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“Oh what a tangled web we weave...”
Sir Walter Scott

Abstract

A drawing of a graph G in the plane is said to be
a rectilinear drawing of G if the edges are required
to be line segments (as opposed to Jordan curves).
We assume no three vertices are collinear. The rec-
tilinear crossing number of G is the fewest number
of edge crossings attainable over all rectilinear draw-
ings of G. Thanks to Richard Guy, exact values of
the rectilinear crossing number of K,,, the complete
graph on n vertices, for n = 3,...,9, are known
[Guy7d, WB74, [Fin00, [Slo0(]. Since 1971, thanks
to the work of David Singer [Sin71], [Gar8(], the recti-
linear crossing number of K79 has been known to be
either 61 or 62, a deceptively innocent and tantalizing
statement. The difficulty of determining the correct
value is evidenced by the fact that Singer’s result has
withstood the test of time. In this paper we use a
purely combinatorial argument to show that the rec-
tilinear crossing number of K7 is 62. Moreover, using
this result, we improve an asymptotic lower bound for
a related problem. Finally, we close with some new
and old open questions that were provoked, in part,
by the results of this paper, and by the tangled his-
tory of the problem itself.

1 Introduction and History

Mathematicians and Computer Scientists are well ac-
quainted with the vast sea of crossing number prob-
lems, whose 1944 origin lies in a scene described
by Paul Turdn. The following delightful excerpt,
taken from , has appeared numerous times
in the literature over the years, and is now known as
“Turan’s brick factory problem.”
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[sic.]In 1944 our labor cambattation had the
extreme luck to work—thanks to some very
rich comrades—in a brick factory near Bu-
dapest.  Our work was to bring out bricks
from the ovens where they were made and
carry them on small vehicles which run on
rails in some of several open stores which
happened to be empty. Since one could
never be sure which store will be available,
each oven was connected by rail with each
store. Since we had to settle a fived amount
of loaded cars daily it was our interest to
finish it as soon as possible. After being
loaded in the (rather warm) ovens the ve-
hicles run smoothly with not much effort;
the only trouble arose at the crossing of two
rails. Here the cars jumped out, the bricks
fell down; a lot of extra work and loss of
time arose. Having this experience a number
of times it occurred to me why on earth did
they build the rail system so uneconomically;
minimizing the number of crossings the pro-
duction could be made much more economi-
cal.

And thus the crossing number of a graph was born.
The original concept of the crossing number of the
complete bipartite graph K,, ,, as inspired by the
previous quotation, was addressed by Kovari, Sés,
and Turdn in [KST54]. Following suit, Guy [Guy6(]

initiated the hunt for the crossing number of K,,.

Precisely,

Definition 1.1 Let G be a graph drawn in the plane
such that the edges of G are Jordan curves, no three
vertices are collinear, no vertex is contained in the in-
terior of any edge, and no three edges may intersect
in a point, unless the point is a vertex. The cross-
ing number of G, denoted cr(G), is the minimum
number of edge crossings attainable over all drawings
of G in the plane. A drawing of G that achieves the
minimum number of edges crossings is called opti-
mal.
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In this paper we are interested in drawings of
graphs in the plane in which the edges are line seg-
ments.

Definition 1.2 Let G be a graph drawn in the plane
with the requirement that the edges are line segments,
no three vertices are collinear, and no three edges may
intersect in a point, unless the point is a vertex. Such
a drawing is said to be a rectilinear drawing of G.
The rectilinear crossing number of G, denoted
cr(Q), is the fewest number of edge crossings attain-
able over all rectilinear drawings of G. Any such a
drawing is called optimal.

1.1 A Few General Results

We mention a small variety of papers on crossing
numbers problems for graphs drawn in the plane that
merely hint at the proliferation of available (and un-
available!) results. Other important results will be
highlighted in Section E

Garey and Johnson [ showed that the prob-
lem of determining the crossing number of an arbi-
trary graph is NP-complete. Leighton gave
an application to VLSI design by demonstrating a
relationship between the area required to design a
chip whose circuit is given by the graph G and the
rectilinear crossing number of (. Bienstock and
Dean [BD93] produced an infinite family of graphs
{G} with cr(G,,) = 4 for every m but for which
supm{ct(Gp)} = o0o. Kleitman [Kle7d, [Kle7q] com-
pleted the very difficult task of determining the ex-
act value of cr(K5,) for any n € Z*. Finally, a
crucial method of attack for both rectilinear cross-
ing number and crossing number problems has been
that of determining the parity (i.e., whether the
crossing number is even or odd). See, for example,
[Har74, Kle7d, Kle7d, [ARSS, [HT96].

Crossing number problems are inherently rich and
numerous, and have captured the attention of a di-
verse community of researchers. For a nice exposi-
tion of current open questions as well as a plethora
of references, see the recent paper of Pach and Téth

[PTod].

1.2 Closer to Home: cr(K,)

Many papers, dating back as far as 1954 [KST54],
have addressed the specific problem of determining

cr(K ) and cr(K,). For a nice overview see Richter
and Thomassen . For those who are tempted
by some of the problems mentioned in this paper,
it is imperative to read ] for corrections and
retractions in the literature.

Our present interest is that of finding ¢r(K,)
whose notion was first introduced by Harary and

Hill [HH6J]. As promised in

the abstract, the small values K, | a(K,)
of ﬁ(Kn) are known through Ks |0

= 9, which can be found Kis |0
in_[Guy73, WBT7d, [Fin0]] and Ks |1
[Blo0d, sequence A014540]; see Ke |3
Table |l timately, the n = 10 K, |9
entry [h, [Gar8q] will be the Ks | 19
focus of this paper. Ko | 36

Asymptotics have played an Kio | 61 or 62
important role in deciphering
some of the mysteries of er(K,,). Table 1: &(Kn)
To this end, it is well known (see

exists and

for example [SW94]) that lim,, %

is finite; let

(1)
H.F. Jensen [ produced a specific rectilinear
drawing of K, for each n, which availed itself of a

formula, denoted j(n), for the exact number of edge
crossings. In particular,

7* = lim

(1)

Tn* —56n° 4+ 128n? + 48n [ 257 | + 108
432 ’

(2)

from which it follows that cr(K,) < j(n) and that
7* < .38. Moreover, it follows from work in [Sin7]]

as communicated in [Wil97, BDG0(] that

61
210

j(n) =

=.290476 < 7" < .3846. (3)
In Section @, for completeness of exposition we re-
produce the argument in [Bin71] that er(Ki) > 60,
which is required to obtain the lower bound in equa-
tion ().

In the recent past, Scheinerman and Wilf [SW94,
Wil97, Fin0(] have made an elegant connection be-
tween 7* and a variation on Sylvester’s four point
problem. In particular, let R be any open set in
the plane with finite Lebesgue measure, and let ¢(R)
be the probability of choosing four points uniformly
and independently at random in R such that all
four points are on a convex hull. Finally, let ¢, =
infr{q(R)}. Then it is shown that g, = 7*.

