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ABSTRACT 

It is shown that the toroidal crossing number of the complete bipartite graph, 
K,,.~, lies between 

i m ~ , (m - , ) ( . -  l), 
15(2) (2)  and 6 2 2 

the lower bound holding for sufficiently large m and n. 

1. DEFINITIONS 

The (planar) crossing number, cr(G), of a graph G has been defined [5] as 
the minimum number of crossings in any drawing of the graph on a plane 
(or sphere). A drawing is a mapping of the vertices of the graph into 
distinct points (nodes) of a 2-manifold, and of the edges into Jordan arcs 
of that manifold, having the two appropriate nodes for end-points, and 
no other node as interior point. A crossing is a common point of two arcs 
other than a node. We assume that three arcs do not have points in 
common other than nodes. In a drawing exhibiting the minimum number 
of crossings, two arcs have at most one point in common. If  the 2-manifold 
is a torus (genus l) we have the corresponding definition of the toroidal 
crossing number, era(G). We investigate crx(Km.~), the toroidal crossing 
number of the complete bipartite (2-colored) graph, Km.,~, i.e., the graph 
on m + n vertices, whose edges are exactly those which join one of the m 
vertices to one of the n. 

2. PROLOG 

In 1952, Zarankiewicz [6] gave an attempted solution of the problem 
to find cr(Km,~), and in fact showed 

cr(Km.~) ~ [�89189 -- 1)][�89189 1)], (1) 
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where brackets denote "integer part," and that equality holds when m = 3. 
In a footnote he states that the problem was also solved by K. Urbanik, 
though now the validity of this solution may never be known. In 1965-6, 
P. Kainen and G. Ringel independently observed a hiatus [6, p. 141, or 
1, p. 149] in Zarankiewicz's proof of the reverse inequality to (1). He 
assumes without proper justification that, if n = 2s or 2s + 1, then in a 
minimal drawing of K,~.~, from the 1l m-claws (K,,~,I graphs) of which it is 
composed, it is possible to select s pairs, each of which forms a crossing- 
free subdrawing of K,,,2 �9 

Since (1) is true for m = 3, it can be deduced, as in the proof of (52) 
in Section 6 below, that 

cr(K,,.,) >~ ~m(m -- 1)[�89189 1)]. (2) 

This implies equality in (1) for m = 4. In fact the truth of (1) for m odd 
implies its truth for m + 1. An analogous "one-legged induction" occurs 
[2] in the corresponding problem for the complete graph, K,~. The 
problems [1-6] to find cr(K~), cra(K~), cr(K,~,,), crx(K,,,,) remain open. 
In some of them there is evidence to conjecture that the best known 
upper bounds are the correct results. Various methods have been proposed, 
including those of Section 6 of this paper, which may be used to produce 
improvements in the lower bounds, but in each problem a clear gap 
remains. 

3. PRELIMINARY CONSIDERATIONS 

We note that, in a crossing-free drawing of a (connected) subgraph 
of K,~.,, every circuit has an even number of nodes, and in particular 
every region into which the arcs divide the surface is bounded by an even 
circuit. So if tj is the number of regions withj  bounding arcs, F the number 
of regions, E the number of arcs, and V the number of nodes, then tj ---- 0 
for j odd, and 

F =  t4+ te - l - t s+ '" ,  

2E = 4q + 6t 6 + 8t 8 + . . . ,  

and by Euler's theorem for the torus, 

V > > - E - - F ,  

so 

V > ~ t 4 + 2 t e + 3 t s - + . . -  >~F. 

