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Structural analysis of twins in feldspars. I. Carlsbad twinning
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Abstract: In this article, we analyse the common substructure of the Carlsbad twin in terms of the (pseudo)-eigensymmetry of the
crystallographic orbits. In the case of the monoclinic polymorphs, all the orbits in the highest subgroup compatible with the twin lattice
possess a (pseudo)-eigensymmetry which contains a restoration operation corresponding to the twin operation, which implies a high
degree of structural restoration. This structural restoration is realised for twin elements located at distance one half the length of the
unit cell, which explains the high occurrence frequency of this twin and its occurrence as both contact and penetration twin, and as
primary or synneusis twin. In the case of triclinic polymorphs, the common substructure is much less satisfactory and the Carlsbad
twin is probably inherited from the monoclinic phases, accompanied by transformations twins, or by late-stage synneusis, where
mechanical adherence on prominent faces plays a more fundamental role.
Key-words: albite; Carlsbad; hemitropy; orthoclase; synneusis; twinning; feldspar.
1. Introduction

Feldspars are tectosilicates with general formula
MpþAlpSi4�pO8, where M=Kþ (orthoclase), Naþ (albite),
Ca2þ (anorthite), Ba2þ (celsian), NHþ

4 (buddingtonite).
They frequently occur as twins, either as reflection twins –
the most common laws being Albite (0 1 0), Manebach
(0 0 1) and Baveno (0 2 1) – or as rotation twins – mainly
Ala [1 0 0], Pericline [0 1 0] and Carlsbad [0 0 1]; several
other twin laws have been reported but are rarer or
doubtful (Smith, 1974). From the petrological viewpoint,
more fundamental is the composition plane, i.e. the plane
representing the physical interface between the twinned
individuals. Albite and Carlsbad have (0 1 0) as composi-
tion plane, Manebach and Ala (0 0 1), Pericline the
rhombic section and Baveno (0 2 1). Twins with composi-
tion plane (0 1 0) are most typically represented in
magmatic rocks, whereas in metamorphic rocks the
predominance depends on the facies: twins with composi-
tion plane (0 0 1) or the rhombic section dominate at higher
pressure, whereas those with composition plane (0 1 0) are
more frequent at lower pressure, i.e. approaching
magmatic conditions (Tobi, 1987).
Twins may occur following a phase transition (trans-

formation twins), as the result of an external force
(mechanical twins) or during crystal growth (growth
twins) (Buerger, 1945). Albite and Pericline laws are
possible only in triclinic feldspars, because in monoclinic
polymorphs the (0 1 0) plane and the [0 1 0] axis are
symmetry elements. When they occur as transformation
DOI: 10.1127/ejm/2017/0029-2678
twins from monoclinic sanidine/orthoclase to triclinic
microcline, they coexist and produce the well-known
cross-hatched pattern observed under the polarising
microscope, unless recrystallisation takes place (Akizuki,
1972). Mechanical twins occur as lamellar twinning in
plagioclase in the amphibolite facies, with preference for
composition plane (0 0 1) or the rhombic section, but are
rare under low-grade metamorphism (Tobi, 1987). Growth
twins occur as the result of a perturbation (impurities,
dislocations or other defects) during the crystal growth,
leading to so-called primary twins attributed to nucleation
errors or to nucleation on the surface of a growing crystal
(Kumar et al., 2014), or following the oriented attachment
of crystals with a precise mutual orientation (Nespolo,
2015); the oriented attachment, also known as synneusis
(Vogt, 1921), may occur at any stage, including the post-
growth (Nespolo & Ferraris, 2004). Synneusis is realised
when nearby crystals drift together, become attached and
adhere on their broader crystal faces. The phenomenon can
involve: (1) crystals of the same phase; (2) crystals with
the same composition but different structure; or (3)
crystals with different composition. According to Vance
(1969), in the first case there is normally a strong tendency
to join either in parallel or twin orientation, whereas
random attachment is rare. The reason is that a random
attachment normally corresponds to an unstable atomic
configuration at the interface which tends to evolve
towards either a parallel growth or a twin. If both
configurations are far from the relative orientation
occurred at the moment of the attachment, an intermediate
0935-1221/17/0029-2678 $ 4.05
© 2017 E. Schweizerbart’sche Verlagsbuchhandlung, D-70176 Stuttgart



