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ABSTRACT

It is shown that the toroidal crossing number of the complete bipartite graph,

K,,.» , lies between
1 m)(n) and l(m—l)(n—l)
E(z 2 6\ 2 2 )

the lower bound holding for sufficiently large m and n.

1. DEFINITIONS

The (planar) crossing number, cr(G), of a graph G has been defined [5] as
the minimum number of crossings in any drawing of the graph on a plane
(or sphere). A drawing is a mapping of the vertices of the graph into
distinct points (nodes) of a 2-manifold, and of the edges into Jordan arcs
of that manifold, having the two appropriate nodes for end-points, and
no other node as interior point. A crossing is a common point of two arcs
other than a node. We assume that three arcs do not have points in
common other than nodes. In a drawing exhibiting the minimum number
of crossings, two arcs have at most one point in common. If the 2-manifold
is a torus (genus 1) we have the corresponding definition of the toroidal
crossing number, cry(G). We investigate cry(K,,.,), the toroidal crossing
number of the complete bipartite (2-colored) graph, X, , , i.e., the graph
on m - n vertices, whose edges are exactly those which join one of the m
vertices to one of the n.

2. ProLoG

In 1952, Zarankiewicz [6] gave an attempted solution of the problem
to find cr(K,, ), and in fact showed

cr(Km,n) < [3m]3(m — D][En][3(n — 1)), ey
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where brackets denote ““integer part,” and that equality holds when m = 3.
In a footnote he states that the problem was also solved by K. Urbanik,
though now the validity of this solution may never be known. In 1965-6,
P. Kainen and G. Ringel independently observed a hiatus [6, p. 141, or
1, p. 149] in Zarankiewicz’s proof of the reverse inequality to (1). He
assumes without proper justification that, if » = 2s or 25 + I, then in a
minimal drawing of K, ,, , from the n m-claws (X, , graphs) of whichitis
composed, it is possible to select s pairs, each of which forms a crossing-
free subdrawing of K, , .

Since (1) is true for m = 3, it can be deduced, as in the proof of (52)
in Section 6 below, that

er(K,n) = dmim — Dgn]li(r — D). @

This implies equality in (1) for m = 4. In fact the truth of (1) for m odd
implies its truth for m + 1. An analogous “‘one-legged induction” occurs
[2] in the corresponding problem for the complete graph, K, . The
problems [1-6] to find cr(K,), cri(K,), cr(K, ), er(Kp, ) Temain open.
In some of them there is evidence to conjecture that the best known
upper bounds are the correct results. Various methods have been proposed,
including those of Section 6 of this paper, which may be used to produce
improvements in the lower bounds, but in each problem a clear gap
remains.

3. PRELIMINARY CONSIDERATIONS

We note that, in a crossing-free drawing of a (connected) subgraph
of K, ,, every circuit has an even number of nodes, and in particular
every region into which the arcs divide the surface is bounded by an even
circuit. So if ¢; is the number of regions with j bounding arcs, F the number
of regions, E the number of arcs, and ¥ the number of nodes, then ¢; = 0
for j odd, and

F=t,+tg+tg+ -, 3)
2E = 4, + 615 + 8tg + -+, 4)
and by Euler’s theorem for the torus,
V=E—-F 5)
$0

V>t4+2te+3ts + e >F- (6)
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Suppose we have a minimal drawing of K, , on the torus, i.e., one with
cry(K,,.») crossings, and that by removing e arcs, a crossing-free drawing
is produced. Then (5) and (6) give

E—V=(mn—e)—m+n<FLV=mLn,

$O
cri(Kn,n) = € = mn — 2Am + n). @)

In particular,
cry(Ks,n) = n— 6, (3)
cr(Ky) = 2n — 8. £

Figures 1 and 2, which show the reverse inequalities in the respective
ranges 6 < n < 12, 4 < n < 8, confirm equality in (8) and (9) in these
cases. It is also clear that

crl(Ka,n) == 03 n < 6’ (10)
cr(Ksn) =0, n<4 (11)

Similarly, Figures 3 and 4 with formula (7) show that

cr(K;.n) = 3n — 10, 4 <n<6, (12)
er(Ks ) = 12. (13)

FIGURE 2
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4. ANALOG OF ZARANKIEWICZ'S LEMMA
We prove a theorem for the case m = 3.
THEOREM 1,

cr(Ks,n) = [(n — 3)¥/12]. (14)

