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Results related to integer flows and cycle covers are presented. A cycle cover of 
a graph G is a collection %Y of cycles of G which covers all edges of G; U is called 

a cycle m-cover of G if each edge of G is covered exactly m times by the members 
of V. By using Seymour’s nowhere-zero 6-flow theorem, we prove that every 
bridgeless graph has a cycle 6-cover associated to covering of the edges by 10 even 

subgraphs (an even graph is one in which each vertex is of even degree). This result 
together with the cycle 4-cover theorem implies that every bridgeless graph has a 
cycle m-cover for any even number m z 4. We also prove that every graph with a 

nowhere-zero 4-flow has a cycle cover V such that the sum of lengths of the cycles 
in V is at most [E(G)1 + IV(G)1 -2, unless G belongs to a very special class of 
graphs. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

The graphs we consider are finite, but may contain loops and multiple 
edges. A graph is simple if it contains no loops or multiple edges. For a 
graph G, V(G) and E(G) denote the sets of vertices and edges of G, respec- 
tively. An edge is said to be contracted if it is removed and its ends are 
identified. A subset S of E(G) is a cut of G if its removal leaves a graph 
with more components and no proper subset of S has this property; S is 
called a k-cut if ISI = k. A k-cut is called an odd cut if k is odd. A l-cut is 
also called a bridge. An even graph is one in which every vertex is of even 
degree; an eulerian graph is a connected even graph. A graph with every 
vertex of degree 3 is called a cubic graph. Sometimes, we treat a subgraph 
as a subset of edges. For instance the symmetric difference of two even 
subgraphs 2, and Z,, denoted by 2, OZ,, is the even subgraph 
(Z, u Z,)\(Z, n Z,). Let G be a graph. A cover of G is a collection Y? of 
subgraphs of G which covers all edges of G; 2 is called an m-cover of G 
if each edge of G is covered exactly m times by the subgraphs in 2’. In this 
paper, we consider the case where each member of X is an even subgraph 
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(the empty set 121 is regarded as an even subgraph of every graph). It is 
clear that a graph is even if and only if it has a decomposition into 
edge-disjoint cycles. For simplicity, a cover (m-cover) by even subgraphs is 
also called a cycle cover (cycle m-cover). 

The following problem was considered by Szekeres [17] for bridgeless 
cubic graphs, and independently, was formulated as a conjecture by 
Seymour [15] for bridgeless graphs. It is now known as the “Cycle Double 
Cover Conjecture.” 

Conjecture l.A. Every bridgeless graph has a cycle 2-cover. 

A stronger form of this conjecture was proposed by Celmius [3]. 

Conjecture l.B. Every bridgeless graph has a 2-cover by 5 even 
subgraphs. 

Bermond, Jackson, and Jaeger [2] established 

THEOREM l.A. Every bridgeless graph has a 4-cover by 7 even subgraphs. 

Goddyn [8] conjectured that every bridgeless graph has a cycle 6-cover 
and proved that for each bridgeless graph G there exists an integer k 
(depending on ]E(G)l) such that G has a cycle (4k +2)-cover. If G is a 
cubic graph, it follows from a simple computation that any cycle 2k-cover 
of G requires at least 3k even subgraphs, with equality if and only if each 
of the 3k even subgraphs is a 2-factor of G. In the edge-set of a cubic graph, 
complementation defines a 1 - 1 correspondence between the perfect 
matchings and the 2-factors. Hence, for a cubic graph G, the following two 
statements are equivalent. 

(a) G has a k-cover by 3k perfect matchings. 

(b) G has a 2k-cover by 3k even subgraphs. 

Thus, the matching polytope theorem of Edmonds [4] implies that for 
each bridgeless cubic graph G there exists an integer k such that G has a 
2k-cover by 3k even subgraphs (2-factors). What is the smallest integer k 
for which every bridgeless cubic graph has a 2k-cover by 3k even sub- 
graphs? This problem, in the perfect matching version, has been studied in 
great detail by Seymour [ 141. Fulkerson [7] (see also [ 143) conjectured 
that every bridgeless cubic graph has a 2-cover by 6 perfect matchings. This 
is equivalent to 

Conjecture l.C. Every bridgeless cubic graph has a 4-cover by 6 even 
subgraphs. 

It is well known that every bridgeless graph is a contraction of some 
bridgeless cubic graph (“split” each vertex into a cycle). Hence, the 
following conjecture is equivalent to Conjecture l.C. 
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Conjecture 1.C’. Every bridgeless graph has a 4-cover by 6 even 
subgraphs. 

