
Cyclic-Order Graphs 
and Zarankiewicz's 
Crossing-Num ber 
Conjecture 

D.R. Woodall 
DEPARTMENT OF MATHEMATICS 

UNIVERSITY OF NOTTINGHAM 
NOTTINGHAM. ENGLAND 

ABSTRACT 

Zarankiewicz's conjecture, that the crossing number of the complete- 
bipartite graph K,,,, is [$ rnllfr (m - 1)Jl; n j [$  ( n  - 1)j, was proved by 
Kleitman when min(rn, n) s 6, but was unsettled in all other cases. 
The cyclic-order graph CO, arises naturally in the study of this conjec- 
ture; it is a vertex-transitive harmonic diametrical (even) graph. In this 
paper the properties of cyclic-order graphs are investigated and used 
as the basis for computer programs that have verified Zarankiewicz's 
conjecture for K7,7 and K7,9; thus the smallest unsettled cases are 
now K7,11 and K9,9. 0 1993 John Wiley & Sons, Inc. 

1. ZARANKIEWICZ'S CONJECTURE 

We shall discuss Zarankiewicz's conjecture in Section 1, cyclic-order graphs 
in Section 2 (and the Appendix), and the connection between them in 
Section 3. Section 4 describes the principles underlying the computer pro- 
grams, and Section 5 describes the results of the individual programs. 

The crossing number cr(G) of a graph G is the smallest crossing number 
of any drawing of G in the plane, where the crossing number cr(D) of a 
drawing D is the number of pairs of nonadjacent edges that intersect in the 
drawing. It is implicit that the edges in a drawing are Jordan arcs (hence, 
nonselfintersecting), and it is easy to see that a drawing with minimum 
crossing number must be a good drawing; that is, each two edges have 
at most one point in common, which is either a common end vertex or a 
crossing. 
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The problem of determining the crossing number of the complete-bipartite 
graph Km,n is sometimes known as TurBn’s brick-factory problem: for the 
history of the problem, see [4]. The “obvious” way of drawing K,,,,, is to 
put the two sets of vertices along two parallel straight lines, and to join them 
by mn straight-line segments; this drawing evidently has ( y )  (;) crossings. 
A more economical drawing, pointed out by Zarankiewicz [8], is to arrange 
the m and n vertices along the x axis and y axis respectively; in each case 
with half of them either side of the origin (as nearly as possible, with no 
vertex at the origin itself), again joined by mn straight-line segments; this 
drawing has Z(m)Z(n) crossings, where 

This drawing shows that 

The conjecture that equality holds in (1) has been called Zurunkiewicz’s 
conjecture. This conjecture was proved by Kleitman [5] for the case 
min(m,n) =s 6. Kleitman used an ingenious argument to show that if the 
conjecture holds for Kj,5 and K5,7, then it holds for Kj,,, for all n. 
Unfortunately, this argument does not seem to work for K7,7,  K7,9, and 
K7, n .  Kleitman also used the following theorem and corollary. 

Theorem 1. A drawing of K,,,,,, with crossing number k contains a drawing 
of K , , , - I , ~  with crossing number at most k(m - 2)/m. 

Proof. There are m drawings of Km-l , , ,  in the drawing of Km,n, and 
each crossing occurs in m - 2 of them. I 

Corollary 1.1. 
if it holds for Km-l,,, (since then Z(rn)/Z(m - 1) = m/(m - 2)). 

If m is even, then Zarankiewicz’s conjecture holds for Km,,, 
I 

Thus it suffices to consider the case when m and n are both odd. Another 
basic result, simple cases of which were used by Kleitman and Zarankiewicz, 
is the following. 

Theorem 2. Let m and n be odd integers and m‘ < m an even integer 
such that Zarankiewicz’s conjecture holds for Kmt+l,, and K,,,-m(,n. Then 
there are at least Z(m)Z(n) crossings in any drawing of K,,,,,, that contains 
a drawing of Kmj,n with Z(m’)Z(n) or fewer crossings. 

Proof. Let the partite sets of Km,n be M and N ,  those of K , , , I , ~  be 
M‘ and N ,  and let the drawing of K,,,),,, have k S Z(m’)Z(n) crossings. 
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Each crossing in the drawing of Km,, involves exactly one pair of vertices 
u, u in M .  The number of crossings corresponding to vertices u, u in M’ 
is k ,  the number corresponding to u and u both in M \MI is at least 
cr(Km-ml,n), and the number corresponding to u in M’ and u in M\M‘ 
is at least (rn - rn’)[cr(K,1+1,,) - k ] .  These three numbers add up to at 
least Z(rn)Z(n) in view of the hypotheses of the theorem, the upper bound 
on k ,  and the easily verifiable equation 

Z(rn’) + z(rn - rn’) + (rn - rn’)[z(rn’ + 1) - Z(rn’)] = z(rn). 

