a2} = {(1/2,0)}

A{a0,a1} = {(1/2,1/2)}

A{a1,a2}
= {(0,0)}

In general, if A and A′ are two alcoves, then a gallery of length n between A and
A′ is a sequence (A0, . . . , An) of alcoves such that:

• A0 = A,

• An = A′,

• Ai−1 ∩Ai, is contained in exactly one hyperplane Ha, for all i.

The group W aff acts simply transitively on the set of alcoves. For w ∈ W aff there
is a natural bijection between expressions of w in terms of the generators Saff and
galleries from A∅ to wA∅. This bijection is given by

w = s1 · · · sn ←→ (s1 · · · smA∅)nm=0 . (1.1)

Lemma 1.1. For w ∈W aff the following numbers are equal:

1) the word length `(w) in the Coxeter system
(
W aff , Saff

)
,

2) #
{
a ∈ Raff

+ : wa ∈ Raff
−
}

,

3) the number of hyperplanes Ha (a ∈ Raff) separating A∅ and wA∅,

4) the minimal length of a gallery between A∅ and wA∅.

In particular (1.1) restricts to a bijection between reduced expressions and galleries
of minimal length.

Proof. See [IwMa, Section 1], [BrTi, Section 2.1] or [Hum, Theorem 4.5]. 2
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Varying on the Bruhat order, we define a partial order ≤A on the affine Weyl
group W aff :

u ≤A w ⇐⇒ `(u) + `(u−1w) = `(w).

This means that u ≤A w if and only if a reduced expression for u can be extended
to a reduced expression for w by writing extra terms on the right.

Let K be a subset of E, and α ∈ R0.

m(K,α) := inf {b〈x , α∨〉c : x ∈ K ∪A∅} ,
M(K,α) := sup {d〈x , α∨〉e : x ∈ K ∪A∅} .

where byc and dye denote respectively the floor and the ceiling of a real number y.
With these numbers we define

A(K,α) := {x ∈ E : m(K,α) ≤ 〈x , α∨〉 ≤M(K,α)},
A(K) :=

⋂
α∈R0

A(K,α).

We can interpret A(K) as a kind of Σ-approximation of the convex closure of K∪A∅
in E.

Example.
In the setting of our previous example R0 = B2, let K be the simplex
[(3/2, 3/2), (3/2, 2), (2, 2)]. Then A(K) is the colored area below:

K A0

K A0

0 1 2−1−2
−2

−1

0

1

2

A(K)  \ 

Lemma 1.2. For any w ∈W aff we have

A(wA∅) =
⋃

u≤Aw
uA∅ .

Proof. “⊃” By Lemma 1.1 every alcove uA∅ with u ≤A w is part of a gallery of
minimal length between A∅ and wA∅. Such a gallery cannot cross any hyperplane
Ha (a ∈ Raff) that does not separate A∅ and wA∅. So for every α ∈ R0 we must
have

〈uA∅ , α∨〉 ⊂ [m(wA∅, α),M(wA∅, α)].

“⊂” Since it is bounded by hyperplanes Ha with a ∈ Raff , A(wA∅) is a union of
closures of alcoves. If B ⊂ A(wA∅) is an alcove, then there are no hyperplanes Ha

separating B from A∅ ∪ wA∅. Hence B is part of at least one gallery of minimal
length between A∅ and wA∅. So B = uA∅ for some u ≤A w. 2

We note the consequence

wA(σ) ⊂ A(wσ) ∀σ ⊂ C+
∅ , w ∈W0. (1.2)
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1.2 Affine Hecke algebras

We recall a few important results on affine Hecke algebras, meanwhile fixing some
notations. Reconsider the based root datum R = (X,R0, Y, R

∨
0 , F0). The extended

affine Weyl group of R is
W (R) = W = X oW0.

It acts naturally on X, and to avoid confusion we will often denote the element of W
corresponding to x ∈ X by tx. For any x ∈ X and w ∈W0 we have w(x)−x ∈ ZR0,
so W (R) contains W aff as a normal subgroup. We write

X+ := {x ∈ X : 〈x , α∨〉 ≥ 0 ∀α ∈ F0},
X− := {x ∈ X : 〈x , α∨〉 ≤ 0 ∀α ∈ F0} = −X+.

It is easily seen that the center of W is the lattice

Z(W ) = X+ ∩X−.

We also want to make W act on E. Since

X ⊗ R = E ⊕
(
Z(W )⊗ R

)
,

there is a canonical projection

pE : X ⊗ R→ E.

This induces a group homomorphism

pE : W → E oW0,

and the latter group acts naturally on E. The resulting action of W on E consists
of automorphisms of Σ, because

〈pE(x) , α∨〉 = 〈x , α∨〉 ∈ Z ∀x ∈ X,α∨ ∈ R∨0 .

Hence 2), 3) and 4) of Lemma 1.1 define a natural extension of the length function
` from W aff to W . The subgroup Ω := {ω ∈ W : `(ω) = 0} of W is complementary
to W aff :

W = W aff o Ω.

We say that R is semisimple if R⊥0 = 0 ⊂ Y , or equivalently if X ⊗ R = E. If R
is not semisimple then we can make it so by enlarging R0 and R∨0 . Namely, pick a
basis {αr+1, . . . , αrk(X)} of X ∩ (R∨0 )⊥. Then

F̃0 = {α1, . . . , αrk(X)}

is a basis of a root system

R̃0
∼= R0 × (A1)rk(X)−r.
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Furthermore, pick α∨j ∈ Y such that

〈αi , α∨j 〉 = 2δij i = 1, . . . , rk(X), j > r.

This yields a semisimple based root datum

R̃ := (X, R̃0, Y, R̃
∨
0 , F̃0). (1.3)

Denoting the Weyl group of (A1)rk(X)−r by G̃, we observe that

W (R̃) = W (R) o G̃ = X o
(
W0(R)× G̃

)
= X oW0(R̃). (1.4)

With R we also associate some other root systems. There is the non-reduced root
system

Rnr := R0 ∪ {2α : α∨ ∈ 2Y }.

Obviously we put (2α)∨ = α∨/2. Let R1 be the reduced root system of long roots
in Rnr:

R1 := {α ∈ Rnr : α∨ 6∈ 2Y }.

Let q be a positive labeling of R∨nr, that is, a W0-invariant map R∨nr → (0,∞). This
uniquely determines a parameter function q : W → (0,∞) with the properties

q(sα∨) = qα∨ α ∈ R0 ∩R1,
q(s1+β∨) = qβ∨ β ∈ R0 \R1,
q(sβ∨) = qβ∨/2qβ∨ β ∈ R0 \R1,

q(ω) = 1 `(ω) = 0,
q(wv) = q(w)q(v) w, v ∈W with `(wv) = `(w) + `(v).

(1.5)

Conversely every function on W with the last two properties defines a labeling of
R∨nr. We speak of equal parameters if q(s) = q(s′) ∀s, s′ ∈ Saff .

The affine Hecke algebra H = H(R, q) is the unique complex associative algebra
with basis {Tw : w ∈W} and relations

TwTv = Twv if `(wv) = `(w) + `(v),
TsTs = (q(s)− 1)Ts + q(s)Te if s ∈ Saff .

We can extend q to a parameter function q̃ on W (R̃) by putting

q̃(sα∨j ) = 1 ∀j > r. (1.6)

Then G̃ acts on H(R, q) and its group algebra is naturally embedded in H(R̃, q̃), so
the latter can be regarded as a crossed product algebra:

H(R̃, q̃) ∼= G̃nH(R, q).

Now we describe the Bernstein presentation of H. For x ∈ X+ we put

θx := q(x)−1/2Tx .

The corresponding semigroup morphism X+ → H(R, q)× extends to a group homo-
morphism

X → H(R, q)× : x 7→ θx.
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Theorem 1.3. [Bernstein presentation]

a) The sets {Twθx : w ∈W0, x ∈ X} and {θxTw : w ∈W0, x ∈ X} are bases of H.

b) The subalgebra A := span{θx : x ∈ X} is isomorphic to C[X].

c) The center of Z(H(R, q)) of H(R, q) is AW0, where we define the action of W0

on A by w · θx = θwx.

Proof. These results are due to Bernstein, see [Lus1, §3]. 2

Let T be the complex algebraic torus HomZ(X,C×), so that A ∼= O(T ) and
Z(H) = AW0 ∼= O(T/W0). From Theorem 1.3 we see that H is of finite rank over
its center, and hence Noetherian.

For a set of simple roots I ⊂ F0 we introduce the notations

RI = QI ∩R0 R∨I = QR∨I ∩R∨0 ,
XI = X

/(
X ∩ (I∨)⊥

)
XI = X/(X ∩QI),

YI = Y ∩QI∨ Y I = Y ∩ I⊥,
TI = HomZ(XI ,C×) T I = HomZ(XI ,C×),
RI = (XI , RI , YI , R

∨
I , I) RI = (X,RI , Y, R∨I , I).

(1.7)

We can define parameter functions qI and qI on the root data RI and RI , as follows.
Restrict q to a labeling of (RI)∨nr and use (1.5) to extend it to W (RI) and W (RI).
Then H(RI , qI) is isomorphic to the subalgebra of H(R, q) generated by A and
H(WI , q). With this identification in mind we call H(RI , qI) a parabolic subalgebra
of H(R, q).

For any t ∈ T I there is a surjective algebra homomorphism

φt : H(RI , qI)→ H(RI , qI),
φt(θxTw) = t(x)θxITw .

(1.8)

where xI is the image of x ∈ X in XI . So given any representation σ of H(RI , qI),
we can construct the H-representation

π(I, σ, t) := IndH(R,q)
H(RI ,qI)

(σ ◦ φt).

Representations of this form are said to be parabolically induced.
Since H is of finite rank over Z(H) every irreducible H-representation has finite

dimension. In particular an H-module is of finite length if and only if it has finite
dimension. Let Mod(H) be the category of allH-modules and Modfin(H) the subcat-
egory of finite length H-modules. We denote the Grothendieck group of Modfin(H)
by G(H) and we write

GC(H) := G(H)⊗Z C.

Similarly we can define Mod(A), Modfin(A), G(A) and GC(A) for any algebra or
group A. For bornological algebras A we will also consider the category Modbor(A)
of bornological A-modules, see the Appendix.
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The center of H(R, q) contains the group algebra of Z(W ), so every irreducible
H-representation admits a unique Z(W )-character χ. Such representations factor
through the algebra

H(R, q)χ = H⊗Z(W ) Cχ.

The algebra H is endowed with a trace

τ
(∑

w∈WhwTw
)

= he

and an involution (∑
w∈W hwTw

)∗ =
∑

w∈W hwTw−1

Because q takes only positive values, * is conjugate-linear and antimultiplicative,
while τ is positive.

Our affine Hecke algebra is canonically isomorphic to the crossed product of the
Iwahori-Hecke algebra corresponding to W aff , and the group Ω:

H(R, q) ∼= H(W aff , q) o Ω.

Let f be a facet of the fundamental alcove A∅ and write

Ωf := {ω ∈ Ω : pEω(f) = f}.

Whether or not ω changes the orientation of f is measured by the character εf :
Ωf → {±1}. Furthermore Ωf acts on Wf , so we can define

H(R, f, q) := H(Wf , q) o Ωf .

We note that for any H(R, f, q)-module (π, V ) there is a well-defined H(R, f, q)-
module V ⊗ εf , where

(π ⊗ εf )(hTω)(v) := εf (ω)π(hTω)(v).

By definition Z(W ) ⊂ Ωf , so

C[Z(W )] ⊂ Z(H(R, f, q)).

Lemma 1.4. Let Cχ be a onedimensional Z(W )-representation with character χ.

H(R, f, q)χ := H(R, f, q)⊗Z(W ) Cχ

is a finite dimensional semisimple algebra.

Proof. As vector spaces we may identify

H(R, f, q)χ = IndH(R,f,q)
C[Z(W )] Cχ = H(Wf , q)⊗C C[Ωf/Z(W )].

We can extend |χ| canonically to X ⊗R, making it 1 on E. Using this extension we
define an involution ∗χ on H(R, f, q) by

(hwTw)∗χ = hw |χ|(2w(0))Tw−1 .

The associated bilinear form is

〈h , h′〉χ = τ(h∗χ · h′).

By construction IndH(R,f,q)
C[Z(W )] Cχ is now a unitary representation. This makesH(R, f, q)χ

into a finite dimensional Hilbert algebra, so in particular it is semisimple. 2
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1.3 The Schwartz completion

We show how to complete an affine Hecke algebra to a C∗-algebra and to a Schwartz
algebra. The involution and the trace on H(R, q) give rise to a Hermitian inner
product

〈h , h′〉 = τ(h∗ · h′) h, h′ ∈ H(R, q)

and a norm
‖h‖τ =

√
〈h , h〉 =

√
τ(h∗ · h).

With a basic calculation one can check that

{Nw = q(w)−1/2Tw : w ∈W} (1.9)

is an orthonormal basis of H(R, q) for this inner product. All this gives H(R, q)
the structure of a Hilbert algebra, in the sense of [Dix, A 54]. Let L2(R, q) be
its Hilbert space completion, for which (1.9) is by definition a basis. Consider the
multiplication map

λ(h) : H(R, q)→ H(R, q),
λ(h)h′ = h · h′.