A weaker form of this conjecture, namely, every bridgeless graph has a 
S-cover by 12 even subgraphs, has been suggested by Goddyn (personal 
communication). Seymour [14] has shown that if k is odd, the Petersen 
graph has no k-cover by 3k perfect mathcings, equivalently, no 2k-cover by 
3k even subgraphs. In particular, it has no 6-cover by 9 even subgraphs, 
and so neither has any graph that can be contracted to the Petersen graph. 
Is it possible to find a 6-cover by 10 even subgraphs? In this paper, we 
shall prove 

THEOREM 1.1. Every bridgeless graph has a 6-cover by 10 even sub- 
graphs. 

Clearly, Theorem l.A implies that every bridgeless graph has a cycle 
m-cover for any m = 0 (mod 4). If m is odd, a graph G has a cycle m-cover 
if and only if G is even. (Proof: If G is even, then m copies of G give the 
required cover. Conversely, suppose that {Hi, H,, . . . . H,} is a cycle 
m-cover of G and m is odd. Then G = H, 0 H, @ . . - 0 H, and so G is 
even.) Theorem 1.1 together with Theorem l.A yields 

THEOREM 1.2. Every bridgeless graph has a cycle m-cover for any even 
number m 2 4. 

2. PRELIMINARIES 

An orientation D of an undirected graph G is an assignment of a direc- 
tion to each edge e E E(G). Let G be a graph with orientation D. For each 
vertex v E V(G), E+(v) is the set of non-loop edges with tail v, and E-(v) 
the set of non-loop edges with head v. A flow in G under orientation D is 
an integer-valued function 4 on E(G) such that 

1 d(e) = 1 d(e) 
ecE+(u) et f?(v) 

for each DE V(G). 

The support of 4 is defined by 

S(4)= {eEE(G): b(e)#O). 

For a positive integer k, if -k < 4(e) < k for every e E E(G), then 4 is called 
a k-flow, and furthermore, if S(4) = E(G), then 4 is called a nowhere-zero 
k-flow. A well-known result on integer flows is the following one by Tutte 
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((6.3) of [19)), an alternative proof of which has been obtained by 
Younger [20]. 

LEMMA 2.A. If G has ajlow 4 then, for any integer k > 1, G has a k-flow 
4 such that d’(e) = 4(e) (mod k) for every e E E(G). 

If q51 and & are two flows in G under the same orientation D, let 1 and 
m be two integers. Then the sum # = 14, + rn& is a flow in G under D with 
d(e) = @i(e) + m&(e) for each e E E(G). Let q5 be a flow in G under a given 
orientation and eEE(G). If we reverse the direction of e and change 4(e) 
to -4(e), we still have a flow in G under the new orientation. This means 
that 

PROPOSITION 2.1. If G has a jlow q5 under some orientation D, then, for 
any orientation D’, G has a flow 4’ under D’ with I&(e)1 = Id(e)I for every 
edge e. 

From now on, a flow in G is always associated with some orientation of 
G, and whenever necessary, we can make two flows in G be associated with 
the same orientation, The following proposition follows easily from the 
definition. 

PROPOSITION 2.2. Let q5 be a flow in G and 2 = {e E E(G) : qS(e) is odd}. 
Then Z is an even subgraph of G. 

By the definition, a k-flow is a k’-flow for any k’ > k. It is easy to check 
that the complete graph on 4 vertices has no nowhere-zero 3-flows. Tutte 
[18] has proved that the Petersen graph has no nowhere-zero 4-flows. 
Clearly, if q5 is a flow in G, then q5 also defines by restriction a flow in the 
graph obtained by contracting an edge of G. The following famous conjec- 
tures are due to Tutte (see [20]). 

(1) Every bridgeless graph without 3-cuts has a nowhere-zero 3-flow. 

(2) Every bridgeless graph containing no subgraph contractible to 
the Petersen graph has a nowhere-zero 4-flow. 

(3) Every bridgeless graph has a nowhere-zero S-flow. 

Towards a proof of (3), Jaeger [13] established that every bridgeless 
graph has a nowhere-zero 8-flow. This was improved by Seymour [16] in 
the following famous theorem. 

THEOREM 2.A. Every bridgeless graph has a nowhere-zero 690~. 
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By a result derived from Tutte’s work by Jaeger [ 111 (or see [ 131) 
every graph with a nowhere-zero 4-flow can be covered by two even 
subgraphs, and these two even subgraphs, together with their symmetric 
difference, form a 2-cover by three even subgraphs. That is, 

LEMMA 2.B. Every graph with a nowhere-zero 4-j7ow has a 2-cover by 3 
even subgraphs. 

