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1. Introduction

In this paper, we discuss the problem of decomposing reducible modules of finite groups in char-

acteristic zero, with special emphasis on homogeneous modules, i.e. sums of isomorphic irreducible

modules. This type of modules has so far not been subject of a systematic treatment, although some

ideas have been suggested.

Let G be a finite group and ∆ : G → GLn(K ) a representation of G over a field K which turns Kn

into a KG-module.

Over finite fields, the Meataxe (see [13] and [8]) provides a powerful tool to decompose reducible

modules into their irreducible constituents. Unfortunately, the adaptation of the Meataxe to charac-

teristic zero is not straightforward, since one may face the situation to test for infinitely many vectors

whether they lie in a proper submodule. However, in many situations the following decomposition

techniques can be applied successfully in characteristic zero:
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• Direct Meataxe methods (see [14] and [17]);

• Reconstruction from modular decompositions (as described in [7]);

• Factoring minimal polynomials of elements in the center of the endomorphism ring (cf. [15]).

Common to all approaches mentioned so far is that they fail to split homogeneous modules (except

for lucky exceptions). In this situation, the endomorphism ring

End(∆) :=
{

X ∈ Kn×n
∣

∣ X∆(g) = ∆(g)X for all g ∈ G
}

is isomorphic to a full matrix ring of degree m > 1 over some division algebra. In particular, End(∆)

contains singular elements which allow to find proper submodules. In order to follow this route, we

require an effective method to compute End(∆).

2. Iteration method

For representations of degree above 100 it is clear that a direct computation of End(∆) by solving

a system of linear equations is impractical. Two alternative approaches have been suggested:

• In [7], D. Holt sketches an approach based on the Meataxe: For a singular element u ∈ ∆(KG) the

action of X ∈ End(∆) on the nullspace of u is constructed and then extended to the action on the

full module via translates under G .

• In [15] an iteration method is presented which constructs X ∈ End(∆) by averaging over a gener-

ating set and iterating this process.

In this section we report on improvements that have been made to the iteration method, resulting

in a method that allows to compute End(∆) over Q efficiently for degrees beyond 1000 and which

can also be applied over (small) algebraic number fields K .

The core of the iteration method is Theorem 2.1 in [15] which states that the averaging operator

ρ : Kn×n → End(∆), X �→
1

|G|

∑

g∈G

∆(g)X∆(g)−1

can be approximated by iterating the averaging operator over a generating set {g1, . . . , gs} of G:

X0 := X, Xk+1 :=
1

s

s
∑

i=1

∆(gi)Xk∆(gi)
−1 ⇒ lim

k→∞
Xk = ρ(X).

The iteration method can be carried out using either floating point arithmetic or rational arith-

metic. In the latter case, intermediate rounding is necessary to avoid entry swell. In any case, rounding

errors spoil the approximation if too many iterations are required. Therefore it is crucial to have fast

convergence.

2.1. Acceleration via the product replacement algorithm

For a fixed generating set, it is proved in [15] that the iteration method converges asymptotically

with a constant contraction factor 0 < δ < 1. Therefore, a natural idea to accelerate convergence is to

apply Aitken’s δ2-process given by

x′
i = xi −

(xi+1 − xi)
2

xi+2 − 2xi+1 + xi
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Table 1

Convergence speed σn/σn−10 for M11 .

n 20 30 40 50 60 70 80

Fixed generators 4.04 3.41 3.32 3.30 3.29 3.29 3.28

Product replacement 97.94 73.21 80.44 123.07 98.44 186.77 142.09

97.82 68.68 128.07 59.47 60.41 19.08 115.40

162.96 125.54 136.99 131.35 146.59 160.19 164.49

(see e.g. Section 5.10 in [18]) to the matrix elements. However, this actually tends to deteriorate the

convergence, since in fact only the overall convergence for the full matrix is geometric, whereas the

single entries show irregular fluctuations.

Much better results yields the product replacement algorithm, due to C.R. Leedham-Green (see [3]):

Starting with a generating set {g1, . . . , gs}, two random numbers i �= j between 1 and s are produced

and gi is replaced by one of gi g
±1
j

or g±1
j

gi . This process produces – after an initialization phase –

a good series of random elements from a group. An excellent overview and discussion of the product

replacement algorithm is given in [12].

