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Abstract— In this paper we present technology used in spoken dialog
systems for applications of a wide range. They include tasks from the
travel domain and automatic switchboards as well as large scale direc-
tory assistance. The overall goal in developing spoken dialog systems is to
allow for a natural and flexible dialog flow similar to human–human inter-
action. This imposes the challenging task to recognize and interpret user
input, where he/she is allowed to choose from an unrestricted vocabulary
and an infinite set of possible formulations. We therefore put emphasis on
strategies that make the system more robust while still maintaining a high
level of naturalness and flexibility. In view of this paradigm, we found that
two fundamental principles characterize many of the proposed methods:
1) to consider available sources of information as early as possible, and 2)
to keep alternative hypotheses and delay the decision for a single option as
long as possible.

We describe how our system architecture caters to incorporating ap-
plication specific knowledge, including, for example, database constraints,
in the determination of the best sentence hypothesis for a user turn. On
the next higher level, we use the dialog history to assess the plausibility
of a sentence hypothesis by applying consistency checks with information
items from previous user turns. In particular, we demonstrate how com-
bination decisions over several turns can be exploited to boost the recog-
nition performance of the system. The dialog manager can also use in-
formation on the dialog flow to dynamically modify and tune the system
for the specific dialog situations. An important means to increase the “in-
telligence” of a spoken dialog system is to use confidence measures. We
propose methods to obtain confidence measures for semantic items, whole
sentences and even full N-best lists and give examples for the benefits ob-
tained from their application. Experiences from field tests with our sys-
tems are summarized that have been found crucial for the system accep-
tance.

Index Terms—Application specific knowledge, combined decisions, con-
fidence measures, dialog history, natural language understanding, spoken
dialog systems.

I. INTRODUCTION

There is a growing demand for spoken dialog interfaces in
human–machine interaction as they allow adopting many of
the features of human–human interaction. One reason is, of
course, that the exchange of spoken information is in many
cases highly efficient. Another motivation is that a user does
not have to learn complicated usage instructions but can inter-
act in a natural and intuitive way with the system.

Thus, the global goal is to develop spoken dialog systems
with a natural and flexible dialog flow in which the user is un-
restricted in his/her choice of formulations and in which the
system tries to interpret each utterance and to find the user’s
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intention. A dialog of this type is called a mixed initiative di-
alog, since both the user and the system can influence the di-
alog flow: the user, by specifying information (even if not re-
quested by the system explicitly), negating or correcting items
from previous turns or interrupting the system; the system, by
requesting specific information, formulating questions aimed
at disambiguation, or asking for verification.

This type of dialog imposes several problems, e.g., an un-
restricted (and thus in principle infinite) vocabulary, effects of
spontaneous speech like hesitations or grammatically incorrect
sentences, references over several dialog turns, a large number
of possible user intentions and the need to flexibly verify the
crucial information items.

Depending on the application, the mixed initiative dialog
style may be restricted to a more rigid approach, e.g., by limit-
ing the user’s possibility to influence the dialog flow. In such a
system he/she is restricted to giving the information requested
by the system and can possibly perform some basic control
over the dialog, e.g., starting all over again or entering a help
facility. Such a dialog type is called system driven, since the
user can only take little initiative himself. An even more re-
stricted strategy uses a pure form filling approach in which the
user is only allowed to specify the information item he/she is
prompted for. The system may even ask the user to answer in
a single word, which makes the recognition task easier and is
still appropriate for certain dialog situations. As a further fall-
back strategy the user can be prompted for spelling a specific
piece of information.

The different types of dialog may be integrated into a single
spoken dialog system, using the simpler and more restricted
ones as fall-back solutions if problems occur.

The choice of dialog strategy depends heavily on the specific
application task. Typical scenarios in which a mixed initiative
dialog is most desirable are complex applications in which the
user can choose from a large variety of possible dialog goals
and may even change his/her goal during the dialog. Examples
of this type are the travel domain, banking applications or au-
tomatic switchboards. Here, the information items required by
the system to fulfill the user’s dialog goal are often not known
a priori and have to be determined in the process of the dialog.

On the other hand, applications like large-scale directory as-
sistance, library catalogue queries, or stock exchange market
information, still present a great challenge for the speech recog-
nition technology as they often involve large word lists (i.e.,

100 000 words) with equal a priori distributions. For exam-
ple, in a directory assistance system it is easy to determine that
a user said “Give me the number of name” but the name can
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be any in the full list of database entries. For applications of
this type, a more restrictive dialog type helps to improve the
recognition accuracy and also seems appropriate to the task,
as the dialog goal is usually known in advance (e.g., getting a
database entry by specifying a number of information items).