This completes the proof. I 

2. THE CYCLIC-ORDER GRAPH C o n  

This graph is defined as follows. Its vertices are the (n - l)! different cyclic 
orderings of a set V,  of n elements, and two such orderings are adjacent in 
the graph if one can be obtained from the other by transposing two adjacent 
elements. (The significance of cyclic ordering is of course that 012 is the 
same as 120 or 201, so that 0 and 2 are adjacent elements of the cyclic 
ordering 012.) Thus CO, is vertex-transitive and n-regular, and each edge 
ab can be labeled with one of the (I;) 2-subsets xy of V,, indicating that 
x and y are transposed in getting from a to b. The graph C04 is shown in 
Figure 1. For a related graph defined on the same set of vertices, see [2]. 

If a E V(CO,), then ii denotes the reverse ordering of a; for example, in 
C07, if a = 0354162, then ii = 0261453. The mapping a I+- ii determines 
an automorphism of CO, that preserves edge-labelings. It seems intuitively 
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FIGURE 1. The cyclic-order graph C 0 4  
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obvious that Zi is the unique vertex of CO, that is at maximum distance from 
a. We do not use this fact, but for completeness we shall prove it in the 
Appendix. However, not every vertex b of CO, is necessarily on a shortest 
&-path; for example, if n = 5,  a = 01234, Zi = 04321, and b = 02413, 
then the distance d(a,Zi) = 4 but d ( a , b )  = d(Zi,b) = 3. 

A graph G is called diametrical [6], even [3], or a self-centered unique- 
eccentric-point graph [7] if, for each vertex a, there is a unique vertex Zi 
such that d(a,Zi) is equal to the diameter of G. Such a graph is a harmonic 
[3] if Zib E E(G)  whenever ab E E(G) .  It is symmetric [3]  or antipodal 
[l] if, for each two vertices a, b,  d ( a ,  b )  + d ( b , E )  = d(a, a). Clearly CO, 
is diametrical and harmonic; but, as we have just seen, it is not antipodal 
if n 2 5.  Nevertheless, we shall refer to Zi as the antipode of a rather than 
as its buddy [3]. 

Theorem 3. (a) If n is odd, then CO, is bipartite. 
(b) A shortest path between two vertices in CO, cannot contain two 

(c) If a E V(CO,), then d(a,Z) = Z(n) .  
edges with the same label. 

Proof. (a) The n !  linear orderings of V, divide into two classes (even 
and odd permutations) such that every transposition causes a move from 
one class to the other. If n is odd, then any n orderings that we are going 
to regard as identical, because they all represent the same cyclic ordering, 
all belong to the same class (since an n-cycle is an even permutation if 
n is odd). Thus the vertices of CO, also divide into two classes such that 
any transposition (hence, a fortiori, any transposition of adjacent elements) 
causes a move from one class to the other; that is, CO, is bipartite. 

(b) Recall that each edge of the path denotes the transposition of two 
adjacent elements of the cyclic ordering. If the label xy occurs on more 
than one edge in the path, delete the first and second edges of the path with 
this label, and for each edge on the segment between them, replace x by y 
and y by x wherever they occur-that is, replace every transposition of the 
form ( x , z )  by ( y , z ) ,  and vice versa. We obtain a new path (sequence of 
transpositions) connecting the same two vertices and with two edges fewer 
than before. 

(c) To get from a to Zi in Z ( n )  steps, divide the cyclic ordering a into two 
segments of lengths 15nJ and [,nl respectively, and reverse each segment 
separately by means of ( ‘;;’) + (IF) adjacent interchanges. To see that 
fewer steps will not work, use induction on n. The result is obvious if 
n = 1 or 2, since then a = Zi; so suppose n 2 3. Let P be a shortest aZ- 
path and let xy be a label that does not appear in P (which clearly exists, 
since otherwise P has length ( i)  > Z(n>). Since every triple xyz reverses 
its orientation between a and 5, exactly one of xz and y z  must occur in P .  
Thus exactly n - 2 edges of P involve x or y .  By the induction hypothesis 
applied to the vertices of CO,-2 obtained by deleting x and y from a and 

1 1 
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- a,  the number of edges of P that do not involve x or y is at least Z(n - 2). 
Since Z ( n )  = Z(n - 2) + n - 2, the result follows. I 

The antidistance ‘;E(a,b) between two vertices a and b is the distance 
d ( a , b )  between a and 6 (or between ?i and b). An ab-antipath is an a6- 
path or an Zb-path. If M is a multiset whose elements are all in V(CO,) ,  and 
/MI = m, then M is called an (m, n)-set, and the sum of all ( 7 )  antidistances 
between pairs of elements of M is the antisum A ( M )  of M .  (IMI denotes 
the number of elements of M counted according to multiplicity.) 