The following result was proved by Jaeger [ 121 by algebraic methods. 
We present below a constructive proof. 

LEMMA 2.C. Let G be a graph and HE E(G). H is contained in an even 
subgraph of G if and only if H contains no odd cut of G. 

Proof: Contract all edges of E(G) -H and denote by G* the resulting 
graph. Then E(G*) = H, and H contains no odd cut of G if and only if G* 
is even. We show now that G* is even if and only if H is contained in an 
even subgraph of G. If G* is even, then it is the union of a set of edge- 
disjoint cycles. Clearly, each such cycle can be extended, by adding paths 
in E(G) - H, to a cycle of G and the smmetric difference of all these 
extended cycles is an even subgraph of G which contains H. Conversely, if 
H is contained in an even subgraph of G, then G* is the contraction of this 
even subgraph and so is even. This proves the lemma. 1 

3. PROOF OF THEOREM 1.1 

We first prove the following lemma by applying Seymour’s 6-flow 
theorem (Theorem 2.A). 

LEMMA 3.1. For any bridgeless graph G, there is a partition of 
E(G):E(G)=Uf=,Ai, where AinAj=@ ifi#j, such that G-A, has a 
nowhere-zero 390~ if 1 < i < 3 and a nowhere-zero 4-flow if 4 < i < 6, and 
moreover, A, v A, v A, is an even subgraph of G. 

Proof: By Theorem 2.A, G has a nowhere-zero 6-flow qi. Set 

Z= {eE E(G) : 4(e) is odd}. 

By Proposition 2.2, Z is an even subgraph and hence has a nowhere-zero 
2-flow. We shall choose an orientation D of G under which G has a 2-flow 
q5’ such that 
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Moreover, by Proposition 2.1, G has a nowhere-zero 6-flow 4” under D 
with I#“(e)[ = I&e)1 for all edges e. Setting 

Ei= {eEE(G):d”(e)=i}, 

we have that 

Z=u {E,:z%(+l, +3, *5}}. 

Let 

qbi = f$” + id’, ie { fl, f3, &5}. (3.1) 

Then 4i is a flow in G (not necessarily nowhere-zero). As an illustration, we 
list the vaues of 4-i and 4,. 

i 

0, ecE, 0, eEE-, 

b-,(e)= -6, ee E-, and dl(e)= 6, 
+ 2 +4, otherwise - ,- { 

eEE5 

+2 +4 otherwise. - ,- 9 

By Lemma 2.A, # _ I yields a 3-flow in G with support E(G) - (E, u E_ 5). 
Similarly, #i yields a 3-flow with support E(G)- (E-, u E,) and & (or 4”) 
gives a 3-flow with support E(G)- (E-,u E3). Set A, = (E, u Ee5), 
A,=(E-,uE,), A,=(Ep,uE3). Then A,uAzuA,=Z is an even sub- 
graph of G. Furthermore, let Z = E(G) - Z. If we contract all edges of Z, 
then (l/2)4 (or (l/2)$“) defines by restriction a nowhere-zero 3-flow in the 
resulting graph G* with E(G*) = Z. By Lemma 2.B, G* has a 2-cover by 3 
even subgraphs, say Zj (1 <j< 3). Let A,= Z, nZ,, A, =Z1 nZ,, and 
A,nZ,nZ,.ThenZ=A,uA,uA,andforeachi,4~i~6,Z-Aiisan 
even subgraph of G *. Consider first Z - A,. Extend Z - A,, as explained 
in the proof of Lemma 2C, to an even subgraph of G, say F, such that 
Z-A,sFzG-A,. Then {F,Z} covers all edges of E(G)-A,. Letf, 
and fz be two ~-BOWS in G with S(fl) = F and S(f2) = Z. Then fi + 2f2 is 
a 4-flow in G with support E(G) - A,. The same arguments can be applied 
to Z - A, and Z - A,. This completes the proof of Lemma 3.1. 1 

Proof of Theorem 1.1. By Lemma 3.1, G has an even subgraph Z with 
a partition E(Z) = A, u A, u A, such that G - Ai has a nowhere-zero 
3-flow, 1~ i < 3. By Lemma 2.B, G - A, has a 2-cover by 3 even subgraphs, 
say (Zi,, Zil, Zi3}. Thus, the 9 even subgraphs {Z, : 1 Q i, j< 3) together 
cover each edge in E(G) - Z exactly 6 times and each edge in Z exactly 4 
times. Consequently, {Z,@ Z : 1 < i, j < 3 > covers each edge in E(G) - Z 
exactly 6 times and each edge in Z exactly 5 times. Therefore, {Z; Z, 0 Z : 
1~ i, j< 3) is a 6-cover of G consisting of 10 even subgraphs, as 
required. m 
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4. GRAPHS WITH A NOWHERE-ZERO ~-FLOW 

DEFINITION 4.1. A graph is called a multi-tree if it is obtained from a 
tree by replacing each edge by at least two edges with the same ends. 
Clearly, a multi-tree is 2-edge-connected and every cycle consists of exactly 
two edges. 