Our key idea is to apply the iteration method not for a fixed generating set but for a generating

set that is changed by the product replacement algorithm after each iteration step.

Experiment 2.1. A quick comparison of the convergence rates can be performed by some computa-

tions in the group ring QG . As a measure for the quality of an approximation
∑

g∈G cg g ∈ QG with
∑

g∈G cg = 1 to ρ = 1
|G|

∑

g∈G g we take the standard deviation σ = ( 1
|G|

∑

g∈G(cg − 1
|G|

)2)
1
2 of the

coefficients from the expectation value 1
|G|

.

For a group with generating set {g1, . . . , gs} we compute the standard deviation σn of 1
(s+1)n

(1 +

g1 + · · · + gs)
n for n = 10,20,30 etc. and record the decrease σn/σn−10 . The same is done for a

generating system to which the product replacement algorithm is applied, i.e. for
∏n

k=1
1

s+1
(1+ g

(k)
1 +

· · · + g
(k)
s ) where g

(k)
i

is the ith generator in the kth iteration step.

Example 2.2. For the Mathieu group G = M11 we fix a generating set with generators g1 , g2 , g3
of orders 11, 6 and 4 (a generating set with a good convergence rate). The convergence results are

displayed in Table 1, giving three runs of the product replacement version, since the behaviour is

influenced by random choices.

Analyzing the data one sees that the quality obtained with the fixed generators after 80 iterations

is already reached after 30 iterations with the product replacement method.

Note that the iteration with fixed generators indeed shows the expected geometric series conver-

gence, whereas the behaviour for the product replacement is irregular.

The key for the superior convergence behaviour with the product replacement algorithm lies in

the fact that the length of the generators g
(k)
i

as words in the original generators grows exponentially

with the number k of iterations.

Proposition 2.3. Let G be generated by {g1, . . . , gs}. Then after k iterations of the product replacement algo-

rithm, the expectation value for the length of the generators g
(k)
i

as words in the original generators is

(

s + 1

s

)k

.

Proof. This is clear for k = 1, since there are s − 1 generators of length 1 and one of length 2.

Assume now that a generating set after k iterations has lengths (l1, l2, . . . , ls) and thus average length

l̄ = 1
s

∑s
i=1 li . Replacing the ith generator by its product with the jth generator gives a length tuple
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Table 2

Bias
|G|
sn

c
(n)
1 towards the identity for M11 .

n 10 15 20 25 30 40 50 60

Fixed generators 13.28 6.49 3.41 2.04 1.39 1.07 1.02 1.003

Product replacement 0.80 1.01 1.003 1.0001 1. 1. 1. 1.

1.07 0.97 0.999 0.9999 1. 1. 1. 1.

0.67 0.99 0.997 0.9999 1. 1. 1. 1.

of the form (l1, . . . , li + l j, . . . , ls). Summing over the average lengths in all tuples for i �= j, we get
∑s

i=1

∑

j �=i(l̄ +
1
s
l j) = s(s − 1)l̄ + (s − 1)l̄ = (s2 − 1)l̄. To get the average length, we have to divide by

s(s − 1). This gives s2−1
s(s−1)

l̄ = s+1
s

l̄, thus the average length has been multiplied by s+1
s

. Since this

holds for every generating tuple, the claim is proved. �

Note that the maximal possible length after k iterations is obtained by always multiplying the

second-longest generator by the longest one. These maximal lengths clearly give the Fibonacci se-

quence.

The main obstacle for the convergence with fixed generators is that this method expands the

Cayley graph stepwise from the identity element. Therefore, for the first iteration cycles the elements

close to the identity element are overrepresented and this bias is only gradually levelled out. In

particular, there are too many loops for the identity element.

The following experiment demonstrates this behaviour and shows that it is overcome by the prod-

uct replacement algorithm, since the long words in the original generators explore all regions of the

Cayley graph uniformly after a short initialization phase.