Theorem 4. (a) Every (3,n)-set has antisum at least Z(3)Z(n) = Z(n).  
(b) If m and n are both odd, then the antisum of any (m,n)-set is even 

unless both m and n = 3 (mod 4), when the antisum is odd. 

Proof. (a) If {a ,  b,  c }  is a (3, n)-set, then 
- 
d(a ,b)  + ‘;E(b,c) + d(c ,a)  = d ( a , b )  + d ( b , c )  + d(c,Z) 

2 d(a,Z) = z ( n > .  

(b) If n is odd, then Z(n) and (i) have the same parity, being even 
if n = 1 (mod 4) and odd if n = 3 (mod 4). Since CO, is bipartite, 
d ( x , y )  + d ( y , z )  + d ( z , x )  is even for every triple of vertices x , y , z ,  and 
so 

d(a ,  b )  + d ( a , E )  + d ( b , b )  = d(a ,  b )  + d(a, b )  + Z(n) 

is even for every pair of vertices a ,  b. Thus d ( a , b )  and d(a,b)  have the 
same parity or different parity according as Z(n)  is even or odd. Since the 
sum of the distances between any odd number of vertices in a bipartite graph 
is necessarily even, the sum of the antidistances of any (m,n)-set has the 
same parity as (?)Z(n), which is of the required form. 

3. CYCLIC-ORDER GRAPHS AND CROSSING NUMBERS 

The following result is stated without (much) proof by Kleitman [5].  

Theorem 5. In a drawing D of K2,,  on two sets, {A, B}  and V,, let the 
clockwise orders in which the edges leave A and B to go to V, be the 
elements a and b of V(C0, ) .  Then cr(D) 3 d(a,b) ,  and if n is odd then 
cr(D) = d(a,b)  (mod 2). 

Proof. If two of the arcs AxB and AyB in the drawing cross each other 
more than once, then we can “open out” two of the crossings to obtain 
a drawing with two fewer crossings, without changing the corresponding 
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orders a and b or their antidistance d(a, b); thus we may suppose that each 
two arcs cross at most once. Assuming there is at least one crossing in the 
drawing, this implies the existence of a crossing-point P such that neither 
of the two segments of arc connecting A to P contains any crossings. (One 
way of seeing that P exists is to imagine the drawing in the sphere rather 
than the plane, to consider only those crossing-points P such that at least 
one of the two segments of arc connecting A to P is free of crossings, and 
among such points P to choose one that minimizes the area of the region 
bounded by the two arcs A P  and not containing B.) 

Now, suppose there are r crossings in the drawing. In view of the 
definition of d (a ,b )  and the fact that CO, is bipartite if n is odd by 
Theorem 3(a), it suffices to construct an ab-path in CO, of length r .  If 
r = 0 there is nothing to do, since a = b; so suppose r > 0. Let P be 
as in the previous paragraph and let the arcs that cross at P be AxB and 
AyB. If this crossing is opened out so that the arc A P  that was formerly 
part of AxB is now part of AyB and vice versa, we obtain a drawing with 
r - 1 crossings in which the order a is replaced by a new order al that is 
obtained from a by transposing the adjacent elements x - and y. Iteration of 
this procedure yields the required path a,  al ,  . . . , a ,  = b. I 

We shall say that a drawing of K,,,, corresponds to a given (m, n)-set M 
if the clockwise orders in which the edges leave the m vertices to go to the 
n vertices are precisely the elements of M (with the right multiplicities). By 
an abuse of terminology we shall use the same letter to denote an element 
a of M and the vertex in the drawing that it corresponds to. Let D be a 
good drawing corresponding to M ,  and let N be the ( n ,  m)-set to which D 
also corresponds, interchanging the r8les of the two partite sets of vertices. 
If a ,  b E M and x ,y  E N ,  then the ab-antipath constructed in Theorem 5 
contains an edge labeled xy if and only if the arcs axb and ayb cross; that 
is, if and only if there is a crossing between ax and by or between ay  and 
bx (we cannot tell which); that is, if and only if the xy-antipath constructed 
in Theorem 5 (with M and N interchanged) contains an edge labeled ab. 
(It is not difficult to see that, since D is a good drawing, the arcs axb and 
ayb cannot cross more than once.) 