By [Opd1, Lemma 2.3] this maps extends to a bounded operator on L2(R, q), whose
norm we denote by

‖h‖o = ‖λ(h)‖B(L2(R,q)) .

Thus, H(R, q) being a *-subalgebra of the C∗-algebra B(L2(R, q)) of bounded oper-
ators on L2(R, q), we can consider its closure C∗(R, q) with respect to the operator
norm topology. By definition this is a separable unital C∗-algebra, called the (re-
duced) C∗-algebra of H or of (R, q).

Let (π, V ) be an irreducible H-representation. We say that it belongs to the
discrete series if the following equivalent conditions hold:

• (π, V ) is a subrepresentation of the left regular representation (λ, L2(R, q)),

• all matrix coefficients of (π, V ) are in L2(R, q).

By definition a discrete series representation is unitary, and it extends contin-
uously to C∗(R, q). Because this is a Hilbert algebra, a suitable version of [Dix,
Proposition 18.4.2] shows that π is an isolated point in its spectrum. Moreover,
since C∗(R, q) is unital its spectrum is compact [Dix, Proposition 3.18], so there can
be only finitely many inequivalent discrete series representations.

It is also possible to complete H(R, q) to a Schwartz algebra S = S(R, q). As
a topological vector space S will consist of rapidly decreasing functions on W , with
respect to some length function. For this purpose it is unsatisfactory that ` is 0 on the
subgroup Z(W ), as this can be a large part of W . To overcome this inconvenience,
let L : X ⊗ R→ [0,∞) be a function such that

• L(X) ⊂ Z,

• L(x+ y) = L(x) ∀x ∈ X ⊗ R, y ∈ E,

14



• L induces a norm on X ⊗ R/E ∼= Z(W )⊗ R.

Now we define for w ∈W

N (w) := `(w) + L(w(0)),

so that

N (uω) = N (ωu) = `(u) + L(ω(0)) u ∈W aff , ω ∈ Ω,
N (wv) ≤ N (w) +N (v) w, v ∈W.

Since Z(W ) ⊕ ZR0 is of finite index in X, the set {w ∈ W : N (w) = 0} is finite.
Moreover, because W is the semidirect product of a finite group and an abelian
group, it is of polynomial growth and different choices of L lead to equivalent length
functions N . For n ∈ N we define the norm

pn
(∑

w∈WhwNw

)
:= sup

w∈W
|hw|(N (w) + 1)n.

The completion S = S(R, q) of H(R, q) with respect to the family of norms {pn}n∈N
is a nuclear Fréchet space. It consists of all possible infinite sums h =

∑
w∈W hwNw

such that pn(h) <∞ ∀n ∈ N.

Lemma 1.5. [Sol, p. 135]
Let b = rk(X) + 1. The sum ∑

w∈W
(
N (w) + 1

)−b
converges to a limit Cb. If h ∈ S and n ∈ N then∑

w∈W |hw|(N (w) + 1)n ≤ Cb pn+b(h).

The norms pn behave reasonably with respect to multiplication:

Theorem 1.6. [Opd1, Section 6.2]
There exist Cq > 0, d ∈ N such that ∀h, h′ ∈ S(R, q), n ∈ N

‖h‖o ≤ Cqpd(h),
pn(h · h′) ≤ Cqpn+d(h)pn+d(h′).

In particular S(R, q) is a unital locally convex *-algebra, and it is contained in
C∗(R, q).

A finite dimensional H-module is called tempered if the H-action extends con-
tinuously to S. There are various ways to define infinite dimensional tempered
modules, depending on which category of vector spaces one wishes to consider. In
the Appendix we discuss tempered bornological modules.

From the work of Casselman [Cas, §4.4] one can deduce concrete criteria for
representations to be tempered or discrete series, see [Opd1, Section 2.7]. It follows
from these criteria that an H-module can only be tempered if all its Z(W )-weights
are unitary.
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The reader is referred to [DeOp] for a study of the algebra S and its Fourier
transform. Notice that as a Fréchet space S(R, q) does not depend on q. The basis
{Nw : w ∈W} gives rise to a canonical isomorphism between S(R, q) and S(W ).

For ε ∈ R let qε be the parameter function qε(w) = q(w)ε. For every ε we have
the affine Hecke algebra H(R, qε) and its Schwartz completion S(R, qε). We note
that H(R, q0) = C[W ] is the group algebra of W and that S(R, q0) = S(W ) is the
Schwartz algebra of rapidly decreasing functions on W .

The intuitive idea is that these algebras depend continuously on ε. We will use
this in the form of the following rather technical result.

Theorem 1.7. For ε ∈ [−1, 1] there exists a family of additive functors

σ̃ε : Modfin(H(R, q))→ Modfin(H(R, qε)),
σ̃ε(π, V ) = (πε, V ).

with the properties

1) the map
[−1, 1]→ EndV : ε 7→ πε(Nw)

is analytic for any w ∈W ,

2) σ̃ε is a bijection if ε 6= 0,

3) σ̃ε preserves unitarity,

4) σ̃ε preserves temperedness if ε ≥ 0,

5) σ̃ε preserves the discrete series if ε > 0.

Proof. See [Sol, Theorem 5.16 and Lemma 5.17]. 2
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Chapter 2

Projective resolutions

In this chapter we will contruct projective resolutions for modules of an affine Hecke
algebra H. We do this in a functorial way, starting from an explicit projective H-
bimodule resolution of H. This allows us to show that the global dimension of H
equals the rank of the lattice X.

It turns out that the same contructions also work over S. However this is by
no means automatic. Namely, it is not enough to have a projective H-bimodule
resolution, to show that it can be induced to S we also need a contraction which is
bounded in a suitable sense. The essential part of the proof takes place within the
polysimplicial complex Σ associated to the root system R0. Taking advantage of
the abundant symmetry of root systems we construct a bounded contraction of the
corresponding differential complex. With this contraction we establish a projective
bimodule resolution of S. As a consequence we can show that the cohomological
dimension of bornological S-modules also equals the rank of X.

Actually more is true, as Ralf Meyer kindly pointed out to us. The inclusion
of complete, unital, bornological algebras H → S is isocohomological (in the sense
discussed in the Appendix).

2.1 The bounded contraction of the polysimplicial com-
plex

From the polysimplicial complex Σ (cf. page 7) we construct a differential complex
(C∗(Σ), ∂∗). The vector space in degree n is

Cn(Σ) := C{σ ∈ Σ : dimσ = n}. (2.1)

For every σ there is a unique facet f of the fundamental alcove A∅ such that σ is
W aff -conjugate to the closure f̄ of f in E. We fix an orientation on all the facets of
A∅ and we decree that the map w : f → wf preserves orientation. This determines
a unique orientation on every simplex of Σ. With these conventions we can identify

Cn(Σ) =
⊕

f :dim f=n

C
[
W aff/Wf

]
. (2.2)
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Clearly Σ is the direct product of a number (say r′) simplicial complexes correspond-
ing to the irreducible components of R0. Let

σ = σ(1) × · · · × σ(r′)

be a polysimplex of Σ. Denote the vertices of σ(j) by x(j)
i , so that we can write

σ(j) =
[
x

(j)
0 , x

(j)
1 , . . . , x

(j)
dj

]
.

The order of the vertices defines an orientation on σ(j). For a permutation λ ∈ Sdj
with sign ε(λ) we identify[

x
(j)
λ(0), x

(j)
λ(1), . . . , x

(j)
λ(dj)

]
= ε(λ)

[
x

(j)
0 , x

(j)
1 , . . . , x

(j)
dj

]
.

The boundary of σ(j) is defined as

∂σ(j) = ∂
[
x

(j)
0 , x

(j)
1 , . . . , x

(j)
dj

]
:=

dj∑
i=0

(−1)i
[
x

(j)
0 , . . . , x

(j)
i−1, x

(j)
i+1, . . . , x

(j)
dj

]
,

∂
[
x

(j)
0

]
:= 0.

Furthermore we define

∂nσ =
r′∑
j=1

(−1)d1+···+dj−1σ(1) × · · · × σ(j−1) × ∂σ(j) × σ(j+1) × · · · × σ(r′)

if dim σ = n > 0. It is easily verified that this operation satisfies the usual property
∂ ◦ ∂ = 0. We augment this differential complex by

C−1(Σ) = C

and ∂0[x] = 1 if x is a vertex of Σ. The augmented complex (C∗(Σ), ∂∗) computes the
reduced singular homology of the space E underlying Σ. This space is contractible,
so by the Poincaré lemma

Hn(C∗(Σ), ∂∗) = 0 ∀n ∈ Z. (2.3)

The support of a chain c =
∑

σ∈Σ cσσ ∈ C∗(Σ) is

supp c =
⋃

σ:cσ 6=0

σ.

A contraction γ of (C∗(Σ), ∂∗) is a collection of linear maps

γn : Cn(Σ)→ Cn+1(Σ) n ≥ −1,

such that
γn−1∂n + ∂n+1γn = idCn(Σ) ∀n ∈ Z.

The periodic nature of Σ allows us to construct a contraction with good bounds on
the coefficients:
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Proposition 2.1. There exists a contraction γ with the properties

1) γ∂ + ∂γ = id,

2) γ is W0-equivariant,

3) supp γ(σ) ⊂ A(σ) for every σ ∈ Σ,

4) γ(σ) =
∑

τ∈Σ γσττ with |γστ | < Mγ for some constant Mγ depending only on γ.

Proof. Our construction will be rather similar to that of V. Lafforgue in [Ska,
§4]. First we impose some extra conditions. 2) and 3) force

5) if σ ⊂ C+
I then supp γ(σ) ⊂ C+

I .

In view of (1.2) and since ∂ is W0-equivariant, it suffices to construct γ on C+
∅ . We

will use that the translations tx with x ∈ ZR0 are orientation preserving automor-
phisms of Σ. For αi ∈ F0 let βi be the minimal element of C++

F0\{αi} ∩ ZR0. Note
that βi is an integral multiple of a vertex of A∅. We could also pick a fundamental
weight instead of βi, but in that case we would have keep track of the orientations.
Consider the halfopen parallelogram

P∅ =
{ r∑
i=1

yiβi : yi ∈ [0, 1)
}
.

Let τ be any polysimplex whose interior is contained in P∅. Our contraction will
also satisfy

6) γ(t(m+1)βi(τ)) = γ(tmβi(τ)) + tmβiγ(tβi(τ)− τ)

for m ≥ 0. Suppose that β =
∑k

i=1 niβi with ni ∈ N. Then we decree

7) γ(tβ(τ)) = γ(tnkβk(τ)) + tnkβkγ(tβ−nkβk(τ)− τ) .

Here we use the ordering on the set F0 of simple roots. The idea underlying 6) and
7) is that we want to make γ equivariant with respect to certain translations.

Now we really start constructing γ. In degree −1 we put

γ−1(1) = [0].

Suppose that γm has already been defined for m < n, satisfying conditions 1) - 7).
Let σ be any n-dimensional polysimplex whose interior is contained in

P1 := P∅ ∪ tβ1P∅ ∪ · · · ∪ tβrP∅.

By 1) we have
∂(σ − γ∂(σ)) = (id− ∂γ)(∂σ) = γ∂(∂σ) = 0.

Together with (2.3) this implies that the equation

∂γ(σ) = σ − γ∂(σ)
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has a solution γ(σ) ∈ Cn+1(Σ). By 3) and 5) we have

supp (σ − γ∂(σ)) ⊂ A(σ) ∩ C+
I if σ ⊂ C+

I .

Since A(σ)∩C+
I is convex, we can pick γ(σ) with support in this set. We do this for

any n-dimensional σ ∈ Σ whose interior is contained in P1. Now 6) and 7) determine
γn uniquely on C+

∅ .
We will show that the other required properties follow from this construction.

Write β′ =
∑k−1

i=1 niβi and β′′ =
∑k−1

i=1 n
′
iβi for some n′i ∈ N. By 7) we have

γtnkβk
(
tβ′(τ)− tβ′′(τ)

)
= tnkβkγ

(
tβ′(τ)− tβ′′(τ)

)
. (2.4)

We claim that the following stronger version of 7) holds

7’) γtnkβk
(
tβ−nkβk(σ)− σ

)
= tnkβkγ

(
tβ−nkβk(σ)− σ

)
∀σ ⊂ C+

∅ .

Indeed, write σ = txτ with τ as in 7) and x =
∑r

j=1mjβj . Then by a repeated
application of (2.4) the left hand side of 7’) becomes

γtnkβk
(
tβ′(txτ)− txτ

)
= t(nk+mk)βk+mk+1βk+1+···+mrβrγ(tβ′ − id)tm1β1+···+mk−1βk−1

(τ)

= tnkβkγtx(tβ′(τ)− τ)
= tnkβkγ(tβ′(σ)− σ).

It follows easily from 6) that

γtmβi
(
tm′βi(τ)− tm′′βi(τ)

)
= tmβiγ

(
tm′βi(τ)− tm′′βi(τ)

)
∀m,m′,m′′ ∈ N. (2.5)

There also is a stronger version of 6) :

6’) γtmβi
(
tβi(σ)− σ

)
= tmβiγ

(
tβi(σ)− σ

)
∀σ ⊂ C+

∅ .