2 M. Nespolo, B. Souvignier
orientation, corresponding to a less unstable interface, can
sometimes be reached: the result is known as a plesiotwin
(Nespolo et al., 1999a). The second case involves oriented
attachment of different polymorphs, which is a less
probable event because they normally have different cell
parameters; in case of polytypes, however, synneusis gives
rise to allotwins (Nespolo et al., 1999b), as in the example
of ferriphlogopite from the Ruiz Peak (Nespolo et al.,
2000). The third case produces epitaxies. Synneusis is
considered a common event in feldspars (Stull, 1979), but
opinions diverge on whether it occurs early in crystal-
lisation (Ross, 1957; Vance, 1969) or rather by post-
growth attachment (Swanson, 1967). The latter phenome-
non should be guided by the morphology of the mineral,
rather than by crystallographic orientation, because late-
stage oriented attachment has higher probability on large
faces (Dowty, 1980a).
As pointed out by Tobi (1987), the genetic consider-

ations are not sufficient to explain the difference in the
characteristic patterns of twinning found in natural rocks:
the underlying crystallographic causes must be under-
stood. However, until recently a satisfactory structural
investigation of twinned crystals was out of reach and only
a reticular interpretation was possible (see Section 3 for
details). The recent theoretical and computational advan-
ces have allowed to overcome that limitation and a general
structural approach is now available, which exploits the
analysis of the eigensymmetry of the crystallographic
orbits building the structure of the mineral (Marzouki
et al., 2014a). We present in this article the results of that
approach to the study of Carlsbad twins. In the next articles
of the series, we will discuss the other established twins in
feldspars.

2. Carlsbad twinning: an example of parallel
hemitropy

The remarkable and systematic size difference between
twinned and untwinned grains observed by Ingerson
(1952) led Vance (1969) to conclude that contact and
penetration Carlsbad twins originate as primary and
synneusis twins, respectively. However, the size difference
has also been explained by the effect of twinning on
growth kinetics. The increase in growth rate was attributed
to the so-called reentrant angle effect (Carstens 1968), but
Kitamura et al. (1979) have demonstrated that this effect
can only work under low supersaturation and only for
perfect crystals containing no screw dislocations, whereas
for real crystals, flattened or elongated morphology of
twinned crystals is due to screw dislocation bundles
concentrated in the composition plane.
In a twinned crystal there is a change of orientation

from one individual (or domain) to the next one, but this
change of orientation does not occur at random. First, the
operation mapping the two individuals is a crystallograph-
ic operation in direct space (“Mallard’s law”: Friedel,
1926) called the twin operation; secondly, a significant
part of the structure of one individual continues, more or
less unperturbed, across the interface – called the
composition surface or, in case of a planar interface,
composition plane – and builds up a common substructure.
The latter constitutes the structural rationale for the
occurrence of the twin (Marzouki et al., 2014a).

Before the systematic categorisation of twinning in
terms of the reticular theory (Friedel, 1926), twins were
tentatively explained as arising from a two-fold rotation or
hemitropy (from the Greek hmi “half” and tropίa “to
turn”) about a direction either perpendicular to the
composition plane or about a direction contained in this
plane (Haüy, 1801; see also Bravais, 1851). Accordingly,
twins were classified as due to normal hemitropy or
parallel hemitropy, with a few cases left out and assigned
to a complex hemitropy possibly resulting from the action
of both normal and parallel hemitropy. This old
categorisation has been criticised by Friedel (1926) for
at least two reasons:

–
 rotation twins in which the twin operation is a rotation of
order higher than two have been discovered; although
rarer, these twins cannot be explained in the framework
of the hemitropy theory;
–
 reflection twins are not equivalent to rotation twins, even
from a purely reticular viewpoint, unless the twin plane
has a lattice direction exactly perpendicular to it, which
in general is not the case; these twins again cannot be
explained in the framework of the hemitropy theory.

Despite its lack of generality, the distinction between
normal hemitropy and parallel hemitropy, which in the
petrological literature are sometimes called “normal law”
and “parallel law” (Takahashi, 2002), does make sense
when dealing with rotation twins, because the relative
orientation of the composition plane with respect to the
twin axis implies a difference in the interpretation of the
(pseudo)-eigensymmetry of the crystallographic orbits.