Most recently, Brodsky, Durocher, and Gethner
[BDGO(] have reduced the upper bound in equation



(E) to .3838. In the present paper, as a corollary to
our main result, that cr(K9) = 62, we increase the
lower bound in equation (E) to approximately .30.

2 Outline of the proof that
cr(Kqp) = 62

As mentioned in the abstract, the main purpose
of this paper is to settle the question of whether
Cr(K10) = 61 or 62. Our conclusion, based on a com-
binatorial proof, is that ¢¥(K19) = 62. The following
statements, which will be verified in the next sec-
tions, constitute an outline of the proof. As might be
expected, given the long history of the problem and
its variants, there are many details of which we must
keep careful track.

Figure 1: The reader is invited to count the number
of edge crossings in this optimal drawing of Kig.

1. Any optimal rectilinear drawing of Ky consists
of three nested triangles: an outer, middle, and
inner triangle. For purposes of both mnemonic
and combinatorial considerations, we colour the
vertices of the outer triangle red. Similarly, the
vertices of the middle triangle will be coloured
green and the vertices of the inner triangle will
be coloured blue. For those who are accustomed
to working with computers, the mnemonic is that
the vertices of the outer, middle, and inner tri-
angles correspond to RGB.

Continuing in this vein, each of the edges of the
Ky drawing are coloured by way of the colour(s)
of the two vertices on which they are incident.
For example, an edge incident on a red vertex
and a green vertex will naturally be coloured yel-
low. An edge incident on two red vertices (i.e.,
an edge of the outer triangle) will be coloured

red, and so on. This step is done purely for pur-
poses of visualization. For examples, see Figures

9, [T, and 2

Combinatorially, an edge crossing has a label
identified by the four (not necessarily distinct)
colours of the two associated edges, wxXxyz,
where wx,y,z€ {r,g,b}.

2. A drawing of Ky with 61 crossings must contain
a drawing of K¢ with 36 crossings and must have
a convex hull that is a triangle.

3. In any pair of nested triangles with all of the
accompanying edges (i.e., a Kg), we exploit a
combinatorially invariant: the subgraph induced
by a single outer vertex together with the three
vertices of the inner triangle is a K4. There are
exactly two rectilinear drawings of K4. That is,
the convex hull of rectilinear drawing of K is
either a triangle or a quadrilateral. If the former,
since the drawing is rectilinear, there are no edge
crossings. If the latter, there is exactly one edge
crossing, namely that of the two inner diagonals.

4. With the above machinery in place, we enumer-
ate the finitely many cases that naturally arise.
In each case we find a lower bound for the num-
ber of edge crossings. In all cases, the result is
at least 62.

5. Singer ] produced a rectilinear drawing of
K10 with 62 edge crossings, which is exhibited in
[Gar86], p. 142]. This together with the work in
step 4 implies that ¢r(K1o) = 62; see Figure [[.

The remainder of this paper is devoted to the de-
tails of the outline just given, the improvement of the
lower bound in equation (E), and finally, a list of open
problems and future work.

3 Edge Crossing Toolbox
3.1 Definitions

We assume that all drawings are in general po-
sition, i.e., no three vertices are collinear. A
rectilinear drawing of a graph is decomposable
into a set of convex hulls. The first hull



of a drawing is

e ., ° the convex hull.

. *° @ The ith hull is

o0 4 z N the convex hull of

o ° ° the drawing of the

subgraph
contained within the (¢ — 1)st hull.

The responsibility of a vertex in a rectilinear
drawing, defined in [[Guy7, is the total number of
crossings on all edges incident on the vertex.

&l

1
tices of the former are strictly con-
tained within the boundaries of the
latter; the former is termed the inner polygon and
the latter, the outer polygon. We say that n poly-
gons are nested if the (i + 1)st polygon is contained
within the ith polygon for all 1 < i < n. A triangle

is a polygon of size three and every hull is a convex
polygon.

/o,

concentric non-concentric

strictly

A polygon of size k is a rectilin-
ear drawing of a non-crossing cycle on
k vertices. A polygon is contained
within another polygon if all the ver-

A rectilinear drawing of
K, is called a nested tri-
angle drawing if any pair
of hulls of the drawing are
nested triangles.

Two polygons are con-
centric if one polygon contains the other polygon
and any edge between the two polygons intersects
neither the inner nor the outer polygon. Given two
nested polygons, if the inner polygon is not a triangle
then the two polygons a priori cannot be concentric.
A crossing of two edges is called a non-concentric
crossing if one of its edges is on the inner hull and
the other has endpoints on the inner and outer hulls.

We know that the first hull of an optimal rectilinear
drawing of Kg must be a triangle ] Further-
more, in Subsection @ we will reproduce a theorem
from ], that the outer two hulls of a rectilinear
drawing of K9 must be triangles.

For clarity, we colour the
outer triangle red, the second
triangle green, and the inner
triangle blue. The vertices of
a triangle take on the same
colour as the triangle, and an
edge between two vertices is

blue

labeled by a colour pair, e.g., e

red-blue (rb). A crossing of two edges is labeled
by the colours of the comprising edges, e.g., red-
bluexred-green (rbxrg). A crossing is called 2-
coloured if only two colours are involved in the

crossing. This occurs when both edges are inci-
dent on the same two triangles, e.g., rgxrg, or
when one of the edges belongs to the triangle
that the other edge is incident

on, e.g., rgxgg. A 3-coloured biue

crossing is one where the two o .\'
edges that are involved are in- g
cident on three different triangles, e.g., rbxrg. A
4-coloured crossing is defined similarly.

Crossings may be referred to by their full colour
specification, the colours of an edge comprising the
crossing, or the colour of a vertex comprising the
crossing. For example, an rgxrb crossing is fully
specified by the four colours, two per edge; the cross-
ing is also a red-blue crossing and a red-green crossing
because one of the edges is coloured red-blue and the
other is coloured red-green. Since the edges of the
crossing are incident on the red, green and blue ver-
tices, the crossing may also be called red, green or
blue; a rgxrg crossing is neither red-blue nor blue.

3.2 Configurations

Given a nested trian-
gle drawing of Kg, a
kite is a set of three
edges radiating from a
single vertex of the
outer triangle to each of
the vertices of the inner
triangle. A kite com-
prises four vertices: the
origin vertex, labeled o,
from which the kite originates, and three inter-
nal vertices. The internal vertices are labeled in
a clockwise order, with respect to the origin ver-
tex, by the labels left (1), middle (m), and right
(r); the angle < lor must be acute. The kite
also has three edges, two outer edges, (o,l) and
(o,7), and the inner edge (o,m). The origin
vertex corresponds to
the vertex on the outer
triangle and the middle
vertex is located within
the sector defined by <
lor; see Figure fl. A kite
is called concave if m
is contained within the
triangle Alor, see Fig-
ure E, and is called con-
vex if m is not contained in the triangle Alor, see
Figure E We shall denote a convex kite by V and a
concave kite by C. A vertex is said to be inside a kite

Figure 2: ccc

Figure 3: vvv



if it is within the convex hull of that kite, otherwise
the vertex is said to be outside the kite.