We shall call an (m,n)-set M tight if there exist 

(a) an (n,m)-set N ,  
(b) for each a ,  b in M ,  a shortest ab-antipath Pab, and 
(c) for each x ,  y in N ,  an xy-antipath Qxy (not necessarily shortest), such 

that, for each a ,  b in M and x ,y  in N,xy occurs as a label in Pab if 
and only if a b  occurs as a label in Qxy.  

We shall call M pseudo-tight if there exist 

(a) an (n,m)-set N ,  
(b) for each x, y in N ,  an xy-antipath Qxy (not necessarily shortest), such 

that, for each a , b  in M and x ,y  in N , a b  occurs as a label in Qxy 
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i f x y  occurs as a label in every shortest ab-antipath and only if xy 
occurs as a label in a t  least one shortest ab-antipath. 

It is easy to see that every subset of a tight set is tight, every subset of a 
pseudo-tight set is pseudo-tight, and every tight set is pseudo-tight; there 
may be some nontight sets that are also pseudo-tight, although I do not 
know of any. 

By a Zobspacronfinction I mean a function that assigns, to each (m, n)-set 
M, an integer that is a LOwer Bound for, and has the Same Parity As, the 
CROssing Number of any good drawing corresponding to M .  

Theorem 6. 
function f .  

If n is odd, then each of the following defines a lobspacron 

(a) f ( M )  is the smallest number of crossings in any drawing of Km,n that 

(b) f ( M )  = A ( M ) ,  the antisum of M .  
(c) f ( M )  = A ( M )  + 2[2t/(m - 2)(m - 3)1, where t is the number of 

corresponds to M. 

(4, n)-subsets of the (m, n)-set M that are not pseudo-tight. 

Proof. (a) and (b) follow from Theorem 5 and the succeeding discussion, 
since the number of crossings in a drawing of K,, ,, is equal to the sum of the 
numbers of crossings in all the drawings of K2, contained in it. To prove (c), 
note that if some (4,n)-subset of M is not pseudo-tight, hence necessarily 
not tight, then there must be at least one (2, n)-subset {a ,  b} of it such that 
the corresponding K2,n in the drawing has at least d(a,b) + 2 crossings. 
Each such (2, n)-subset occurs in exactly i(m - 2) (m - 3) (4, n)-subsets 
of M, and so the term [2t/(m - 2) (m - 3)1 in (c) gives a lower bound for 
the number of different such (2,n)-subsets in M .  I 

The reason for the precise formulation of Theorem 6(c) is that it is easier 
to check by computer whether (4,n)-subsets of M are pseudo-tight than 
whether M itself is tight. In fact, I know of no counterexample to the 
conjecture that an (m,n)-set is tight if and only if every (4,n)-subset of 
it is pseudo-tight. A proper understanding of tight sets might well provide 
the clue to proving Zarankiewicz’s conjecture. 

4. THE COMPUTER PROGRAMS-GENERAL PRINCIPLES 

We illustrate the principles by reference to the program for K7.7. Let f be a 
lobspacron function. (Usually f was taken to be the antisum; in one program 
the augmented antisum of Theorem 6(c) was used instead.) Suppose there 
is a good drawing of K7,7 with crossing number less than 81. Then using 
Theorem 1, the parity considerations of Theorem 4(b) and the definition of 
a lobspacron function, we see that there is a (7, 7)-set {a ,  b, c, d ,  e ,  f, g }  (or, 
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by an abuse of terminology, simply abcdefg), such that 

f (abcdefg) S 79, f ( a b c d e f )  d 56, f (abcde) S 36, 
f ( a b c d )  S 21, f ( a b c )  S 9, f ( a b )  S 3 .  

The 720 elements of V(C0,) were written as 7-digit integers starting with 
0, and so acquired a natural order 0123456,0123465,. . . ,0654321. This 
order induces a lexicographic ordering of all possible ordered (7,7)-sets. 
To avoid generating a given (7,7)-set in more than one order, or generating 
more than one representative of a given isomorphism class of (7,7)-sets, each 
(7,7)-set was reduced to a canonical form by first permuting its elements so 
as lexicographically to minimize the sequence 

f b b c d e f g ) ,  f b b c d e f ) ,  f (abcde ) ,  

f (abed), f (abc), f b b )  ; (3) 

then, among all permutations and isomorphs of the set that give the same 
minimum sequence, the one was chosen that lexicographically minimizes 
the ordered set abcde f g .  