In case of normal hemitropy, as for the twins of
staurolite studied by Marzouki et al. (2014b), the
composition plane is perpendicular to the twin axis; its
orientation is therefore determined by the twin element. In
case of parallel hemitropy, instead, the orientation of the
composition plane is not fixed a priori. In fact, infinitely
many planes have the twin axis in common, and the
orientation must be obtained by a morphological study of
the twin. Carlsbad twins fall precisely in the category of
parallel hemitropy, with twin axis [0 0 1]. They occur both
as contact and as penetration twins; for the former, the
composition plane is (0 1 0) (Wooster, 1981). Other
possible composition planes are (11 0), ð1 1 0Þ (which
belong to the same crystal form in monoclinic poly-
morphs), and (1 0 0), but are very rare and the latter cannot
occur as a result of synneusis, due to the fact that {1 0 0} is
not a prominent form in any feldspar (Dowty, 1980a). The
rare examples of the occurrence of Carlsbad twins with
(1 0 0) composition plane (sometimes called “Carlsbad
B”) show irregular composition surface with inclusions of
other minerals and have been interpreted as a result of
growth factors rather than structural continuity, because of
the severe disruption or distortion at the twin boundary
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(Dowty, 1980b). Even in these exceptional samples, (0 1 0)
is most likely the original composition plane, as defined by
Schaake (1938a and b) and later refined by Curien and
Kern (1957). Our analysis below is therefore applied to the
Carlsbad twin based on (0 1 0) as twin plane.

3. Reticular vs. structural theory of crystal
twinning

With the possible exception of late-stage synneusis, where
the mechanical adherence on prominent faces may become
a predominant factor, the occurrence frequency of a twin
should be more or less directly related to the extent of a
common substructure continuing across the composition
surface. Until recently, investigators relied on the reticular
(from the French réseau, “lattice”) theory of twinning,
which determines the sublattice (as opposed to substruc-
ture) common to the individuals. The fraction of lattice
nodes common to the individuals is taken as measure of
the lattice restoration, expressed as the twin index, which
is the reciprocal of that fraction; departure from exact
overlap is measured by the obliquity or misfit (Friedel,
1926; Nespolo & Ferraris, 2007). Because the lattice
expresses the periodicity of the crystal structure, a
significant lattice restoration is a necessary condition
for the formation of a twin; however, because a large,
potentially infinite, number of crystal structures may have
the same lattice type, the predictive power of the lattice
restoration is limited; in particular, it cannot explain why
twins with the same degree of lattice restoration have
different occurrence frequency. For that purpose, we need
the degree of structural restoration, i.e. we need to know
the substructure that crosses more or less unperturbed the
composition surface.
Dowty (1980b) and Wooster (1981) have provided a

qualitative estimation of the structural restoration in
twinned feldspars but for a convincing explanation we
need a quantitative evaluation of the degree of such
restoration. This can be obtained on the basis of the
(pseudo)-eigensymmetry of the crystallographic orbits
building the crystal structure of the individual. A
crystallographic orbit is the set of atoms which are
equivalent to one atom in the asymmetric unit under the
operations of the space group of the structure. Let EðOiÞ –
often abbreviated as Ei – be the eigensymmetry of the ith
orbit Oi, i.e. the group of all motions mapping the orbit Oi

to itself. The crystal structure S is the set-theoretical union
of the orbits: S=∪iOi, whereas the space group GðSÞ of the
structure S is the intersection of the eigensymmetries of all
crystallographic orbits: GðSÞ ¼ ∩ iEðOiÞ. The eigensym-
metry Ei of an orbit Oi is a supergroup of the space group
GðSÞ of the structure; when it is a proper supergroup, Ei
may contain operations whose linear part (the rotation,
reflection or rotoinversion component) is the same as the
twin operation. When that is the case, the orbit Oi crosses
the composition surface of the twin unperturbed (or almost
unperturbed if Ei is allowed to contain pseudo-symmetries
of Oi) and contributes to the common substructure defined
above. The operations of the eigensymmetry group Ei are
space-group operations, which contain, besides the linear
component, a translational component (possibly zero);
these structural counterparts of the twin operation are
called the restoration operations. Concretely, if we take
the structure of one individual and apply to it a restoration
operation, we get the same structure in a different, non-
equivalent orientation. When we overlap these two
structures we can recognise three types of situations:

1.
 some atoms of one individual overlap, at least

approximately, atoms of the other individual that play
the same structural role (e.g. cations centring coordina-
tion polyhedra of the same type in the two individuals);
2.
 some atoms of one individual may overlap, at least
approximately, atoms of the other individual that do not
play the same structural role (e.g. cations centring
different types of polyhedra, or cations and anions);
3.
 some atoms of one individual do not overlap any atom
of the other individual.

Atoms in situation 1 correspond to crystallographic
orbits whose eigensymmetry contains a restoration
operation and build up the common substructure of the
twin. If this common substructure represents a significant
portion of the whole structure, it justifies the occurrence of
the twin.