This paper summarizes the technology used in various dia-
log systems developed by Philips. Examples of these are the
automatic train timetable information system TABA (see [1]
for details), the automatic telephone switchboard and direc-
tory information system PADIS (see [19], [20], and [31]) and
the large scale directory assistance prototype PADIS-XXL (see
[17], [18], [21], and [30]). Of course, systems with compara-
ble functionality and complexity have been developed by sev-
eral groups. Prominent examples are the air travel information
systems by MIT (Pegasus [39]), CMU [15], BBN [3] and SRI
[7], the train information system RailTel [23], the multimedia
service kiosk Mask [24] by LIMSI, the weather information
system Jupiter by MIT [38], the How May I Help You? call
routing system [14] by AT&T, and the large-scale directory as-
sistance systems by CSELT [5], and AT&T (VPQ [8]).

Apart from a general overview over the technology used in
our spoken dialog systems, the paper presents some research
topics recently investigated. Section II gives a description of
the system architecture, and Section III goes into more detail
for the natural language understanding module. Here we put
some emphasis on the fast and easy development of new ap-
plications and describe methods to bypass the collection and
transcription of large training corpora. In Section IV, we de-
scribe the dialog flow management in our systems and suggest
methods to exploit the dialog history in Section V. The ben-
efits of confidence measures are discussed in Section VI, and
we close with some remarks on experiences from field tests in
Section VII.

In the process of developing our dialog technology two fun-
damental principles have proven to be powerful concepts and
have been incorporated into the system architecture and the
stochastic models at various places:

a) use available sources of information as early as possible;
b) keep alternative hypotheses as long as possible.

Thus, we may compare our system to a thoughtful elephant
who considers the available information before doing his next
step and who does not forget any of his alternative options.

Examples for principle a) are the incorporation of a database
in the search for the best sentence hypothesis or using the dia-
log history to reject hypotheses contradicting information given
in earlier turns. Principle b) has gone deeply into the architec-
ture of our system, as the word graph passed to the language
understanding module by the recognizer is a compact way of
keeping many sentence hypotheses. Also, in connection with
mutually dependent information items, it pays to keep N-best
lists for the information given in the different turns. Constraints
imposed by the application backend (e.g., that first and last
name of a person have to arise from a single database entry)
may require switching to an alternative hypothesis for one of
the turns. We will return to these principles at various points of
this paper.
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Fig. 1. Architecture for spoken dialog systems.

II. SYSTEM ARCHITECTURE

Fig. 1 displays the architecture of our spoken dialog systems.
The main components are a speech recognizer, a natural lan-
guage understanding module, a text-to-speech tool and a dialog
manager.

The input data is obtained from and the output data passed
to a component containing a network interface (typically tele-
phone), I/O and top-level system control (i.e., organizing the
data flow between the various components). The speech rec-
ognizer processes the acoustic data and passes a word graph to
the language understanding module. For applications involv-
ing spelling, this module may contain a special spelling filter
which is described below. The dialog manager integrates the
understood sentence hypothesis into the system belief and de-
cides on the necessary system actions. In particular, it passes
the text string for the next system prompt to the text-to-speech
module. An application backend (e.g., a database) containing
task-specific information may be accessed by the language un-
derstanding module and the dialog manager.

Since we want to focus on the technology that is distinctive
for spoken dialog systems, we will only briefly describe the
speech recognizer, spelling filter, and text-to-speech tool in this
section. The modules for natural language understanding and
dialog management are discussed in more detail in Sections III
and IV.

A. Speech Recognizer

The speech recognizer is a speaker-independent continuous-
speech hidden Markov model (HMM) recognizer. It uses
strongly tied triphones and mixtures of Gaussian densities for
the state emission probabilities. For a detailed description see
for example [20].

The recognizer can be modified for special tasks e.g., by us-
ing a special set of phonemes for spelling or by exploiting a sin-
gle word constraint to optimize the search process (see [17] and
[18]). The switching between the different recognition modes
is controlled by the dialog manager.

In view of principle b) it is highly desirable to pass many
alternative sentence hypotheses from the speech recognizer to
the language understanding module and to delay the decision
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on the best hypothesis until as many sources of information as
possible can be applied. Thus, instead of simply computing a
single best sentence, the speech recognizer generates a word
graph (cf. [27]). The nodes of this graph correspond to points
in time and the arcs represent word hypotheses and are labeled
with acoustic scores. The word graph is generated performing
a Viterbi beam search (focused by a bigram language model)
and combining for every time frame the ending words into the
graph. One thus obtains a very compact representation of a
large number of sentence hypotheses, since phrases occurring
in several hypotheses are only stored once.