The set abcdefg was generated an element at a time. We illustrate the 
process with a few examples. The above considerations imply that a must be 
0123456. The choice b = 0123456 was not considered because then (with 
f = A) f ( a b )  = 9, violating the inequality in (2). The choice b = 0154326 
was not considered because the mapping 

0 -  1, 1 - 2 ,  2 - 6 ,  3 - 5 ,  
4 - 4 ,  5 - 3 ,  6 - 0  

maps a into a‘ = 0126543 and b into b’ = 0123456, and so b’a’ is an 
ordered set isomorphic to ab but lexicographically smaller. For the choice 
b = 0126543, which was considered, c = 0123456 was not considered 
because then f ( a b c )  = 15, violating (2); c = 0345216 was not considered 
because f ( b c )  = 2 < f ( a b )  = 3 and so, for any choice of d ,  e ,  f ,  and 
g ,  the ordering bcadefg will give a lexicographically smaller sequence (3) 
than abcde fg; c = 046523 1 was not considered because the mapping 

0 -2 ,  1 -1 ,  2 -0 ,  3 -6 ,  
4 - 5 ,  5 - 4 ,  6 - 3  

maps a into a’ = 0654321, b into b’ = 0345621 and c into c’ = 0612534, 
and Z’b‘F‘ is an ordered set isomorphic to abc but lexicographically smaller; 
and so on. 

The aim of this process was not just to eliminate (7,7)-sets from 
consideration, but to eliminate them as early aspossible. It is a waste of 
time to consider possible choices for e (say), if there is some way of proving 
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that the current choices for a, b,  c, and d cannot possibly give rise to a 
configuration with antisum less than 81. This process of early elimination 
was helped by Theorems 7 and 8 (below). 

5. THE COMPUTER PROGRAMS-RESULTS 

Five programs produced interesting results. The first three ran quite quickly 
and used just the ideas of the previous section. 

The first program showed that every (5,5)-set has antisum at least 16 = 
Z(5)Z(5), and there are exactly 32 nonisomorphic (5,5)-sets with antisum 
exactly 16 (“nonisomorphic” being used in the rather loose sense illustrated 
in the previous section). This verifies the (known) result of Zarankiewicz’s 
conjecture for K5,5. 

The second program showed that every (5,7)-set has antisum at least 
36 = Z(5)Z(7), and there are exactly 96 821 nonisomorphic (5,7)-sets with 
antisum exactly 36. This verifies Zarankiewicz’s conjecture for K5,7 (which, 
again, was already known [5]). 

The third program showed that every (7,5)-set has antisum at least 36 
with exactly one exception (up to isomorphism), which has antisum 34; this 
set was found by Kleitman [5],  and is necessarily not tight, since every 
(5,7)-set has antisum at least 36. 

In addition to the ideas of the previous section, the fourth program used 
the following theorem. 

Theorem 7. Let m and n be odd integers and m‘ < n an even integer such 
that every (m‘ + 1,n)-set has antisum at least Z(m’ + l)Z(n) and every 
(m - m‘,n)-set has antisum at least Z(m - m’)Z(n). Then any (m,n)-set 
M that contains an (m’,n)-subset M’ with antisum Z(m’)Z(n) or less has 
antisum at least Z(m)z(n). 

Proof. This follows by the argument of Theorem 2 with “number of 
crossings” replaced by “sum of antidistances.” I 

The hypotheses of this theorem are satisfied for (m’, m, n) = (2,7,7) and 
(4,7,7), in view of Theorem 4(a) and the result of the second computer 
program. Thus a (7,7)-set that has antisum less than 81 = Z(7)Z(7) cannot 
contain a (2,7)-subset with antisum 0 = Z(2)2(7) (that is, it cannot contain 
both a and a), nor a (4,7)-subset with antisum 18 = 2(4)Z(7) or less. These 
facts were built into the program so as to speed the early elimination of 
impossible sets. The program then ran for about 4 hours on a Sun 4/110. It 
showed that there are no (7,7)-sets with antisum less than 79, but there are 
exactly 13 448 nonisomorphic such sets with antisum exactly 79. However, 
each of these contains at least 10 (4,7)-subsets that are not pseudo-tight, 
and so none of them can correspond to a counterexample to Zarankiewicz’s 
conjecture. The conjecture is thus verified for K7,7. 
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It was clearly not going to be practicable to generate all (9,7)-sets with 
antisum less than 144 = 2(9)2(7), and so in the fifth and final program 
the augmented antisum of Theorem 6(c) was used in order to eliminate as 
early as possible any set that, despite having a sufficiently small antisum, 
could not correspond to a counterexample to the conjecture for K7.9. The 
following theorem was also used. 