The analysis of the (pseudo)-eigensymmetry of
crystallographic orbits for the study of twins has been
applied with success to several well-known twins in
minerals, such as melilite (Marzouki et al., 2014a),
staurolite (Marzouki et al., 2014b), aragonite (Marzouki
et al., 2015), marcasite (Nespolo & Souvignier, 2015a),
cassiterite and rutile (Nespolo & Souvignier, 2015b) and
forsterite (Azevedo & Nespolo, 2017). These are all
reflection twins, with the exception of the two twins of
staurolite, which are rotation twins by normal hemitropy.
For reflection twins, the composition plane is normally, but
not always, parallel to the twin plane. In normal hemitropy,
its orientation is known a priori but its position is not fixed
by symmetry: the composition plane can be shifted along
the twin axis without changing the restoration accuracy. In
parallel hemitropy, the opposite is true: the orientation of
the composition plane is not known a priori, but its
position is determined by symmetry arguments; the
eigensymmetry of the orbits building the common
substructure contains a restoration operation and its
geometric element (i.e. the rotation or screw axis) should
lie in the composition plane.

In this article we present the eigensymmetry analysis of
the Carlsbad twin as the first case study of parallel
hemitropy. To provide a quantitative evaluation of the
degree of structural restoration across the composition
plane we need to use the experimental structural data of
feldspars. We have chosen the orthoclase structure
reported at 293K by Angel et al. (2013) and the
monoclinic albite structure reported at 980 °C by Winter
et al. (1979). The cell parameters and the fractional atomic
coordinates depend on the chemical composition, in
particular the substitution in the alkali site, and the external
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conditions (temperature, pressure), but these differences
do not affect the conclusions, they only modify slightly the
numerical results presented below.
Fig. 1. The structure of orthoclase. Tetrahedra are centred on Si/Al
and K occupies cavities defined by eight tetrahedra. This and the
following figures are drawn with VESTA (Momma and Izumi,
2011).
4. Eigensymmetry of the crystallographic
orbits of orthoclase and monoclinic albite
and its application to the Carlsbad twin

The twin operation in Carlsbad twins is a two-fold rotation
about the [0 0 1] direction; accordingly, the restoration
operation which can lead to a common substructure in this
twin is a two-fold rotation or screw-rotation about the c
axis of the mineral. Figure 1 shows a polyhedral view of
the structure of orthoclase (the structure of monoclinic
albite would look exactly the same, given the minimal
differences), which is built by a three-dimensional
framework of eight-member rings of tetrahedra with a
topology described by the code UUUUDDDD and
UDDUDUUD (Smith & Rinaldi, 1962) where the M
cations find place. The structure is monoclinic holohedral,
with space group of type C2/m; there is no lattice plane
exactly perpendicular to the [0 0 1] direction so that twin-
ning is by reticular pseudo-merohedry. The lattice plane
close to perpendicularity, which defines a small supercell on
which the twin lattice is built, is ð1 0 2Þ: the twin index is 2
and the obliquity depends on the cell parameters. For the
structures reportedbyAngeletal. (2013)andbyWinteretal.
(1979), which we use in the following, the cell parameters
are a= 8.575A

�
, b= 12.984A

�
, c= 7.2008A

�
, b= 116.028°

and a= 8.274A
�
, b= 12.991A

�
, c= 7.144A

�
, b= 116.13°

respectively; the obliquity is 1.21° and 0.56°, respectively
(calculations performed with the software geminography:
Nespolo & Ferraris, 2006).
Table 1 gives the fractional atomic coordinates of

orthoclase and monoclinic albite in the asymmetric unit of
C2/m, as well as the (pseudo)-eigensymmetry of the
crystallographic orbits defined by these atoms, computed
with the routine PSEUDO (Capillas et al., 2011) at the
Bilbao Crystallographic Server (Aroyo et al., 2006). By
dmin we denote the minimal distance between the position
to which a chosen atom in a crystallographic orbit Oi is
mapped under the restoration operation and the nearest
atom in Oi. When dmin = 0 for all atoms in Oi, EðOiÞ is
rigorously realised. If the eigensymmetry is only
approximate, then dmin> 0 and its value is a measure
for the quality of the quasi-restoration. Using different
data, either from isostructural compounds or from varying
experimental conditions (temperature, pressure) results in
small differences in the values of dmin due to the slight
differences in the cell parameters and fractional coor-
dinates, as can be seen by comparing the results for
orthoclase and monoclinic albite in Table 1. The
conclusions and interpretation with respect to the
formation of the twins are, however, unaffected.
All the crystallographic orbits composing the structure