DEFINITION 4.2. An odd-multi-tree is a multi-tree in which each pair of 
adjacent vertices is joined by an odd number of edges. 

DEFINITION 4.3. Let 4 be a flow in a graph G. Define E,,,,(4)= 
{e l E(G) : +4(e) is even}. 

LEMMA 4.1. Zf G has a nowhere-zero 2m-flow, let 4 be a nowhere-zero 
2m-flow in G with [E,,,,(b)1 minimum, then E,,,,(4) contains no cycle, and 
hence ) E,,,,(b)\ < ) V(G)! - 1. Moreover equality holds if and only if G is an 
odd-multi-tree plus some loops or 1 V(G)1 = 1. 

Proof: If G is even, then G has a nowhere-zero 2-flow, say #1. By the 
choice of 9, l~ev,,(#)l G IEeven(il)l =O. So Len(#) = 0 and hence 
IE,,,,(#)I < 1 V(G)/ - 1 with equality if and only if 1 V(G)1 = 1. Let us 
assume now that G is not even and so ( V(G)/ > 1 and m > 1. 

If there is a cycle C’S E,,,,(d), let 41 be a 2-flow with S(4,) = C under 
the same orientation as 4. Then 4 + #1 is a nowhere-zero 2m-flow with 
fewer edges of even value than (b contradicting the choice of (6. This proves 
the first part of the theorem. For the second part, we consider two cases: 

Case 1. G is not a multi-tree plus some loops. If IEev,,(q5)l = 
I V(G)( - 1, then E,,,,(d) is a spanning tree and there is a E E(G) - E,,,,(4) 
such that E . ...($) u {a} has a unique cycle C, with IC,I > 3. As before, let 
4, be a 2-flow with S(d,) = C,. Since m > 1, we may choose 6’ in (1, - 1) 
such that 0 < 14(a) + fl&l(a)l < 2k. Then @=++ 194, is a nowhere-zero 
Zm-flow in which d’(e) is odd for every e E C, - {a}. So 4 has fewer edges 
of even value than 4. This contradicts the choice of 4 and so IE,,,,(c$)I # 
V(G)1 - 1. 

Case 2. G is a multi-tree plus some loops. Let T be a spanning tree of 
G. For each edge e E T, denote by B, the subgraph induced by all edges 
parallel to e in G. It is easy to see that B, has a nowhere-zero 2-flow if lB,l 
is even, and a nowhere-zero 3-flow with exactly one edge of value +2 if 
lB,J is odd. The sum of these flows, together with nowhere-zero 2-flows on 
loops, yields a nowhere-zero 3-flow with at most /E( T)I edges of value +2. 
This implies, from the choice of #, that IEe.,,,(c$)I < IE( T)I with equality 
only if [B,l is odd for every e E T, namely, only if G is an odd-multi-tree 
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plus some loops. On the other hand, if G is an odd-multi-tree plus some 
loops, then each block B, is an edge cut of G, and thus, for any nowhere- 
zero flow of G, B, must contain at least one edge of even value. So, 
IE,,,,(d)I 2 IE(T)l, and therefore I&,,,(b)1 = IE(T)I = I V(G)1 - 1. This 
proves the second part of the lemma, and completes the proof. 1 

In [Z], Bermond, Jackson, and Jaeger proved (see, also, Alon and Tarsi 
[ 11) that every bridgeless graph G can be covered by even subgraphs of 
total size at most min{(5/3) IE(G)I, [E(G)1 + (7/3)(1 V(G)1 - l)}. An alter- 
native proof of the first upper bound, and a generalization to weighted 
graphs, was given in [S]. The second upper bound was improved by 
Fraisse [6] to IE( G)l + (5/4)( I V(G)1 - 1). Itai and Rodeh [lo] proved that 
if G has two edge-disjoint spanning trees, then G can be covered by two 
even subgraphs of total size at most [E(G) + I V(G)1 - 1. Jaeger [ 131 has 
show that every graph with two edge-disjoint spanning trees has a 
nowhere-zero 4-flow. The following theorem generalizes the above result of 
Itai and Rodeh, and completely characterizes the extremal graphs. 