Theorem 8. Let M be a (9,7)-set that corresponds to a drawing D that 
is a counterexample to Zarankiewicz’s conjecture for K7.9. Then M cannot 
contain any of the following: 

(a) a (2,7)-subset M’ with antisum 0, 
(b) a (4,7)-subset M’ with antisum 18 = 2(4)2(7) or less, 
(c) a (6,7)-subset M’ with antisum 52 = 2(6)2(7) - 2 or less, 
(d) a (6,7)-subset M’ with antisum 54 = Z(6)2(7) or less, all of whose 

(4,7)-subsets are pseudo-tight. 

Proof. Since every (3,7)-set has antisum at least 2(3)2(7) by 
Theorem 4(a), and Zarankiewicz’s conjecture holds for K7,7 by the fourth 
computer program, (a) follows by the same argument as Theorems 2 and 7. 
(For, cr(D) is at least as large as the crossing number of the copy of K7,7 
determined by M \ M’ within D ,  plus the sum of all the other antidistances 
counted in Theorem 7.) Since every (5,7)-set has antisum at least 2(5)2(7) 
by the second computer program, (b) follows directly from Theorem 7. 
Since, by the fourth computer program, every (7,7)-set has antisum at least 
2(7)2(7) - 2, and every (7,7)-set with this antisum has a (4,7)-subset that 
is not pseudo-tight, it follows by the argument of Theorem 7 that if M 
has a (6,7)-subset with antisum 2(6)2(7) - 2 or less then its own antisum 
A ( M )  2 2(9)2(7) - 2, and equality implies that M has a (4,7)-subset that 
is not pseudo-tight so that M does not correspond to a counterexample to 
Zarankiewicz’s conjecture. This proves (c). 

Finally, we prove (d). If a, b E M ,  let cr(a, b )  denote the crossing number 
of the drawing of K2,n corresponding to a and b. If M’ exists as in (d), 
then the argument of Theorem 7 gives A ( M )  2 Z(9)2(7) - 6. Moreover, 
if, for each of the three elements b of M \MI, either A(M’ U {b}) 3 81 = 
2(7)2(7) or there is at least one a in M‘ such that cr(a, b)  > d(a, b )  (hence, 
cr(a, b)  3 a ( a ,  b )  + 2, by Theorem 9, then cr(D) 2 Z(9)Z(7). So suppose 
that, for some b in M\M’, A(M’ U {b}) = 79 and cr(a,b) = a ( a , b )  for 
each a in M’.  By the fourth computer program, M’ U { b }  contains at least 
ten (4,7)-subsets that are not pseudo-tight, each of which must contain b 
(since by hypothesis M’ has no such subsets), and each of which must 
contain a pair {a,a’} C M’ such that 

cr(a, a‘) > d(a, a’) .  (4) 

Since a pair of elements of M’ is contained in only four (4,7)-subsets of 
M’ U {b}  that contain b, there must be at least three different pairs {a, a’} in 
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M’ satisfying (4), whence cr(D) 2 A ( M )  + 6 and the required conclusion 
follows. I 

After the results of this theorem had been incorporated into the program, 
it ran to completion in about 6 hours, showing that there are no (9,7)-sets 
that can correspond to counterexamples to Zarankiewicz’s conjecture. The 
conjecture is thus verified for K7,9. 

APPENDIX 

This appendix is devoted to a proof that Zi is the antipode of a in CO,; that 
is, that d(a, b )  < d(a,Zi) = Z ( n )  if a,  b E V(C0,) and b f a. The value 
of n is assumed fixed throughout. 

We start with some definitions and a technical lemma, the proof of which 
is left to the reader. (Part (c) is most easily “proved” by tabulating small 
values!) If 0 G r < Tn and 0 6 s < n ,  let 1 

if r = 0, 

if r = T n ,  
- 1, 

2r - 2, 
i f 0  < r < i n ,  

1 

and 

g(s)  := 

n ), if s a i n  + 1 and n is odd, 

1 
, if s 3 Tn + 1 and n is even. 

(Note that (i) = (l) = 0.) 

Lemma 1. (a) g ( n )  = Z(n) .  
1 (b) If 1 < r < Tn then g(r  + 1) = g ( r  - 1) + f ( r ) .  