A configuration
of kites is a set of
three kites in a nested
triangle drawing of Kg.
Each kite originates
from a different vertex
of the outer triangle
and is incident on the
same inner triangle.
There are four different
configurations: CCC, CCV, CVV, and VVV, corre-
sponding to the number of concave and convex kites
in the drawing.

Figure 4: cvv

A configuration de-

termines how many
non-concentric  cross-
ings there are, i.e.,

the number of edges
intersecting the inner
triangle; CCC has zero,
CCV has one, CVV
has two, and VVV has
three non-concentric
edge crossings. A sub-configuration corresponds
to the number of distinct middle vertices of concave
kites; this can vary depending on whether the
concave kites share the middle vertex.

Figure 5: Unary CCV

Remark 3.1 A CCV configuration is the only one
that has more than one sub-configuration. A VVV
configuration has no concave kites, a CVV configura-
tion has only one concave kite, and in a CCC config-
uration no two kites share a middle vertex.

In configuration CCC, Figure E, there are three dis-
tinct middle vertices of concave kites, and in config-
uration VVV, Figure B, there are zero because there
are no concave kites. Configuration CVV, Figure E,
has only one middle vertex that belongs to a concave
kite because it has only one concave kite.

The configuration
CCV  has two sub-
configurations; the
first, termed unary,
has one middle ver-
tex that is shared by
both concave kites; see
Figure E The second,
termed binary, has
two distinct middle
vertices belonging to each of the concave kites; see
Figure E

Figure 6: Binary CCV

Theorem 3.2 A nested triangle drawing of K¢ be-
longs to one of the four configurations: CCC, CCV,
CVVor VVV.
Proof: According to there are exactly two
different rectilinear drawings of K4, of which the con-
vex hull is either a triangle or a quadrilateral. The
former has no crossings and corresponds to the con-
cave kite. The latter has one crossing and corre-
sponds to the convex kite.

Since the drawing is comprised of nested triangles,
a kite originates at each of the three outer vertices.
Since the vertices are non-collinear, each of the kites
is either convex or concave. The drawing can have,
zero (CCC), one (CCV), two (CVV), or three (VVV)
convex kites, with the rest being concave. m

Lemma 3.3 Ifm is a middle vertex of a concave kite
in a nested triangle drawing of K¢, then m is con-
tained within a quadrilateral composed of kite edges.
Proof:

Let x be a concave kite in a
nested triangle drawing with
the standard vertex labels o,
I, m, and r. Since k is con-
cave, the middle vertex m is
within the triangle Alor. The
vertices [ and r determine a line that defines a half-
plane p that does not contain x. Since the vertices
I, m, and r comprise the inner triangle of the draw-
ing and must be contained within the outer triangle,
there must be an outer triangle vertex located in the
half-plane p. Denote this vertex by o’ and note that
a kite originates from it; hence, there are kite edges
(o/,1) and (o',r). Thus, m is contained within the
quadrilateral (0,1,0',7). =

Corollary 3.4 If m is a middle vertex of a concave
kite in a nested triangle drawing of Kg and an edge
(v,m), originating outside the drawing, is incident
on m, then the edge (v, m) must cross one of the kite
edges.



Remark 3.5 (Containment Argument)

Lemma @ uses what will henceforth be referred to
as the containment argument. Consider two vertices
contained in a polygon. These vertices define a line
that bisects the plane. In order for these vertices to
be contained within the polygon, the two half-planes
must each contain at least one vertex of the polygon.
Stmilarly, if a vertex is contained inside two nested
polygons and has edges incident on all vertices of the
outer polygon, then at least two distinct edges of the
inner polygon must be crossed by edges incident on
the contained vertex.

Lemma 3.6 (Barrier Lemma) Let o1, 02, and
o3 be the outer wvertices of a nested triangle
drawing of K¢, let w
be an inner vertex of
the drawing, and let u
and v be two additional
vertices located outside
the outer triangle of the
drawing. If the edge
(u,w) crosses (01,02)
and the edge (v,w) crosses (02,03), then the total
number of kite edge crossings contributed by (u,w)
and (v,w) is at least two.

Proof:

If both edges (u,w)
and (v,w) each cross
at least one kite edge,
then we are done.
Without loss of gen-
erality, assume that
(u,w) does not cross
any kite edges. Let
wy; and wg be the other two inner vertices, and
consider the path (o1, w;,02). Since edge (u,w) does
not intersect the path, (o1,wi,02) creates a barrier
on the other side of path (o1,w,03). The same
argument with edge (u,w) applies to path (01w202),
hence two barriers are present, forcing two crossings.
]

To deal with the unary CCV configuration, see
Figures E and ﬂ, we need to say something about
the orientation of the kites. In a unary CCV
configuration, the labels of the internal vertices of
the two concave kites must match; given a la-
bel, left, middle, or right, and a vertex, it is im-
possible to distinguish one concave kite from the
other. For example, the left vertex of one concave

kite is also the left vertex of the
other concave Kkite.

Lemma 3.7 If a nested tri-
angle drawing of Kg is in a
unary CCV configuration, then
all three internal vertices of the

two concave kites share the same
labels.

Figure 7: Inside
the unary CCV

Proof: Since the two concave

kites share the same middle vertex, there are two pos-
sible cases. Either the labels of the internal vertices
match, in which case we are done. Otherwise, the left
and right labels are interchanged. By way of contra-
diction, assume that they are interchanged; this im-
plies that the kites are disjoint, i.e. do not overlap.
Consequently, they cannot share the middle vertex
that is inside both of the kites; this is contradiction.
]

Lemma B.7 implies that both concave kites are in
the half-plane defined by their left and right vertices,
which contains the shared middle vertex. Moreover,
by the containment argument (Remark B.3), the con-
vex kite must be in the other half-plane. Further-
more, no two kites in a CCC configuration share a
middle vertex.

Just like the Barrier Lemma, the Kite Lemma,
CCC Lemma, and K5 Principle Lemma, are gen-
eral lemmas that are used to derive properties

of specific drawings.

Lemma 3.8 (Kite Lemma)
Let k1 = (01,1, m,r) and

ko = (02,l,m,r) be two
concave kites such that o
they share the same
internal vertices, the
internal  vertices  are
labeled identically, and
kite ko does mot contain vertex o1 within it. Let A
be the intersection of the sectors give by <loir and
<Imr. If p is a vertex located in region A and is
noncollinear with any other pair vertices, then the
edge (01,p) must cross edge (02,1) or edge (02,7).

Proof: Either vertex oy is contained in kite k1 or
not. If o9 is inside k1, then, because kite ko is con-
cave, a barrier path (I, 02,7) is created between ver-
tex o1 and vertex p. Hence, edge (01,p) must cross
the path (I, 02,7), intersecting one of the path’s two
edges.