Proor: The theorem is already proved for n < 12. Let n = 6 + r,
0<r<5 In Figure 5, the m = 3 vertices are represented by
squares and the n = 6q - r by six groups of ¢ + ¢, circles, 1 i < 6,

€6 =€ =" =¢, = 1,€,,, = = ¢ = 0. The number of crossings
in Figure 5 is

8 0+eg

22 U—D=4rglg+ 1)+ H6—r)ag— 1)

=1 j=1
= 14[364% + 129(r — 3)]
= [(6q + r — 3)*/12] = [(n — 3)*/12],
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so cry(Kj; ,) does not exceed this value. We show that the value is at least
this by induction on n. Suppose that the result is true for n = 6q + r.
Then K; ., contains » + 1 subgraphs K ,, each of which contains at
least 3¢% + qr — 3q crossings by the induction hypothesis. A crossing
arises from two of the n -+ 1 nodes, so a crossing will have been counted
n — 1 times. Hence

n+1
crl(KS,n-f-l) > n— 1

(3¢* + gqr — 3q),

— 5
er(Ks ni) 2 3¢° + g(r — 2) + %(—T—_r_—)—l ’

crKs i) 2 342+ q(r + 1 —3) = [(n + 1 — 3)¥/12],
since

—I<grr-1<

forg = 1l and 0 < r < 5, except in the case ¢ = 1, r = 0, for which the
theorem has already been proved. This completes the proof of Theorem 1.

5. UppPER BOUNDS

Figure 5 is a generalization of Figure 1, and the corresponding general-
ization of Figure 2 is Figure 6, which contains m = 4 nodes represented
by squares and n =44+ r,0 <r <3, nodes represented by
circles, in four groups of g+ ¢;,1 <i <4, =€ =" =¢ =1,
€41 = - = ¢ = 0. From this it follows that

er(Kyy) <rglg+ 1)+ @ —r)g(g — 1),
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FIGURE 6
or
Crl(K4,n) < %n(n - 4)3 (ns 4) = 45 (15)
er(Ksn) <t n— D —3), m4=1, (16)
ery(Kyn) < 3n — 2)%, (n,4) =2, (17)

where (g, b) is the highest common factor of a and b. An attempt to
prove the reverse inequalities to (15) to (17), using the method of Theorem
1, fails, as the induction does not make the step from n = 4q to 4¢q + 1.
For example, we know that c¢ry(K, g) = 8, so that

cry(Kyq) = % X 8, er(Kyq) = 11,

whereas (16) gives cry(K, ) < 12.

Figure 3 may be generalized in a similar way by taking » = 10q -+ r,
0 < r <9, and replacing nodes 1 to r by sets of ¢ + 1 nodes and nodes
r + 1 to 10 by sets of ¢ nodes. The thirty crossings in Figure 3 will be
replaced by thirty sets of crossings, each set containing ¢2 g(q + 1),
or (g + 1)? crossings. In addition, there will be

(AR H) (P I (YRR H)(EY

additional crossings arising from each of the sets of ¢ + 1 or g nodes
which replace the first r or the last 10 — r nodes of Figure 3. On counting
the crossings in the variouscases r = 0,r = 1,3, 70r9,r = 2,4,6 0or 8,
and r = 5, we obtain the formulas

cri(Ks.n) < $n(n — 4), (10, n) = 10, (18)
< 3(n — D(n — 3), (10,n) = 1, (19)
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(n - 2)25

#
_%(nZ — dn + 5):

VANVAN

(10, ) = 2,
(10, n) = 5.

Similarly we can generalize Figure 4, yielding

cry(Kg,r)

< n(5n — 18),

< 30— DGn - 13),
< ¥ —2)(5n — 8),
< #(n — 3)(5n — 3),

(6,n) =6,
(6,m) =1,
(6,n) =2,
6,n) =3,

241

(20)
@1

22
(23)
(24)
@35

and we may continue with drawings havingn = 2mq + r,0 <r <2m — 1,
nodes in 2m sets when mis odd, and n = mq + r,0 < r << m — 1, nodes

in m sets when m is even, and obtain the following upper bounds:

cri(Ks,n)

crl(KB.n)

cr I(Ks.n)

cry(Kio,n)

/

< in(5n — 18),

< i(n — DGn — 13),
< Hn —2)(5n — 8),
< H5n* — 18n + 21),
< in(7n — 24),

< i — D(n —17),
< i — 2(7n — 10),
< #(7n® — 24n + 24),
< 3(Tn — 24),

< 3 — D(In — 17),
< #(n — 2)(Tn — 10),
< #(Tn* — 24n 4 18),
< 3(Tn® — 24n + 27),
< n(3n — 10),
<(—1D@Ern—1),
<@ —-2@3n—4),

< 3n%2 — 10n + 5,

(14, n) = 14,
(14,n) =1,
(14,n) = 2,
(14,n) = 1.
(8,n) =38,
@,n=1,
(8,n) =2,
8,n) =4.
(18,n) = 18,
(18,n) = 1,
(18,n) = 2,
O,n =3,
(18,n) = 9.
(10, n) = 10,
(10,n) = 1,
(10,n) = 2,
(10,n) = 5.