Indeed, in the above notation and by 7’) and (2.5) the left hand side equals

γtmβi
(
tβi+x(τ)− tx(τ)

)
=

tmi+1βi+1+···+mrβrγt(m+mi)βi(tβi − id)tm1β1+···+mi−1βi−1
(τ) =

tmi+1βi+1+···+mrβr

(
γt(m+mi)βi

(
tβi(τ)− τ

)
+ t(m+mi)βi(tβi − id)γ

(
tm1β1+···+mi−1βi−1

(τ)− τ
))

=

tmβi+mi+1βi+1+···+mrβr

(
γtmiβi

(
tβi(τ)− τ

)
+ tmiβi(tβi − id)γ

(
tm1β1+···+mi−1βi−1

(τ)− τ
))

=
tmβi+mi+1βi+1+···+mrβrγ(tβi − id)tm1β1+···+miβi(τ) =
tmβiγ(tβi − id)tx(τ) = tmβiγ

(
tβi(σ)− σ

)
.

Now we can see that the relations 6) and 7) are compatible with 1). Assume that
1) holds for tmβi(τ). Then by 6’)

(∂n+1γn + γn−1∂n)
(
t(m+1)βi(τ)

)
=

∂n+1γn(tmβiτ) + ∂n+1tmβiγn
(
tβi(τ)− τ

)
+ γn−1t(m+1)βi∂n(τ) =

∂n+1γn(tmβiτ) + tmβi∂n+1γn
(
tβi(τ)− τ

)
+ γn−1tmβi∂n(τ) + tmβiγn−1

(
tβi(∂nτ)− ∂nτ

)
=

tmβi(τ) + tmβi
(
tβi(τ)− τ

)
= t(m+1)βi(τ).
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Similarly, suppose that tnkβk(σ) and tβ−nkβk(σ) both satisfy 1). It follows from 7’)
that

(∂n+1γn + γn−1∂n)
(
tβ(σ)

)
=

∂n+1γn(tnkβk(σ)) + ∂n+1(tnkβkγn(tβ−nkβk(σ)− σ)) + γn−1(tβ∂n(σ)) =
∂n+1γn(tnkβk(σ)) + tnkβk∂n+1γn(tβ−nkβk(σ)− σ)

+ γn−1(tnkβk∂n(σ)) + tnkβkγn−1(tβ−nkβk(∂nσ)− ∂n(σ)) =
tnkβk(σ) + tnkβk(tβ−nkβk(σ)− σ) = tβ(σ).

Thus we can construct γ respecting all conditions, except possibly 3) and 4). The
parallelogram P2 = 2P ∅ consists of finitely many polysimplices, so there is a real
number M such that

γ(τ) =
∑
σ

γτσσ with |γτσ| < M

for all polysimplices τ ⊂ P2. Let us examine the size of the coefficients of γ(t(m+1)βi(σ))
for τ with interior in P∅. By induction to m we may suppose that

γ(tmβi(τ)) =
∑
σ

λmσ σ with |λmσ |


= 0 if σ 6⊂ A(tmβi(τ))
< M if σ ⊂ P2

< M if σ 6⊂ A(t(m−1)βi(τ))
< 3M if σ ⊂ A(t(m−1)βi(τ)).

(2.6)

By construction we have

tmβiγ(tβi(τ)− τ) =
∑
σ

λ′σσ with |λ′σ|


= 0 if σ 6⊂ A(t(m+1)βi(τ))
= 0 if σ 6⊂ tmβiC

+
∅

< M if σ 6⊂ A(tmβi(τ))
< 2M if σ ⊂ A(t(m+1)βi(τ)).

With 6) this implies that (2.6) also holds with m+ 1 instead of m.
Let β be as above. By induction to k we may assume that

tnkβkγ(tβ−nkβk(τ)− τ) =
∑
σ

µkσσ with |µkσ|


= 0 if σ 6⊂ A(tβ(σ))
= 0 if σ 6⊂ tnkβkC

+
∅

< M if σ 6⊂ tβ′(σ)
< 2M if σ ⊂ A(tnkβk(σ))
< 3M if σ ⊂ A(tβ(σ)).

(2.7)
where β′ = β − βi with i minimal for ni > 0. In view of 7) the above implies that

γ(tβ(τ)) =
∑
σ

µ′σσ with |µ′σ|


= 0 if σ 6⊂ A(tβ(σ))
< M if σ ⊂ P2

< M if σ 6⊂ A(tβ′(σ))
< 3M if σ ⊂ A(tβ(σ)).

This in turn implies (2.7) with k + 1 instead of k. Hence condition 4) is fulfilled,
with Mγ = 3M. 2
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Example.
In the case R0 = B2 we have β1 = (1, 0) and β2 = (1, 1). We drew the sets P∅, P1

and P2 below. If x is a vertex of Σ then γ[x] is a path from 0 to x, along the following
lines:

0

0

0 1 2−1−2
−2

−1

0

1

2

β2

0 2

1

2

3 4

P  \ P

P

β1

1

2

P  \ P

1

We define

γ [(1/2, 0), (1/2, 1/2)] = A∅ = [(0, 0), (1/2, 0), (1/2, 1/2)]
γ [(1, 1/2), (1, 1)] = t(1/2,1/2)A∅ = [(1/2, 1/2), (1, 1/2), (1, 1)]
γ [(3/2, 1), (3/2, 3/2)] = t(1,1)A∅ = [(1, 1), (3/2, 1), (3/2, 3/2)]

γ [(3/2, 0), (3/2, 1/2)] = ��@@��
0

1/2

3/2

According to 6)

γ [(5/2, 0), (5/2, 1/2)] =

γ [(3/2, 0), (3/2, 1/2)] + t(1,0)γ
(

[(3/2, 0), (3/2, 1/2)]− [(1/2, 0), (1/2, 1/2)]
)

=

��@@��
0

1/2

3/2

+ t(1,0)

(
��@@��

0

1/2

3/2
��

0

1/2

1/2

)
= ��@@��@@��

0

1/2

5/2

Condition 7) says that

γ [(7/2, 1), (7/2, 3/2)] =

γ [(3/2, 1), (3/2, 3/2)] + t(1,1)γ
(

[(5/2, 0), (5/2, 1/2)]− [(1/2, 0), (1/2, 1/2)]
)

=

��
3/2

3/2
1

1

+ t(1,1)

(
��@@��@@��

0

1/2

5/2
��

0

1/2

1/2

)
= ��@@��@@��1

1

3/2

7/2

2.2 Projective resolutions for affine Hecke algebras

For (π, V ) ∈ Mod(H) and n ∈ N we consider the H-module

Pn(V ) :=
⊕

f :dim f=n

H⊗H(Wf ,q)⊗C[Z(W )] V ⊗C C{f} =
⊕

f :dim f=n

H⊗H(Wf ,q)⊗C[Z(W )] V.
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where the sum runs over facets of A∅. Recall that we already fixed an (arbitrary)
orientation of all these facets. Hence we can express the boundary of a polysimplex f
as

∂(f) =
∑

f ′ [f : f ′] f ′,

with suitable numbers [f : f ′] ∈ {−1, 0, 1}. We define H-module homomorphisms

dn : Pn(V )→ Pn−1(V ), (2.8)

dn
(
h⊗H(Wf ,q)⊗C[Z(W )] v ⊗C f

)
=

∑
f ′:dim f ′=n−1

h⊗H(Wf ′ ,q)⊗Z(W ) v ⊗C [f : f ′]f ′.

Furthermore we define

d0 : P0(V )→ V, (2.9)
d0

(
h⊗H(Wx,q)⊗C[Z(W )] v ⊗C x

)
= π(h)v,

if x is a vertex of A∅. Now
(
P∗(V ), d∗

)
is an augmented differential complex because

∂ ◦ ∂ = 0. The group Ω acts naturally on this complex by

ω(h⊗H(Wf ,q)⊗C[Z(W )] v ⊗ f) = hT−1
ω ⊗H(Wω(f),q)⊗C[Z(W )] π(Tω)v ⊗ ω(f),

where we consider ω(f) with orientation. This action commutes with the H-action
and with the differentials dn, so

(
P∗(V )Ω, d∗

)
is again an augmented differential

complex. Note that Pn(V ) and Pn(V )Ω are finitely generated H-modules if V has
finite dimension.

Theorem 2.2. Consider H as a H-bimodule.

0←− H d0←−− P0(H)Ω d1←−− P1(H)Ω ←− · · · dr←−− Pr(H)Ω ←− 0 (2.10)

is a resolution of H by H⊗Hop-modules. Every Pn(H)Ω is projective as a left and
as a right H-module. Moreover if R is semisimple then Pn(H)Ω is projective as a
H⊗Hop-module.

Proof. This result stems from joint work of Mark Reeder and the first author,
see [Opd2, Proposition 8.1]. The proof is based on constructions of Kato [Kat1].

First we consider the case Ω = Z(W ) = {e}, W = W aff . There is a linear
bijection

φ : C[W ]⊗C H → H⊗C H,
φ(w ⊗ h′) = Tw ⊗ T−1

w h′.
(2.11)

For si ∈ Saff we write qi = q(si) and

Li := span{hTsi ⊗ T−1
si h

′ − h⊗ h′ : h, h′ ∈ H} ⊂ H⊗C H,
C[W ]i :=

{∑
w∈W xww : xwsi = −xw ∀w ∈W

}
⊂ C[W ].

(2.12)

This Li is interesting because

H⊗H(Wf ,q) H =
(
H⊗C H

)/∑
si∈Wf

Li.
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Let w ∈W be such that `(wsi) > `(w). For any h′ ∈ H we have

φ((wsi−w)⊗h′) = Twsi⊗T−1
wsih

′−Tw⊗T−1
w h′ = TwTsi⊗T−1

si T
−1
w h′−Tw⊗T−1

w h′ ∈ Li,

so φ(C[W ]i ⊗H) ⊂ Li. On the other hand, Li is spanned by elements as in (2.12)
with h = Tw or h = Twsi .

φ−1(TwsiTsi ⊗ T−1
si h

′ − Twsi ⊗ h′) =
φ−1(qiTw + (qi − 1)Twsi ⊗ T−1

si h
′)− wsi ⊗ Twsih′ =

qiw ⊗ TwT−1
si h

′ + (qi − 1)wsi ⊗ TwsiT−1
si h

′ − wsi ⊗ Twsih′ =
qi(w − wsi)⊗ TwT−1

si h
′ + wsi ⊗

(
qiTwT

−1
si + (qi − 1)TwsiT

−1
si − Twsi

)
h′ =

(w − wsi)⊗ TwqiT−1
si h

′ + wsi ⊗
(
Tw(Tsi + 1− qi) + (qi − 1)Tw − TwTsi

)
h′ =

(w − wsi)⊗ Tw(Tsi + 1− qi)h′ ∈ C[W ]i ⊗H.

We conclude that φ−1(Li) = C[W ]i ⊗H. Now we bring the linear bijections

C[W ]
/∑

si∈Wf
C[W ]i → C[W/Wf ] : w 7→ wWf . (2.13)

into play. Under these identifications our differential complex becomes

0← H← · · · ←
⊕

f :dim f=n

C[W/Wf ]⊗H⊗ C{f} ← · · · ← C[W ]⊗H⊗ C{A∅} ← 0.

But this is just the complex
(
C∗(Σ), ∂∗

)
tensored with H, so by (2.3) its homology

vanishes. This shows that indeed we have a resolution in the special case Ω = {e}.
Now the general case. Since the action of Ω on A∅ factors through the finite

group Ω/Z(W ) we can construct a Reynolds operator

RΩ := [Ω : Z(W )]−1
∑

ω∈Ω/Z(W )

ω ∈ EndH⊗Hop
(
Pn(H)

)
.

Since this is an idempotent,

Pn(H)Ω = RΩ · Pn(H) (2.14)

is a direct summand of Pn(H). We generalize (2.11) to a bijection

φ : C[W/Z(W )]⊗C H → H⊗C[Z(W )] H,
φ(w ⊗ h′) = Tw ⊗ T−1

w h′.
(2.15)

Just as above this leads to bijections⊕
f :dim f=nC[W/(Wf × Z(W ))]⊗H⊗ C{f} → Pn(H). (2.16)

The group Ω/Z(W ) acts on the left hand side by

ω · (w ⊗ h′ ⊗ f) = wω−1 ⊗ h′ ⊗ ω(f).

Since both sides of (2.16) are free Ω/Z(W )-modules, we also get a linear bijection⊕
f :dim f=nC

[
W aff/Wf

]
⊗H⊗ C{f} → Pn(H)Ω,

w ⊗ h′ ⊗ f 7→ RΩ

(
Tw ⊗H(Wf ,q)⊗C[Z(W )] T

−1
w h′ ⊗ f

)
.

(2.17)
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Now the same argument as in the special case shows that the modules Pn(H)Ω form
a resolution of H.

For any facet f, H is a free H(Wf , q)⊗C[Z(W )]-module, both from the left and
from the right. Therefore every Pn(H) is a projective H-module, from the left and
from the right.