of orthoclase and monoclinic albite possess a (pseudo)-
eigensymmetry which is a proper supergroup of the space
group of the minerals; however, the additional symmetry
with respect to C2/m contains the expected restoration
operation only for two of the eight orbits (the T1- and the
O4-orbit), which are also the only two orbits for which
the deviation from the metric symmetry is within
acceptable limits (last column of Table 1). For these
two orbits we thus find the restoration operation required
to explain the formation of the twin; they account for 31%
of the structure (16 atoms out of 52, considering the
multiplicities of the Wyckoff positions: see Table 1). This
is already a significant contribution when considering the
whole unit cell, but of particular interest is the region
close to the composition plane, as we are going to discuss
in detail. The other six orbits, instead, do not possess a
restoration operation in their (pseudo)-eigensymmetry; in
fact, under the basis transformation necessary to realise
the pseudo-symmetry, the [0 0 1] direction of orthoclase/
monoclinic albite is transformed to a direction which is
not a symmetry direction of the corresponding lattice. For
these other orbits we therefore need to analyse the
(pseudo)-eigensymmetry of suborbits (i.e. orbits under
the action of a subgroup), according to the following
procedure, already explained in detail in our previous
reports:

–
 identify the unit cell of the twin lattice: this is built on the
twin axis and the lattice plane (quasi)-perpendicular to it;
–
 identify the maximal subgroup H of the space group
of the individual G compatible with the twin lattice:
this is obtained by taking the intersection of G and its
conjugate obtained through the twin operation, i.e.
H ¼ G ∩ tGt�1;
–
 split the crystallographic orbits of G into orbits under the
action of H : going from a group to a subgroup, a
crystallographic orbit in general splits into two or more
orbits (Wondratschek, 1993);



Table 1. Fractional coordinates of orthoclase KAlSi3O8 (Angel et al., 2013) and monoclinic albite NaAlSi3O8 (Winter et al., 1979) and
pseudo-eigensymmetry of the corresponding crystallographic orbits. Basis transformation and origin shift are expressed from C2/m to the
(pseudo)-eigensymmetry group (group-to-supergroup relation). dmin is the minimal distance between atoms related by the operations in the
pseudo-eigensymmetry: when dmin = 0 the higher eigensymmetry is exact. The angular deviation from the eigensymmetry lattice (last column)
is not considered in the calculation of dmin, which is therefore approximated. The orientation of the twin axis corresponds to the [0 0 1] direction
in C2/m, to ½1 1 0� in Fmmm and to ½1 1 1� in I4/mmm, neither of which is a symmetry direction for the lattice corresponding to the orbit
eigensymmetry. For the T1 and O4 orbits, the twin axis corresponds to the [0 1 0] direction, which is a symmetry direction of the orthorhombic
lattice. These are also the only two orbits for which the deviation from the metric orthorhombic symmetry is within acceptable limits.

Orbit Wyckoff
position

Fractional coordinates (Pseudo)-
eigensymmetry

Basis
transformation

Origin
shift

dmin (A
�
) a/b/g (°)

Orthoclase Monoclinic albite Orthoclase Orth Mon
Monoclinic albite

M 4i 0.28476,
0,
0.13825

0.27890,
0,
0.13780

Fmmm (69) aþ2c,a,b 0,0,½ 0.5894
0.6619

90/
90/
80.11

90/
90/
81.22

T1 8j 0.00932,
0.18481,
0.22407

0.00810,
0.17840,
0.22330

Immm (71) �a�½c,½c,b 0,0,0 0.4662
0.4567

90/
90/
88.79

90/
90/
89.45

T2 8j 0.70912,
0.11770,
0.34449

0.69590,
0.11630,
0.34200

Fmmm (69) aþ2c,a,b 0,0,0 0.6324
0.4120

90/
90/
80.11

90/
90/
81.22

O1 4g 0,
0.14607,
0

0,
0.13930,
0.00000

Fmmm (69) aþ2c,a,b 0,0,0 0
0

90/
90/
80.11

90/
90/
81.22

O2 4i 0.6379,
0,
0.2853

0.60630,
0,
0.28350

Fmmm (69) aþ2c,a,b 0,0,0 0.0815
0.5866

90/
90/
80.11

90/
90/
81.22

O3 8j 0.82665,
0.14651,
0.22770

0.82330,
0.13500,
0.22520

I4/mmm (139) ½aþ½bþc,
½a�½bþc,a

0,0,½ 0.6433
0.6566

82.99/
82.99/
89.33

83.81/
83.81/
90.05

O4 8j 0.03510,
0.31147,
0.25930

0.02570,
0.30440,
0.25350

Immm (71) �a�½c,½c,b 0,0,0 0.5564
0.4058

90/
90/
88.79

90/
90/
89.45

O5 8j 0.18081,
0.12583,
0.40697

0.18910,
0.12290,
0.40490

Fmmm (69) aþ2c,a,b 0,0,0 0.3889
0.2209

90/
90/
80.11

90/
90/
81.22
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–
 search for the crystallographic orbits Oi under H for
which the (pseudo)-eigensymmetry EðOiÞ contains a
symmetry operation whose linear part coincides with
the twin operation and thus identifies the restoration
operation.

