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Abstract

It was proved by [M.R. Garey, D.S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic
Discrete Methods 4 (1983) 312–316] that computing the crossing number of a graph is an NP-hard problem.
Their reduction, however, used parallel edges and vertices of very high degrees. We prove here that it is NP-
hard to determine the crossing number of a simple 3-connected cubic graph. In particular, this implies that
the minor-monotone version of the crossing number problem is also NP-hard, which has been open till now.
© 2005 Elsevier Inc. All rights reserved.
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1. Background on crossing number

We assume that the reader is familiar with basic terms of graph theory. In this paper we
consider finite simple graphs, unless we specifically speak about multigraphs. A graph is cubic
if it has all vertices of degree 3.

In a ( proper) drawing of a graph G in the plane the vertices of G are points and the edges
are simple curves joining their endvertices. Moreover, it is required that no edge passes through
a vertex (except at its ends), and that no three edges intersect in a common point which is not a
vertex. An edge crossing is an intersection point of two edges-curves in the drawing which is not
a vertex. The crossing number cr(G) of a graph G is the minimum number of edge crossings in a
proper drawing of G in the plane (thus, a graph is planar if and only if its crossing number is 0).
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A proper drawing of G with cr(G) crossings is called optimal. We remark that there are several
possible definitions of crossing number which are similar or even looking equivalent with each
other [11], but one of them has, surprisingly, turned out recently to be different [12].

Crossing number problems were introduced by Turán, whose work in a brick factory during
the Second World War led him to inquire about the crossing number of the complete bipartite
graphs Km,n. Turán devised a natural drawing of Km,n with �m/2��(m − 1)/2��n/2��(n − 1)/2�
crossings, but the conjecture of Zarankiewic that such a drawing is the best possible, is still wide
open. (Look at an interesting story of a false “proof” of the conjecture [8].) Not surprisingly,
exact crossing numbers are in general very difficult to compute. As an example of another graph
family whose crossing number has been deeply studied, we mention the Cartesian products of
cycles Cm × Cn—their crossing number m(n − 2) for m � n was conjectured in [9]. There has
been a number of particular results on this difficult problem (such as [10] for example), and,
remarkably, the problem is almost solved now [6]. That is one of only a few nontrivial exact
crossing numbers known today.

The algorithmic problem CROSSINGNUMBER is given as follows:

Input: A multigraph G and an integer k.
Question: Is it true that cr(G) � k?

Computing the crossing number has important applications in, for example, VLSI design, or
in graph visualization. The problem is in NP since one could guess the optimal drawing, replace
the crossings in it with new (simultaneously subdividing) vertices, and verify planarity of the
resulting graph. It has been proved by Garey and Johnson [4] that CROSSINGNUMBER is an
NP-complete problem for k on the input.

Since then, a new significant complexity result about graph crossing number has appeared
only recently—a paper by Grohe [7] presenting a quadratic-time (FPT) algorithm for CROSSING-
NUMBER(k) with constant k. To illustrate algorithmic difficulty of the crossing number problem
in general, we remark that it is quite nontrivial even to approximate the crossing number of
special projective graphs [5]. There is also a long-standing open question, originally asked by
Seese (cf. [14]): What is the complexity of CROSSINGNUMBER for graphs of fixed tree-width?
(Here we leave aside other results dealing with various restricted versions of the crossing number
problem appearing in connection with VLSI design or with graph drawing, such as the “layered”
or “rectilinear” crossing numbers, etc.)

Before the above mentioned FPT algorithm of Grohe for crossing number appeared; Fel-
lows [2] had observed that there are finitely many excluded minors for the cubic graphs of cross-
ing number at most k, which implied a (non-constructive) algorithm for CROSSINGNUMBER(k)

with constant k over cubic graphs. That observation might still suggest that CROSSINGNUMBER

was easier to solve over cubic graphs than in general. However, that is not so, as we show in this
paper.

2. Crossing number and OLA

We first recall another classical NP-complete combinatorial problem [3] called OPTIMAL-
LINEARARRANGEMENT, which is given as follows:

Input: An n-vertex graph G and an integer a.
Question: Is there a bijection α :V (G) → {1, . . . , n} (a linear arrangement of vertices) such

that the following holds:
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∑
uv∈E(G)

∣∣α(u) − α(v)
∣∣ � a? (1)

The sum on the left of (1) is called the weight of α.

The above mentioned paper [4] actually reduces CROSSINGNUMBER from OPTIMAL-
LINEARARRANGEMENT. We, however, consider that reduction “unrealistic” in the following
sense: The reduction in [4] creates many large classes of parallel edges, and it uses vertices of
very high degrees. (There seems to be no easy modification avoiding those.) So we consider it
natural to ask what can be said about the crossing number problem on simple graphs with small
vertex degrees [13].

It might be tempting to construct a “nicer” polynomial reduction for CROSSINGNUMBER

from another NP-complete problem called Planar-SAT (a version of the satisfiability problem
with a planar incidence graph). There have been, to our knowledge, a few attempts in this direc-
tion, so far unsuccessful. We consider this phenomenon remarkable since Planar-SAT seems to
be much closer to crossing-number problems than the Linear Arrangement is.

Still, we have found another construction reducing CROSSINGNUMBER from OPTIMAL-
LINEARARRANGEMENT, which produces cubic graphs. The basic idea of our construction is
similar to [4], but the restriction to degree-3 vertices brings many more difficulties to the proofs.
The construction establishes our main result which reads:

Theorem 2.1. CROSSINGNUMBER is NP-complete for simple 3-connected cubic graphs.