For R semisimple Pn(H) is a direct sum of H⊗Hop-modules of the form
H⊗H(Wf ,q)H. For every irreducible representation Vi of H(Wf , q) we pick an idem-
potent ei ∈ H(Wf , q) which acts as a rank one projection on Vi and as 0 on all other
irreducible representations. Consider the element ef =

∑
i ei ⊗ ei ∈ H⊗Hop. From

H⊗H(Wf ,q) H ∼=
(
H⊗C Hop

)
ef (2.18)

we see that Pn(H) is a projective H-bimodule. By (2.14) Pn(H)Ω is projective in
the same senses as Pn(H). 2

Corollary 2.3. a) Let V be any H-module.

0←− V d0←−− P0(V )Ω d1←−− P1(V )Ω ←− · · · dr←−− Pr(V )Ω ←− 0

is a resolution of V . It is bornological if V is.

b) If V admits a Z(W )-character χ then every Pn(V )Ω is a projective H(R, q)χ-
module.

c) The cohomological dimensions of Mod
(
H(R, q)χ

)
and Modbor

(
H(R, q)χ

)
equal

r = rk(R0).

Proof. a) Apply ⊗HV to (2.10). The resulting differential complex is exact
because H and Pn(H)Ω are projective right H-modules. For V ∈ Modbor(H) this
clearly gives a bornological differential complex. It is split exact because every
contraction of P∗(H)Ω yields a bounded splitting of P∗(V )Ω.
b) From

H⊗H(Wf ,q)⊗C[Z(W )] V ∼= H(R, q)χ ⊗H(Wf ,q) V
∼= IndH(R,q)χ

H(Wf ,q)
V (2.19)

we see that this a projective H(R, q)χ-module. Hence Pn(V ) also has this property.
It follows from (2.14) that

Pn(V )Ω = RΩ · Pn(V ) (2.20)

is a direct summand of Pn(V ).
c) By a) and b) these cohomological dimensions are at most r. On the other hand,
we can easily find modules which do not have projective resolutions of length smaller
than r. Note that

Aχ := A⊗Z(W ) Cχ
∼= O(Tχ),

where Tχ is the r-dimensional subtorus of T consisting of elements t such that
t
∣∣
Z(W )

= χ. Pick t ∈ Tχ and consider the parabolically induced module

It = IndHA(Ct) = IndH(R,q)χ
Aχ (Ct). (2.21)
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With Theorem 1.3 we find

ExtrH(R,q)χ(It, It) ∼= ExtrAχ(Ct, It) ∼= ExtrO(Tχ)

(
Ct,

⊕
w∈W0

Cwt

)
∼=

⊕
w∈W0:wt=t

Cwt.

(2.22)
Since this space is not 0, any resolution of It by projective H(R, q)χ-modules has
length at least r.

This calculation goes through in the bornological setting, if we endow all spaces
with the fine bornology. 2

For purposes of homological algebra it would be useful if we could also construct
projective resolutions for H-modules that do not admit a Z(W )-character. Unfor-
tunately the authors do not know how to achieve this in general. But we offer an
alternative that comes quite close. Let

H̃ := H(R̃, q̃) = G̃nH(R, q)

be a semisimple affine Hecke algebra as in (1.3). Obviously H̃ is a free (left or right)
H-module with basis {Tg : g ∈ G̃}. Moreover for (π, V ) ∈ Mod(H) the H̃-module

IndH̃HV = H̃ ⊗H V (2.23)

is isomorphic as an H-module to
⊕

g∈G̃ Vg, where the H-module structure on Vg =
(πg, V ) is given by

πg(h) v = π(T−1
g hTg) v. (2.24)

Clearly Vg = V as an H(RF0 , q)-module. If V admits a Z(W )-character χ, then Vg
differs only from V in the sense that its Z(W )-character is gχ.

Applying the construction of Corollary 2.3.a) to H̃⊗H V as an H̃-module we get
a resolution by modules that are projective in Mod

(
H̃
)

and in Mod(H). In several
cases this might be used to find a resolution of (π, V ) by projective H-modules.

Proposition 2.4. The cohomological dimensions of Mod(H) and Modbor(H) are
both equal to the rank of X.

Proof. The cohomological dimension of Mod(H) is the least number
d ∈ {0, 1, 2, · · · ,∞} such that

ExtnH(U, V ) = 0 ∀U, V ∈ Mod(H) ,∀n > d.

Let t ∈ T and consider the module It = IndHA(Ct). In view of Theorem 1.3

Extrk(X)
H (It, It) ∼= Extrk(X)

A (Ct, It) ∼= Extrk(X)
O(T )

(
Ct,

⊕
w∈W0

Cwt

)
∼=

⊕
w∈W0:wt=t

Cwt.

Therefore d ≥ rk(X). This argument also works in Modbor(H), provided that we
endow all spaces with the fine bornology.
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On the other hand, let U, V ∈ Mod(H) be arbitrary and consider the H̃-modules
IndH̃H(U) and IndH̃H(V ).

ExtnH(U, V ) ⊂
⊕

g∈G̃ ExtnH
(
U, Vg

) ∼= ExtnH
(
U, IndH̃H(V )

) ∼=
ExtnH̃

(
IndH̃H(U), IndH̃H(V )

)
.

(2.25)

Assume n > rk(X). According to Corollary 2.3.c) the cohomological dimension of
Mod(H̃) is rk(X), so right hand side of (2.25) is 0. Hence ExtnH(U, V ) = 0 and
we conclude that d ≤ rk(X). The same reasoning shows that the cohomological
dimension of Modbor(H) is rk(X). 2

Recall that a resolution (P∗, d∗) of a module V is of finite type if all the modules Pn
are finitely generated, and moreover Pn = 0 for all n larger than some number.

Corollary 2.5. Let V be a finitely generated H-module. Then V admits a finite
type projective resolution.

Proof. Because H is Noetherian, every submodule of a finitely generated H-
module is itself finitely generated.

By assumption there exist a surjective H-module map d0 : Hm0 → V , for some
m0 ∈ N. Then ker d0 is again finitely generated, so we can find a surjection
d1 : Hm1 → ker d0. Continuing this process we construct a resolution (Pn = Hmn , dn)
of V , consisting of free H-modules of finite rank. Because the global dimension of H
is rk(X), the module ker dn must be projective ∀n ≥ rk(X)− 1 [CaEi, Proposition
VI.2.1]. Hence

0← V
d0←− P0

d1←− · · · dn−1←−−− Pn−1 ← ker dn−1 ← 0

is a finite type projective resolution of V. 2

2.3 Projective resolutions for Schwartz algebras

We will show that all the resolutions from the previous section can be induced from
H to S. Most importantly, we will construct a projective bimodule resolution of S.
This requires that we complete the H-modules to Fréchet S-modules. A convenient
technique to achieve this in great generality is with completed bornological tensor
products, and this is the viewpoint we chose to take in this section. The necessary
background material is contained in the Appendix. However, for finite dimensional
tempered modules it is not necessary to use bornologies. See the remark after
Corollary 2.7.

Endow S with the precompact bornology and let V be a bornological S-module.
According to [Mey2, Theorem 42] we have

S(Z(W ))⊗̂C[Z(W )]V = S(Z(W ))⊗̂S(Z(W ))V. (2.26)
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If V has finite dimension, then (2.26) also holds with algebraic tensor products. The
reader is invited to check this, by reduction to the case where V admits a unique
Z(W )-character.

Because H is a free H(Wf , q) ⊗ C[Z(W )]-module, both algebraically and with
the fine bornology, we have

H⊗̂H(Wf ,q)⊗C[Z(W )]V = H⊗H(Wf ,q)⊗C[Z(W )] V. (2.27)

So if we induce Pn(V ) from H to S in the bornological fashion we get the module

P tn(V ) := S⊗̂HPn(V ) = S⊗̂H
⊕

f :dim f=n

H⊗̂H(Wf ,q)⊗C[Z(W )]V ⊗C C{f}

=
⊕

f :dim f=n

S⊗̂H(Wf ,q)⊗S(Z(W ))V ⊗C C{f}.
(2.28)

The maps dn : Pn(V )→ Pn−1(V ) extend naturally to

dtn : P tn(V )→ P tn−1(V ).

The action of Ω on Pn(V ) also extends to P tn(V ), so we can construct P tn(V )Ω. By
(2.14)

P tn(V )Ω = RΩ · P tn(V ) (2.29)

is a direct summand of P tn(V ). Clearly P tn(V ) and P tn(V )Ω are finitely generated
S-modules if V has finite dimension.

We consider the important case V = S. The topology and the bornology on S
give rise to a topology and a bornology on P tn(S). For n,m, k ∈ N , f ⊂ A∅ we have
the continuous seminorms

pm,k,f : S⊗̂H(Wf ,q)⊗S(Z(W ))S ⊗C C{f} → [0,∞),

pm,k,f (y) = inf
{∑

i

pm(hi)pk(h′i) :
∑
i

hi ⊗ h′i ⊗ f = y
}
,

which define a Fréchet topology on this space. The topology on P tn(S) is defined
by the norms pm,k :=

∑
f pm,k,f . We endow these modules with the precompact

bornology. We note that dtn is continuous and bounded and that Pn(S) is dense in
P tn(S).

In view of (2.18) we have

P tn(S)Ω =
⊕

f :dimf=n

S(RF0 , q)⊗̂H(Wf ,q)S(R, q) ∼=
⊕

f :dimf=n

(
S(RF0 , q)⊗̂CS(R, q)op

)
ef .

Using Lemma 1.5 and Theorem 1.6 both for S(RF0 , q) and for S(R, q) we see that
there is a number Cm,k,f > 0 such that∑

w∈W aff ,w′∈W |hw,w′ |(N (w) + 1)m(N (w′) + 1)k ≤
C2
b supw∈W aff ,w′∈W |hw,w′ |(N (w) + 1)m+b(N (w′) + 1)k+b ≤

C2
b pm+b,k+b

(∑
w∈W aff ,w′∈W hw,w′(Nw ⊗N ′w)ef ⊗ f

)
≤

Cm,k,fpm+2b,k+2b,f

(∑
w∈W aff

∑
w′∈W hw,w′Nw ⊗Nw′

)
.

(2.30)
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Theorem 2.6. Consider S as a S-bimodule.

0←− S
dt0←−− P t0(S)Ω dt1←−− P t1(S)Ω ←− · · · dtr←−− P tr(S)Ω ←− 0 (2.31)

is a S⊗̂Sop-module resolution of S, with a continuous bounded contraction. Every
P tn(S) is a bornologically projective S-module, both from the left and from the right.
If moreover R is semisimple, then P tn(S) is also projective as a S⊗̂Sop-module.

Proof. To show that the differential complex
(
P t∗(S)Ω, dt∗

)
is contractible we

use Proposition 2.1 and Theorem 2.2. The composition of (2.17) with (2.2) is the
bijection

φ̃ : C∗(Σ)⊗C S → P∗(S)Ω,

φ̃(σ ⊗ h′) = RΩ

(
Tw ⊗H(Wf ,q)⊗C[Z(W )] T

−1
w h′ ⊗ f

)
,

where σ = wf with w ∈W aff . Let γ be as in Proposition 2.1. We claim that

γ̃ := φ̃(γ ⊗ idS)φ̃−1

extends continuously to the required contraction. Suppose that w′ ∈W, w ∈W aff ∩
w′Ω and σ = w′f = wf . Then we have explicitly

φ̃
(
RΩ(Nw′⊗H(Wf ,q)⊗C[Z(W )]h

′⊗f)
)

= φ̃
(
γ(σ)⊗Nwh

′) = φ̃
(∑

τγσττ⊗Nwh
′). (2.32)

By Lemma 1.2 and condition 3) of Proposition 2.1 the coefficient γστ can only be
nonzero if there exist u ≤A w and a facet f ′ of A∅ such that τ = uf ′. This crucial
for the following estimates. For every relevant τ we pick such a u ∈ W aff and we
write (a little sloppily) γwu = γστ . Then (2.32) equals

φ̃
(∑

f ′
∑

u∈W aff :u≤Aw γwu(uf ′)⊗Nwh
′
)

=

RΩ

(∑
f ′
∑

u∈W aff :u≤Aw γwuNu ⊗H(Wf ′ ,q)⊗C[Z(W )] N
−1
u Nwh

′ ⊗ f ′
)

=∑
f ′
∑

u∈W aff :u≤Aw RΩ

(
γwuNu ⊗H(Wf ′ ,q)⊗C[Z(W )] Nu−1wh

′ ⊗ f ′
)
.

(2.33)

Notice that we used u ≤A w in the last step. Every element of P tn(S)Ω can be
written as a finite sum (over facets f) of elements of the form

RΩ y = RΩ

∑
w∈W aff

∑
w′∈W

hw,w′Nw ⊗H(Wf ′ ,q)⊗S(Z(W )) Nw′ ⊗ f,

with (hw,w′) ∈ S(W aff ×W ). According to the above calculation

γ̃(RΩ y) = RΩ

∑
f ′

∑
w′∈W

∑
u,w∈W aff :u≤Aw

γwuhw,w′Nu ⊗H(Wf ′ ,q)⊗S(Z(W )) Nu−1wNw′ ⊗ f ′.