The unit cell of the Carlsbad twin lattice is defined by
the [0 0 1] direction and the ð1 0 2Þ plane quasi-perpen-
dicular to it. The two shortest directions in this plane are
[2 0 1] and [0 1 0], which, together with the [0 0 1] twin
axis, constitute the columns of the transformation matrix
from the basis vectors (abc)I of the untwinned orthoclase/
monoclinic albite crystal to those of the Carlsbad twin
(abc)T (I = individual, T = twin):

ð a b c ÞI ¼
2 0 0
0 1 0
1 0 1

0
@

1
A ¼ ð a b c ÞT;

i.e. aTbTcT = 2aIþcI,bI,cI. The [2 0 1] direction of ortho-
clase/monoclinic albite is transformed to the [1 0 0]
direction of the twin lattice; the two other basis vectors
are in common. The cell parameters of the twin lattice are
aT = 15.414A

�
, bT = 12.984A

�
, cT = 7.2008A

�
,bT = 91.21° for

orthoclase and aT = 14.857A
�
, bT = 12.991A

�
, cT = 7.144A

�
,

bT = 90.56° for monoclinic albite; the unit cell of the twin
lattice is B-centred, monoclinic but pseudo-orthorhombic
with a deviation of b which corresponds precisely to the
obliquity. The advantage of taking an unconventional mB
unit cell lies in the fact that it clearly shows the
orthorhombic pseudo-symmetry of the lattice, which
would be somewhat camouflaged by the standard P2/m
setting. The unit cell of the twin lattice is twice larger than
that of the individual and contains therefore 52� 2 = 104
atoms. The highest space-group type compatible with this
lattice is H ¼ G1 ∩G2 where G1 and G2 are the space
groups of the two individuals in their respective
orientations. G2 is of the same type as G1 and differs
from it in the orientation of the basis vectors: it is the
conjugate of G1 by the twin operation. In our case, H is of
type B2/m, which is an unconventional setting of P2/m
(Nespolo & Aroyo, 2016). The International Tables for
Crystallography (2016) do not list this setting, so we list
in Table 2 explicitly the positions obtained by adding the



Table 2. Wyckoff positions in the P2/m and in the B2/m settings of
the space group relevant to Carlsbad twin.

P2/m B2/m: (½,0,½)þ
Wyckoff
position

Coordinates Wyckoff
position

Coordinates

4o x,y,z 8o x,y,z
2n x,½,z 4n x,½,z
2m x,0,z 4m x,0,z
2j ½,y,0 4j ¼,y,3/4
2i 0,y,0 4i 0,y,0

Table 3. Orthoclase and monoclinic albite fractional coordinates in
the B2/m setting of the twin lattice. First line: orthoclase; second
line: monoclinic albite.