Let us, moreover, define the minor-monotone crossing number mcr(G): A minor F of a
graph G is a graph obtained from a subgraph of G by contractions of edges. Then mcr(G) as
the smallest crossing number cr(H) over all graphs H having G as a minor. The traditional ver-
sions of crossing number do not behave well with respect to taking minors; one may find graphs
G such that cr(G) = 1 but cr(G′) is arbitrarily large for a minor G′ of G. On the other hand,
mcr(G′) � mcr(G) for a minor G′ of G by definition. We refer to [1] for a closer discussion of
the properties of minor-monotone crossing number.

The algorithmic problem MM-CROSSINGNUMBER (from “Minor-Monotone”) is defined as
follows:

Input: A multigraph G and an integer k.
Question: Is it true that mcr(G) � k?

Our main result immediately extends to a proof that also mcr(G) is NP-hard to compute,
which has been an open question till now.

Corollary 2.2. MM-CROSSINGNUMBER is NP-complete.

Observation. Let a cubic graph G be a minor of a multigraph H . Then some subdivision of G

is contained as a subgraph in H . Hence cr(G) � cr(H).

Thus cr(G) = mcr(G) for cubic graphs, and the corollary follows directly from Theorem 2.1.

3. The cubic reduction

Let us call a cubic grid the graph illustrated in Fig. 1 (looking like a “brick wall”). We say
that the cubic-grid height equals the number of the “horizontal” paths, and the length equals the
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number of edges on the “top-most” horizontal path. (The positions are referred to as in Fig. 1.)
Formally, the cubic grid of even height h and length �, denoted by C′

h,�, is defined

V
(
C′

h,�

) = {vi,j : i = 1,2, . . . , h; j = 0,1, . . . , �}
∪ {wi,j : i = 2,3, . . . , h − 1; j = 1,2, . . . , �},

E
(
C′

h,�

) = {v2i−1,j v2i,j : i = 1,2, . . . , h/2; j = 0,1, . . . , �}
∪ {w2i,jw2i+1,j : i = 1,2, . . . , h/2 − 1; j = 1,2, . . . , �}
∪ {vi,j−1wi,j ,wi,j vi,j : i = 2,3, . . . , h − 1; j = 1,2, . . . , �}
∪ {vi,j−1vi,j : i = 1, h; j = 1,2, . . . , �}.

Suppose we now identify the “left-most” vertices in the grid C′
h,� with the “right-most” ones,

formally vi,0 = vi,� for i = 1,2, . . . , h, and simplify the resulting graph. Then we obtain the
cyclic cubic grid Ch,� (which is, indeed, a cubic graph).

Let us have a cubic grid C′
h,� or Ch,� as above. We say that an edge f is attached to the

grid at low position j if the edge v1,j−1v1,j is subdivided with a vertex xf , where xf is an
endvertex of f as well. We say that f is attached at high position j if an analogous construction
is done for the edge vh,j−1vh,j . This is illustrated on a detailed picture in Fig. 2. Notice that the
new vertex xf introduced when attaching an edge f has degree 3, and that the degrees of other
vertices are unchanged. Similarly, a vertex x is attached to the grid at position j if two new
edges f,f ′ with a common endvertex x are attached via their other endvertices at low and high
positions j , respectively, to our cubic grid.

In a cyclic cubic grid Ch,�, the cycles Mi on vertices vi,0wi,1vi,1wi,2 . . . vi,�−1wi,� for i =
2,3, . . . , h− 1 and on vertices vi,0vi,1 . . . vi,�−1 for i = 1, h are called the main cycles of the grid
Ch,�. M1 and Mh are also referred to as the outer main cycles. We use the same names, main

Fig. 1. An illustration of a cubic grid (a fragment of length 11 and height 8).

Fig. 2. A detail of the cyclic cubic grid C4,�, with an edge f attached at high position j .
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cycles, for the subdivisions of the cycles Mi in graphs created from the grid Ch,� by attaching
edges.

Assume now that we are given a graph G on n vertices. In order to prove Theorem 2.1, we
are going to construct a cubic graph HG depending on G. (Although our graph HG is huge, it
has polynomial size in G.) We show then how one can compute the weight of an optimal linear
arrangement for G from the crossing number cr(HG), and vice versa. Our construction uses
several size parameters defined next:

n = ∣∣V (G)
∣∣, m = ∣∣E(G)

∣∣,
t = 2mn,

r = t2 = 4m2n2,

s = m3r = 4m5n2,

q = (
m3 + n + 1

)
r = 4m5n2 + 4m2n3 + 4m2n2,

z = 2
(
(s + rn)nt + r

) = 16m6n4 + 16m3n5 + 8m2n2. (2)

Without loss of generality we may assume that the graph G is sufficiently large, say

m > n > 100. (3)

We start with two copies B1,B2 of the cyclic cubic grid Cz,q , called here the boulders (for their
huge size that keeps the rest of our graph “in place”). Then we make n disjoint copies R1, . . . ,Rn

of the cyclic cubic grid Ct,q , called here the rings. An intermediate step in the construction—our
graph Hm,n is obtained by the following operations:

• Start with the disjoint union B1 ∪ B2 ∪ R1 ∪ · · · ∪ Rn of the two boulders and the n rings.
• For every pair of integers 0 � i < m3 and 0 � j < r , take a new edge κi+jm3 , and attach

κi+jm3 at low positions i + j (m3 + n + 1) < q to the boulder B1 via one end, and to B2 via
the other end. These s new edges κ0, . . . , κs−1 are called the free spokes in Hm,n.