(26)
@n
28
(29)
(30)
€2))
(32)
(33)

(34)
(35)
(36)
(37
(38)

(39
(40)
@n
(42)
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cry(Kipn) << §n(3n — 10), 22,n) = 22, (43)
< —DGn—7), @22, =1, (44)
< 5(n — 2)(3Bn — 4), 22,n) = 2, (45)
< 30r* —10n + 11), (22,n) = 11 (46)
In general

cri(Kp.n) < s(m — 2)[n¥(m — 1) — 3mn),
m2)=2 (mn=m @7
< gg(m — Din¥(m — 2) — 3n(m — 1)},
(m,2)=1, (mn) =2m, (48)
< #(m — D[nEm — 2) — 3n(m — 1) + 3m],
m2)=1 (mn=m (49

With only slight loss of sharpness, formulas (47) to (49) may be combined:
1 m—1yn—1
entkn) < ("5 N5 ) (50)

and (50) may be verified for all m and ». The right member of (49) reduces
to () when n = m.

6. Lower BOUNDS

If p <m,q<n, then K, , contains (7)(7}) subgraphs K, .. If we
count the minimum number of crossings in these, noting that each crossing
arises from just two nodes among the m and just two among the », so that

it is counted (2=3)(%73) times,
ot > (Y7302

mn(m — 1)(n — 1)
palp—1)g—1)

Crl(Km.n) 2 Crl(Kp.a)' (51)

Put p = 3,9 = n, in (51):
cry(Kmn) = gmim — 1)[(n — 3)}/12). (52)
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Alternatively, putp =m,g=n—l,orp=m— 1,9 = n:

oK) > [T eriKimn-2)] 53)

rKm) > [ s, (54

where braces denote the least integer not less than their contents, These
two formulas combine to give

oK) > max (1" eriEn )]s g crKmad), 59

which has been used to compile Table 1, of known lower bounds for
cr I(Km.n)'

THEOREM 2. If n = 5, then
[(n — D(n — 2)/5] < ery(Ky,p) < [(n — 2)%4. (56)

Proor: The second inequality follows from (15) to (17). We prove the
first by induction on n. It is true for 5 <\ n << 7 from Table 1. Assume
it true for n — 1; then, from (53) with m = 4,

cry(Kyn) = 3,’—17 cr(Kyn-1){ =

s =

|

since (n — 2)(n — 3) = 0, 1, or 2, modulo 5. Hence

cri(Ky,n) =

n—Dr—2) 4n—4 (n—l)(n——2)
— = J

S5(n — 2)
since
4n — 4 2
“I<-5 =59 <3

forn 27 and (n — 1)(n — 2) = 0,1 or 2, modulo 5. This proves the
theorem. On putting p = 4, g = n in (51):

582/6/3-2
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COROLLARY.

cri(Km,n) = %(’721) [(i:%n——Z_)] for m>=4,n>5. (57)

THEOREM 3. Ifn = 5, then

[(” - 1)2] < oKy < %(n2 — 4n + 5). (58)

Proor: The second inequality follows from (18) to (21). The first

follows by induction on #, since it is true for » = 5 from Table 1, and, as
in the proof of Theorem 2,

cry(Ksm) = g 5 cra(Ks, n—1)$ gm [(n - 2)2];

S

_ g(n — 12 2n— 2$ . [(n — 1)2],

3n—6) 3
since
2n —2 1
I<-m=6~"3

forn > 5, and (n — 1)> = 0 or 1, modulo 3.