If vertex o9 is not
contained in kite k1,
then assume, that ver-
tex 09 is on the left
side of kite k1 (clock-
wise with respect to
01). The edge (02,7)
defines a half-plane
that separates vertex
p from vertex o;. Furthermore, the segment defining
the half-plane located within the sector <lojr cor-
responds to part of the edge (02,7). Since the edge
(01,p) must be within the sector <lojr, it must cross
edge (02,7).

If vertex oy is on the right, by a similar argument,
the edge (o1, p) will cross edge (02,1). m

Lemma 3.9 (CCC Lemma) Given three kites in
a CCC configuration, denote the internal ver-
tices 11, 19, t3, and outer wertices o1, 02, 03
such that the middle vertex of a kite originating

at oj is ij. Let A be
the region defined by the
intersection of sectors
< 110913, <190311, and
<1i30112. Let vertex u
not be contained in any
kite, let vertex v be lo-
cated in region A, and
assume that no three vertices are collinear. The edge
(u,v) must cross at least two kite edges.

Proof:

Using the kite edges we
construct two polygons
(Og,iQ,Ol,il,Og) and
(02, ig, 01, il, 02). Since
both polygons contain
region A and since the
only shared edge, is
a middle edge, edge
(u,v) must cross into both polygons, contributing at
least one kite edge crossing from each. m

o e

Lemma 3.10 (K5 Principle) Let a drawing of K,
have a triangular convex hull with the hull coloured
red and n — 3 wvertices contained within it coloured
green. The drawing has exactly (";3) rgxrg edge
CTOSSINgS.

Proof:

Select a pair of green
vertices and remove
all other green vertices
from the drawing.
This forms a K5 with
exactly one rgxrg
edge crossing that is

L2777\

uniquely identified by L
the two green vertices.

Since there are (";3)

. . -3
pairs of green vertices, there must be (”2 ) rgxrg
edge crossings. m

Figure 8: K5 principle

4 The Proof

Using configurations to abstract the vertex positions
in drawings we are now ready to combinatorially
compute ¢r(Ky) and Tr(Ky). We first reproduce
the results from [Bin71] and [Guy72 proving that
er(K9) = 36 and use these results to show that
ﬁ(Klo) = 62.

The argument is as follows:

1. Since @r(K19) > 61, assume ¢r(K19) = 61.

2. If er(K1p) = 61 then the convex hull of an opti-
mal of K¢ must be a triangle.

3. If the convex hull of a drawing of K¢ is triangu-
lar then that drawing has 62 or more crossings,
contradiction.

4. Therefore, er(K19) > 62

4.1 The Rectilinear Crossing Number
of Kg

We know from [Sin71]] and [Guy7J] that the convex

hull of an optimal rectilinear drawing of K¢ must be
a triangle. By a counting argument in [Bin71], the
drawing must be composed of three nested triangles,
which we colour red, green, and blue. Furthermore,
the same paper argues that the red and green trian-
gles are pairwise concentric. We derive these results
for completeness.

As mentioned in the introduction, the rectilinear
crossing numbers of Kg and Kg are 3 and 36 re-
spectively (see Table []); we make use of these facts
throughout the following proofs. We first reproduce
a result from [ that states that an optimal rec-
tilinear drawing of K¢ must comprise of three nested
triangles.

Lemma 4.1 (Singer, ) An optimal rectilin-

ear drawing of Kg consists of three nested triangles.



Proof: That the convex hull of an optimal recti-
linear drawing of Ky is a triangle has been shown
in [Guy7d and [Bin7 Using a counting tech-
nique similar to [Sin71f], consider a drawing com-
posed of a red triangle that contains a green con-
vex quadrilateral that contains two blue vertices. By
the K5 principle there are (3) = 6 rgxrg cross-
ings. At least two rgxgg crossings are present be-
cause a convex quadrilateral cannot be concentric
with a triangle. Selecting one green and one blue ver-
tex at a time and applying the K5 principle yields,
4 -2 = 8 rbxrg crossings. Six rbxgg crossings are
due to the red-blue edges entering the green quadri-
lateral. Applying the K5 principle to the blue ver-
tices yields one rbxrb crossing. There are 2+4 =6

gbxgb and gbxgg cross-

Crossing | Count | ings; the green quadrilat-
rgxrg 6 eral is initially partitioned
rgxgg 2 into four parts by one
rbxrg 8 ggxgg crossing, adding the
rbxgg 6 first blue vertex creates two
rbxrb 1 gbxgg and adding the sec-
ggxgg 1 ond vertex creates two more
gbxgg 4 gbxgg crossings and two
ghxgb 2 gbxgb crossings. This to-
rbxgb/gg | 8 tals 30 crossings. An ad-
Total 38 ditional eight rbxgb and

rbxgg crossings occur inside
the green quadrilateral, four
per blue vertex, totaling 38
crossings, which is greater than the optimal 36. By
a similar argument any drawing whose second hull
is not a triangle will also be non-optimal; see Ap-
pendix . [

Lemmas @, @, @, @, and @, count the num-

ber of different crossings in an optimal drawing of
K9, making use of the nested triangle property of
Lemma Q

Table 2: Crossing
contributions

Lemma 4.2 A rectilinear drawing of K9 comprising
of nested triangles has a minimum of three 2-coloured
crossings of red-green, red-blue, and green-blue.

Proof: Select two of the three red, green, and blue
triangles. These two triangles form a nested triangle
drawing of Kg with three 2-colour crossings. Hence,
there are three 2-colour edges of each type. m

Lemma 4.3 A rectilinear drawing of K¢ compris-
ing of nested non-concentric triangles has more than
three crossings.

Proof: Let the outer triangle be red and the in-
ner green. By the K5 Principle (Lemma B.10) there

are three rgxrg edge crossings. If the two triangles
are non-concentric then there is at least one rgxgg
crossing. m

Lemma 4.4 A rectilinear drawing of K9 comprising
of nested triangles has exactly nine rbx gg crossings.
Proof: The red triangle contains the green trian-
gle and the green triangle contains the blue triangle.
Therefore, every red-blue edge must cross into the
green triangle. Since there are nine red-blue edges,
there are nine rbxgg crossings. m

Lemma 4.5 A rectilinear drawing of K9 comprising
of nested triangles has at least nine rbxrg crossings.
Proof: The are three green and three blue vertices,
thus there are nine unique green-blue pairs of vertices.
By the Kj5 principle, each pair contributes exactly one
rgxrb crossing. Hence, a nested triangle drawing of
Ky has exactly nine rgxrb crossings. m

We call a crossing internal if it is coloured either
rbxgb or gbxbb. The set of internal crossings con-
sists of all internal crossings in a drawing. Intuitively,
all internal crossings take place within the green tri-
angle. We call a red-blue kite full if it contains a
green vertex; otherwise we call it empty. Intuitively
a full red-blue kite contains a green-blue Kkite.

Lemma 4.6 The number of internal crossings in a
nested triangle drawing of Ko s at least nine.