(3) 

(4) 

(5) 

(6) 
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Suppose we have a minimal drawing of K,.,. on the torus, i.e., one with 
cr~(Km,.) crossings, and that by removing e arcs, a crossing-free drawing 
is produced. Then (5) and (6) give 

E - -  V =  (mn --  e) --  (m + n) <~ F <~ V =  m + n, 

SO 

crl(Km,~ ) >/ e > / m n  --  2(m + n). (7) 

In particular, 

crx(Ks,.) >~ n -- 6, (8) 

crl(K,..)/> 2 n  - -  8. (9) 

Figures 1 and 2, which show the reverse inequalities in the respective 
ranges 6 ~ n ~ 12, 4 ~< n ~< 8, confirm equality in (8) and (9) in these 
cases. It is also clear that 

crx(Ka,. ) = O, n <~ 6, 

cra(K4,. ) = O, n <~ 4. 

Similarly, Figures 3 and 4 with formula (7) show that 

crl(Ks,, 0 = 3n -- 10, 4 ~< n ~< 6, 

crl(Kn,6) = 12. 

(10) 

( l l )  

(12) 

(13) 

FIGURE 1 

FIGURE 2 
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4. ANALOG OF ZARANKIEWICZ'S LEMMA 

We prove  a t h eo rem for the case m = 3. 

THEOREM 1. 

c r l ( K s . , )  ---- [(n - -  3)2/12]. (14) 

PROOF: The  theorem is a l ready proved  for n ~ 12. Let n = 6q + r, 
0 ~ r ~ 5. In  F igure  5, the m = 3 vertices are represented  by  

squares  a n d  the n = 6q -t- r by  six groups  of  q + ~+ circles, 1 ~ i ~ 6, 
~1 = % . . . . .  ~, = 1, E,+I . . . . .  ~ = 0. The n u m b e r  of  crossings 
in  F igure  5 is 

6 q+~t 
~, ~ ( j  - -  t )  = �89 -4- l )  + �89 - -  r )  q (q  - -  1) 
t -1  j=l  

: ~-~2136q 2 + 12q(r - -  3)] 

: [(6q -J- r - -  3)2/12] : [(n - -  3)~/12], 
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FIGURE 5 

so cr~(Ks.,) does not exceed this value. We show that the value is at least 
this by induction on n. Suppose that the result is true for n = 6q + r. 
Then K3.,+~ contains n + 1 subgraphs K3.,, each of  which contains at 
least 3q~+ q r -  3q crossings by the induction hypothesis. A crossing 
arises from two of the n q- 1 nodes, so a crossing will have been counted 
n -- 1 times. Hence 

n q - 1  
cr~(K3.,+O >~ ~ (3q ~ q- qr - -  3q), 

crl(Ks,,~+l) >~ 3q 2 -}- q(r - -  2) q- q(r- 5) 
6 q q - r - -  1 '  

crx(Ka,,,+l) >~ 3q ~ -}- q(r d- 1 --  3) ----- [(n -}- 1 --  3)2/12], 

since 

q(r - -  5) 
- -1  < 6 q q - r - -  1 ~<0 

for q ~> I and 0 ~< r ~< 5, except in the case q = 1, r ----- 0, for which the 
theorem has already been proved. This completes the proof  of  Theorem 1. 

5. UPPER BOUNDS 

Figure 5 is a generalization of  Figure 1, and the corresponding general- 
ization of  Figure 2 is Figure 6, which contains rn ---- 4 nodes represented 
by squares and n - - - -4qq - r ,  0 ~ r  ~<3, nodes represented by 
circles, in four groups of q + ~i, 1 ~< i ~< 4, el = e2 . . . . .  e, = 1, 
~+x . . . . .  e4 = 0. From this it follows that 

cry(K4,.) <~ rq(q + I) q- (4 - -  r )q(q  - -  1), 
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FIGURE 6 

o r  

cra(Ka,.) ~ ~n(n -- 4), 

crl(K,..) ~ �88 -- 1)(n --  3), 

crl(K4,.) ~ k(n -- 2) 2, 

( . , 4 )  = 4, (15) 

(n, 4) = 1, (16) 