THEOREM 4.1. Zf G has a nowhere-zero 4-flow, then the minimum total 
size of two even subgraphs which together cover G is at most 
IE(G)I + I V(G)1 - 1, with equality if and only if G is an odd-multi-tree plus 
some loops or 1 V(G)1 = 1. 

Proof: Let 4 be a nowhere-zero 4-flow of G with I,?&,,,(#)[ minimum 
By Lemma 4.1, IE,,,,(b)I < I I’(G)- 1, with equality only if G is an odd- 
multi-tree plus some loops or 1 V(G)] = 1, where E,,,,(d) = (eEE(G) : 
Id(e)1 = 2). For simplicity, set E, = E,,,,(d). It follows from the definition 
of a flow that E, contains no odd cut of G. This together with Lemma 2.C 
implies that there is an even sugraph Z such that E, E Z. Note that 
E(G) -E, is an even subgraph by Proposition 2.2. We see that 
{(E(G)-WOZ, Z} is a cover of G of total size (E(G)1 + l&l < [E(G)1 + 
1 V(G)1 - 1, with equality only if G is an odd-multi-tree plus some loops or 
( V(G)1 = 1. Therefore, the minimum total size of two even subgraphs which 
together cover G is at most IE(G)( + I V(G)1 - 1, with equality only if G is 
an odd-multi-tree plus some loops or I l’(G)1 = 1. Conversely, if G is an 
odd-multi-tree plus some loops or ) V(G)1 = 1, any cycle cover of G must 
cover at least one edge more than once between each pair of adjacent ver- 
tices of G, and so has total size at least I E(G)1 + ( V(G)1 - 1. This completes 
the proof. 1 

It was proved in [9] (also see [2]) that every 2-edge-connected planar 
graph has a cycle cover of total size equal to an optimal solution of the 
Chinese Postman Problem. This implies that every bridgeless planar graph 
G has a cycle cover of total size at most 1 E(G)! + ( V(G)1 - 1; a different 
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proof has been obtained by Fraisse [6]. This result is sharpened by the 
following corollary. 

COROLLARY 4.1. Every bridgeless planar graph G can be cofered by two 
even subgraphs of total size at most IE(G)l + 1 V(G)1 - 1, this being best 
possible if and only if G is an odd-multi-tree plus some loops or 1 V(G)1 = 1. 

ProoJ By the Four-Colour-Theorem, G has a nowhere-zero 4-flow. The 
result follows from Theorem 4.1. 

If we call a graph with just one vertex trivial, then Corollary 4.1 implies 
that every nontrivial simple planar graph G can be covered by two even 
subgraphs of total size at most IE(G)I + 1 V(G)( - 2. Does every bridgeless 
graph G have a cycle cover of total size at most (E(G)\ + ( V(G)\ - l? This 
problem, raised by Itai and Rodeh [lo], is still open. Consider the com- 
plete bipartite graph G with two parts X and Y, where X= {x0, xl, x2) 
and Y= {y,, y2, . . . . Yap}, m 3 1. Let D be the orientation such that every 
edge of G has tail in X and head in Y. Set &e) = - 2 if e = Xi yim + j, where 
0 < i < 2 and 1 <j < m, and 4(e) = 1 otherwise. Then 4 is a nowhere-zero 
3-flow in G. It is clear that any cycle cover of G needs at least 
(E(G)( + ( V(G) - 3 edges. This shows that the upper bound in the following 
conjecture, if true, is sharp. 

Conjecture 4.1. If G is a nontrivial simple graph with a nowhere-zero 
3-flow, then G can be covered by two even subgraphs of total size at most 
IE(G)I + I V(G)I - 3. 

It was proved in [2] that every 4-edge-connected graph G can be 
covered by two even subgraphs of total size at most (4/3) /E(G)/. We 
conclude this paper with the following conjecture and remark. 

Conjecture 4.2. Every 4-edge graph G can be covered by two even 
subgraphs of total size at most (6/5) I E( G)l. 

Remark 4.1. The upper bound (6/5) [E(G)1 in the above conjecture is 
best possible, in view of the complete bipartite graph with two parts X and 
Y such that 1 YI > 1X/= 5. 

Remark added in proof Conjecture 4.1 has been proved by A. Raspaud and C. Q. Zhang, 
independently. 
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