Proof: We make use of the fact that the green
and blue triangles form a K and that any rectilinear
drawing of Ky falls into one of the five configurations:
CCC,VVV, CVV, binary CCV, and unary CCV. The
proof is by case analysis on the green-blue Kg sub-
drawing. The green-blue Kg is drawn in one of the
five configurations:

CCC configuration: Since each of the blue vertices
is a middle vertex of a concave kite, and all middle
labels are distinct, by Corollary @ each of the nine
red-blue edge crosses one green-blue edge, hence there
are nine rbxgb crossings.

VVV or CVV configuration: If the drawing
is in a VVV configuration, by the Barrier Lemma
(Lemma @) there are two rbxgb crossings per blue
vertex. Adding the three ghxbb crossings yields nine.
In the CVV configuration one of the blue vertices is
responsible for at least three rbxgb crossings rather
than two; adding the two gbxbb crossings yields the
required result.

Binary CCYV configuration: Note that two of the
blue vertices are responsible for three rbxgb cross-
ings, and the third vertex is responsible for two.



Adding the single
gbxbb crossing yields
nine.

Unary CCYV configu-
ration: In the case of
the unary CCV config-
uration, the drawing is
partitioned into a heavy
and light part by ex-
tending the blue edges
incident on the middle
vertex of the convex kite; see Figure H A red-blue
kite whose origin vertex is in the heavy side of the
drawing is responsible for four or six rbxgb cross-
ings while a red-blue kite originating in the light
side of the partition is responsible for three cross-
ings if it is empty, and one crossing if it is full;
the six edge crossings occur if there is an empty
red-blue kite between the two concave kites. In or-
der for the green triangle to be nested within the
red, by the containment argument, at least one of
the red-blue kites must originate in the heavy parti-
tion. This implies that in order to get fewer than

Figure 9: Partition of
Drawing

eight rbxgb crossings,
two of the red-blue kites
must be full and con-
tain the green-blue kite
in the light partition.
This implies that the
third red-blue kite must
be an empty kite be-
tween the two concave
red-green kites. Since
this kite is responsible
for six crossings, it fol-
lows that there are at
least eight rbxgb cross-

VN

Full Kites

contained
vertex

|1

ings and therefore at least nine internal crossings. m

Singer’s Theorem [Bin71]| follows from the previous
lemmas. A stronger version of the theorem is given
next.

Theorem 4.7 An optimal rectilinear drawing of Kg
consists of three nested triangles. Furthermore, the
red and green triangles, and the red and blue triangles
are concentric.

Proof: The first part of the statement is proven

in [Guy79] and the counting argument in Lemma [£.1.

Putting Corol-
lary [3, Lemma [4, Contribution | Count
and Lemma @ together Lemma >9
accounts for 27 of the 36 Lemma 9
crossings in an optimal Lemma 9
drawing.  Lemma @ Lemma >9
states that there are at Total > 36

least nine internal cross-
ings. Since ¢r(Ky) = 36, Table 3: Lower bound
the number of rgxgg and rbxbb crossings must be
zero; this implies concentricity. m

Corollary 4.8 An optimal rectilinear drawing of Kg
has at most nine rbx gb crossings, at most two gbx bb
crossings and the total number of internal crossings
is ezactly nine.

Proof: By Theorem @, an optimal drawing of a Ky
has 36 crossings. Referring to Table E, an optimal
drawing has at least 27 non-internal edge crossings
(Lemmas Q, @7 and @) By Lemma @, there
are at least nine internal edge crossings and hence,
an optimal drawing has exactly nine internal edge
crossings.

Three gbxbb crossing occur if the green-blue Ky
part of the drawing has configuration VVV. How-
ever by a Barrier argument similar to Lemma @ the
configuration VVV creates nine rbxgb crossings plus
three gbxbb crossings, which totals 12 internal cross-
ings and cannot occur in an optimal drawing of Ky.
Consequently at most two gbxbb crossings may oc-
cur. m

4.1.1 Optimal K9 Drawings

One is tempted to believe that an optimal drawing of
Ky is necessarily comprised of three nested triangles
that are pairwise concentric. However, this belief is
fallacious, as is shown in Figures @ and .

4.2 The Rectilinear Crossing Number
of K10

We begin by reproducing a proof from [Sin71] that
er(K1o) > 60. Since Singer [Bin7], [Gar86] exhibited
a 62 crossing rectilinear drawing of Kiq, it follows

Theorem 4.9 (Singer, [Sin71])) cr(K1o) > 60.

Proof: By way of contradiction, assume that there
exists a rectilinear drawing of K¢ with 60 crossings.
Since each edge crossing comprises of four vertices,
the sum of responsibilities of each vertex totals 4 - 60.
Therefore, the average responsibility of each vertex is



Figure 11: Blue-Green CCV Drawing

4-60

To- = 24. Furthermore, each vertex in the drawing
is respomnsible for exactly 24 edge crossings. For if a
vertex is responsible for more than 24 edge crossings,
then removing the vertex from the drawing yields
a drawing of Ko with fewer than 36 edge crossings,
which contradicts €r(Kg) = 36. Similarly, if the draw-
ing has a vertex that is responsible for fewer than
24 crossings, then by the averaging argument, there
must be a vertex that is responsible for more than 24
crossings, leading to the same contradiction. There-
fore, each vertex is responsible for 24 crossings. Thus,
any drawing of K¢ with 60 crossings contains an op-
timal drawing of K.

Starting with an optimal drawing of Kg we try to
place the tenth vertex. We have two choices; either
place it such that one of the hulls of the K¢ drawing
is a convex quadrilateral or the drawing comprises of
nested triangles with a vertex in the inner triangle.
In the latter case, the edge connecting the tenth ver-
tex to one of the outer triangle vertices must intersect
an inner triangle edge. Removing the inner triangle
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Figure 12: Blue-Green CVV Drawing

vertex that is opposite the intersected edge creates
a drawing of Ko that fails the concentricity condi-
tion. Hence, the latter drawing will not be optimal.
If the former situation arises there are two subcases.
If the quadrilateral is the outer or the second hull,
then removing an inner vertex creates a non-optimal
Ky drawing, which is a contradiction. If the inner-
most hull is a convex quadrilateral, then a priori it is
not concentric with the outer triangle. Let b be the
vertex such that there is an edge from it to a vertex
in the outer triangle that intersects the quadrilateral.
Remove a vertex from the quadrilateral that is an-
tipodal to b. This creates a non-optimal K9 drawing.
The result follows. By an identical argument any
rectilinear drawing of K7y cannot have fewer than 60
crossings. m

Next, we study drawings of K1 that have a nested
triangle sub-drawing of Ky coloured in the standard
way. Let the tenth vertex be coloured white; the
responsibility of the tenth vertex is the number of
white crossings in the corresponding drawing of K.
The following technical Lemma is needed in the proof
of Theorem . This Lemma gives a lower bound
on some of the white crossings that occur within the
green triangle.