Atom Wyckoff
position

x y z

M1 4m 0.14238 0 0.99587
0.13945 0 0.99835

M2 4n 0.39238 ½ 0.74587
0.38945 ½ 0.74835

T11 8o 0.00466 0.18481 0.21941
0.00405 0.17840 0.21925

T12 8o 0.25466 0.68481 0.96941
0.25405 0.67840 0.96925

T21 8o 0.35456 0.11770 0.98993
0.34795 0.11630 0.99405

T22 8o 0.60456 0.61770 0.73993
0.59795 0.61630 0.74405

O11 4i 0 0.14607 0
0 0.13930 0

O12 4j ¼ 0.64607 3/4
¼ 0.63930 3/4

O21 4m 0.31895 0 0.96635
0.30315 0 0.98035

O22 4n 0.56895 ½ 0.71635
0.55315 ½ 0.73035

O31 8o 0.41333 0.14651 0.81438
0.41165 0.13500 0.81355

O32 8o 0.66333 0.64651 0.56438
0.66165 0.63500 0.56355

O41 8o 0.01755 0.31147 0.24175
0.01285 0.30440 0.24065

O42 8o 0.26755 0.81147 0.99175
0.26285 0.80440 0.99065

O51 8o 0.09041 0.12583 0.31657
0.09455 0.12290 0.31035

O52 8o 0.34041 0.62583 0.06657
0.34455 0.62290 0.06035

6 M. Nespolo, B. Souvignier
centring vector (½,0,½) that are relevant to the Carlsbad
twin. The splitting scheme of the occupied Wyckoff
positions in C2/m to those in B2/m under the transform-
ation 2aþc,b,c is 4g!4iþ 4j; 4i!4mþ 4n; 8j!2� 8o,
obtained through the WYCKSPLIT routine at the Bilbao
Crystallographic Server (Kroumova et al., 1998). The
fractional coordinates of orthoclase andmonoclinic albite in
the asymmetric unit of B2/m are given in Table 3, where the
orbits are numbered sequentially, keeping a record of the
original labelling inC2/m (M!M1andM2; T1!T11 and
T12; etc.). All the crystallographic orbits in B2/m have
Bmmm (pseudo)-eigensymmetry,1 with varying deviations
from perfect symmetry, in some cases the origin is in
common, whereas for some orbits an origin shift of
1/4;0;1/4 from B2/m to Bmmm is necessary (Table 4). When
no shift of the origin is required, the restoration operations
are 2 0,0,z and, combining with the B-centring vector,
21 ¼,0,z; when instead an origin shift is required, the
restoration operations are 21 0,0,z and 2 ¼,0,z. The deviat-
ionsdmin, definedas inTable1, lie between0 (O11andO12),
meaning that the orbits have exact Bmmm eigensymmetry,
and ∼0.5A

�
(O21 and O22), which is still less than

half the ionic radius (both Pauling and Shannon radii).
It turns out that half of the 16 independent crystallo-

graphic orbits in B2/m are quasi-restored by 2 0,0,z as
restoration operation and the other half by 21 0,0,z (the
four orbits T11, T12, O41 and O42 are even quasi-restored
by both, but we stick to the restoration operation with the
lower value of dmin). A closer analysis shows that for each
of the 8 orbits under C2/m, one of the (sub)orbits under the
action of B2/m is quasi-restored by 2 0,0,z and the other by
21 0,0,z. Strikingly, each of the orbits quasi-restored by
2 0,0,z is fully contained in the region with y between
�0.25 and 0.25, which we will call region I, and all orbits
quasi-restored by 21 0,0,z are contained in the region with
y between 0.25 and 0.75, which we will call region II. This
means that the part of the structure contained in region I is
fully restored by the restoration operation 2 0,0,z, with a
maximal deviation of 0.4846A

�
(orthoclase) and 0.2808A

�

(monoclinic albite) (see Table 4). The geometric element
of this restoration operation is located in the centre of
region I. Similarly, the part of the structure contained in
region II is fully restored by the restoration operation
21 0,0,z, again with maximal deviation 0.4846A

�
(ortho-

clase) and 0.2808A
�
(monoclinic albite). Note that the

geometric element of 21 0,0,z is not contained in region II,
consequently it maps region II to the region with y between
�0.75 and �0.25. However, composing 21 0,0,z with the
translation by 0,1,0 results in the restoration operation
21 0,½,z which has its geometric element in the centre of
region II and maps this region to itself.
Figures 2 and 3 show the overlap of the structures of two

individuals (atoms in white and black, respectively) for
the regions I and II obtained by the restoration operations
2 0,0,z, and 21 0,½,z, respectively. The parts of the struc-
ture shown in the figures are from y=�0.25 to y= 0.25 for
1Bmmm is an unconventional setting of Cmmm adopted here to keep
the same basis vectors for H and E(Oi).
Fig. 2 and from y = 0.25 to y= 0.75 for Fig. 3, i.e. half of a
unit cell around the planes x,0,z and x,½,z that contain the
geometric elements of the restoration operations.

The sameanalysis (details omitted for brevity) on triclinic
plagioclases shows a much lower degree of structural
restoration, despite a good reticular restoration (twin index2
and obliquity about 1°), as shown in Section 4. In particular,
the oxygen atoms are not restored by the Carlsbad twin
operation. The occurrence of simple Carlsbad twins in
triclinic feldspars is therefore an unlikely event from the



Table 4. Restoration operations for the crystallographic orbits in Table 3. In all cases the eigensymmetry is Bmmm, unconventional setting of
No.65,withbasisvectorsparallel to thoseof the twinlattice. Inthecaseoftherestorationoperation20,0,z, theoriginofBmmmcoincideswiththatof
B2/m, inthecaseoftherestorationoperation210,0,z itisshiftedby1/4;0;1/4.Theorbitsarelocatedintwodistinctregions,regionIwithybetween�0.25
and 0.25 and region II with y between 0.25 and 0.75. The deviation dmin is defined as in Table 1, in all cases only the best restoration is given.