Experiment 2.4. Let {g1, . . . , gs} be a generating set for G . Then the coefficient c
(n)
g of g in (g1 +

· · · + gs)
n is the number of paths of length n in the Cayley graph from 1 ∈ G to g . Since for n → ∞

the words of length n in the gi are uniformly distributed,
c
(n)
g

sn
converges to 1

|G|
. A bias towards the

identity element can be read off from
|G|
sn

c
(n)
1 > 1.

Again, we compare the behaviour of the coefficient c
(n)
1 for a fixed generating set with that for a

generating set to which the product replacement algorithm is applied.

Example 2.5. We revisit the Mathieu group G = M11 with the same generating set {g1, g2, g3} as in

Example 2.2. The values of |G|
sn

c
(n)
1 are displayed in Table 2, again giving three runs for the product

replacement version. Entries 1. indicate that the deviation from 1 is less than 10−4 .

One sees that for the fixed generators the bias towards the identity element vanishes quite slowly,

whereas with the product replacement algorithm there is no bias at all (after initial fluctuations).

We note that there is nothing special about the behaviour of the group M11 , an analogous be-

haviour as in Examples 2.2 and 2.5 is generally observed.

2.2. Iteration over algebraic number fields

In some situations it is desirable to apply the iteration method over an extension field K of Q.

Note that one will usually be able to work with a representation ∆ written over the maximal order

R = Int(K ) of K .

With respect to an integral basis (a1, . . . ,ad) of R , where d = [K : Q], the elements of R can be

written as
∑d

i=1 ciai with ci ∈ Z. Assuming that the group order |G| is known, we multiply the initial

element X to which the iteration is applied by |G|. Then the limit of the iteration is an element ρ(X)

with entries in R , which can be identified by rounding the coefficients ci to integers.
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In the case that ∆ is not written over the maximal order R , it is always possible to transform ∆

to a representation with small denominators. Then rounding the ci to rational numbers can still be

easily achieved, either via iterated fractions or simply by trial multiplication.

Note that this approach avoids the problem of reconstructing algebraic numbers from real approx-

imations mentioned in [11].

2.3. Applications

Apart from the computation of End(∆), the iteration method has various useful applications, which

are obtained via different actions of G (cf. Section 5 in [15]). Amongst these are the computation of

the center Z(End(∆)) of the endomorphism ring, G-invariant bilinear forms and intertwining ma-

trices between two representations. In this section we give two explicit examples illustrating such

applications.

2.3.1. Scope of the iteration method

In our applications, the iteration process using the product replacement method usually allows

to read off the desired average element after 40–50 iterations. Working in dimensions up to 500,

endomorphisms are thus obtained within at most a minute. In order to explore the scope of the

improved method, we took the challenge of decomposing a representation of degree 2752.

Example 2.6. The representation of degree 152 with character 43defg of G = U3(7) (in Atlas notation,

see [4]) is recorded in [11] as one of the rational representations of degree below 250 which is

difficult to obtain. It occurs as a constituent of a permutation representation of degree 2752 with

character decomposing as 1 + 43a + 43bc + 43defg + 301a + 301bc + 301defg + 343a. Obtaining an

element X ∈ Z(End(∆)) finished after 40 iterations and took about 12 minutes (on 2.2 GHz Linux-PC).

The minimal polynomial of X had four linear, two quadratic and two quartic factors, in accordance

with the numbers of algebraic conjugates in the character decomposition and thus yielded a complete

decomposition into rationally irreducible modules. The quartic factor relevant for the character 43defg

was f = t4 + 34698209312t2 − 9160476825047184t + 603292103372399444497.

2.3.2. Galois descent

A frequent problem in the construction of representations is to transform a representation given

over some field L to one over a smaller field K . This can be achieved by either spinning up a vector

in the kernel of a suitable element in ∆(LG) of minimal nullity (see [17]) or, in the case that L/K is

a cyclic Galois extension with Galois group generated by σ , by a Galois descent. The latter requires an

intertwining matrix X such that X∆(g)X−1 = ∆σ (g) for all g ∈ G and Xσ r−1
. . . Xσ X = 1.