Using (in this order) condition 4) of Proposition 2.1, Theorem 1.6, Lemma 1.1 and
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(2.30) we estimate

pm,k

( ∑
w′∈W

∑
u,w∈W aff :u≤Aw

γwuhwNu ⊗H(Wf ′ ,q)⊗S(Z(W )) Nu−1wh
′ ⊗ f ′

)
≤

∑
w′∈W

∑
w∈W aff

Mγ |hw,w′ |pm
( ∑
u∈W aff :u≤Aw

Nu

)
pk
(
Nu−1wNw′

)
≤

Mγ

∑
w′∈W

∑
w∈W aff

|hw,w′ |(N (w) + 1)mCq(N (w) + 1)k+b(N (w′) + 1)k+b ≤

MγCqCk+m+2b,k+b,fpk+m+3b,k+2b(y).

Since RΩ is a continuous operator on P tn(S), it follows that γ̃ is well-defined and
continuous on P tn(S)Ω. Since P tn(S) carries the precompact bornology, γ̃ is auto-
matically bounded. Moreover

φ̃(δn ⊗ idS)φ̃−1 = dn,

so condition 1) of Proposition 2.1 assures that

γ̃dt + dtγ̃ = id (2.34)

on P∗(S)Ω. Because P∗(S)Ω is dense in P t∗(S)Ω and the maps in (2.34) are con-
tinuous, this relation holds on the whole of P t∗(S)Ω. So the differential complex(
P t∗(S)Ω, dt∗

)
indeed has a bounded contraction.

For any facet f the space S is a bornologically free H(Wf , q)⊗S(Z(W ))-module.
Hence P tn(S) is a bornologically projective S-module, both from the left and from
the right. If R is semisimple, then by (2.18) P tn(V ) is direct sum of bimodules of
the form (S⊗̂Sop)ef . Hence P tn(V ) is S⊗̂Sop-projective.

By (2.29) P tn(S)Ω enjoys the same projectivity properties. 2

Corollary 2.7. a) Let V be any bornological S-module.

0←− V
dt0←−− P t0(V )Ω dt1←−− P t1(V )Ω ←− · · · dtr←−− P tr(V )Ω ←− 0

is a bornological resolution of V .

b) If V admits the Z(W )-character χ, then every module P tn(V )Ω is projective in
Modbor

(
S(R, q)χ

)
.

c) If moreover V has finite dimension, then P tn(V )Ω is also projective in Mod
(
S(R, q)χ

)
.

Proof. a) Apply ⊗SV to (2.31) and use the projectivity of P tn(S)Ω as a right
S-module.
b) From Corollary 2.3.b) we know that Pn(V )Ω is projective in Modbor

(
H(R, q)χ

)
,

so
P tn(V )Ω ∼= S(R, q)χ⊗̂H(R,q)χPn(V )Ω
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is projective in Modbor

(
S(R, q)χ

)
.

c) For any facet f

S⊗̂H(Wf ,q)⊗S(Z(W ))V = S(R, q)χ⊗̂H(Wf ,q)V = S(R, q)χ ⊗H(Wf ,q) V = IndS(R,q)χ
H(Wf ,q)

V

is a projective S(R, q)χ-module. In view of (2.29) this implies that P tn(V ) and
P tn(V )Ω are also projective in Mod

(
S(R, q)χ

)
. 2

Remark.
If V is a finite dimensional tempered module with Z(W )-character χ, then the proof
of Corollary 2.7 does not rely on the properties of bornology. Indeed, in this situation
we may simply use the algebraic tensor product in the definition of P tn(V ), since the
algebraic tensor product is already complete as a locally convex vector space. The
continuity proof of the contraction is analogous to, and in fact somewhat simpler
than, the above proof for the case V = S. Hence the algebraic tensor product of the
resolution of Corollary 2.3 a) by S(R, q)χ yields the resolution of Corollary 2.7.a).

2.4 Isocohomological inclusions

We will show that the inclusion H → S is isocohomological. As an intermediate step
we do the same for algebras and modules corresponding to a fixed Z(W )-character.

Similar results for Schwartz algebras of reductive p-adic groups were proven by
Meyer [Mey3, Theorems 21, 27 and 29] with highly sophisticated techniques. Maybe
our bounded contraction from Section 2.1 can be used to simplify these proofs.

Theorem 2.8. Let χ be a unitary Z(W )-character.

a) The inclusion H(R, q)χ → S(R, q)χ is isocohomological.

b) The cohomological dimension of Modbor

(
S(R, q)χ

)
equals r = rk(R0).

Proof. a) From (2.19) and (2.28) it follows that

Pn(H(R, q)χ) ∼=
⊕

f :dim f=n

H(R, q)χ⊗̂H(Wf ,q)H(R, q)χ ⊗C C{f},

P tn(S(R, q)χ) ∼=
⊕

f :dim f=n

S(R, q)χ⊗̂H(Wf ,q)S(R, q)χ ⊗C C{f}.

Exactly as in the proof of Theorem 2.2 we can see that these are projective as
bornological bimodules for H(R, q)χ respectively S(R, q)χ. In view of (2.14) and
(2.29) the same holds for Pn(H(R, q)χ)Ω and P tn(S(R, q)χ)Ω. Combined with Corol-
laries 2.3.a) and 2.7.a) this yields condition 1) of Theorem A.1.
b) By Corollary 2.7 the cohomological dimension of Modbor

(
S(R, q)χ

)
is at most

r = rk(R0). If t ∈ T is unitary then by [Opd1, Proposition 4.19] the module It from
(2.21) is tempered. Together with (2.22) this gives

ExtrS(R,q)χ(It, It) ∼= ExtrH(R,q)χ(It, It) 6= 0.

Hence this cohomological dimension is at least r. 2
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Theorem 2.9. a) The inclusion H → S is isocohomological.

b) The cohomological dimension of Modbor(S) equals the rank of X.

Proof. a) Let (R̃, q̃) be as in (1.3). Recall that

H(R̃, q̃) ∼= G̃nH(R, q) = G̃nH,
S(R̃, q̃) ∼= G̃n S(R, q) = G̃n S.

We know from Theorem 2.8.a) that the inclusion H(R̃, q̃) → S(R̃, q̃) is isocohomo-
logical. Therefore we can use an argument from the proof of [Mey2, Theorem 58].
The functor

Mod(B)→ Mod(G̃nB) : V → IndG̃nB
B (V ) = (G̃nB)⊗B V (2.35)

is exact for any G̃-algebra B. Hence in Derbor(G̃n S) we have

G̃n S ∼= (G̃n S)⊗̂L
G̃nS(G̃n S)

∼= (G̃n S)⊗̂L
G̃nH(G̃n S)

∼= (G̃n S)⊗̂L
G̃nHG̃nH⊗̂L

HS
∼= (G̃n S)⊗̂L

HS
∼= IndG̃nS

S
(
S⊗̂L
HS
)
.

(2.36)

We want to show that this implies condition 2) of Theorem A.1 for the inclusion
H → S. However we have to be a little careful, as the functor (2.35) is not injective
on objects. Namely, H-modules like V and Vg in (2.24), which are conjugate by an
element of G̃, have the same image under (2.35). It follows from (2.36) that

C[G̃]⊗C TorHn (S,S) ∼=
{
G̃n S if n = 0
0 if n > 0.

(2.37)

Obviously the multiplication map

TorH0 (S,S) ∼= S⊗̂HS → S

is surjective. In view of (2.37) it must also be injective, and therefore

TorHn (S,S) ∼=
{
S if n = 0
0 if n > 0.

Let
0← S ← P0 ← P1 ← · · · (2.38)

be a bornological resolution of S by projective H-modules. We already know that
the homology of (2.38) vanishes in all degrees. Moreover IndG̃nH

H (P∗) is a reso-
lution of G̃ n H. Theorems 2.8.a) and A.1 assure that the differential complex
IndG̃nH
H

(
S⊗̂HP∗

)
is a bornological resolution of G̃ n S. In particular it admits a

bounded C-linear contraction. Hence S⊗̂HP∗ also admits a bounded contraction, in
other words, it is an exact sequence in Modbor(S). This shows that the natural map

S⊗̂L
HS → S⊗̂

L
SS (2.39)
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is an isomorphism. We conclude that H → S is indeed isocohomological.
b) In view of part a) and Proposition 2.4 the cohomological dimension of Modbor(S)
is at most rk(X). If t ∈ T is unitary, then by [Opd1, Proposition 4.19] the module
It from (2.21) is tempered. From a) and the proof of Proposition 2.4 we see that

Extrk(X)
S (It, It) ∼= Extrk(X)

H (It, It) 6= 0.

Hence this cohomological dimension is at least rk(X). 2

Remark.
In the same way one can show that the cohomological dimension of the category
ModFré(S) of continuous Fréchet S-modules is the rank of X. To make this a
meaningful statement we make this into an exact category as follows.

All morphisms are required to be continuous and ⊗̂ is the completed projective
tensor product. Only extensions and resolutions that admit a continuous C-linear
splitting are called exact. This category has enough projective objects and has
countable projective limits. However it does neither have enough injective objects,
nor inductive limits.
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Chapter 3

The Euler–Poincaré
characteristic

3.1 Elliptic representation theory

Elliptic representation theory is a general notion that can be developed for many
groups and algebras [Art, Kaz, Ree, ScSt, Wal]. The idea is that one considers all
virtual representations of an algebra, modulo those that are induced from certain
specified subalgebras. This should yield interesting equivalence classes of represen-
tations if the subalgebras are chosen cleverly.

For example, in a reductive p-adic group one can consider the collection of proper
parabolic subgroups. The resulting space of representations contains among others
all square integrable representations. It can be studied by means of certain integrals
over the regular elliptic conjugacy classes, cf. [Kaz, Bez, ScSt].

In the context of the elliptic representation theory for Iwahori-spherical repre-
sentations of a p-adic Chevalley group Reeder [Ree] was led to the general definition
of elliptic representation theory for a finite group relative to a given representation.
Let (ρ,E) be a real representation of a finite group Γ. We define an elliptic pairing
on Modfin(Γ) by

eΓ(U, V ) :=
∞∑
n=0

(−1)n dim HomΓ

(
U ⊗

∧nE, V
)
. (3.1)

We call an element γ ∈ Γ elliptic (with respect to E) if Eρ(γ) = 0. Since this property
is preserved under conjugation, we can use the same terminology for conjugacy
classes. Let L be the set of subgroups H ⊂ Γ such that Eρ(H) 6= 0. The space of
elliptic trace functions on Γ is defined as

Ell(Γ) := GC(Γ)
/∑
H∈L

IndΓ
H

(
GC(H)

)
. (3.2)

Theorem 3.1. [Ree, §2]

a) The dimension of Ell(Γ) equals the number of elliptic conjugacy classes of Γ.

34



b) eΓ induces a Hermitian inner product on Ell(Γ).

c) For all χ, χ′ ∈ GC(Γ) we have

eΓ(χ, χ′) =
∑
γ∈Γ

det (idE − ρ(γ))
|Γ|

χ(γ)χ′(γ).

Assume now that X is a lattice in E (so E = X⊗Z R), which is stable under the
action of Γ. We will show that Theorem 3.1 can be generalized to the group Γ nX.
Of course affine Weyl groups are important examples of such groups.

In what follows an expression like γx always should be interpreted as the product
in Γ n X. If we want to make γ act on x, then we write ρ(γ)x. We extend this to
an action of Γ nX on X by

ρ(yγ)x = y + ρ(γ)x.

Let t ∈ T = HomZ(X,C×). Clifford theory [Cli] tells us that there is a natural
bijection between irreducible representations of Γt = {γ ∈ Γ : t ◦ ρ(γ) = t} and
irreducible representations of Γ n X with central character Γt ∈ T/Γ. It is given
explicitly by

Indt : V → IndΓnX
ΓtnXVt, (3.3)

where Vt means that we regard V as a X-representation with character t.
We call an element γx ∈ Γ n X elliptic if it has an isolated fixpoint in E. It is

easily seen that this is the case if and only if γ ∈ Γ is elliptic. We have

x yγ (−x) = (x− ρ(γ)x) yγ ∈ Γ nX,

so all elements of (y + (idE − ρ(γ))X)γ are conjugate in Γ nX. If γ is elliptic then
the lattice (idE−ρ(γ))X is of finite index in X. Consequently there are only finitely
many elliptic conjugacy classes in Γ nX.

Let U and V be ΓnX modules of finite length (which for this group means finite
dimensional). We define the Euler–Poincaré characteristic

EPΓnX(U, V ) :=
∞∑
n=0

(−1)n dim ExtnΓnX(U, V ). (3.4)

This kind of pairing stems from Schneider and Stuhler [ScSt, §III.4], who studied it
for reductive p-adic groups. The space of elliptic trace functions on Γ nX is

Ell(Γ nX) := GC(Γ nX)
/∑
H∈L

IndΓnX
HnX

(
GC(H nX)

)
. (3.5)

For every t ∈ T we consider the elliptic representation theory of Γt with respect
to the cotangent space to T at t. We note that Indt induces a map Ell(Γt) →
Ell(Γ n X). Let Hell denote the set of elliptic elements in a group H, and let ∼H
be the equivalence relation “conjugate by an element of H”.