Orbit Wyckoff position Region dmin (A
�
) Restoration operation

Orthoclase Monoclinic albite

M1 4m I 0.0595 0.0236 2 0,0,z/21 ¼,0,z
M2 4n II 0.0595 0.0236 21 0,0,z/2 ¼,0,z
T11 8o I 0.1437 0.1203 2 0,0,z/21 ¼,0,z
T12 8o II 0.1437 0.1203 21 0,0,z/2 ¼,0,z
T21 8o I 0.1450 0.0850 2 0,0,z/21 ¼,0,z
T22 8o II 0.1450 0.0850 21 0,0,z/2 ¼,0,z
O11 4i I 0 0 2 0,0,z/21 ¼,0,z
O12 4j II 0 0 21 0,0,z/2 ¼,0,z
O21 4m I 0.4846 0.2808 2 0,0,z/21 ¼,0,z
O22 4n II 0.4846 0.2808 21 0,0,z/2 ¼,0,z
O31∪O51 8o I 0.2751 0.1837 2 0,0,z/21 ¼,0,z
O32∪O52 8o II 0.2751 0.1837 21 0,0,z/2 ¼,0,z
O41 8o II 0.1188 0.1336 21 0,0,z/2 ¼,0,z
O42 8o I 0.1188 0.1336 2 0,0,z/21 ¼,0,z

Fig. 2. The structure of the two individuals of orthoclase related by
the 2 0,0,z restoration operation. White and black atoms belong to
different individuals. The structure spans half of a unit cell, from
y=�0.25 to y = 0.25. The grey plane is located at x,0,z and contains
the geometric element of the restoration operation.

Fig. 3. The structure of the two individuals of orthoclase related by
the 21 0,½,z restoration operation. Same conventions as in Fig. 2.
The structure spans half of a unit cell, from y = 0.25 to y= 0.75. The
grey plane is located at x,½,z and contains the geometric element of
the restoration operation.
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structural viewpoint and may actually be a witness of late-
stage synneusis. Carlsbad twinning may also be inherited
from themonoclinic polymorph, but in that case it should be
accompanied by a transformation twinning occurring at
the phase transition, unless of course recrystallisation took
place. As a matter of fact, “complex laws”, in particular the
Albite-Carlsbad twinning, are quite common inplagioclases
(Gorai, 1957; Tribaudino et al., 1995), an observation that
supports our interpretation.
5. Conclusions and perspectives

The analysis of the (pseudo)-eigensymmetry of the
crystallographic orbits of orthoclase and monoclinic albite
explains the high occurrence frequency of the Carlsbad
twin because of the existence of a large substructure
common to the individuals in the respective orientations.
The operation 2 0,0,z quasi-restores all the atoms within
the slab going from y =�1/4 to y= 1/4 containing at its



8 M. Nespolo, B. Souvignier
centre the geometric element of 2 0,0,z within the
composition plane x,0,z. The next slab of the same width
(bT/2), located between y= 1/4 and y= 3/4 is not restored by
2 0,0,z, but by the different restoration operation, 21 0,½,z,
which similarly has its geometric element contained in the
composition plane x,½,z at the centre of the slab.
This means that every bT/2, or ∼6.5A

�
, a change of

orientation corresponding to the twin operation of the
Carlsbad twin leads to an excellent structural match across
the composition plane. From the genetic viewpoint, the
opposite statement is more interesting: for positions of the
composition plane at small distances, we can find an
extensive common substructure, although the restoration
operation having its geometric element in the composition
plane may vary depending on the location of the
composition plane. As a consequence, the change in
orientation can occur repeatedly, leading to polysynthetic
twinning, which was reported in TEM investigations of
synthetic Sr-rich feldspars (Tribaudino et al., 1995) and is
ubiquitous in samples annealed directly from gel (Benna
et al., 1995). It may also occur at different positions in
physically different sites of the growing crystal, resulting
in a composition surface that is not necessarily planar: the
result would be a penetration twin, rather than a contact
twin; as a matter of fact, Carlsbad twins are known to occur
more frequently as penetration twins than as contact twins.
It would also explain the migration of twin boundaries as a
local response allowing the individual experiencing the
higher elastic strain energy to expand at the expense of the
other individual, which may eventually lead to detwinning
(DeVore, 1970).
In a forthcoming article we will apply the same analysis

to other twin laws confirmed to occur in feldspars.
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