A matrix X inducing the Galois automorphism can be obtained efficiently via the iteration method

(in its number field version). One then has to solve a relative norm equation, since for the intertwining

matrix one will only have N(X) := Xσ r−1
. . . Xσ X = A for some element A ∈ End(∆).

Remark 2.7. In the Galois descent as described in [2,5,6], it is assumed that ∆ is absolutely irreducible.

In this case, N(X) = Xσ r−1
. . . Xσ X is a scalar matrix α In and X is adjusted to X ′ := λ−1X by an

element λ ∈ L for which NL/K (λ) = α.

The same actually still works for a representation which is only assumed to be irreducible over L,

but not necessarily absolutely irreducible. In this case the norm equation has to be solved in the

relative extension L′/K ′ where K ′ is the character field of ∆ and L′ = L⊗K K ′ (and thus L′ ∼= EndL(∆)).

Example 2.8. The rational character 35abc of Sz(8) is most easily constructed as the symmetric tensor

square 14a[2] . Since the character 14a has character field Q(i), this yields a representation ∆ over

Q(i) that can be realized over Q.

Via the iteration method, applied for Q(i), we obtain an intertwining matrix X inducing the Galois

automorphism σ : i �→ −i after 48 iterations. The matrix A = Xσ X has minimal polynomial µA =

t3 − 166231t2 + 7686209739t − 70028664774965, but is not a scalar matrix, since ∆ is not absolutely
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irreducible. The roots of µA generate the character field K ′ := Q(ζ13+ζ−1
13 +ζ 5

13+ζ−5
13 ) of the character

35a. Taking L′ = K ′(i), we require to solve the norm equation NL′/K ′ (λ) = α, where α ∈ K ′ is the

element corresponding with A. The norm equation algorithm in Magma [1] yields such a solution λ

within a second. Resubstituting Xσ X for α in λ−1 finally gives a matrix Y such that Z := XY fulfills

Zσ Z = 1.

3. Splitting homogeneous modules

Assuming that we have the endomorphism ring End(∆) at our disposal, we now address the prob-

lem of decomposing a homogeneous module. In this case we have End(∆) ∼= Dm×m for a division

algebra D . Clearly, we can assume the dimension z := dimK Z(End(∆)) = dimK Z(D) of the cen-

ter of End(∆) to be known and by [10] we can also obtain the Schur index s of D and thus via

dimK End(∆) = z s2m2 also the multiplicity m. In this section we assume throughout that m > 1.

In [15], the following methods have been suggested to find singular elements in End(∆):

(1) computing elements in the isotropic subspace of the trace bilinear form;

(2) solving relative norm equations;

(3) computing degenerate invariant forms.

Unfortunately, all these approaches are only applicable in the case End(∆) = Lm×m for L = Z(End(∆)),

moreover, (1) requires m = 2 and L = Q, (2) only deals with m = 2 or 3, and (3) only deals with m

odd and real-valued irreducible characters.

In order to have a general decomposition method for reducible homogeneous modules available,

we present an algorithm which finds singular elements as vectors of small norm in a suitable lattice

derived from a maximal order in End(∆).

We restrict ourselves to representations over Q. If an irreducible representation over a field ex-

tension K of Q is desired, this can be easily obtained from a rationally irreducible representation via

factoring the minimal polynomial of an element of End(∆) over K .

3.1. Singular elements as short vectors in a maximal order

The guiding principle inspiring this method is the fact that Zm×m is a maximal order in Qm×m

which contains the elementary matrices (having a single entry 1 and the rest 0) and that the ele-

mentary matrices are singular elements having norm 1 for the bilinear form Φ(A, B) := tr(ABtr) on

Qm×m .

Since we assume to deal with a reducible homogeneous module, we have End(∆) ∼= Dm×m for a

division algebra D . For a maximal order Λ in D , Λm×m is a maximal order in Dm×m and in case D

is a principal ideal domain, all maximal orders of Dm×m are conjugate to Λm×m (see Theorem 21.6

in [16]). Moreover, by Corollary 27.6 of [16], every maximal order contains elementary matrices with

a single nonzero entry from Λ and these are the elements we aim at.