COROLLARY 1.

cry(Kmn) = 1l0 (’721) [(n ~ ) 2], m,n > 5. (59)

COROLLARY 2.
cr(Ks.p) = 12, (60)

THEOREM 4. If n =8, then

(;) —4 < en(Kem) < é(n — 2)(5n — 8). (61)

Proor: Similar to those of the previous two theorems.
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COROLLARY.

cri(Km,n) = % (G -4 m=en=s (62)

THEOREM 5. If n > 15, then
9 — 2)(3n + 1)/38 < cri(Ky.0) < 3(5n — 18n + 21). (63)

Proor: The second inequality follows from (26) to (29). We prove the
first by induction on # in the sharper form

cry(Ky ) = (2Tn® — 45n 4+ a,)/38, 64)

where a, is given in Table 2. It depends only on ¢, where » = 19k + ¢,
| ¢| < 9. Note that 27n? — 45r + a, is a multiple of 38 for all values of ».
The theorem may be verified for 15 < n < 20 from Table 1. By (53) and
the inductive hypothesis,

) > 7 eriKan-d)|

N

_ }[27,12 — 45n + (l + n—-i-—z) (@1 — 18)]/38;

= (27n* — 45n + a,)/38,

since the last expression is an integer, and, for n > 20, it may be verified
from Table 2 that

a =38 < (14 25) Gy — 18) < (65)

in each of the 19 cases. The most critical case for the first inequality is
c=1,a,— 38 = —20,a, ; — 18 = —18; the inequality is not strict
when n = 20. Equality occurs between the second and last members of
(65) when ¢ = 8.

COROLLARY.

9(3n* — 5n + 3) ]

eriKnn) = 5 () | - m>Tn>15 (66
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THEOREM 6. Ifn = 15, then

6n(3n — 5)

Tn® — 24n 4 24
19 )

< crl(Ksﬂl) < 4

(67)

Proor: This follows closely that of Theorem 5, but using (30) to (33)
and establishing the first inequality in the form

cri(Ks.n) = (1812 — 301 + b,)/19, (68)

where b, is the analog of a, and is also given in Table 2. Then

(Ko > s [P = T = D e )

n—2 19
— {[18n2 — 30n + (1 + 2 ) (oos — 12)] /1]

_ 18n* —30n + b,
- 19 i

since this is an integer, and for n > 15 we have
b——19<(1+—2—)(b —12) <b (69)
n n— 2 n—1 = Yn

except in the cases ¢ = 1 and ¢ = 2. Note that the equality in (69) occurs
for n = 18, and that for ¢ = 8 the first inequality is strict by an amount
38/(n — 2).

To cover the exceptional cases we use (54) and (64), giving

8
cry(Ky,n) = 33 cri(Kq.n)

> gf 27n® — 45n 4 a,
~ 13 38 ’

where a, = 18 and 20 in the cases ¢ = 1 and 2. So

crl(Ks.n) >

g 18n%* — 30n 4 24,/3 } _ 18n* — 30n 4 b,
19 o 19 ’

since b, — 19 < %a, < b, in these two cases.
COROLLARY.

3 m
ers(Kmn) = 1715 ( 2) nGn—5), m>8m>=15 (10
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7. CONCLUSION

THEOREM 7.

1 imyn 1 ym—1Lyn—1

15 (o)) < ek <5 ("5 )5 )
provided, in the lower bound, m and n are at least equal to one of the
(unordered) pairs (7,45), (8,44), (10,43), (14,42) or (19,41).

Proor: The theorem follows from (50) and (70), since, for sufficiently
large n,

1 3n(3n — 5)
1_5"(;)< nzn@_’

and the values for which the theorem is stated may be checked from the
continuation of Table 1.

ACKNOWLEDGMENT

We are indebted to J. Schaer and 1. Schénheim for helpful comments.

REFERENCES

1. R. G. BUSACKER AND T. SAATY, Finite Graphs and Networks, McGraw-Hill, 1965,
pp. 147-150.

2. R. K. Guy, A Combinatorial Problem, Nabla (Bull. Malayan Math. Soc.) 7 (1960),
68-72.

3. R. K. Guy, The Crossing Number of the Complete Graph, Calgary Research
Paper #8, January, 1967,

4, R. K. Guy, T. Jenkyns, AND J. SCHAER, The Toroidal Crossing Number of the
Complete Graph, J. Combinatorial Theory 4 (1968), 376-390; Calgary Research
Paper #18, May, 1967.

5. F. HararRYy aND A. HiLr, On the Number of Crossings in a Complete Graph,
Proc. Edinburgh Math. Soc. Ser. 2, 13 (1962-3), 333-338.

6. K. ZARANKIEWICZ, On a Problem of P. Turin Concerning Graphs, Fund. Math,
41 (1954), 137-145.