• For every pair of integers 1 � i � n and 0 � j < r , set p = i − 1 +m3 + j (m3 +n+ 1) < q ,
and take two new vertices νi,j and ν′

i,j connected by an edge μ3
i,j . Then attach a new

edge μ1
i,j with one end νi,j (new edge μ5

i,j with one end ν′
i,j ) to the boulder B1 (boul-

der B2) at low position p via the other end. Finally, attach a new edge μ2
i,j with one end νi,j

(new edge μ4
i,j with one end ν′

i,j ) to the ring Ri at low (high) position p via the other end.

The path formed by three edges μ1
i,j ,μ

3
i,j ,μ

5
i,j is called the j th ring spoke of Ri in Hm,n.

We remark that the above construction attaches only one edge at the same position of each of the
boulders and rings, and so the operations are well defined. (Fig. 3.) This remark applies also to
further constructions on the graph HG.

To simplify our notation, the above names of the boulders B1,B2 and the rings Ri are inherited
to the subdivisions of those boulders and rings created in the construction of Hm,n. The same
simplified notation is used further for the graph HG, too.

So far, the constructed graph Hm,n does not depend on a particular structure of G, but only
on its size and our choice of the parameters (2). One may say that Hm,n acts as a skeleton in the
forthcoming construction, in which the rings of Hm,n shall model the vertices of G, and the order
the rings are drawn in shall correspond to a linear arrangement of vertices of G. The following
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Fig. 3. How to attach free and ring spokes in the graph Hm,n.

simple lemma shows necessary “flexibility” of drawings of Hm,n with any order of the rings.
(Actually, the number of crossings in the lemma is optimal, as we implicitly show in Section 5.)

Lemma 3.1. For any permutation π of the set {1,2, . . . , n}, there is a drawing of the graph Hm,n

with (s + rn)nt crossings conforming to the following: The subdrawings of all the rings are
pairwise disjoint, each ring separates the two boulders in Hm,n from each other, and any free
spoke in the drawing intersects all the rings in order Rπ(1), . . . ,Rπ(n) from B1 to B2.

Proof. We start with the unique planar embedding of the boulders and the free and ring spokes
of Hm,n. Then we draw each ring Ri of Hm,n so that Ri separates the boulders from each other in
the drawing, and that the rings are nested into each other in the required order Rπ(1), . . . ,Rπ(n).
So each of the s free spokes, and each of the rn ring spokes, has t crossings with each ring
(one with every main cycle), summing to a total of (s + rn)nt crossings. We finally attach, in a
suitable drawing, each of the ring spokes to its ring by the edges μ2

i,j and μ4
i,j with no additional

crossings. See Fig. 3 for an illustration. �
Finally, the particular graph HG needed for our polynomial reduction from G is constructed

as follows:

• Start with the graph Hm,n, for n = |V (G)| and m = |E(G)|. Number the vertices V (G) =
{1,2, . . . , n}.

• For every ordered pair 0 < i, j � n such that {i, j} ∈ E(G), set p = (i − 1 +
jn − n)4m2(m3 + n + 1) + m3 + n < q . In the graph Hm,n, attach new vertices χij ,χ

′
ij to

the rings Ri,Rj , respectively, at positions p, and add a new edge χijχ
′
ij . The subgraph Xi,j

induced on the five new edges incident with χij ,χ
′
ij is called a handle of the edge ij in HG

(Fig. 4).

That is, the rings in HG model the vertices of G, and the handles model the edges of G. As we
show later, an optimal drawing of HG uniquely determines an ordering of the rings of Hm,n, and
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Fig. 4. How to attach handles of the edges of G in the graph HG.

hence the weight of an optimal linear arrangement of G corresponds to the number of crossings
between the rings and the handles in an optimal drawing of the graph HG.

We conclude with an upper bound on the crossing number of our constructed graph, which
naturally follows from the drawings introduced in Lemma 3.1.

Proposition 3.2. Let us, for a given graph G, construct the graph HG as described above. If G

has a linear arrangement of weight A, then the crossing number of HG is

cr(HG) � (s + rn)nt + 2(A + m)t − 4m,

where the weight of a linear arrangement is defined by (1) in Section 2, and m,n, r, s, t are given
by (2) in Section 3.

Proof. Let α be the linear arrangement of G of weight A. We draw the graph Hm,n ⊂ HG by
Lemma 3.1 with (s+rn)nt edge crossings, such that the rings are ordered as Rα−1(1), . . . ,Rα−1(n)

from B1 to B2. Then we draw the handles in HG for all edges of G in the natural (shortest) way,
as illustrated in Fig. 4.

Now for 0 < i, j � n such that {i, j} ∈ E(G), the handle of ij in HG has t − 1 crossings with
the main cycles of the ring Ri and t − 1 crossings with those of Rj . Moreover, the handle has
t · |α(i) − α(j)| − t crossings with the rings “between Ri and Rj .” Keeping in mind that each
edge of G actually makes two handles of ij and of ji, we sum the crossings of the handles:∑

ij∈E(G)

2
(
t · ∣∣α(i) − α(j)

∣∣ − t + 2t − 2
)

= 2t
∑

ij∈E(G)

∣∣α(i) − α(j)
∣∣ + 2mt − 4m = 2At + 2mt − 4m.