(c) If s > r + 1 then g ( r  + 1) + g(s - r - 1) S g(s) ,  with equality 
if and only if r + 1 or s - r - 1 equals L;n] + 1 or r + 1 = 

1 
s - r - 1 = Tn . I  

Without loss of generality, let a = 012 ...( n - l), and imagine the 
entries of a spaced regularly round a circle. We shall give a prescription 
for converting b into a by fewer than Z ( n )  adjacent interchanges (assuming 
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b # a), and so we describe the position of an entry j in a as the final 
position of j .  

Imagine b superimposed on a .  This can be done in n different rotational 
positions, which we label arbitrarily as orientations 1,. . . , n. Let a(i, j )  
denote the number in a that coincides with j in b when b is in orientation 
i; j - cu( i , j )  is equal (mod n) to the distance that j has to move, in the 
positive direction, from its position in b to its final position, when b is 
in orientation i. Let p ( i , j )  denote the integer of minimum absolute value 
that is congruent (mod n)  to j - a( i , j )  (taking p ( i , j )  := + i n  in the 
only case where there is a choice), so that Ip(i, j ) l  is the shortest distance 
that j must move. Let y ( i , j )  := if(I,L?(i,j)l), &(a, b)  := x;Zi y ( i , j ) ,  and 
6 ( a , b )  := mini &(a, b) .  

Lemma 2. (a) 6(a ,  b )  d Z(n) ,  with equality only if &(a, b)  = Z ( n )  for 
each i. 

(b) For each i ,  
(c) There is at least one i such that, for every j ,  p ( i , j )  # i n .  

p(i,j) = 0 (mod n). 

Proof. As i runs through the values 1, .  . . , n, b runs through all 
n different orientations with respect to a ,  and p ( i , j )  runs through 
the values O , t l ,  t 2  ,..., t , ( n  - l)(n odd) or 0 , 2 1 , + 2  ,..., ? i ( n  - 2), 
yn(n even). Thus, for each j ,  

1 

1 

Hence 

This proves (a). 
(b) holds trivially if b = a ,  and an adjacent interchange (the transposition 

of two adjacent elements of b )  does not alter zjp(i,j) (mod n), so (b) 
always holds. 

If (c) fails, then n is even, and for each i, p ( i , j )  = i n  for exactly 
one value of J (since for each j there is always exactly one i for which 
p ( i , j )  = yn). Now, if p(i,j) = p(i , j’)  for some j and j ’ ,  then rotating b 
relative to a would make p(i’ , j )  = p(i’,j’) = i n  for some i’, which we 
have just seen to be impossible. It follows that, for each i, the n numbers 
p ( i , j )  are all different, and so are equal to 0, ? 1 ,22 , .  . . , ? i ( n  - 2), yn .  
But this violates (b). I 

1 

1 
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We shall prove, by induction on 6(a, b) ,  that b can be converted into a 
by at most S(a,  b )  adjacent interchanges. This is obvious if S(a, b )  = 0, 
when evidently b = a. So suppose S(a, b)  # 0, choose i so that &(a, b)  = 

s ( a ,  b) ,  and imagine b superimposed on a in position i. For some r (1 < 
r s i n )  b must contain a segment x0xl . . .x ,  such that X I , .  . . ,x,-1 are 
in final position (this list being empty if r = 1) and xo needs to move 
r + p places “to the right” and x ,  needs to move r + q places “to the left” 
to reach their final positions by the shortest route ( p , q  2 0). Interchange 
xo and x ,  in b to form a new cyclic ordering bl. This can be achieved 
by f ( r )  adjacent interchanges, since if r = ~n then xo and x ,  can both 
move in the same direction so that they do not cross each other. Also, 
f ( r  + p )  - f ( p )  2 f ( r ) ,  with equality if and only if p = 0 or ~n - r .  
Thus, by the definition of &, 

1 

1 

with equality only if { p ,  q }  (0, f n  - r } .  By the induction hypothesis, bl 
can be converted into a by at most S(a,bl)  adjacent interchanges, and 
it follows that b can be converted into a by at most 6 ( a , b )  adjacent 
interchanges; that is, d(a, b)  6 6(a, b) .  