(n, 4) = 2, (17) 

where (a, b) is the highest common  factor of  a and b. An a t tempt  to 
prove the reverse inequalities to (15) to (17), using the method of  Theorem 
1, fails, as the induction does not make  the step f rom n = 4q to 4q § 1. 
For  example, we know that  crx(K4.8) = 8, so that  

crl(K4,9 ) ~ 9 • 8, cry(K4,9) ~ 11, 

whereas (16) gives crl(K4.9) ~ 12. 
Figure 3 may  be generalized in a similar way by taking n = 10q + r, 

0 ~ r ~ 9, and replacing nodes 1 to r by sets of  q + 1 nodes and nodes 
r § 1 to 10 by sets of  q nodes. The thirty crossings in Figure 3 will be 
replaced by thirty sets of  crossings, each set containing q2, q(q § 1), 
or (q + 1) 2 crossings. In addition, there will be 

o r  
3 'q 

+ (2)]t2) 
additional crossings arising f rom each of  the sets of  q § 1 or q nodes 
which replace the first r or  the last 10 - -  r nodes of  Figure 3. On counting 
the crossings in the various cases r = 0, r = 1, 3, 7 or 9, r = 2, 4, 6 or 8, 
and r = 5, we obtain the formulas  

crl(K~., ) ~ �89 -- 4), (10, n) = 10, (18) 

�89 --  1)(n --  3), (10, n) = 1, (19) 
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~< �89 - -  2) 2, (10, n) = 2, (20) 

< �89 2 - -  4n + 5), (10, n) = 5. (21) 

S imi la r ly  we can  genera l ize  F igu re  4, y ie ld ing 

crl(K6.n) <~ Xn(5n - -  18), (6, n) = 6, (22) 

~< ~(n - -  1)(5n - -  13), (6, n) = 1, (23) 

< ~(n - -  2)(5n - -  8), (6, n) = 2, (24) 

~(n - -  3)(5n - -  3), (6, n) = 3, (25) 

a n d  we m a y  con t inue  wi th  d rawings  hav ing  n = 2mq + r, 0 <~ r <~ 2m --  1, 
n o d e s  in 2m sets w h e n  m is odd ,  a n d  n = mq + r, 0 ~< r ~< m - -  1, nodes  
in m sets w h e n  m is even,  and  ob t a i n  the  fo l lowing  u p p e r  b o u n d s :  

cr~(K~.,,) <~ �88 - -  18), (14, n) = 14, (26) 

~< l (n  - -  1)(5n - -  13), (14, n) = I,  (27) 

~< �88 - -  2)(5n - -  8), (14, n) = 2, (28) 

~< �88 2 - -  18n + 21), (14, n) = 7. (29) 

crl(Ks.~ ) <~ �88 - -  24), (8, n) = 8, (30) 

~< ~(n - -  1)(7n - -  17), (8, n) ---- 1, (31) 

~< �88 - -  2)(7n - -  i0),  (8, n) = 2, (32) 

~< �88 ~ - -  24n + 24), (8, n) = 4. (33) 

Crx(Kg.~) ~ �89 - -  24), (18, n) = 18, (34) 

~< �89 - -  1)(7n - -  17), (18, n) = 1, (35) 

~< �89 - -  2)(7n - -  10), (18, n) = 2, (36) 

~< �89 z - -  24n + 18), (9, n) = 3, (37) 

~< ](7n z - -  24n + 27), (18, n) = 9. (38) 

crl(K~o.~ ) <~ n(3n - -  10), (10, n) = 10, (39) 

~< (n - -  1)(3n - -  7), (10, n) = 1, (40) 

~< (n - -  2)(3n - -  4), (10, n) = 2, (41) 

~< 3n ~ - -  10n + 5, (10, n) = 5. (42) 
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crx(Kn., ) <~ � 8 8  10), 

~< -~(n --  1)(3n - -  7), 

~< ~(n - -  2)(3n - -  4), 

~< ~(3n ~ - -  10n + II) ,  

In general 

crx(Km.~) <~ 2-x~(4 m -- 2)[n2(m --  1) --  3mn], 

(m, 2) = 2, 

~ ( m  - -  1)[n2(m --  2) --  3n(m -- 1)], 

(22, n) = 22, (43) 