Theorem 3.2. a) The dimension of Ell(Γ nX) equals the number of elliptic con-
jugacy classes of Γ nX.
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b) EPΓnX induces a Hermitian inner product on Ell(Γ nX).

c) The map Indt : Ell(Γt)→ Ell(Γ nX) induced by (3.3) is an isometry:

EPΓnX(IndtU, IndtV ) = eΓt(U, V )

for all finite dimensional Γt-representations and U and V .

d) The map
⊕

t∈T/Γ Indt :
⊕

t∈T/ΓEll(Γt)→ Ell(Γ nX) is an isomorphism.

Proof. For U, V and t as above Frobenius reciprocity tells us that

ExtnΓnX(IndtU, IndtV ) ∼= ExtnΓtnX(Ut, IndΓnX
ΓtnXVt). (3.6)

Because two Γt n X-representations with different central characters admit only
trivial extensions, (3.6) is isomorphic to ExtnΓtnX(Ut, Vt). Inside the group algebra

A := C[X] ∼= O(T )

we have the ideal of functions vanishing at t ∈ T :

It := {f ∈ A : f(t) = 0}.

Let us denote the completion of A with respect to the powers of this ideal by Ât.
Clearly

(Γt n Ât)⊗ΓtnX Ut = Ut

as Γt nX-modules. Completing is an exact functor, so (3.6) becomes

ExtnC[ΓtnX](Ut, Vt) ∼= Extn
ΓtnÂt

(Ut, Vt). (3.7)

Because the Γt-module I2
t has finite codimension in A, there exists a Γt-module

Et ⊂ A such that
A = C⊕ Et ⊕ I2

t . (3.8)

As a Γt-module Et is the cotangent space to T at t. Since At is a local ring we
have ÂtEt = ÂtIt, by Nakayama’s Lemma. Any finite dimensional Γt-module is
projective, so

U ⊗
∧nEt ⊗ Ât = IndΓtnÂt

Γt

(
U ⊗

∧nEt
)

is a projective Γt n Ât-module for all n ∈ N. With these modules we construct a
resolution of Ut. Define Γt n Ât-module maps

δn : U ⊗
∧nEt ⊗ Ât → U ⊗

∧n−1Et ⊗ Ât,

δn (u⊗ e1 ∧ · · · ∧ en ⊗ f) =
n∑
i=1

(−1)i−1u⊗ e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ ejn ⊗ eif,

δ0 : U ⊗ Ât → Ut,
δ0 (u⊗ f) = f(t)u.

This makes (
U ⊗

∧∗Et ⊗ Ât, δ∗) (3.9)
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into an augmented differential complex. Notice that in Mod
(
Ât
)

this just the Koszul
resolution of

Ut ⊗ Ât
/
ItÂt = Ut.

Therefore (3.9) is the required projective resolution of Ut and

EPΓnX(IndtU, IndtV ) =
∞∑
n=0

(−1)n dim Extn
ΓtnÂt

(Ut, Vt)

=
r∑

n=0

(−1)n dimHn
(
HomΓtnÂt

(
U ⊗

∧∗Et ⊗ Ât, Vt),Hom(δ∗, idVt)
)

=
r∑

n=0

(−1)n dim HomΓtnÂt
(
U ⊗

∧nEt ⊗ Ât, Vt
)

=
r∑

n=0

(−1)n dim HomΓt

(
U ⊗

∧nEt, V
)

= eΓt(U, V ).

This proves c). According to Theorem 3.1, eΓt induces an inner product on Ell(Γt)
and by definition Indt(Ell(Γt)) ⊂ Ell(Γ nX) is precisely of the span of the Γ nX-
modules with central character Γt. Two Γ nX-representations with different Z(Γ n
A)-characters are orthogonal for EPΓnX , so b) and d) follow.

Now let us count the elliptic conjugacy classes in Γ nX. Two sets

(x+ (idE − ρ(γ))X)γ and (y + (idE − ρ(γ))X)γ

are conjugate if and only if there is a w ∈ ZΓ(γ) such that ρ(w)x−y ∈ (idE−ρ(γ))X.
As Γ-sets we have T γ = Hom

(
X/(idE − ρ(γ))X,C×

)
. Therefore

#
(
(Γ nX)ell/ ∼ΓnX

)
=

∑
γ∈Γell/∼Γ

#
(
(X/(1− γ)X)/ZΓ(γ)

)
=

∑
γ∈Γell/∼Γ

#
(
T γ/ZΓ(γ)

)
= #

(
{(γ, t) : γ ∈ Γell, t ∈ T γ}/ZΓ(γ)

)
= #

(
{(γ, t) : t ∈ T, γ ∈ Γt,ell}/ZΓ(γ)

)
=
∑
t∈T/Γ

#
(
Γt,ell/ ∼Γt

)
=
∑
t∈T/Γ

dimEll(Γt)

= dimEll(Γ nX),

where we let Γ act on Γell × T by w · (γ, t) = (wγw−1, wt). 2

From the above proof we see that part c) of Theorem 3.2 remains valid in the
following more general settings:
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• T is a nonsingular complex affine variety, A = O(T ) and Γ acts on T by
algebraic automorphisms,

• T is a smooth manifold, A = C∞(T ) and Γ acts on T by diffeomorphisms.

3.2 The elliptic measure

It is shown in [ScSt, Theorem III.4.21] and [Bez, Theorem 0.20] that the Euler–
Poincaré characteristic for semisimple p-adic groups agrees with the elliptic integral
introduced in [Kaz, p. 5].

For the group Γ nX this relation can be made even more explicit. We endow it
with the σ-algebra generated by the sets

Lw := {xw(−x) : x ∈ X} w ∈ Γ nX (3.10)

Let χV denote the character of a representation V .

Theorem 3.3. a) There exists a unique conjugation-invariant “elliptic” measure
µell on the measurable space Γ nX such that

EPΓnX(U, V ) =
∫

ΓnX
χUχV dµell ∀U, V ∈ Modfin(Γ nX).

b) The support of µell is the set of elliptic elements.

c) Let e ∈ E be an isolated fixpoint of an elliptic element c ∈ ΓnX and let C ⊂ ΓnX
be the conjugacy class of c. Then

µell(Lc) = |Γ|−1,

µell(C) =
#{w ∈ C : ρ(w)e = e}

#{w ∈ Γ nX : ρ(w)e = e}
,

µell(Γ nX) =
∞∑
n=0

(−1)n dim
(∧nE

)Γ
.

Proof. Suppose we have a trace function f ∈ GC(ΓnX) such that f(w) = 0 ∀w ∈
(ΓnX)ell. Write f =

∑
t∈T/Γ Indtft. This is a finite sum because GC(ΓnX) is built

from finite dimensional representations. If γ ∈ Γt,ell then we have f(xγ) = 0 ∀x ∈ X,
so [Γ : Γt]ft(γ) = Indt(ft)(γ) = 0.

Hence by Theorem 3.1.b) [ft] = 0 ∈ Ell(Γt). By Theorem 3.2.d) [f ] = 0 ∈
Ell(Γ n X). Now parts and a) and b) follow automatically, since there are only
finitely many elliptic conjugacy classes in Γ nX and every conjugacy class contains
only finitely many Lw’s.

To find the explicit form of µell, we consider a possibly different measure µ on
Γ nX, defined by µ(Lc) := |Γ|−1 for any elliptic element c ∈ Γ nX. We will show
that µ satisfies the properties attributed to µell. It will follow from the just proven
uniqueness that µ = µell.

Let U and V be irreducible Γ n X-representations, with central characters Γt
and Γt′, respectively. By (3.3) there are characters χ of Γt and χt′ of Γt′ such that
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χU = Indtχ and χV = Indtχ′. Extend χ and χ′ to functions on Γ by making them
zero on Γ \ Γt and on Γ \ Γt′ , respectively. For γ ∈ Γell we have

χU (xγ) =
∑

h∈Γ/Γt

t(ρ(h)−1x)χ(h−1γh).

This can only be nonzero if χ(h−1γh) 6= 0, which forces h−1γh to be an elliptic
element of Γt. Therefore ∫

ΓnX
χUχV dµ = 0

if either Ell(Γt) = 0 or Ell(Γt′) = 0, which is in agreement with Theorem 3.1.b).
Hence we assume that Γt and Γt′ do contain elliptic elements. This forces all

elements of Γ{t, t′} to have finite order in the group T . Now

X ′ :=
⋂

t′′∈Γ{t,t′}

ker t′′ ∩
⋂

γ∈Γell

(idE − ρ(γ))X

is a lattice of finite index in X and the map

X/X ′ → C : x 7→ t(ρ(h)−1x)χ(h−1γh)

is well defined for all h, γ ∈ Γ. For a fixed γ ∈ Γell we have

[(idE−ρ(γ))X : X ′]
∑

x∈X/(idE−ρ(γ))X

χU (xγ)χV (xγ) =
∑

x∈X/X′
χU (xγ)χV (xγ)

=
∑

h∈Γ/Γt

∑
g∈Γ/Γt′

∑
x∈X/X′

t(ρ(h)−1x)χ(h−1γh) t′(ρ(g)−1x)χ′(g−1γg).
(3.11)

By the orthogonality relations for characters of the group X/X ′, the only nonzero
contributions to this sum come from pairs (g, h) for which h(t) = g(t′). In particular∫

ΓnX
χUχV dµ = 0

if Γt 6= Γt′. This leaves the case t = t′. From (3.11) we see that

∑
x∈X/(idE−ρ(γ))X

χU (xγ)χV (xγ) =
∑

h,g∈Γ/Γt

∑
x∈X/X′

t(ρ(h)−1x)χ(h−1γh) t(ρ(g)−1x)χ′(g−1γg)
[(idE − ρ(γ))X : X ′]

=
∑

h∈Γ/Γt

∑
x∈X/X′

t(ρ(h)−1x)χ(h−1γh) t(ρ(h)−1x)χ′(h−1γh)
[(idE − ρ(γ))X : X ′]

= [X : (idE − ρ(γ))X]
∑

h∈Γ/Γt

χ(h−1γh)χ′(h−1γh).
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Now we can compute∫
ΓnX

χUχV dµ =
∑
γ∈Γell

∑
x∈X/(idE−ρ(γ))X

χU (xγ)χV (xγ)
|Γ|

=
∑
γ∈Γell

[X : (idE − ρ(γ))X]
|Γ|

∑
h∈Γ/Γt

χ(h−1γh)χ′(h−1γh)

=
∑

γ∈Γt,ell

det (idE − ρ(γ))
|Γ|

[Γ : Γt]χ(γ)χ′(γ)

=
∑

γ∈Γt,ell

det (idE − ρ(γ))
|Γt|

χ(γ)χ′(γ) = eΓt(χ, χ
′).

Thus indeed µ = µell.
Let e, c and C be as above. To determine µell(C) we must count the number nC

of sets Lw that are contained in C. Consider the map

ψe : C → E/X,

ψe(wcw−1) = ρ(w)e+X.

It is easily seen that ψe is well-defined and that

ψe(xwcw−1(−x)) = ψe(wcw−1) ∀x ∈ X, w ∈ Γ nX.

The image of ψe is ρ(Γ nX)e/X and

ψ−1
e (ρ(w)e+X) = {xwvcv−1w−1(−x) : x ∈ X, v ∈ Γ nX, ρ(v)e = e}.

The number of Lw’s contained in ψ−1
e (ρ(w)e+X) is

#{vcv−1 : v ∈ Γ nX, ρ(v)e = e} = #{v ∈ C : ρ(v)e = e}.

Consequently

nC = |ρ(Γ nX)e/X|#{v ∈ C : ρ(v)e = e} =
|Γ|#{v ∈ C : ρ(v)e = e}

#{w ∈ Γ nX : ρ(w)e = e}
,

µell(C) =
nC
|Γ|

=
#{v ∈ C : ρ(v)e = e}

#{w ∈ Γ nX : ρ(w)e = e}
.

Finally, using Theorem 3.2.c) we compute

µell(Γ nX) = EPΓnX(trivΓnX , trivΓnX)
= EPΓnX

(
Ind1(trivΓ), Ind1(trivΓ)

)
= eΓ

(
trivΓ, trivΓ

)
=
∞∑
n=0

(−1)n dim HomΓ

(∧nE, trivΓ

)
=
∞∑
n=0

(−1)n dim
(∧nE

)Γ
. 2
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3.3 Example: the Weyl group of type B2

Let R0 be the root system B2 in E = R2, with positive roots

α1 = (1,−1), α2 = (0, 1), α3(1, 0), α4 = (1, 1).

Denote the rotation of E over an angle θ by ρθ and the reflection corresponding to
αi by si. Then

W0 = {e, s1, s2, s3, s4, ρπ/2, ρπ, ρ−π/2}

is isomorphic to the dihedral group D4. This group has four irreducible representa-
tions of dimension one, defined by

π π(s1) π(s2)
ε0 1 1
ε1 −1 1
ε2 1 −1
ε3 −1 −1

(3.12)

The one remaining irreducible representation is just E.
The elliptic conjugacy classes in W0 (with respect to the defining representa-

tion E) are {ρπ} and {ρπ/2, ρ−π/2}.

IndW0
W∅

(GC{e}) = C{ε0 ⊕ ε1 ⊕ ε2 ⊕ ε3 ⊕ E ⊕ E},
IndW0

W{1}
(GC{e, s1}) = C{ε0 ⊕ ε2 ⊕ E , ε1 ⊕ ε3 ⊕ E},

IndW0
W{2}

(GC{e, s2}) = C{ε0 ⊕ ε1 ⊕ E , ε2 ⊕ ε3 ⊕ E}.