We will deal with a right regular representation of End(∆), therefore conjugacy is of no concern

to us. The first step is thus to construct a maximal order in End(∆). An efficient method for this task

is given in [10]: One first computes a hereditary order by the radical idealizer process, then a maximal

overorder is obtained as the iterated idealizer of a maximal ideal.

Since we are dealing with a regular representation of End(∆), a badly chosen basis for the maximal

order Γ may still hide the singular elements. However, the following simple observation shows that

a regular representation with respect to a bad basis can be improved by standard lattice reduction

techniques like LLL (cf. [9]).

Note that we can restrict ourselves to the case Γ ⊆ Qm×m by replacing D by its regular represen-

tation of degree d = dimQ(D).

Remark 3.1. Let Γ ⊆ Qm×m be a Z-order with Z-basis B = (B1, . . . , Bn) and let ρ be the right regular

representation of Γ w.r.t. B . Let C ∈ Qn×m2
be the matrix with B i as ith row (writing an m×m matrix

as a row of length m2).
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Then for X ∈ Γ , the jth row of ρ(X) is the solution x of xC = B j X , again interpreting B j X as a

row of length m2 . Since B is a basis, the matrix C has a pseudoinverse C+ ∈ Qm2×n with CC+ = In
and we have x = B j XC

+ .

This shows that for a matrix E ∈ Γ with small entries, the typical size of the entries in ρ(B i)

exceeds that of the entries in ρ(E) by the difference of the sizes of the entries in B i and in E . Thus,

in the case of a bad basis B for Γ , applying LLL-reduction to the basis (ρ(B1), . . . ,ρ(Bn)) will result

in a basis with smaller entries.

Algorithm 3.2. Improve regular representation

Input: Basis B of an order Γ in its right regular representation.

Output: Improved basis of Γ .

Algorithm:

Step 1: Apply LLL-reduction to the lattice with basis B , writing n × n matrices as vectors of

length n2 .

Step 2: Compute the right regular representation for the LLL-reduced basis. If required, iterate.

We give an example illustrating the effectiveness of Algorithm 3.2. Starting with a bad basis of

Z3×3 we obtain a basis containing singular elements after three iterations.

Example 3.3. We apply random elementary row and column operations to a 9 × 9 identity matrix

until the average of the elements exceeds 100. The rows of this matrix are then taken as initial basis

of Z3×3 , three elements of this basis are given below:

(

26 2 −6

−42 29 −24

12 95 −13

)

,

(

131 18 −1

153 181 −433

−228 −265 196

)

, . . . ,

(

−179 5 3

−161 −246 575

305 305 −254

)

.

Let the norm of an element be the sum of the squares of its entries in the right regular representation

(w.r.t. to a given basis). Then the norms of the initial basis range between 8.6 · 1015 and 5.3 · 1017 .

The norm of the elementary matrix E11 with respect to this basis is 2.7 · 1012 .

Applying the improvement algorithm, we get after the first iteration a basis with norms between

9 (for the identity matrix) and 1536666, after the second iteration a basis with norms between 9 and

342 and after the third iteration a basis with norms between 4 and 45. Clearly, elements of norm 4

have to be singular.

Combining an algorithm to construct a maximal order with Algorithm 3.2, we get the following

method to compute singular elements in End(∆) ∼= Dm×m for m > 1.

Algorithm 3.4. Find singular element

Input: A basis of End(∆).

Output: A singular element Y ∈ End(∆).

Algorithm:

Step 1: Compute a basis B of a maximal order Γ in End(∆) by the algorithm given in [10].

Step 2: If the norms tr(ρ(B i)ρ(B i)
tr) of all basis elements B i in the right regular representation ρ

of Γ are � dimEnd(∆), improve the right regular representation by Algorithm 3.2.

Step 3: Compute the short vectors of Γ (w.r.t. the norm tr(ρ(A)ρ(A)tr)) up to dimEnd(∆). For an

element X with reducible minimal polynomial µX = f1 · · · · · fs , return Y := f1(X).

