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1. Introduction

The purpose of this article is to describe two problems which involve
drawing graphs in the plane. We will discuss both complete graphs and
complete bicoloured graphs. The complete graph K, with n points or vertices
has a line or edge joining every pair of distinct points, as shown in fig. 1 for
n=2734,5,6.
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In each of these complete graphs every edge is a straight line segment. In
K,, K5 and K,, no two distinct edges intersect. As anyone can plainly see,
the number of intersections or crossings in K as drawn in 5 and in Ky is 15.
It is stipulated that such an intersection involves only two edges and not more.

For any graph G, we say that the crossing number ¢(G) is the minimum
number of crossings with which it is possible to draw G in the plane. We note
that the edges of G need not be straight line segments, and also that the result
is the same whether G is drawn in the plane or on the surface of a sphere.
Another invariant of G is the rectilinear crossing number, ¢(G), which is the
minimum number of crossings when G is drawn in the plane in such a way
that every edge is a straight line segment. We will find by an example that
this is not the same number obtained by drawing G on a sphere with the edges
as arcs of great circles. In drawing G in the plane, we may locate its vertices
wherever it is most convenient.
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Consider the case that G = K,. The determination of a formula for ¢(X,)
has been studied extensively. But ¢(K),) is, to our knowledge, a new question.
Neither of these questions is answered in the present note.

In fig. 2, K5 and K¢ are drawn in the plane with straight edges. One can
verify that ¢(Ks) = 1, and ¢(Kg) = 3 as shown.

A A

FIG. 2

A plane graph is one which is already drawn in the plane in such a way that
no two of its edges intersect. A planar graph is one which can be drawn as a
plane graph. In terms of the notation introduced above, a graph G is planar
if and only if ¢(G) = 0. The earliest result concerning the drawing of graphs
in the plane is due to Fary (1), who showed that any planar graph (without
loops or multiple edges) can be drawn in the plane in such a way that every
edge is straight. Thus Fary’s result may berephrased: if ¢(G) = 0, then ¢(G) = 0.

2. Complete Bicoloured Graphs

The complete bicoloured graph K,, , consists of m points of one colour and
n points of another colour, with every pair of points of different colour joined
by a line. The exact formula for the intersection number of the complete
bicoloured graph was found by Zarankiewicz (4), who showed that

c(K2m, 2n) = (m2 - m)(nz - n)

(Kym, 2n+1) = (m2=m)n> 6))

(Kym+1,2041) = min’.

The graph Kj; 3 is of special interest, since it is one of the two courbes
gauches of Kuratowski (3), together with the complete graph Ks. He proved
that a given graph G is planar if and only if it contains no subgraph homeo-
morphic to either of them. Itisseen at once from equations (1) that (K3, 3) =1,
as shown in fig. 3, where the colour (1 or 2) of each point is indicated by a
numeral near it. :
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3. Complete Graphs

There have been many attempts to find an explicit formula for the crossing
number of a complete graph, analogous to that of equation (1) for complete
bicoloured graphs. In the note by Guy (2), the following upper bound for
¢(K,) is given; it has been independently discovered several times, both before
and after it appeared in print for the first time in (2).

1 2 32
(k< [FFTD I medd, @
dan(n—4)(n—2)*, neven.

However, no-one has shown as yet that K, cannot be drawn in the plane
with fewer intersections than the number indicated by this formula. In fact
it has not even been shown that the intersection number of K, has the order
of n*[64 when n becomes large.

Conjecture. The exact value of the crossing number of K, is given by the
upper bounds stated in (2).

After many exhaustive attempts at finding a formula for ¢(K,), which would
even serve as an upper bound, all the information that was found is included
in the following:

Table of conjectured values:

n |2 3 4 5 6 7 8 9 10

(k) |0 0 0 1 3 9 18 36 60

K) | 0 0 0 1 3 9 19 36 63

The next two figures show two drawings of Ks, each with 18 crossings. In
fig. 4, we have the interesting presentation of Kg with 18 crossings in the plane,
but drawn in such a way that it can be transferred onto the surface of a sphere
in such a way that every edge becomes a segment of a great circle.

On the other hand, the presentation of Ky in fig. 5 is in accordance with the
method due to A. Hill, as mentioned in Guy (2), for drawing K, with the
number of crossings as in (2).



i
7

@
\\




NUMBER OF CROSSINGS IN A COMPLETE GRAPH 337

In fig. 6, K5 is drawn rectilinearly in the plane with 19 crossings. Although
no proof is known, it appears that this is the smallest possible number of
rectilinear crossings. This is the example mentioned above, of a graph which
can be drawn geodesically on a sphere with 18 crossings, but requiring 19

FIG. 6

crossings when drawn geodesically in the plane. One may also ask about
geodesic drawings of graphs on other surfaces.

Finally, in fig. 7, we observe K, drawn with 36 rectilinear crossings, a
number which agrees with (2).

Based on these data, we make the following conjectures. The rectilinear
crossing number &(K,) exceeds ¢(K,) for n = 8 and all »n>10. We are not as
yet able to formulate a likely result for the limiting ratio &(K,)/c(K,) as n
increases.

It is hoped that this problem will eventually come to the attention of
someone who can settle the above conjecture which asserts that (2) is in fact
an equation. Until now, the attempts at proving this to be the case have
consisted mainly of a construction which verifies that the formule constitute
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an upper bound, followed by assertions rather than proofs that they are also
a lower bound.

In general, it would be interesting to express for any graph G the numbers
c(G) and ¢(G) in terms of other invariants of G.
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