(22, n) = 1, (44) 

(22, n) = 2, (45) 

(22, n) = 11. (46) 

(m, n) = m, (47) 

(m, 2 ) =  1, ( m , n ) = 2 m ,  (48) 

~< z-~4m --  1)[n2(m --  2) - -  3n(m --  1) § 3m], 

(m, 2) = 1, (m, n) = m. (49) 

With only slight loss of  sharpness, formulas (47) to (49) may be combined:  

crl(K"'") <~ -6 2 2 

and (50) may be verified for all m and n. The right member  of  (49) reduces 
to ('~) when n = m. 

6. LOWER BOUNDS 

I f  p ~< m, q ~< n, then Km.n contains ('~)(]) subgraphs K~.~. I f  we 
count  the min imum number  of  crossings in these, noting that  each crossing 
arises f rom just two nodes among  the m and just two among  the n, so that  
it is counted t'n-~vn-% times, \ ~--21\ q -2 l  

mn(m -- 1)(n -- 1) 
crl(K,,.,) >~ p q ( p _  1 ) ( q -  1) crl(K~.q). (51) 

Put  p = 3, q = n, in (51): 

cq(Km.n) ~ ~m(m --  1)[(n - -  3)2/12]. (52) 
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Alternatively, p u t p  = m, q = n --  1, o r p  = m -- 1, q = n: 

erl(K,., 0 >i tn--~2 cra(K~,,_x)l, (53) 

er~(K~.~) >~ lm m----~_ 2 erx(Km_x.,)l, (54) 

where braces denote the least integer not  less than their contents. These 
two formulas combine to give 

maX(lmm _ 
which has been used to compile Table 1, of  known lower bounds for 
crl(Km.~). 

THEOREM 2.  I f  n >1 5, then 
[(n -- 1)(n --  2)/5] ~< crx(K,.,) < [(n --  2)'14. (56) 

PI~ooF: The second inequality follows f rom (15) to (17). We prove the 
first by induction on n. I t  is true for 5 ~ n ~< 7 f rom Table 1. Assume 
it true for n -- 1; then, from (53) with m = 4, 

crl(K4"n) >~ ln n--~-- 2crl(K4"~-l)t >/ In-~2 [ (n - -  2)(n5 --  3)]I 

>~ ln---~2 [ (n - -  2)(n5-- 3 ) -  21I , 

since (n - -  2 ) ( n  - -  3)  = 0 ,  1, o r  2 ,  m o d u l o  5. Hence 

~(n - -  1 ) (n  - -  2 )  4 n  - -  4 (n - -  1 ) (n  - -  2 )  crl(g4,n) 

since 

4n -- 4 2 
- - 1 <  - - < - - -  

5 n -  10 5 

for n >i 7 and (n -- 1)(n -- 2) = 0, 1 or 2, modulo 5. This proves the 
theorem. On putting p = 4, q = n in (51): 

582/6/3-a 
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COROLLARY. 

1 ( 2  ) [ ( n - - 1 ) ( n -  2)] for  m ~ 4, n ~ 5. (57) cri(K~..) >~ ~ 5 

THEOREM 3. I f  n >~ 5, then 

1 2 [ ( ~ 1  <~ crl(Ks.,) <~ ~(n - -4n + 5). (58) 

PROOF: The second inequality follows f rom (18) to (21). The first 
follows by induction on n, since it is true for n = 5 from Table I, and, as 
in the p roof  of  Theorem 2, 

- -  1 )  ~ 2 n  - -  

since 

2n --  2 
- -1  < 3n --  6 < --  - 

for n >~ 5, and (n --  1) 2 ~ 0 or 1, modulo 3. 

COROLLARY 1. 

1 m 

COROLLARY 2. 

erl(Ks.,) = 12. 