Altogether, the described drawing of HG has (s + rn)nt + 2(A + m)t − 4m crossings. �
Using the obvious inequality A � m(n − 1), it is easy to conclude:

Corollary 3.3. For any G conforming to (3), cr(HG) < z/2 = (s + rn)nt + r .

Now, to prove correctness of our reduction, we have to prove a lower bound on the crossing
number of our graph HG, depending on weight of the optimal linear arrangement of G. We
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achieve this goal in the next sections by showing that an optimal drawing of HG has to look
(almost) like the drawing described in the proof of Proposition 3.2. Here we give a brief outline
of the main steps: We argue that the boulders of HG have to be drawn without crossings at all,
and that each ring has to separate the two boulders from each other. Such a configuration already
forces the number of crossings of Hm,n as in Lemma 3.1. Then we identify a linear ordering of
the rings, and show that every edge handle in HG generates at least as many additional crossings
as expected from the ordering of rings.

4. Assorted topological lemmas

We need to be a bit more formal in this section. A curve γ is a continuous function mapping
the interval [0,1] to a topological space. A curve γ is a closed curve if γ (0) = γ (1). A closed
curve γ is contractible in a topological space if γ can be continuously deformed to a single point
there. We call a cylinder the topological space obtained from the unit square by identifying one
pair of opposite edges in the same direction. (A cylinder has two disjoint closed curves as the
boundary.)

We are going to deal with collections of curves having somehow special structure. A set Γ of
curves is called nice if all of the following are true:

• No three curves in Γ have a common intersection.
• If x is a self-intersection point of a curve γ ∈ Γ , i.e. x = γ (a) = γ (b) for distinct a, b ∈

[0,1], then no other curve in Γ passes through x.
• If x in an intersection point of γ, γ ′ ∈ Γ , then in a sufficiently small neighbourhood U of x,

the curves γ, γ ′ are otherwise disjoint, and they intersect the boundary of U in a cyclic order
of γ, γ ′, γ, γ ′ (they “properly cross”).

A subset of a nice set of curves is nice as well by the definition. Naturally, we call a crossing
of curves the intersection point of two curves in a nice set. This obviously corresponds with the
notion of an edge crossing in a topological graph.

Lemma 4.1. Let k, � be positive integers, let p = k(� + 1), and let Π be a cylinder with two
closed boundary curves π1,π2. Let X1, . . . ,Xp be distinct points on π1 in this cyclic order,
and let Y1, . . . , Yp be distinct points on π2 in the corresponding cyclic order. Suppose that S =
{σi : i = 1, . . . , p} is a nice set of p curves on Π such that each σi has ends Xi and Yi , and that τ

is a contractible closed curve on Π disjoint from π1,π2. Moreover, assume that τ intersects each
one of the curves in S0 = {σi(�+1): i = 1, . . . , k} ⊂ S, and that (S \ S0) ∪ {τ } also forms a nice
set of curves. Then at least one of the two cases happens:

(i) τ crosses twice at least 3
5k� of the curves in S \ S0, or

(ii) there are at least ( 2
25k2 − 1

5k)� crossings of curves in S.

Proof. First notice that since τ is a contractible closed curve, it divides Π into two connected
regions, one of them containing both π1,π2. So if a curve σ ∈ S \ S0 intersects τ (and, recall
{σ, τ } is nice), then σ has (at lest) two crossings with τ by the Jordan Curve Theorem. Hence, let
us assume that more than 2

5k� of the curves in S \ S0 are disjoint from τ , and denote their subset
by S1 ⊆ S \ S0.
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Fig. 5. An illustration to Claim 4.2.

Claim 4.2. For any two ϕ,ϕ′ ∈ S1 and two θ, θ ′ ∈ S0 such that the ends of ϕ,ϕ′ on π1 separate
the ends of θ, θ ′ there, one of θ or θ ′ has at least two crossings with ϕ ∪ ϕ′.

To see that the claim holds true; observe that one of the connected components of the topolog-
ical space Π \ (ϕ ∪ϕ′) contains the whole curve τ by our choice of ϕ,ϕ′, and no such component
may contain an end of θ and an end of θ ′ at the same time. See Fig. 5.

For the rest of the proof of Lemma 4.1 we focus on the collection of curves S0 ∪ S1, and
consider their cyclic ordering determined by their ends on π1. (Also the same cyclic ordering as
determined by their ends on π2.) By the assumptions, every � + 1 consecutive curves of S0 ∪ S1

must contain at least one curve from S0. So we find a, b such that σa(�+1), σb(�+1) ∈ S0 divide
the cyclic ordering of S1 into two parts of size at least 1

2 (|S1| − �) each. Hence we may apply
Claim 4.2 to θ = σa(�+1), θ

′ = σb(�+1) and to 1
2 (|S1| − �) choices of disjoint pairs from S1,

accounting for at least |S1| − � crossings in S.
More generally, with indices modulo p the pair σ(a+i)(�+1), σ(b+i)(�+1) ∈ S0 divides the cyclic

ordering of S1 into two parts of size at least 1
2 (|S1| − (i + 1)�) each, for i = 0,1, . . . , 2

5k − 2.
By applying the previous idea for each pair θ = σ(a+i)(�+1), θ ′ = σ(b+i)(�+1), we find at least this
number of distinct crossings of curves in S:

2k/5−2∑
i=0

(|S1| − (i + 1)�
)
�

2k/5−2∑
i=0

(
2

5
k� − (i + 1)�

)
=

2k/5−1∑
i=1

i� =
(

2k/5

2

)
�

=
(

2

25
k2 − 1

5
k

)
�. �

The following claim is an easy application of the pigeon-hole principle.