Lemma 4.10 If a white vertex is added to a nested
triangle drawing of K9 such that it is contained in the
green triangle, then at least siz crossings must exist
of the types rwx gb, rbxbw, gbx bw, and rgx gg.

Proof: At least two of the red-white edges must
cross into the green triangle on distinct green-green
edges as a consequence of the nested triangle require-
ment and the containment argument. Select two of
the three red-white edges such that they cross into
the green triangle on distinct green-green edges and
such that the total number of rwxgb crossings is min-



imized. Let ¢; and co be the number of rwxgb cross-
ings for which each of the two red-white edges is re-
sponsible and assume, without loss of generality, that
c1 < c¢y. The lower bound on the total number of
rwxgb crossings is 2c; + co. We say that the red-
white edge of lesser responsibility (c;) has weight
two, and we say that the other red-white edge, of
responsibility c2, has weight one.

Upon examining rwxgb crossings the proof falls
into three main cases corresponding to the numbers
of rwxgb crossings; if there are six or more rwxgb
crossings then we are done. We consider the cases
when the number of rwxgb crossings is {0, 1,2}, {3},
and {4, 5}, the latter being the most challenging.
Case 1: 0, 1, or 2 rwxgb crossings
By the Barrier Lemma, every blue vertex forces at
least one rwxgb crossing. Hence, there must be at
least three rwxgb crossings.

Case 2: 3 rwxgb crossings
Considering only the rwxgb
configuration that minimizes
ber of rwxgb crossings occurs
red-white  edge  of
weight two crosses zero
green-blue edges and
the red-white edge
of weight one crosses
three. However, we
must consider blue-
white edges also; by
the Barrier principle
one of the blue-white edges must cross at least two
green-blue edges, and the other must cross at least
one. This brings the total up to at least six.

the
num-

the

crossings,
the
when

weight two edge

weight one edge

Case 3: 4 or 5 rwxgb crossings

Assume there are at least four rwxgb crossings. If
there are two or more ghxbw crossings then we are
done. It remains to consider two subcases: that of
zero or one gbxbw crossings.

Subcase 3.1: 0 gbxbw crossings

Assume there are zero gbxbw crossings.  This
case can only occur when no green-blue
edge intersects the blue triangle, i.e., the

green-blue kites are in a CCC con-
figuration because there are no
gbxbb crossings. The white ver-
tex is in the green-blue free zone;
a free zone consists of all regions
of a nested triangle drawing of Kg
where a seventh vertex can be placed such that no
kite edge blocks visibility of any inner vertices. Note
that removal of the inner edges of all convex kites in a
configuration creates a free zone. A free zone occurs
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naturally in a CCC configuration.

If there is a green-blue edge intersecting the
blue triangle, then there exists a green-blue-green
path between two of the blue vertices that forces
at least one gbxbw crossing. Since the white
vertex must be in
the naturally occur-
ring green-blue free
zone, i.e., a green-blue
CCC configuration,
by the CCC Lemma
(Lemma .9, this forces
every red-white edge to
generate at least two
rwxgb crossings. This
yields a total of at least six crossings.

gb x bw

Figure 13: The path

Remark 4.11 We reach a count of five crossings of
the required type. The remainder of the proof is de-
voted to producing one more edge crossing of one of
the required types.

Subcase 3.2: 1 gbxbw crossing

We now consider the rbxbw crossings. Consider the
red-blue kite configuration. Either the configuration
is a CCC or not.

Subcase 3.2.1: Non-CCC red-blue configura-
tion

Assume that the red-blue kite configuration is not in
a CCC configuration. By the converse of the argu-
ment used in Subcase 3.1 there is at least one rbxbw
crossing. Adding to the existing five yields at least
six distinct crossings of the required type. This leaves
only one case: the CCC red-blue configuration.
Subcase 3.2.2: CCC red-blue configuration
We now consider the five subcases corresponding to
the distinct green-blue configurations within the red-
blue CCC configuration.

Subcase 3.2.2.1: CCC green-blue configura-
tion

If the green-blue kites are in a CCC configuration,
then this case is covered by subcase 3.1.

Subcase 3.2.2.2: CVV and VVV green-blue
configurations

For every green-blue edge that intersects the blue tri-
angle, there is at least one gbhxbw edge crossing; see
Figure B Hence, if the green-blue kites are in a
CVV or a VVV configuration then we have at least
two gbxbw crossings. This sums to at least six cross-
ings.

Subcase 3.2.2.3: Unary CCV green-blue con-
figuration

If the green-blue configuration is a unary CCV config-
uration then the red and green triangles are not con-



centric; therefore, there is at least one rgxgg cross-
ing. Adding at least four rbxbw crossings, and at
least one ghxbw crossing, by the same argument as
in subcase 3.2.2.2, yields at least six crossings.
Subcase 3.2.2.4: Binary CCV green-blue con-
figurations

We are now left with the case of a CCC red-blue
kite configuration and a binary CCV green-blue kite
configuration with the white vertex either inside the
red-blue free zone or not.

If the white vertex is not inside the red-blue free
zone then there is at least one rbxbw crossing, by the
same argument used in subcase 3.1, plus at least one
gbxbw crossing, by the same argument as in subcase
3.2.2.2, plus at least four rwxgb crossings. The sum
of these crossings is at least six.

Thus, assume that the white vertex is in the red-
blue free zone. We will argue that there must always
be either at least five rwxgb crossings plus at least
one gbxbw crossing, or at least four rwxgb crossings
plus at least two gbxbw crossings.

Consider the drawing minus the single green-blue
edge in the only convex green-blue kite, i.e., the inner
edge of the convex kite. This creates a green-blue
free zone, inside of which there are no ghxbw edge
crossings.

Remark 4.12 In order to cross into the green-blue
free zone, a red-white edge must cross a green-blue
edge. Furthermore, if a green-blue kite and a red-
blue kite are both concave, and have their internal
(blue) vertices labeled identically, then we may invoke
Lemma B.§ (Kite Lemma). That is, the red-white
edge, incident on the origin vertex (red) of the red-
blue kite, must cross into the concave green-blue kite
before crossing into the free zone. This produces an
additional rwx gb crossing.

The white vertex is either inside the green-blue free
zone or not.

If the white vertex is inside the green-blue free
zone, then the red-blue CCC configuration together
with the pigeon-hole principle implies that we can
match up a concave red-blue kite with each of the
two concave blue-green kites. By remark [£.13, each of
these match-ups contribute at least two rwxgb cross-
ings, and the third red-white edge contributes at least
one rwxgb crossing. Thus, if the white vertex is in
the green-blue free zone there are five rwxgb cross-
ings. By the argument used in subcase 3.2.2.2, the
single convex green-blue kite contributes to at least
one ghxbw crossing. Thus we get at least six cross-
ings.
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If the white vertex is outside the green-blue free
zone, then we get at least one gbxbw crossing by
the same argument used in subcase 3.1 and at least
one gbxbw crossing by the same argument used in
subcase 3.2.2.2. Since we have at least four rwxgb
crossings (case 3), we get a grand total of at least six
crossings.