THEOREM 4. I f  n >~ 8, then 

1 (n --  2)(5n --  8). ( 2 ) - - 4  <~ erl(Kn,.) ~ -6 

m, n ~ 5. (59) 

(60) 

(61) 

PROOF: Similar to those of the previous two theorems. 
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COROLLARY.  

crl(i~.,~) ~> 1 ( 2 ) [ ( 2 ) -  4], m t> 6, n >i 8. (62) 

THEOm~M 5. If  n >~ 15, then 

9(n -- 2)(3n + 1)/38 < crx(KT.~ ) <~ �88 2 - -  18n + 21). (63) 

PROOF" The second inequality follows from (26) to (29). We prove the 
first by induction on n in the sharper form 

crx(K~., ) >/(27n ~ -- 45n + a,~)/38, (64) 

where a,, is given in Table 2. It depends only on c, where n = 19k + c, 
[ c I ~< 9. Note that 27n 2 -- 45n + an is a multiple of 38 for all values of n. 
The theorem may be verified for 15 ~ n <~ 20 from Table 1. By (53) and 
the inductive hypothesis, 

crl(KT.,,) >1 ln--~2 crx(KT.,~_a)l 

i> In n____~_ 2 [ 27(n - 1) 3 -  45(n38 -- 1 ) +  an-x ']I 

= 1127n~ -- 45n + (1 -t- 2 ) ( a n - 1 -  18)]/38 I 

= (27n 2 -- 45n + a~)/38, 

since the last expression is an integer, and, for n > 20, it may be verified 
from Table 2 that 

a~ -- 38 < (1 + ..--7~2 ~)(an_ 1 - -  18) ~< an (65) 
\ H - - k /  

in each of the 19 cases. The most critical case for the first inequality is 
c = 1, a,~ -- 38 = --20, an-1 -- 18 = --18; the inequality is not strict 
when n = 20. Equality occurs between the second and last members of 
(65) when c = 8. 

COROLLARY.  

cra(Km n) >~ 1 (~)  [ 9(3n 2 -  5n + 3 ) ] ,  m >I- 7, n >~ 15. (66) 
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THEOREM 6. / f n  >/ 15, then 

6n(3n --  5) 7n ~ --  24n + 24 (67) 
19 <~ cr~(Ks,.) <~ 4 

PROOF: This follows closely that of Theorem 5, but using (30) to (33) 
and establishing the first inequality in the form 

Crx(Ks,n) >I (18n z - -  30n + bn)/19, (68) 

where bn is the analog of an and is also given in Table 2. Then 

eri(Ks,,,) ~ I~---~-~_ 2 [ 18(n- 1)'-- 30(n19 -- 1)-I- b,~-i ]I 

18n2--30n+b. 
19 

since this is an integer, and for n >~ 15 we have 

___~2 ) (bn-x -- 12) ~ b . ,  bn- -  19 < ( 1  + n - - 2  (69) 

except in the cases e = 1 and c = 2. Note that the equality in (69) occurs 
for n = 18, and that for c = 8 the first inequality is strict by an amount 
38/(n -- 2). 

To cover the exceptional cases we use (54) and (64), giving 

8 27n ~ --  45n + an I' crx(Ks'") >1 l-6 era(K"")l ~ 14 38 

where an = 18 and 20 in the cases e = 1 and 2. So 

lSn ~ -  30n + 2a./3 ~ lSn ~ -  30n + b. 
crl(Ks,n) >~ 

19 19 

since b~ --  19 < ~a,~ ~< b. in these two cases. 

COROLLARY. 

3 m crl(Km"~) ~ ~ (2) n(3n -- 5), m 1> 8, m >I 15. (70) 
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7. CONCLUSION 

l m .   tm-- T - - ) ,  

provided, in the lower bound, m and n are at least equal to one of  the 
(unordered) pairs (7,45), (8,44), (I0,43), (14,42) or (19,41). 

PROOF: The theorem follows from (50) and (70), since, for sufficiently 
large n, 

1-5 < 2~6 ' 

and the values for which the theorem is stated may be checked from the 
continuation of Table 1. 
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