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Relations Between Crossing Numbers 
of Complete and Complete Bipartite Graphs 

R. Bruce Richter and Carsten Thomassen 

1. INTRODUCTION. In his "A Note of Welcome" in the first issue of the 
Journal of Graph Theory [5], Paul Turan wrote of his experience in a labor camp 
during the Second World War. 

There were some kilns where the bricks were made and some open storage yards where the 
bricks were stored. All the kilns were connected by rail with all the storage yards. The bricks 
were carried on small wheeled trucks to the storage yards. ... the work was not difficult; the 
trouble was only at the crossings. The trucks generally jumped the rails there, and the bricks fell 
out of them; in short this caused a lot of trouble and loss of time . . . the idea occurred to me that 
this loss of time could have been minimized if the number of crossings of the rails had been 
minimized. But what is the minimum number of crossings?...This problem has become a 
notoriously difficult unsolved problem; the present state of it and the ensuing general problems 
one can see in the interesting paper of Guy [2]. 

We can abstract from Turan's story the following general question. Given m 
"kilns" to be joined by "tracks to n "storage areas",what is the minimum number 
of crossings of tracks possible? If we call the kilns and storage areas "vertices" and 
the tracks "edges", we are asking what is the minimum number of pairwise 
crossings of edges in a planar drawing of the complete bipartite graph Km nS which 
has two sets of vertices, one with m vertices and the other with n, such that each 
vertex in one set is joined to every vertex in the other set. See Figure 1 for two 
drawings of K3 4 in the plane. 

Figure 1 

In general, for a graph G, the minimum number of pairwise crossings of edges 
among all drawings of G in the plane is the crossing number of G and is denoted 
by cr(G). Thus, cr(K3 4) = 2. We remark that Figure 1 shows that cr(K3 4) < 2. It 
is an interesting exercise for the reader to prove that cr(K3 4) = 2. At present, 
there is no known efficient algorithm to calculate the crossing number of an 
arbitrary graph. In fact, the problem of calculating the crossing number of a graph 
is NP-complete [1], so it is unlikely that such an efficient algorithm exists. Yet one 
might hope that the crossing number of a graph with special structure can be 
calculated. 

The complete graph on n vertices is the graph Kn having n vertices such that 
every pair is joined by an edge. Figure 2 shows a drawing of K6 with only 3 
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Figure 2 

crossings, which turns out to be optimal. Since the complete graphs have a very 
special structure indeed, we can hope to caTculate their crossing numbers. 

There are conjectures for the crossing numbers of both the complete and 
complete bipartite graphs [3]: 

1 n n-1 n-2 n-3 
( n ) 4 2 2 2 2 

and 

m m-1 n n-1 
cr ( Km, n ) = 2 2 2 2 

However, these remain open. Some partial results are known: the former has been 
verified for n < 10, while the latter holds for m < 6 and all n [4] and for m = 7 
and n < 10 [7]. 

The best known drawings of Km n and Kn achieve these values. The description 
of such a drawing for Km n is quite simple. Divide both the m-set and the n-set 
into two as-equal-as-possible parts. Place the m along the y-axis, with half above 
the x-axis and half below. Similarly, place the n along the x-axis, with half to the 
left of the y-axis and half to the right. Now join the m to the n using straight lines. 
The second drawing in Figure 1 is such a drawing of K3,4. 

Turan's story suggests a variant of the crossing number problem for complete 
bipartite graphs: find the smallest number of crossings in a cylindrical drawing of 
Kn nS that is a drawing of Kn n on a cylinder such that each class of n vertices is on 
one of the two boundiaries of the cylinder. 

One way to get a drawing of K2n in the plane is start with a cylindrical drawing 
of Kn n and then use the top and bottom of the cylinder to complete the drawing 
of K2n. See Figure 3 for the case n = 4. 

Obviously, this drawing of K2n has 2(4) more crossings than the cylindrical 
drawing of Kn n; this type of drawing of K2n is described in [6]. With an 
appropriate choice of cylindrical drawing of Kn nS the conjectured crossing number 
of K2n is obtained this way. 