In all possible cases that can occur we have shown
that the number of crossings of the required type is
at least six. m

Lemma @ imposed a nested triangle requirement
on any optimal rectilinear drawing of Kg. The follow-
ing lemma imposes a similar constraint on optimal
rectilinear drawings of K.

Lemma 4.13 Ifcr(Ki9) = 61 then the first two hulls
of an optimal rectilinear drawing of K19 must be tri-
angles.

Proof: By way of contradiction, assume that there
exits an optimal rectilinear drawing of Kjo whose
convex hull is not a triangle and 61 edge crossings. By
the same averaging argument used in Theorem @, at
least four of the vertices are responsible for 25 edge
crossings; removing any of them yields an optimal
drawing of Ko with 36 crossings. If any of the ver-
tices with responsibility 25 are not on the convex hull,
then removing such a vertex yields a drawing of Ky
with a non-triangular convex hull, which is a contra-
diction. Therefore, all the vertices of responsibility 25
must be on the convex hull of the original drawing.
Since we can always remove one of the four vertices
such that the outer hull of the new drawing is not
a triangle, this contradicts the original assumption.
Hence, the first convex hull must be a triangle.

Assume that the second hull is not a triangle. Ei-
ther the second hull is a convex quadrilateral or the
second hull has more than four vertices; assume the
latter. Since at least four of the vertices must have
responsibility 25 and the outer hull is a triangle, at
least one vertex of responsibility 25 must either be-
long to the second hull, or be contained within it. In
either case, removing said vertex creates a drawing
of Ko that has 36 crossings and whose second hull is
not a triangle. This is a contradiction.

Finally, assume that the second hull is a convex
quadrilateral. If within the second hull there is a
vertex of responsibility 24 or higher, removing said
vertex creates a drawing of Kg with 37 or fewer ver-
tices. By Lemma EI such a drawing should have at
least 38 crossings, contradiction. Hence, assume that
all three vertices inside the second hull have respon-
sibility 23. Consequently, the remaining 7 vertices,
must have responsibility 25. Since, the second hull



is non-concentric with the first, by the same argu-
ment used in Theorem @, we can always remove
one of the vertices from the second hull such that
the outer two hulls are non-concentric. This implies
that we can create an optimal drawing of K¢ whose
outer two hulls are non-concentric, a contradiction of
Theorem @

Hence, the outer two hulls must be triangular. m

Theorem 4.14 If cr(K19) = 61 then an optimal
drawing of Kio will consist of two nested triangles

containing a convezr quadrilateral.

Proof:

By Lemma the outer two
Crossing | Count | hulls of the optimal draw-
gwXxbb 3 ing Kjp must be triangles.
gwxgb 3 We must still account for
gwxrb 3 the four internal vertices. If
IWXgg 3 the four vertices form a con-
rwxbb 3 vex quadrilateral then we are
I'wWXTg 3 done; otherwise, assume the
rwxrb 3 tenth vertex is inside the
rwxgb 6 third nested triangle.
rbxbw Colour the tenth vertex
gbxbw white. Now count the num-
rgxgg ber of red-white and green-
Total 27 white edge crossings, start-

ing with the green-white edge
crossings. Each green-white edge must cross into the
blue triangle; multiplying by three yields a total of
three gwxbb crossings. By the Kjs principle there
are three gwxgb crossings. Each blue vertex has
three incident red-blue edges that partition the green
triangle into three
regions. The white
vertex must be in
one of the regions;
by the Barrier ar-
gument there is at
least one gwxrb
crossing per blue
vertex. The total
of the green-white
edge crossings sums to nine.

Each red-white edge must cross into both the green
and blue triangles, totaling six edge crossings. By
the K principle, there are three rwxrg crossings and
three rw-rb crossings. This gives an additional 12
crossings.

By Lemma there are at least six additional
crossings of the rwxgb, rbxbw, gbxbw and rgxgg
type, of which at least three are rwxgb crossings.
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Altogether, the number of white and rgxgg cross-
ings is 27. Since ¢r(K9) = 36, the number of edge
crossings in the drawing of Ko with the white vertex
in the blue triangle is, 36 + 27 =63 > 61. m

Theorem 4.15 ¢r(Kyg) > 61.

Proof: By way of contradiction assume that
cr(Ky0) = 61. By Theorem the inner hull
must be a convex quadrilateral. Repeat the argu-
ment from Theorem disregarding the rwxbb
and gwxbb edge crossings (because there is no blue
triangle). This gives us an initial count of 63 —
6 = b7 edge crossings. Let the entire inner con-
vex quadrilateral be coloured blue.
quadrilateral there
will be one bbxbb
crossing (the diago-
nals). Furthermore,
since the quadri-
lateral is neither
concentric with the
red triangle nor
the green triangle,
there will be a
minimum of two
rbxbb edge cross-
ings and two gbxbb
edge crossings. Summing the edge crossings yields
57+5=62>61. m

Inside the

Theorem 4.16 cr(Kjy) = 62.

Proof: Singer’s rectilinear drawing of Kjy with 62
edge crossings [Bin71] is exhibited in [|Gar8(, p. 142],
and hence cr(K10) < 62. By Theorem §.15cr(K19) >
62. The result follows. m

An even stronger statement can be made. Just as
in the case of Ky, the outer two hulls of an optimal
rectilinear drawing of K79 must be triangles.These
properties could be useful, just as in the case of Ko,
for determing the rectilinear crossing number of K.

Theorem enables us to improve the lower

bound in equations (EI) and (E)

5 Asymptotic Lower Bounds

Given cr(K,) for a fixed a, one can derive lower
bounds for all er(K,), n > a. Any complete sub-
graph of a vertices drawn from a rectilinear drawing
of K,, will include at least cr(K,) crossings. There
are (Z) complete subgraphs of size a. Each cross-
ing consists of four vertices and each will be in-
cluded in all other subgraphs containing the same



four vertices. The number of such subgraphs that
share four given vertices _j). Guy [,
Richter and Thomassen [RT97], and Scheinerman
and Wilf [ each use this argument to show that

J(e7a)

Scheinerman and Wilf [SW94] show that this can
be rearranged to get

n—4
a—4

n

(4)

et > (i) )

T(K,) _ (K
(1) (4)

Thus, one obtains a general lower bound for ¢r( K, )
from any known ¢r(K,). Since cr(Kjip) = 62 and
(140) = 210, one gets

(5)

n
4

a
4

(6)

This raises the lower bound for €r(K7;1) to 98. We
conjecture cr( K1) = 102. Since crossing numbers are
integers, each lower bound can be slightly increased

by taking its ceiling. Thus,
JeanIE

{a(m (

If one sets a = n — 1, equation (ﬂ) gives a recur-
sive definition whose recursive ceilings provide an im-
proved lower bound for ¢r(K,). For example, one
finds that, cr(K400) > 315356975. This leads to a
general lower bound of

n—4
a—4

n

a(K)

Y]

(7)

a

. or(K,) _ 315356975 315356975
| = ~ 0.3001 .
e () T () 1050739900
(8)
As n increases, the limit converges. Whenever

cr(K, ) is discovered for a new a’, one can find an
improved lower bound for a general er(K,), n > a’.
Consequently, €r(K,,) can be bound from below by
using the technique describe here and from above by
the drawing described by Brodsky, Durocher, and
Gethner in [B (] to achieve the following lower
and upper bounds:

315356975 < 5

(K
1050739900 — n—oo

(1)

0.3001 ~ 6467

= 16848
(9)

< — =~ 0.3838 .
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6 Conclusion

6.1 Current and Future Work

The flavour of finding the crossing number of a graph,
particularly in a rectilinear drawing, is similar to that
of determining properties of line arrangements in the
plane; this area is well known to be delicate and dif-
ficult. Therefore, one expects improvements to occur
at a slow rate and specific instances of the problem
for small graphs to be hard, though interesting.