Note that applying LLL-reduction to the bases of the intermediate orders in Step 1 typically results

in a fairly good basis for the maximal order. Therefore the improvement stage (Step 2) is often not

required at all or just once (see Table 3).
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Table 3

Performance of Algorithm 3.4 for finding singular elements in End(∆).

Group char deg∆ dimQ E dimQ Z m Maxord Improve

L2(23) 2 · 22de 88 8 2 2 233 1

L2(27) 2 · 26def 156 12 3 2 3372 1

Sz(8) 2 · 35abc 210 12 3 2 24 0

Sz(8) 2 · 65abc 390 12 3 2 2372 1

L2(11) 3 · 10a 30 9 1 3 112 0

L2(11) 4 · 11a 44 16 1 4 2432 0

L2(11) 3 · 12ab 72 18 2 3 113 1

SL2(7) 4 · 6bc 48 32 2 2 2272 2

SL2(7) 6 · 8b 48 36 1 3 3172 2

3.2. Examples

In this section we present a number of typical situations in which reducible homogeneous modules

occur and illustrate how Algorithm 3.4 performs on a collection of examples for these cases.

(1) Many irreducible representations in characteristic zero are most easily obtained as constituents of

permutation representations (cf. [11]). The problematic case are irreducible modules that do not

occur with multiplicity 1 in any permutation representation of the group.

We give two examples of this situation, the character 22de (in Atlas notation) for the group

L2(23), and the character 26def for L2(27), for which the rational representation is currently not

available in [19]. These characters occur with multiplicity m = 2 in permutation representations

of degrees 253 and 351, respectively.

(2) If an irreducible representation that can be realized over a field K is actually written over a

field extension L of K , this yields a homogeneous module in which the irreducible representation

occurs with multiplicity m = [L : K ].

An instance of this situation was already presented in Example 2.8. If the symmetric tensor square

14a[2] of Sz(8), written over Q(i), is inflated to a rational representation, one obtains a homoge-

neous module with character 2 · 35abc.

As a second example, we note that the characters 65a, 65b, 65c of Sz(8) can be obtained by

inducing a nontrivial linear character of the Frobenius subgroup 23+3 : 7 to Sz(8). This yields a

representation over Q(ζ7) (as e.g. contained in [19]) that can actually be realized over the real

subfield of Q(ζ7). Inflating to a rational representation results in a representation with character

2 · 65abc.

(3) Restricting representations to subgroups often yields homogeneous modules with higher multi-

plicities. We give an example where multiplicities m = 3 and m = 4 occur:

Restricting the representation 176a of M12 to the maximal subgroup L2(11) gives the character

5ab + 3 · 10a + 2 · 10b + 4 · 11a + 3 · 12ab of L2(11).

(4) Induction from (small) subgroups is also a source for reducible homogeneous modules. We give

an example in which representations with nontrivial Schur index occur with multiplicities m > 1:

For G = SL2(7) we induce the nontrivial rational representation of a cyclic subgroup of order 3

to G . This gives a rational representation of degree 224 with character 2 · 3ab + 2 · 4ab + 4 · 6a +

4 · 6bc + 4 · 7a + 6 · 8a + 6 · 8b. We are particularly interested in the homogeneous modules with

characters 4 · 6bc and 6 · 8b, since they involve irreducible characters with Schur index s = 2.

In Table 3 we display how our algorithm performs on the examples just described. The columns of

the table give the group, the character of the homogeneous module, the degree deg∆ of the rational

representation ∆, the dimension dimQ E of the endomorphism ring, the dimension dimQ Z of the

center of the endomorphism ring and the multiplicity m with which the rationally irreducible module

occurs. Note that from this data the rational Schur index s can be read off, since dimQ E = dimQ Z ·

(sm)2 . The column with heading Maxord describes the steps by which a maximal order is obtained
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from the order End(∆) ∩ Zn×n . A symbol of the form p
s1
1 p

s2
2 . . . p

sr
r indicates that for the prime pi

the order was enlarged in si steps. Finally, the column with heading Improve displays by how many

iterations of Algorithm 3.2 the regular representation was improved.
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