One might hope that some better cylindrical drawing of Kn n exists and, 
therefore, a better drawing of K2n would result. In Section 2, we associate a 
quadratic form with such drawings. Minimizing the quadratic form, we find the 
best cylindrical drawing of Kn ns and so get the best drawing of K2n Of this type. 
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Figure 3 

In Section 3 we shall discuss asymptotic values of the crossing numbers of Kn 
and Kn n. It is easy to see (and will be discussed in Section 3) that the sequences 

cr(Kn)/(4) and cr(Kn,n)/(2) are monotonically increasing and each term is less 
than 1. Therefore, the limits 

cr(Kn) cr(Kn n) 
llm and lim ' 

n °s ( 4 ) n oo ( 2 ) 2 

both exist and are at most 1. The conjectures on the values of the crossing numbers 
cr(Kn) and cr(Kn n) imply that the limits are 3/8 and t/4, respectively. We prove 
in Section 3 that the latter implies the former. 

2. CYLINDRICAL DRAWINGS OF Kn n. We want to determine a lower bound 
on the number of crossings in any cylindrical drawing of Kn n We need to discover 
just what forces a crossing in the drawing. Consider, first, a single vertex v of Kn n. 
All the edges incident with v are drawn across the cylinder to vertices on the other 
boundary. No two of these edges cross in an optimal drawing; see Figure 4. 

\> becomes > 

Figure 4 

Now consider two vertices v and w on the same boundary. There are several 
possibilities for how the edges incident with these vertices are drawn, but we can 
see (Figure 5) that no two edges cross more than once in an optimal drawing. So 
how can two edges be forced to cross? 
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becomes 

Figure 5 

A little thought yields a simple observation. 

For each vertex i on the inside boundary, there is a vertex xi E {1,2, . . ., n} on the outside 
boundary such that the simple closed curve consisting of the edges from i to each of xi and 
xi + 1 (the arithmetic being taken modulo n), together with the little segment of the outer 
boundary of the cylinder joining xi and xi + 1 bounds a disc containing the inner boundary of 
the cylinder. 

As examples, in Figure 6, x1 = 5 and x2 = 7. 

6i) 

4 

Figure 6 

Now it is a simple matter to get a lower bound on the number of crossings given 

that the values of x1, x2, . . ., xn are known. We need only deal with these in pairs, 

i.e., it suffices to calculate the number of crossings among edges incident with the 

vertices i and j on the inside boundary. If we pick two vertices r and s between 

xi + 1 and x;, say, then, among the four edges with ends i or j and r or s, there 

must be at least one crossing (Figure 7a). Similarly, if r and s are both between 

x; + 1 and xi. But if one is between xi + 1 and Xj and the other is between x; + 1 

and xi, then there need not be a crossing (Figure 7b). 

Assuming that 1 < xi < Xj < n, it follows that there are at least 

( 2 ) ( 2 ) 
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Xi+l 

(a) (b) 

Figure 7 

s 

crossings in the drawing among edges incident with i and j. Therefore, a lower 
bound for the total number of crossings in the drawing is 

E (lXj-Xil) (n-lXj-Xil) 

Using the relation (Y) =y(y-1)/2, we see that the lower bound is the 
function 

f(Xl,X2n...,Xn) =(2) 
( E<i<j<n 

Ordering the variables so 1 < x1 < x2 < *** < xn < n, we see that the lower 
bound is given by the quadratic function 

F(X1SX21** SXn)=(2) 

+( E 
1 <i<j<n 

- nt E (Xj - Xi)). 
1 <i <j <n 

Clearly F has a minimum, which we shall determine. 
The functions F is differentiable and 

AF n 
-= 2 , (xi-Xj) + n(n-2i + 1) = 2nxi-2 E Xj + n(n-2i + 1). 

i joi j=l 

Setting S = EJ=1X; and VF = 0 we find that 

2S - n(n - 2i + 1) 
Xi = 2n 

It is an easy calculation to see that xi+1 - xi = 1 and, therefore, setting xi = i 
yields a solution to these equations. Moreover, every other solution is obtained 
from this one by adding the same quantiD,r t to each xi. 