Lemma 4.3. Let n, t be positive integers. Suppose that, for each i = 1,2, . . . , n, there is a set Ri

of t closed curves. If the union R1 ∪R2 ∪ · · · ∪Rn has fewer than t2 intersecting pairs of curves,
then there exist pairwise disjoint representatives �i ∈ Ri , i = 1,2, . . . , n.

For the next two lemmas, we define a set X(c, d) of pairwise disjoint cycles in a cyclic cubic
grid D = Ct,� as follows: we shall use the notation from the definition of a cubic grid (Section 3,
Fig. 2). Let Cj denote the cycle of the cubic grid D on vertices v1,c+2j , v2,c+2j , w2,c+2j , w3,c+2j ,
v3,c+2j , . . . , wh−1,c+2j , vh−1,c+2j , vh,c+2j , vh,c+2j+1, vh−1,c+2j+1, . . . , v1,c+2j+1. (Such a cycle
is also depicted as C in Fig. 6.) Then X(c, d) = {Cj : 0 � j < 1 (d − c)}.
2
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Fig. 6. An illustration to Claim 4.6.

Lemma 4.4. Let k, �, t be integers, and let (p1,p2, . . . , pk) be an increasing sequence of integers
such that p1 > 4kt , pk < �, and pj+1 −pi � 4kt for j = 1,2, . . . , k. Assume that the graph F is
constructed from the cyclic cubic grid D = Ct,� by attaching a vertex zj at position pj for each
j = 1,2, . . . , k. Then cr(F ) = k(t − 2).

Proof. There is an obvious drawing of F with exactly k(t − 2) edge crossings—when the edges
incident with each zj cross all the main cycles of F except the outer ones. Conversely, we prove
that every proper drawing of F must have at least k(t − 2) crossings. Let us fix a ∈ {0,1, . . . ,

k − 1}. Assuming p0 = 0, we denote by X = X(pa,pa+1) a collection of disjoint cycles in
D ⊂ F . Since one edge crossing may involve edges of at most two of the cycles in X, and since
cr(F ) < kt � 1

2 |X|, we conclude:

Claim 4.5. For each a ∈ {0,1, . . . , k − 1}, any optimal drawing of F must have a cycle C ∈
X(pa,pa+1) with no crossed edge.

Denote the ith main cycle in the cyclic cubic grid of F by Mi , for i = 1, . . . , t . Denote the
neighbours of za subdividing the outer main cycles M1,Mt in F by z′

a, z
′′
a , respectively. We

define a path Za in F consisting of the path z′
azaz

′′
a , and of the subpaths of M1,Mt connecting

z′
a, z

′′
a , respectively, to the cycle C from Claim 4.5, as depicted in Fig. 6. Let us further fix

b ∈ {2,3, . . . , t − 1}. By Claim 4.5 the cycle C is drawn as a simple closed curve with no edge
crossing, and so a drawing of the main cycle Mb (which intersects C in two edges) separates the
ends of Za on C. We conclude:

Claim 4.6. The path Za must cross the main cycle Mb , for all pairs a ∈ {0,1, . . . , k − 1} and
b ∈ {2,3, . . . , t − 1}.

Now observe that the main cycles M2, . . . ,Mt−1 are pairwise disjoint, and that also the paths
Za for a = 0,1, . . . , k − 1 are chosen as pairwise disjoint subgraphs in F . Hence we account for
at least (t − 2)k distinct edge crossings in F using Claim 4.6. �
Lemma 4.7. Let q, t be integers. Let Π be a cylinder, and let �1, �2 be two disjoint curves on
Π both connecting points on the opposite boundaries of Π . Assume that D is a drawing of the
cyclic cubic grid Ct,q on Π . Moreover, assume the following:
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Fig. 7. An illustration to Lemma 4.7.

• The drawing of D is such that each of the main cycles of Ct,q is drawn as a noncontractible
closed curve on Π , intersecting each curve �1, �2 in exactly one point.

• No other edge of the drawing D is intersected by �1 or �2.
• There are indices c, d , d > c + 2t such that the vertices v1,c and v1,d of the first main cycle

M1 ⊂ D are drawn inside the same region Σ of Π \ (�1 ∪ �2).

Then all the cycles in the set X(c + t, d − t) defined as above, are drawn inside the region Σ .

Proof. We may assume, without loss of generality, that �1 intersects the edge v1,c−1v1,c

of M1. Denote by P i ⊂ Mi the subpath of the ith main cycle Mi of D on the vertices
vi,c−i , . . . , vi,c+i−1. Recall that �1 intersects Mi exactly once. We establish the following claim
by induction on i � 1:

Claim 4.8. The curve �1 intersects Mi in an edge from P i .