We see that Ell(W0) has dimension two and is spanned for example by [ε0] and [ε1].
With Theorem 3.1.c) we can easily write down a complete table for eW0 :

eW0 ε0 ε1 ε2 ε3 E

ε0 1 0 0 1 −1
ε1 0 1 1 0 −1
ε2 0 1 1 0 −1
ε3 1 0 0 1 −1
E −1 −1 −1 −1 2

(3.13)

Since A∅ is a fundamental domain for the action of W on E, every point of E that
is fixed by an elliptic element of W must be in the W -orbit of some vertex of the
fundamental alcove A∅. This leads to the following list of elliptic conjugacy classes:

vertex conjugacy class elliptic measure
e = c(e) [c] µell([c])

(0, 0) [ρπ] 1/8
(0, 0) [ρπ/2] 1/4

(1/2, 1/2) [t(1,1)ρπ] 1/8
(1/2, 1/2) [t(1,0)ρπ/2] 1/4
(1/2, 0) [t(1,0)ρπ] 1/4

(3.14)
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In particular dim Ell(W ) = 5.
For t ∈ T we write t = (t(1, 0), t(0, 1)). The following points of T are fixed by

an elliptic element of W0:

• (1, 1) is fixed by all w ∈ W0. Thus we get a two dimensional subspace
Ind(1,1)

(
Ell(W0)

)
of Ell(W ).

• (−1,−1) is also fixed by the whole group W0. This gives another two dimen-
sional subspace Ind(−1,−1)

(
Ell(W0)

)
⊂ Ell(W ).

• (−1, 1) has isotropy group V4 = {e, s2, s3, ρπ} ⊂W0. The only elliptic element
is ρπ so dim Ell(V4) = 1.

• (1,−1) also has isotropy group V4. But (−1, 1) and (1,−1) are in the same
W0-orbit so Ind(1,−1)

(
Ell(V4)

)
= Ind(−1,1)

(
Ell(V4)

)
. This one dimensional

subspace of Ell(W ) is spanned for example by the two dimensional represen-
tation Ind(1,−1)

(
trivV4

)
.

Now we have three subspaces of Ell(W ), they are mutually orthogonal for EPW and
their dimensions add up to 5. Since this is exactly the number of elliptic conjugacy
classes in W , we found all of Ell(W ).

3.4 The Euler–Poincaré characteristic

Following Schneider and Stuhler [ScSt, §III.4] we introduce an Euler–Poincaré char-
acteristic for affine Hecke algebras. For finite dimensional H-modules U and V we
define

EPH(U, V ) =
∞∑
n=0

(−1)n dim ExtnH(U, V ). (3.15)

By Proposition 2.4 the sum is actually finite, so this is well-defined. With standard
homological algebra (see for instance [CaEi]) one can show that this extends to a
bilinear pairing on G(H). Reeder [Ree] studied this pairing for affine Hecke algebras
with equal parameters, via p-adic groups.

Proposition 3.4. a) Let I ⊂ F0 be a proper subset of simple roots and let
V ∈ Modfin

(
H(RI , qI)

)
. Then

EPH
(
U, IndHH(RI ,qI)V

)
= 0 ∀U ∈ Modfin(H).

b) If the root datum R is not semisimple then, EPH ≡ 0.

Proof. This result is the translation of [ScSt, Lemma III.4.18.ii] to affine Hecke
algebras. The proof is similar and based on an argument due to Kazhdan.

We may assume that (π, V ) is irreducible with Z(H(RI , qI))-character WIt ∈
T/WI . If W0t is not an Z(H)-weight of U then ExtHn

(
U, IndHH(RI ,qI)V

)
= 0, so

42



certainly EPH
(
U, IndHH(RI ,qI)V

)
= 0. Therefore we may also assume that U is

irreducible with Z(H)-character W0t ∈ T/W0.
Recall the groups G̃ ⊂ W0(R̃) from (1.4). Objects constructed from R̃ will be

denoted by the same symbol as the corresponding objects for R, but with additional
tilde. Like on 13 we have the fundamental alcove Ã∅, the subgroup Ω̃ ⊂ W (R̃) of
elements of length zero, a facet f̃ of Ã∅, and its stabilizer Ω̃f̃ . Let Fn be a set of

representatives for the action of Ω̃ on these facets. We abbreviate

mt = #{g ∈ G̃ : gW0t = W0t},
Ũ = IndH(R̃,q̃)

H(R,q)(U).

From (2.24), Corollary 2.3.a) and the Euler–Poincaré principle we deduce that

mt EPH
(
U, IndHH(RI ,qI)V

)
= EPH

(
U, IndH(R̃,q̃)

H(RI ,qI)
V
)

= EPH(R̃,q̃)
(
Ũ , IndH(R̃,q̃)

H(RI ,qI)
V
)

=
∞∑
n=0

(−1)n dim ExtnH(R̃,q̃)

(
Ũ , IndH(R̃,q̃)

H(RI ,qI)
V
)

=
rk(X)∑
n=0

(−1)n dim
(

HomH(R̃,q̃)
(
Pn(Ũ)Ω̃, IndH(R̃,q̃)

H(RI ,qI)
V
))

(3.16)

=
rk(X)∑
n=0

(−1)n dim
(

HomH(R̃,q̃)
( ⊕
f̃∈Fn

IndH(R̃,q̃)
H(R̃,f̃ ,q̃)

(Ũ ⊗ εf̃ ), IndH(R̃,q̃)
H(RI ,qI)

V
))

=
rk(X)∑
n=0

(−1)n dim
( ⊕
f̃∈Fn

HomH(R̃,f̃ ,q̃)
(
Ũ ⊗ εf̃ , IndH(R̃,q̃)

H(RI ,qI)
V
))

=
rk(X)∑
n=0

(−1)n
∑
f̃∈Fn

dim HomH(R̃,f̃ ,q̃)
(
Ũ ⊗ εf̃ , IndH(R̃,q̃)

H(RI ,qI)
V
)
.

Because V is irreducible there exist a H(RI , qI)-representation (π1, V ) and a
Z
(
W (RI)

)
-character t1, such that

(π, V ) = (π1 ◦ φt1 , V )

with φt1 as in (1.8). Note that Z
(
W (RI)

)
= (I∨)⊥ ∩X 6= 0 because I 6= F0. Let t2

be an arbitrary Z
(
W (RI)

)
-character and consider the integer

dim HomH(R̃,f̃ ,q̃)
(
Ũ ⊗ εf̃ , IndH(R̃,q̃)

H(RI ,qI)
(π1 ◦ φt2 , V )

)
.

According to Lemma 1.4 H(R̃, f̃ , q̃) is a finite dimensional semisimple algebra.
Therefore the above integer is invariant under continuous deformations of t2, and
hence independent of t2. Pick t2 such that the central character of
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IndH(R̃,q̃)
H(RI ,qI)

(π1 ◦ φt2 , V ) is not W0(R̃)t ∈ T/W0(R̃). Then

0 = mtEPH
(
U, IndH(R̃,q̃)

H(RI ,qI)
(π1 ◦ φt2 , V )

)
=

rk(X)∑
n=0

(−1)n
∑
f̃∈Fn

dim HomH(R̃,f̃ ,q̃)
(
Ũ ⊗ εf̃ , IndH(R̃,q̃)

H(RI ,qI)
(π1 ◦ φt2 , V )

)

=
rk(X)∑
n=0

(−1)n
∑
f̃∈Fn

dim HomH(R̃,f̃ ,q̃)
(
Ũ ⊗ εf̃ , IndH(R̃,q̃)

H(RI ,qI)
(π1 ◦ φt1 , V )

)
= mtEPH

(
U, IndHH(RI ,qI)(π, V )

)
.

(3.17)

To prove b) we suppose that R is not semisimple and that U ′, V ′ ∈ Modfin(H). We
have to show that

EPH(U ′, V ′) = 0.

We may assume that U ′ and V ′ admit the same central character W0t. From the
proof of part a) we see that

mtEPH(U ′, V ′) = EPH(R̃,q̃)
(
IndH(R̃,q̃)
H U ′, IndH(R̃,q̃)

H V ′
)

= 0. 2

We can use the scaling maps

σ̃ε : Modfin(H(R, q))→ Modfin(H(R, qε))

from Theorem 1.7 to relate EPH to EPW .

Theorem 3.5. a) The pairing EPH is symmetric and positive semidefinite.

b) If U, V ∈ Modfin(H) then

EPH(U, V ) = EPH(R,qε)
(
σ̃ε(U), σ̃ε(V )

)
∀ε ∈ [−1, 1].

Proof. In view of Proposition 3.4.b) we may assume that R is semisimple. For
every ε ∈ [−1, 1] Theorem 1.7 gives us the H(R, qε)-representations

σ̃ε(ρ, U) = (ρε, U) and σ̃ε(π, V ) = (πε, V ).

As a vector space H(R, f, qε) is just C[Wf o Ωf ]. As an algebra it is semisimple and
the multiplication varies continuously with ε, so by Tits’ deformation theorem it is
independent of ε. Furthermore for any w ∈Wf o Ωf the maps

ε 7→ ρε(Nw) and ε 7→ πε(Nw)

are continuous. In view of (3.16) this implies that

EPH(R,qε)
(
σ̃ε(U), σ̃ε(V )

)
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depends continuously on ε. But this expression is integer valued, so it is actually
independent of ε. In particular

EPH(U, V ) = EPW
(
σ̃0(U), σ̃0(V )

)
. (3.18)

Now Theorem 3.2.b) assures that EPH is symmetric and positive semidefinite. 2

For semisimple root data we can also compute the Euler–Poincaré characteristic
in another way, as the character value of a certain index function.

According to Lemma 1.4 the algebraH(R, f, q) is finite dimensional and semisim-
ple for all facets f of the fundamental alcove A∅. In particular the collection
Irr(H(R, f, q)) of irreducible representations is finite. Let eσ ∈ H(R, f, q) denote
the primitive central idempotent corresponding to an irreducible H(R, f, q)-module
σ. For U ∈ Mod(H(R, f, q)) let [U : σ] be the multiplicity of σ in U .

In the spirit of Kottwitz [Kot, §2], Schneider and Stuhler [ScSt, III.4] we define
an Euler–Poincaré function

fUEP :=
∑
f⊂A∅

(−1)dim f

[Ω : Ωf ]

∑
σ∈Irr(H(R,f,q))

[U ⊗ εf : σ]
dimσ

eσ. (3.19)

Proposition 3.6. Let R be a semisimple root datum and U, V ∈ Modfin(H). Then

EPH(U, V ) = χV
(
fUEP

)
.

Proof. Exactly like in (3.16) we can calculate that

EPH(U, V ) =
rk(X)∑
n=0

(−1)n dim HomH(Pn(U)Ω, V )

=
rk(X)∑
n=0

∑
f :dim f=n

(−1)n

[Ω : Ωf ]
dim HomH(R,f,q)(U ⊗ εf , V )

=
∑
f⊂A∅

(−1)dim f

[Ω : Ωf ]

∑
σ∈Irr(H(R,f,q))

[U ⊗ εf : σ] [V : σ]

=
∑
f⊂A∅

(−1)dim f

[Ω : Ωf ]

∑
σ∈Irr(H(R,f,q))

[U ⊗ εf : σ]
dimσ

χV (eσ)

= χV
(
fUEP

)
. 2

We will use this result in [OpSo] to show that the Plancherel measure of a discrete
series representation is a rational function in q, with rational coefficients.
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3.5 Extensions of tempered modules

We apply the results of Chapter 2 to relate the bornological Tor and Ext functors
over H with those over S. That is more interesting than it looks at first sight,
because S is not flat over H (unless q ≡ 1).

Corollary 3.7. Take n ∈ N.

a) For all Ub, Vb ∈ Modbor(S) the inclusion H → S induces isomorphisms

TorHn (S, Vb) ∼= TorSn(S, Vb) ∼=
{
Vb if n = 0
0 if n > 0,

ExtnH(Ub, Vb) ∼= ExtnS(Ub, Vb).

b) For all finite dimensional tempered H-modules U and V there is a natural
isomorphism ExtnH(U, V ) ∼= ExtnS(U, V ) .

c) EPH(U, V ) = EPS(U, V ) .

Proof. a) follows directly from Theorems 2.9.a) and A.1.
b) In this setting the bornological functor ExtHn agrees with its purely algebraic
counterpart, as discussed in the Appendix. The same holds for ExtSn , because the
resolution from Corollary 2.7 consists of S-modules that are projective in both the
algebraic and the bornological sense. Hence b) is a special case of a).

However, for semisimple root data this can be proved more directly, without the
use of bornological techniques. Namely, we can simply compare the projective reso-
lutions from Corollaries 2.3.a) and 2.7.a). If we use these to compute the Ext-groups
and we apply Frobenius reciprocity, then we see that ExtnH(U, V ) and ExtnS(U, V )
are the homologies of isomorphic differential complexes. See also the remark at the
end of Section 2.3.
c) is a trivial consequence of b). 2

We remark that the corresponding results for reductive p-adic groups were proved
in [Mey3, §7] and [ScZi, §9]. These proofs are much more involved however, in
particular no shortcut like the one described in our proof seems available.