It follows from this and Lemma 2(a) that d ( a , b )  G Z(n).  We must 
now prove that, assuming b # a, equality cannot occur. It would seem 
natural to do this by proving that 6(a, b )  < Z(n) ,  but this seems difficult, 
especially when n is a multiple of 4. So we adopt a different approach. 
By Lemma 2(a) and (c), if 6(a, b )  = Z(n)  we can choose i so that 
a i ( a , b )  = S(a ,b)  and, for every j ,  p ( i , j )  # in. Then for equality to 
occur in (5), p = q = 0, that is, xo and x ,  must both be in their final 
positions after their interchange-we refer to such an interchange as a final- 
position interchange-and also &(a,  bl) = 6(a, bl) = mink Sh(a,  bl). So 
if d ( a , b )  = Z(n) ,  it must be possible to convert b into a by means of 
a sequence of final-position interchanges, without rotating b relative to a 
between successive interchanges. It will therefore follow from Lemma 3 that 
d(a, b )  < Z ( n )  when b # a, since g ( n )  = Z ( n )  by Lemma l(a), and if a 
is of the form y1 . . .yn and b of the form y r y t - l . .  . y l y n y n - l  . . . y t + l  then 
b = a. 

Lemma 3. Let b = bo, bl, b2,. . . , bk = a be a sequence of cyclic order- 
ings such that, for each j 2 1, bj is obtained from b j P l  by a final-position 
interchange (without rotating it relative to a). Suppose that some bj contains 
a segment yoyl . . . y s y s + l  such that y 1 , .  . . , ys are in final position and either 
s = n (so that yo = ys and y1 = ys+l) or yo and ys+l are not in final 
position. Then, in converting bo into b j ,  the number of adjacent interchanges 
carried out that involve y l , .  . . , y s  is at most g(s), with equality if and only if 
s s [ in]  + 1 and b contains the segment y s y s - l  . . . y 1 ,  or s > Lznl + 1 and 1 



670 JOURNAL OF GRAPH THEORY 

b contains the segment y ty t - l  . . . y l y sys - l  . . . y t + l  where either t or s - t 
is equal to [ in]  + 1 

Proof. We prove the result by induction on s. It is trivial if y l ,  , . . , ys  
were all already in final position in 6, which covers the case s = 1. So 
suppose that at least one final-position interchange has been needed to bring 
them all into final position. Let the last such interchange be between xg 
and x, in the segment xoxl . . . x,, where r 6 Lkn] by the definition of final- 
position interchange. Note that all such final-position interchanges involve 
only the elements y 1 , .  . . , y s ,  and so s 2 r + 1 and the segment ~ 0 x 1 . .  . x, 
is contained in y 1  . . . y s .  There are three cases to consider. 

1 Case 1. s = r + 1. Then s G [ ~ n ]  + 1 and xg.. .xr is the same as 
y 1 .  . . y s .  Applying the induction hypothesis to y2 . . . ys- l  (= x1 . . . x,-]), we 
see that the number of adjacent interchanges used that involve y l ,  . . . , y s  is at 
most g(r  - 1) + f ( r )  = g(r  + 1) = g(s) by Lemma l(b), with equality 
if and only if b contains the segment ys-1ys-2 . .  . y 2 ,  when it must also 
contain ysys- l  . . . y1. 

Case 2. s > r + 1 and xg.. .x, occurs at one end of y l . .  . y s :  w.1.o.g. 
xg = y1. Applying the induction hypothesis to y2 . . , y r  and to y r + 2 . .  . ys  we 
see that the number of adjacent interchanges used is at most 

g ( r  - 1) + g(s - r - 1) + f ( r )  = g ( r  + 1) + g(s - r - 1) s g(s) 

by Lemma l(c), with equality if and only if b contains the segment 
y ty t - l  . . . y l y s y s - l  . . . y t + l  where either t or s - t is equal to Ljn] + 1. 
(Here t = I + 1 if r + 1 or s - r - 1 equals [ i n ]  + 1 in Lemma l(c), 
and t = r + 2 if r + 1 = s - r - 1 = ~n in Lemma l(c), when s = n 
and bj  = b.) 

1 

1 

Case 3. s > r + 1 and xo . . . x, is not at one end of y 1  . . . y s :  say xo = y ,  
forsomet ,2  s t G s - r - 1 . I f s  = n,so tha ty  l . . .ys i s thewholeofb j ,  
relabel bj so that xg . . . x, = y 1 .  . . yr+l  and go back to Case 2. Otherwise, 
applying the induction hypothesis to y1 . . . y t - l ,  to y t + l . .  . y t+ , - l  and to 
yt+,+1 . . . y s ,  we see that the number of adjacent interchanges is at most 

since the conditions for equality in Lemma l(c) cannot be satisfied in both 
of these additions. This completes the proof of Lemma 3 and of the result 
d ( a , b )  < Z ( n )  when b # 5. 
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