The claim is true for i = 1 by our assumption. Suppose it is true for i < t , but false for
i + 1. Then, up to symmetry, the vertices wi+1,c+i and vi+1,c+i of Mi+1 would be drawn outside
of Σ , while the vertices wi,c+i , vi,c+i of Mi are drawn inside Σ (or vice versa). But, then the
edge wi,c+iwi+1,c+i or vi,c+ivi+1,c+i (depending on parity of i) of D would have to be drawn
intersecting �1 ∪ �2, a contradiction to the assumptions.

(Actually, Claim 4.8 can be established in a stronger form, but we prefer this weak form with
a straightforward proof. See Fig. 7.) A symmetric statement clearly holds for �2. Since the above
paths P i are disjoint from the cycles in X(c+ t, d − t) by definition, the drawings of these cycles
are not intersected by �1 ∪ �2, and hence these cycles are all drawn inside Σ . �
5. Lower crossing bound

Recall the notation from Section 3, and assume that G is a graph on the vertex set {1,2, . . . , n}.
Let HG denote the graph constructed along the description in Section 3. The following statement,
together with Proposition 3.2, validates our reduction.

Proposition 5.1. If an optimal linear arrangement of a graph G has weight A, then the crossing
number of the graph HG is at least

cr(HG) � (s + rn)nt + 2(A + m)t − 8m.

(See (2) and Proposition 3.2 for details on the notation.)
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Remark 5.2. The reader may notice here that the bound of this proposition is slightly different
from the bound shown in Proposition 3.2. This small difference does not harm our reduction,
while it makes some arguments significantly easier.

We proceed in the proof of Proposition 5.1 along the following sequence of claims. (Actually,
all technical work has already been done in the previous section.) We choose some optimal
drawing of the graph HG and denote it by HG.

Lemma 5.3. In the optimal drawing HG of HG, the boulders B1,B2 are drawn with no edge
crossings.

Proof. We assume, for a contradiction, that the boulder B1 is drawn in HG with some edge
crossings. Notice that B1 has (2) z pairwise disjoint main cycles by definition, and one edge
crossing in HG may involve at most two of them. Since the total number of crossings is fewer
than z/2 by Corollary 3.3, we conclude that some main cycle N of B1 is drawn with no crossings.
Without loss of generality, we may suppose that the subgraph HG − V (B1) is drawn in the
exterior face of N .

For each (free or ring) spoke S in HG, we find a path PS inside B1 connecting an end of S

with N , such that these paths are pairwise disjoint. We modify the drawing HG into new H′
G in

the following way. The subdrawing of B1 in HG is removed. The last edges eS of all original
spokes S are prolonged along the corresponding paths PS to N . Finally, B1 is drawn in the
interior face of N such that the first main cycle N1 of B1 coincides with the original cycle N ,
and that ends of eS (of all the prolonged spokes S) are in proper places.

In this way we introduce no new crossings to the drawing of H′
G, and we eliminate previous

crossings of HG on edges of B1, which contradicts optimality of the original drawing. �
Hence, in particular, the first main cycles Nj of the boulders Bj , j = 1,2, are drawn with no

crossings. Then there is a uniquely defined cylinder Π with the boundary curves N1 and N2 in
the plane. Observe that the whole subgraph HG − V (B1) − V (B2) is drawn on Π .

Lemma 5.4. In the drawing HG, each main cycle M of every ring Ri , i ∈ {1,2, . . . , n}, is drawn
as a closed curve separating the subdrawing of the boulder B1 from the subdrawing of B2.

Proof. Suppose, for a contradiction, that the claim is false for a main cycle M of Rh. Instead
of the plane, let us consider the cylinder Π . Then our contradiction says that M is drawn as a
contractible curve on Π .

We are going to apply Lemma 4.1 in this situation. Let k = r and � = m3 (see (2)). For
0 � i < m3 and 0 � j < r , we denote by σi+1+j (m3+1) the drawing of the (i + jm3)th free
spoke—the edge κi+jm3 of Hm,n (Section 3). Furthermore, for 0 � j < r , we denote by σj(m3+1)

the drawing of a path Sj associated with the j th ring spoke of the ring Rh: Sj consists of the edges
μ1

h,j ,μ
2
h,j and μ4

h,j ,μ
5
h,j , and of (one of) the shortest path connecting the ends of μ2

h,j ,μ
4
h,j

across the ring Rh.
One may easily verify that the collection S = {σj : 0 � j < r(m3 + 1)} and τ = M satisfy

the assumptions of Lemma 4.1. It follows from Lemma 5.3 that the ends of the curves in S are
ordered on the boundaries of Π as required, and that τ is drawn in the interior of Π . Naturally,
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τ intersects the drawings of each of the paths Sj since M shares a vertex with Sj . Moreover, a
subcollection of disjoint paths S in a proper optimal drawing of a graph forms a nice set of curves
by definition, and the same applies to the set (S \ S0) ∪ {τ } as in Lemma 4.1.