Notice that we have to take the derived functors with respect to bornological
tensor products and bounded maps, if we want to get Corollary 3.7.a) for infinite
dimensional modules. If we would work purely algebraically this would already fail
for U = V = S.

The main use of Corollary 3.7 is the next theorem.

Theorem 3.8. Suppose that U and V are irreducible tempered H-modules. If U or
V belongs to the discrete series then

ExtnH(U, V ) ∼=
{

C if U ∼= V and n = 0
0 otherwise.
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Proof. The assertion for n = 0 follows directly from Schur’s lemma and the
general isomorphism Ext0 ∼= Hom.

Let δ be a discrete series representation of H. According to [DeOp, Corollary
3.13] EndC(δ) is a direct summand of S, as algebras. Therefore δ is both injective
and projective as a S-module. Using Corollary 3.7.b) we find that for any tempered
H-module V and any n > 0

ExtnH(V, δ) = ExtnS(V, δ) = 0 (3.20)

because δ is injective, and

ExtnH(δ, V ) = ExtnS(δ, V ) = 0 (3.21)

because δ is projective. 2

Let us introduce the space of “elliptic trace functions”

Ell(H) := GC(H)
/ ∑
I⊂F0,I⊥ 6=0

IndHH(RI ,qI)GC
(
H(RI , qI)

)
, (3.22)

where I⊥ = {y ∈ Y : 〈α , y〉 = 0 ∀α ∈ I}. Notice that this space is zero whenever
R is not semisimple. From Proposition 3.4 and Theorem 3.5 we see that the Euler–
Poincaré characteristic induces a semidefinite Hermitian form on Ell(H):

EPH(λ[U ], µ[V ]) := λ̄µEPH(U, V ) U, V ∈ Modfin(H), λ, µ ∈ C.

Proposition 3.9.

a) The scaling map σ̃0 induces a linear map Ell(H)→ Ell(W ) which is an isometry
with respect to the (semidefinite) Hermitian forms EPH and EPW .

b) The number of inequivalent discrete series representations of H is at most the
number of elliptic conjugacy classes in W .

Proof. a) follows directly from Theorem 3.5.b).
b) According to Theorem 3.8 the inequivalent discrete series representations form an
orthonormal set in Ell(H). By part a) the same holds for their images in Ell(W ).
From Theorem 3.2.a) we know that the dimension of Ell(W ) is precisely the number
of elliptic conjugacy classes in W. 2

Remark.
A lower bound for the number of discrete series representations can be obtained
from counting their central characters. In turns out that for the crucial irreducible
non-simply laced cases C(1)

n , F4 and G2 this lower bound equals the above upper
bound, for generic parameters. We will exploit this in [OpSo] to give a classification
of the irreducible discrete series characters for any irreducible non-simply laced affine
Hecke algebra, with arbitrary positive parameters.
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Example.
Let R0 = A1 = {1,−1} = {±α} and X = Z. Then W0 = {e, sα∨} and W is gener-
ated by sα∨ and s1+α∨ . Take a label function such that q(sα∨) = q(s1+α∨) = q > 1.
The affine Hecke algebra H = H(A1, q) has a unique discrete series representation
called the Steinberg representation. It has dimension one and is defined simply by

St(Nw) = (−1)`(w)q(w)−1/2 = (−q−1/2)`(w).

On the other hand we have the “trivial” H-representation, defined by

trivH(Nw) = q(w)1/2 = q`(w)/2.

It is unitary but not tempered. From Theorem 3.8 we see that

EPH(St, St) = 1,

but is not immediately clear how many extensions of St by trivH there are. There
certainly is an extension

0← St← IndHA(φq−1)← trivH ← 0, (3.23)

so
[
IndHA(φq−1)

]
= [St] + [trivH] in G(H). Therefore

EPH(St, trivH) = EPH
(
St, [trivH]−

[
IndHA(φq−1)

])
= EPH

(
St,−[St]

)
= −1.

From Corollary 2.3.d) we know that the cohomological dimension of Mod(H) is 1,
so in particular

ExtnH(St, trivH) = 0 for n > 1.

Therefore (3.23) is up to a scalar factor the only nontrivial extension of St by trivH.
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Appendix A

Bornological algebras

In Chapter 2 we induce several modules from H to S. From an analytical point
of view this operation is trivial for finite dimensional modules, since in that case
all involved tensor products are purely algebraic. However for infinite dimensional
modules we have to take the topology into account. For Fréchet S-modules we can
use the complete projective tensor product. But for tensor products over H this is
problematic, because there is no canonical topology on H.

Consider for example the trivial onedimensional root datum (Z, ∅,Z, ∅). Then

H = C[Z] ∼= O
(
C×
)
, S = S(Z) ∼= C∞

(
S1
)
.

For t ∈ S1 the ideal

Jt := {f ∈ C∞
(
S1
)

: f(t) = 0} ⊂ C∞
(
S1
)

is generated by Jt ∩O
(
C×
)
. It follows that for any finite dimensional S(Z)-module

V we have
S(Z)⊗C[Z] V ∼= S(Z)⊗S(Z) V = V .

This property does not readily generalize to infinite dimensional modules, for exam-
ple

S(Z)⊗C[Z] S(Z) 6∼= S(Z)⊗S(Z) S(Z) = S(Z) .

The right technique to fix this is bornology. On many vector spaces bornological and
topological analysis are equivalent, but bornologies combine well with homological
algebra in larger classes. Bornologies are not so well-known, so we provide a brief
introduction. See also [Mey1, Mey2].

A bornology on a complex vector space is a certain collection of subsets that are
called bounded. This collection has to satisfy some axioms that generalize obvious
properties of bounded sets in Banach spaces. A morphism of bornological vector
spaces is a linear map that sends bounded sets to bounded sets. There is a natural
notion of completeness of bornological vector spaces, similar to that of completeness
of locally convex spaces.

On any vector space V we can define a more or less trivial bornology, the fine
bornology. A subset X ⊂ V belongs to this bornology if and only X is a bounded
(in the usual sense) subset of some finite dimensional subspace of V . In this case
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V is bornologically complete and any linear map from V to another bornological
vector space is bounded. By default we equip vector spaces with a countable basis
with the fine bornology.

More interestingly, if V is a complete topological vector space (e.g. a Fréchet
space) we can define the precompact bornology on V as follows. We call X ⊂
V bounded if and only if its closure X is compact. Under these assumptions V
is bornologically complete and any continuous map between such vector spaces is
bounded. Conversely, any bounded linear map between two Fréchet spaces with the
precompact bornology is continuous [Mey1, Lemma 2.2].

The category of bornological vector spaces is not abelian, but it does have enough
injective and projective objects. It also possesses inductive and projective limits.

Let V be a bornological vector space and Endbor(V ) the algebra of bounded
linear maps V → V . A subset L ⊂ Endbor(V ) is equibounded if L(X) := {l(x) :
l ∈ L, x ∈ X} is bounded for any bounded set X ⊂ V . This gives Endbor(V ) the
structure of a bornological algebra.

Let A be a unital bornological algebra. By definition a bornological A-module
structure on V is the same as a bounded bilinear map A×V → V , or as a bounded al-
gebra homomorphism A→ Endbor(V ). Let Modbor(A) be the category of bornolog-
ical A-modules.

The A-balanced completed bornological tensor product ⊗̂A is defined by the
following universal property. Bounded linear maps V1⊗̂AV2 → V3 with V3 complete
correspond bijectively to bounded bilinear maps b : V1 × V2 → V3 that satisfy
b(v1a, v2) = b(v1, av2).

In case V1, V2 and A have the fine bornology this is just the algebraic tensor
product over A. On the other hand, if V1, V2 and A are Fréchet spaces with the
precompact bornology, then this agrees with the completed projective tensor product
over A.

By definition a sequence

0→ V1 → V2 → V3 → 0

in Modbor(A) is a bornological extension if the maps are bounded A-module ho-
momorphisms and the sequence is split exact in the category of bornological vector
spaces. We call a differential complex of bornological A-modules exact if it admits
a bounded C-linear contraction. These notions of extensions and exactness make
Modbor(A) into an exact category, whose derived category we denote by Derbor(A).
Let ⊗̂L

A and RHomA denote the total derived functors of ⊗̂A and HomA. Thus U⊗̂L
AV

is an object of Derbor(A) whose homology is TorA∗ (U, V ), and the (co)homology of
RHomA(U, V ) is Ext∗A(U, V ). However, the total derived functors contain somewhat
more information, as the passage to homology forgets the bornological properties of
these differential complexes.

Suppose that A,U and V have the fine bornology. Then the bornological func-
tors ⊗̂A and HomA agree with their algebraic counterparts. Hence TorAn (U, V ) and
ExtnA(U, V ) are the same in the algebraic and the bornological sense.

Let f : A→ B be a morphism of unital complete bornological algebras and

0← A← P0 ← P1 ← · · ·
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a resolution of A by projective A⊗̂Aop-modules.

Theorem A.1. [Mey2, Theorem 35]
The following are equivalent:

1) B⊗̂AP∗⊗̂AB is a projective B⊗̂Bop-module resolution of B.

2) (f∗B)⊗̂L
A(f∗B)→ B⊗̂L

BB (∼= B) is an isomorphism.

3) (f∗U)⊗̂L
A(f∗V )→ U⊗̂L

BV is an isomorphism ∀U ∈ Modbor(Bop), V ∈ Modbor(B).

4) RHomB(U, V )→ RHomA(f∗U, f∗V ) is an isomorphism ∀U, V ∈ Modbor(B).

5) The functor f∗ : Derbor(B)→ Derbor(A) is fully faithful.

We call f isocohomological if these conditions hold.

Direct consequences of conditions 3) and 4) are

TorB∗ (U, V ) ∼= TorA∗ (f∗U, f∗V ),
Ext∗B(U, V ) ∼= Ext∗A(f∗U, f∗V ),

(A.1)

where we mean are the derived functors in the bornological category.

We equip H with the fine bornology and let Modbor(H) be the category of all
bornological H-modules. Notice that any H-module can be made bornological by
endowing it with the fine bornology. This identifies Mod(H) with a full subcate-
gory of Modbor(H). An H-module is bornologically projective if and only if it is
algebraically projective, namely if and only if it is a direct summand of an (alge-
braically) free H-module. So as long as we are working in a purely algebraic setting
the bornological structure does not give much extra, but neither is it a restriction.

We endow S with the precompact bornology, so that any finite dimensional S-
module is bornological. We denote the category of all bornological S-modules by
Modbor(S). Probably there exist S-modules that do not admit the structure of a
bornological S-module, but they seem to be rather far-fetched. We note that a
projective object of Modbor(S) is usually not a projective S-module in the algebraic
sense, rather a completion of the latter.

A bornological H-module (π, V ) is called tempered if it extends to S, that is, if
the following equivalent conditions hold:

1) π extends to a bounded algebra homomorphism S → Endbor(V ),

2) π induces a bounded bilinear map S × V → V .

A (sub-)linear functional f : H → C is tempered if there exist C,N ∈ (0,∞)
such that

|f(Nw)| ≤ C(1 +N (w))N ∀w ∈W.

The collection of all tempered linear functionals is the continuous dual space of
S(R, q).
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Proposition A.2. Let V be a Fréchet space endowed with the precompact bornology.
An H-module (π, V ) is bornological if and only if π(h) : V → V is continuous
∀h ∈ H. Moreover it is tempered if and only if the following equivalent conditions
hold:

3) π induces a jointly continuous map S × V → V ,

4) π induces a separately continuous map S × V → V ,

5) for every v ∈ V and every continuous seminorm p on V the sublinear functional

H → [0,∞) : h 7→ p(π(h)v)

is tempered,

6) for every v ∈ V and every f ∈ V ∗ the linear functional

H → C : h 7→ f(π(h)v)

is tempered.

In particular the category ModFré(S) of continuous Fréchet S-modules is a full sub-
category of Modbor(S).

Proof. We already noted that π(h) : V → V is continuous if and only if it is
bounded. Since H carries the fine bornology this is equivalent to the first assertion.

For the same reason ModFré(S) forms a full subcategory of Modbor(S).
It is clear that condition 3) implies the other five. Conversely 3) follows from 2)

by [Mey1, Lemma 2.2] and from 4) by the Banach-Steinhaus theorem.
If f ∈ V ∗ then |f | is a continuous seminorm on V , so 5) implies 6).
Finally we show that 6) implies 4). Endow H with the induced topology from S

and fix v ∈ V . By assumption the linear map

H → V : h 7→ π(h)v (A.2)

is continuous for the weak topology on V . Since V is Fréchet (A.2) is also continuous
for the metric topology on V [KeNa, 21.4.i]. Hence (A.2) extends continuously to
the metric completion S of H.

Now we fix h =
∑
w∈W

hwNw ∈ S and we write hn =
∑

w:N (w)≤n
hwNw. We assumed

that V is a Fréchet H-module, so (π(hn))∞n=1 is a sequence of continuous linear
operators on V . We just showed that for fixed v ∈ V the sequence (π(hn)v)∞n=1

converges to π(h)v. The Banach-Steinhaus theorem (see e.g. [KeNa, p. 104-105])
assures that π(h) is continuous.

We conclude that (h, v) 7→ π(h)v is separately continuous. 2
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