This means that there is an integral minimum for F, namely xi = i, i = 
1,2, .. .,n. Thus, a lower bound for the number of crossings in a cylindrical 
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drawing of Kn n iS 

F(1,2, ,n)= ' ( 2 ) E ( 2 ) 
1 <i <j <n 1 <i <j <n 

= , (k)(n-k) + , (k)k 

= n E (k) = n(n) 

This is attainable; see Figure 3 for the case n = 4. The drawing of K2n obtained 
from this optimal cylindrical drawing of Kn n has the same number of crossings as 
the conjectured crossing number of K2n. 

3. ASYMPTOTICS. The following classical counting argument estimates the 
crossing number of Kn+l in terms of the crossing number of Kn. Deleting in turn 
each vertex from a drawing of Kn+l yields n + 1 different drawings of Kn. Each 
of these must have at least cr(Kn) crossings, so we estimate the crossing number of 
Kn+l by (n + l)cr(Kn) 

How many times do we count a given crossing? A given crossing from Kn+l 
occurs in one of the drawings of Kn if the four vertices that are the ends of the 
edges involved in the crossing are all in the Kn we pick. Given that we must have 
these four vertices, there are n - 4 vertices left to be picked from the remaining 
n - 3 vertices of the Kn+l Thus, the four vertices (and so the particular crossing) 
are in n - 3 of the Kn. Thus, each crossing is counted n - 3 times and we have 
the estimate 

n + 1 
cr(Kn+l ) 2 n _ 3 cr(Kn). 

This estimate is equivalent to 
cr(Kn+l ) cr(Kn) 

{ + 18 2 { \ 

Therefore, the sequence cr(Kn)/(4) is nondecreasing. Since it is bounded above 
by 1, it has a limit, say LC (for Limit of Complete graphs). 

An entirely analogous argument shows that cr(Kn n)/(2) has a limit LB (for 

Limit of complete Bipartite graphs). The drawings of Kn n such as the second 
drawing in Figure 1 show that LB < 1/4. 

It is easy to see that the conjectures as to the crossing numbers for Kn and 
Km n imply that LC= 3/8 and LB = 1/4. We now show there is a relation 
between these limits. 

Theorem. LC 2 (3/2)LB. If LB = 1/4, then LC = 3/8. 

Proof: Let K2n be drawn with cr(K2n) crossings. Within this drawing, there are 
many different drawings of Kn n. We need to estimate how many drawings of Kn n 

there are and how many of these contain a given crossing. 
We shall count ordered Kn n'Ss i.e., those where we first pick one set of n and 

then the other set of n. There are, evidently, (2n ) such graphs. 
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Now consider a given crossing involving the edges ab and cd of K2n. One of a 
and b must be in the first set of n chosen, and similarly for c and d. Thus, there 
are 4 ways to distribute a, b, c, d into the first set of n chosen, if this crossing is to 
occur in the resulting Kn n There are 2n-4 vertices leftS of which n - 2 are to 

be put into the first set of n. Therefore, there are 4(2n - 24) different Kn n'S that 

contain the given crossing, and hence 

(K ) 2 n (K ) 

Divide both sides of this inequality by (24n ) and do some easy atithmetic to get 

cr(K2n) 3 cr(Kn,n) 
(2n) 2 (n)2 

Now taking the limit as n tends to infinity, we have the relation 

LC 2 (3/2)LB 
It follows that if LB = 1/4, then LC 2 3/8. Since we have previously noted 

LC < 3/8 it follows that if LB-1/4, then LC = 3/8. S 

This theorem shows that the conjecture for cr(Kn n) implies the conjecture for 
cr(K2n), at least asymptotically. Does the converse hold? 

Probably this cannot be derived by counting. The reason why the proof of the 
theorem works (as the proof shows!) is that any (almost) optimal drawing of K2n 
contains a drawing of Kn n that is economical in the sense that it has (almost) as 
few crossings as the conjectured value for cr(Kn n) 

For the converse, however, we do not know of a natural way to extend (almost) 
optimal drawings of Kn n to economical drawings of K2n. The optimal cylindrical 
drawings of Kn n have many more than cr(Kn n) crossings. 
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