Since τ is contractible on Π , the possibility (ii) in Lemma 4.1 implies that the number of
crossings in the drawing HG is, using (3), at least

(
2

25
k2 − 1

5
k

)
� =

(
2

25
r2 − 1

5
r

)
m3 =

(
32

25
m4n4 − 4

5
m2n2

)
m3 = 32

25
m7n4 − 4

5
m5n2

> m7n4 > z,

which contradicts Corollary 3.3. Hence the possibility (i) of the lemma must be true, and there
are at least

2 · 3

5
k� = 6

5
rm3 = 6

5
s = s + 1

5
rm3 > s + rn + 1

8
rm3 (4)

crossings on the edges of M using (3). (Notice that we have not even considered crossings of M

with the ring spokes of other rings than of Rh in this inequality.)
The above inequality (4) applies to every main cycle M in HG which is drawn contractible

on Π , while the noncontractible main cycles clearly have each at least s + rn crossings with all
the spokes in HG. Thus the total number of crossings in our HG is at least

s + rn + 1

8
rm3 + (nt − 1)(s + rn) = (

m3 + n
)
rnt + 1

8
rm3 >

(
m3 + n

)
rnt + r = 1

2
z,

which again contradicts Corollary 3.3. Hence, indeed, every main cycle M must be drawn in HG

as a noncontractible closed curve on Π , and so M separates B1 from B2. �
Corollary 5.5. There are at least (s + rn)nt crossings in HG between edges of the main cycles
of the rings and edges of the free and ring spokes in HG.

Lemma 5.6. There is a selection of main cycles Mi ⊂ Ri , i = 1,2, . . . , n, of the rings in HG, such
that the cycles M1, . . . ,Mn are drawn as pairwise disjoint closed curves in the drawing HG.
Hence, there is a permutation π of {1, . . . , n} such that, for each j = 1, . . . , n, the closed curve
Mπ(j) separates the subdrawing of B1 ∪ Mπ(1) ∪ · · · ∪ Mπ(j−1) from the subdrawing of B2 ∪
Mπ(j+1) ∪ · · · ∪ Mπ(n).

Proof. Combining Corollaries 3.3 and 5.5, we see that there are fewer than r = t2 crossings
between pairs of main cycles of the rings in HG. Let us, for i = 1, . . . , n, form a collection Mi

of closed curves—the drawings of the t main cycles of the ring Ri . Then we apply Lemma 4.3,
and hence we find pairwise disjoint representatives Mi ∈ Mi , as desired.

The second part then naturally follows from Lemma 5.4 and the Jordan Curve Theorem. �
Lemma 5.7. For every k = 0,1, . . . ,4n2 − 1, there is an index ck ∈ Ck = {km5 − 2m4, . . . ,

km5 + 2m4} such that the edge of the ck th free spoke κck
is crossed exactly once by each of the

main cycles of all the rings, and that κck
has no more crossings than those in HG.

Proof. By Lemma 5.4, each of the main cycles crosses each of the s+rn spokes in HG. Suppose,
for a contradiction, that for every j ∈ Ck as above, |Ck| = 4m4 +1, the j th free spoke has at least
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two crossings with some main cycle in HG. Then such a drawing HG would have at least

(s + rn)nt + 4m4 + 1 > (s + rn)nt + r = z/2

edge crossings, which is a contradiction to Corollary 3.3. �
Recall that the vertices of G are numbered as {1,2, . . . , n}, and that Xi,j denotes the subgraph

of the handle in the constructed graph HG corresponding to an edge ij ∈ E(G) (Section 3).

Lemma 5.8. Let π be the permutation from Lemma 5.6, let Π be the cylinder defined after
Lemma 5.3 for the drawing HG, and let {i, j} ∈ E(G) be an edge. For � = i +n(j −1), consider
the indices c4�−2 and c4�+2 given by Lemma 5.7, and denote by Σ� the region on Π bounded by
the drawings of the c4�−2, c4�+2th free spokes and containing the subdrawing of the handle Xi,j .
Then Σ� contains at least

t
(∣∣π−1(i) − π−1(j)

∣∣ − 1
)

crossings of HG between edges of the subgraph Xi,j ∪ Ri ∪ Rj and edges of the main cycles of
other rings Rk for k 
= i, j .

Proof. First, notice that Σ� is well defined since the drawings of the c4�−2th and of the c4�+2th
free spokes are disjoint by Lemma 5.7, they do not cross Xi,j , and each of them connects two
points on the opposite boundaries of Π . Moreover, by an analogous argument, the drawings of
the c4�−1th and c4�+1th free spokes divide Σ� into three topological components Σ1

� ,Σ2
� ,Σ3

� in
this order, such that Xi,j is drawn inside Σ2

� .
We denote by H ′

G the subgraph of HG obtained by deleting the two boulders and all the free
and ring spokes, and by H′

G the corresponding subdrawing. Then, by Corollaries 3.3 and 5.5,
H′

G contains fewer than r edge crossings. Consider now a ring Rk of HG, for which π−1(i) <

π−1(k) < π−1(j) (up to symmetry). By Lemma 5.6, there are main cycles Mi of Ri , Mj of Rj ,
and Mk of Rk , such that the drawing of Mk separates the drawings of Mi and Mj from each other
on Π . Denote by Mb

k ⊂ Rk the bth main cycle of the ring Rk .
Recall that c4�−2 � (4�m2 −2m2 +2m)m3, and c4�−1 � (4�m2 −m2 −2m)m3. So Lemma 5.7

also implies that the (4�m2 − 2m2 + 3m − 1)th and (4�m2 − m2 − 3m + 1)th ring spokes of Rk

are both drawn inside Σ1
� . Here we restrict the notation from the definition of a cyclic cubic grid

just to the ring Rk . We set c = (4�m2 −2m2 +3m)(m3 +n+1) and d = (4�m2 −m2 −3m)(m3 +
n+1). The previous argument implies that the vertices v1,c, v1,d of the first main cycle M1

k of Rk

are also drawn inside Σ1
� . Hence the situation corresponds with the setting of Lemma 4.7, and

we conclude that all the cycles of Rk in the set X1 = X(c + t, d − t) (defined in Section 4) are
drawn inside Σ1

� .
Let us now estimate, using (2), (3):

d − c = (
m2 − 6m

)(
m3 + n + 1

)
> m5 − 6 · 3m4 > 100m4 − 18m4 > 16m4 + 4m4

> 4r + 2t.