An approach that has proved quite useful is to
catalogue all inequivalent drawings of a given graph.
With such a catalogue one can determine many spe-
cific properties of small graphs; see, for example,
[, . In particular, to find the crossing
number or rectilinear crossing number of K, and
K1, n, one can adopt a brute-force computational ap-
proach to find exact values of the crossing number
for small graphs. Such an approach is currently un-
derway for determining ¢r(kK,) by Applegate, Cook,
Dash, and Dean [Dea0(], where not only will they in-
dependently confirm that cr(K70) = 62, but they will
determine exact values of €r(K,) for other values of
n > 11 as well.

In fact, when each new value of ¢r(K,) is found,
the lower bounds in equation ([J) and equation () will
improve by way of the technique given in Section f.
For example, we have seen that cT(K71) > 98. There
exists a rectilinear drawing of Kj; with 102 edge
crossings [Jen71,, BW94]; by [ARS]], cr(K11) is even.
Therefore, er(K71) € {98,100, 102}. If er(K411) = 100
or 102 then the lower bound in equation (ﬂ) becomes
.30544 or .31085 respectively. Similarly, the best
drawing of Kj2 known to date has 156 edge cross-
ings [Jen7l]; if eF(K12) = 156, then the lower bound
reaches .31839.

Clearly, finding exact values for ¢r(K,,) for any
value of n will make relatively large improvements on
the asymptotic lower bounds for the determination of

72

6.2 Open Problems

We mention a small subset of open problems that
arose from our investigations.

1. We know from [Guy7] that if cr(K,,) = cF(K,,)
then the convex hull of any optimal rectilinear
drawing of K, is a triangle. Prove that the con-
vex hull of any optimal rectilinear drawing of K,
is a triangle.

Given a rectilinear drawing of G, the planar
subdivision of G is the graph obtained by



adding vertices (and corresponding adjacencies)
at each of the edge crossings of the particu-
lar drawing of G. Is the planar subdivision
of any rectilinear drawing of K, necessarily 3-
connected? This question was also posed by
Nate Dean.

Does there exist an optimal rectilinear drawing
of K,, for some n, such that it does not con-
tain a sub-drawing that is an optimal rectilinear
drawing of K, _1? Furthermore, does there exist
some n for which none of the optimal rectilinear
drawings of K, contain a sub-drawing that is an
optimal rectilinear drawing of K, _1?

Often an optimal rectilinear drawing of K, is
not unique. For a given n, how many optimal
drawings of K, are there? For what values of n
is the optimal drawing unique?

Let G be an arbitrary graph. What is the com-
plexity of determining €r(G)? Similarly, where
in the complexity hierarchy does the determi-
nation of ¢r(K,) live? Recall that for a not-
necessarily-rectilinear drawing of G, the general
problem is known to be NP-complete [[GJ83). For
some thoughts on such problems, see [Bie91].

We have seen that ¢r(K711) € {98,100,102} and
believe €T(K71) to be 102. Give a combinatorial
proof.

Finally, in the spirit of the present paper we feel
compelled to mention the following problem, for
which we sincerely apologize. Since 1970 it has

been known that cr(K77) € {77,79,81} [Kle70).

What is the final answer?
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A Other Ky Drawings

As before, colour the outer hull red, the second hull
green, and the vertices inside the second hull blue.

Lemma A.1 If the first hull of a rectilinear drawing
of Kg is a triangle, and the second hull has siz ver-
tices, then the drawing has more than 36 crossings.

Proof: This drawing is coloured by only two colours:
red and green. By the K5 principle there are (g) =15
rgXrg crossings. Since the six green vertices comprise
the second hull, there are (2) = 15 ggXxgg crossings.
The 30 crossings counted so far include all except the
rgxgg crossings.

We now consider the rgxgg
crossings. Select four of the
green vertices; these form a con-
vex quadrilateral and at least one
green vertex, the guilty vertex,
has a red-green edge that inter-
sects the quadrilateral. This edge
partitions the green hull into two parts with one green
vertex on one side of the green hull and three on the
other, or two on each side. In the former case the
red-green edge crosses three green-green edges that
are incident on the single vertex. In the latter case,
the red-green edge intersects four green-green edges
that are incident on the two green vertices in one of
the partitions. In both cases, there is an additional
rgxgg crossing due to the red-green edge crossing an
edge of the quadrilateral. Hence, at minimum four
rgxgg crossings are due to the single red-green edge.
Since there are at least three guilty vertices in a hull
on six vertices. There must be at least 12 rgxgg
crossings.

guilty
vertex




Therefore, the total number of crossings is at least
42> 36. m

Lemma A.2 If the first hull of a rectilinear drawing
of Ky is a triangle, and the second convex hull has five
vertices, then the drawing has more than 36 crossings.

Proof: As before, the single vertex inside the second
hull is coloured blue. By the K35 principle there are
(g) = 10 rgxrg crossings and (?) = 5 rgXxrb cross-
ings. By the same argument used in the previous
lemma there are (2) = 5 ggxgg crossings. There are
at least five gbxgg crossings. Thus, we reach a count
of 25 crossings without having considered the rbxgg,
rgxgg, and rgxgb crossings.

We count the rgxgg, and rgxgb crossings by the
guilty vertex argument used in the previous lemma.
A hull on five vertices will have at least two guilty
vertices. Each guilty vertex is responsible for at least
three rgxgg crossings and, by the Barrier argument,
at least one rgxgb crossing. This yields an additional
eight crossings, bringing the total up to 33.

Finally, consider the rbxgg

crossings. At least three oc- Crossing | Min
cur from the red-blue edges rgxrg 10
having to cross into the green rgxrb 5
hull. By the containment ar- ggxgg 5
gument, at least one of these ghxgg 5
three edges has to cross two rgxgg 6
of the green-green diagonals rgxgh 2
within the green hull. This rbxgg 5
brings up the total to at least Total 38

five rbxgg crossings. Adding
this to the running total yields Table 4: Crossings
38> 36. m

17