So |X1| = 1
2 (d − c − 2t) > 2r . Recall that the subdrawing H′

G has fewer than r edge crossings.
Since one edge crossing may involve at most two of the cycles from X1, there exists a cycle
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Fig. 8. An illustration to the proof of Lemma 5.8.

C1 ∈ X1 which has no edge crossed in H′
G. We analogously find a corresponding cycle C2 drawn

inside the region Σ3
� , and C2 having no edge crossed in the subdrawing of H ′

G. (See Fig. 8.)
Consider the drawing of the connected subgraph Ri ∪ Rj ∪ Xi,j of H ′

G which is disjoint from
the drawings of C1 and C2. So it follows from our assumptions, and from Xi,j being drawn
inside Σ2

� , that the drawing of Ri ∪ Rj ∪ Xi,j separates the drawings of C1 and of C2 from each
other in Σ . We denote by Q ⊂ Mb

k the shortest path connecting a vertex on C1 to a vertex on
C2 and drawn in Σ . (Q is uniquely defined by our assumptions.) Then Q crosses the drawing of
Ri ∪ Rj ∪ Xi,j by the Jordan Curve Theorem. In this way we find distinct edge crossings for all
choices of k such that π−1(i) < π−1(k) < π−1(j), and for all t choices of the main cycle Mb

k

of Rk . The statement now follows. �
Now we are ready to finish the proof of crucial Proposition 5.1.

Proof of Proposition 5.1. We are going to count three collections of edge crossings in HG.
These collections are pairwise disjoint since they involve different pairs of edges of HG, as one
may easily check. Firstly, there are (at least) (s + rn)nt crossings described in Corollary 5.5.

Secondly, denote by di the degree of the vertex i in G. Let us consider the subgraph Fi of HG

formed by the ring Ri and by 2di pairs of incident edges from all handles which are attached
to Ri in HG. Then, by Lemma 4.4, the subgraph Fi itself has at least 2di(t − 2) edge crossings
in any drawing of HG.

Thirdly, the permutation π from Lemma 5.6 defines a linear arrangement α = π−1 of the
vertices of G. (An edge {i, j} ∈ E(G) contributes with |α(i) − α(j)| to the total weight of the
arrangement α on G (1).) Recall the notation and conclusion of Lemma 5.8: an edge {i, j} of G

contributes (via its two handles in HG) with at least 2t (|α(i)−α(j)|−1) crossings in HG which
are contained in the regions Σ� and Σ�′ , where � = i − 1 + n(j − 1) and �′ = j − 1 + n(i − 1).
So in particular, the sets of crossings accounted here for distinct edges of G are pairwise disjoint,
and also disjoint from the crossings contributed by the subgraphs Fi above.

Altogether, we have found at least this many distinct edge crossings in the optimal draw-
ing HG of our graph HG:
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(s + rn)nt +
∑

i∈V (G)

2di(t − 2) +
∑

{i,j}∈E(G)

2t
(∣∣α(i) − α(j)

∣∣ − 1
)

= (s + rn)nt + 2t
∑

{i,j}∈E(G)

∣∣α(i) − α(j)
∣∣ − 2tm + 4tm − 8m

= (s + rn)nt + 2tA + 2tm − 8m. �
6. Proof of the reduction

Finally, we conclude with the proof of our main result.

Proof of Theorem 2.1. Assume that G, a is an input instance of the OPTIMALLINEAR-
ARRANGEMENT problem, and that G is sufficiently large (3). The graph HG described in
Section 3 is clearly cubic and 3-connected, it has polynomial size in n = |V (G)|, and HG

has been constructed efficiently. We now ask the problem CROSSINGNUMBER on the input
〈HG, (s + rn)nt + 2t (a + m)〉, and give the same answer to OPTIMALLINEARARRANGEMENT

on 〈G,a〉.
If there is a linear arrangement of G of weight at most a, then our correct answer is YES

according to Proposition 3.2. Conversely, if the optimal linear arrangement of G has weight
greater than a, then the crossing number of HG is by Proposition 5.1

cr(HG) � (s + rn)nt + 2t (a + 1 + m) − 8m > (s + rn)nt + 2t (a + m),

and so the correct answer is NO. Since the OPTIMALLINEARARRANGEMENT problem is known
to be NP-complete [3], the statement of Theorem 2.1 follows. �
Remark 6.1. With a bit finer analysis, we can push forward the connectivity assumptions in
Theorem 2.1: It is easy to see that a (not too small) cubic grid is a cyclically 5-connected graph.
Joining a ring via at least five spokes with the boulders, maintains cyclical 5-connectivity of
the “skeleton” graph Hm,n. Then, adding any edge handle to Hm,n keeps the resulting graph
cyclically 5-connected, and so the same applies also to the resulting graph HG. Thus we may
even assume the input graph in Theorem 2.1 to be cyclically 5-connected.
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