B. Spelling Filter

Since the recognition accuracy for spelled words is much
higher than that for spoken words (cf. [25]), a spelling module
is an important feature for spoken dialog systems. Spelling can
be used as a preprocessing step to restrict the search space, as
an additional source of information to identify a continuously
spoken item, and of course as a problem solving strategy. For a
natural language understanding system we need to cover com-
mon ways of spelling, using expressions like “double l” or “f
as in foxtrot”. We have therefore included a spelling filter into
our language understanding module which translates colloquial
spelling phrases into sequences of letters and adds arcs with the
respective letters to the spelling word graph.

Depending on the system context one can add a second step
which matches the spelling word graph with a lexicon and out-
puts a list of lexicon entries that can be found as paths through
the spelling word graph, together with their acoustic scores.

A more detailed discussion of the spelling filter can be found
in [21] and [30]. In this paper we will focus on the combination
of a spelling turn with spoken turns which will be discussed in
Section V.

C. Speech Output

The language generation for the speech output of our system
is integrated into the dialog manager, which provides templates
for phrases from which the system prompts are created. These
templates are filled with values from the current system belief
and the resulting text is passed to the text-to-speech module.

At present, the output of the text-to-speech module is gener-
ated by concatenating prerecorded phrases. This way of speech
generation sounds much more natural than today’s state-of-the-
art speech synthesis systems and is well-suited for applications
with a moderately sized vocabulary. Its limitations are obvious,
since for obtaining a naturally sounding result all phrases have
to be recorded by the same speaker and, ideally, under the same
conditions. This is, of course, not feasible for applications us-
ing words from a large or dynamically changing database. In
these cases an automatic text-to-speech tool has to be incorpo-
rated.

III. NATURAL LANGUAGE UNDERSTANDING

As described in Section II-A, the speech recognizer passes a
word graph to the natural language understanding module. In
case of a spelling turn, the word graph may be processed in an
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Fig. 2. Production model of a user utterance.

intermediate step by a spelling filter as described in Section II-
B before being passed to the language understanding module.

The language understanding module now has two tasks:

to compute the meaning of various sentence hypotheses;
to find and score the most probable paths through the word
graph, considering all available sources of information.

Our approach to natural language understanding is based on
a speech production model as shown in Fig. 2: We assume a
cooperative user having a certain dialog goal (e.g., to get a spe-
cific information or to get connected to a certain person) that
lies in the domain of the system and which is regarded as con-
stant throughout the dialog. In every utterance, the user states
a set of information items that is determined by the dialog goal
and the current dialog state. The dialog state includes the sys-
tem’s current question and its current belief on what has already
been stated by the user. The user casts the set of information
items into a sequence of words that are finally observed by our
system as a sequence of acoustic feature vectors.

In [20], a maximum a posteriori criterion for speech under-
standing is explicitly derived from this production model. The
following section describes how this probabilistic framework
is implemented in our language understanding architecture.

A. Language Model Set-up

The core of our language understanding module consists
of three parts: a stochastic context free grammar for parsing
the input and extracting the meaningful phrases (called con-
cepts), a filler language model covering the parts that were
not parsed, and a concept language model providing probabil-
ities for the concept sequences. With these components path
hypotheses through the word graph are rescored and at the
same time endowed with their semantic interpretation. Let

be a sentence hypothesis. Then parsing
with the grammar gives a partition of into a
sequence of concept- and filler-phrases where each is a se-
quence of words from . The parsing identifies
each of these phrases as a concept , where fillers can be re-
garded as the special concept of meaningless phrases. On the
topmost layer, the concept language model assigns a probabil-
ity reflecting the sequence of concepts. Since the number of
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concepts in one sentence is usually very small, this is realized
by a bigram model (see also [12], [13], and [28]). We assume
that the probability for a partial word sequence only depends
on the concept and thus obtain

(1)

Here, and , refer to the sentence start and end, respec-
tively.

For regular concepts, the conditional probability
is provided by the rule probabilities of the stochastic grammar:
every rule is assigned a probability indicating how likely it is to
be applied given its left-hand side nonterminal. Thus
is equal to the product of the probabilities of those rules used
to generate from .

For a filler phrase , the probability is modeled
by the filler language model which typically is a word-level
bigram model.

This probabilistic framework is realized by transforming the
word graph into a concept graph. The concept graph has the
same nodes as the word graph but has two different kinds of
arcs: The concept arcs cover the concept phrases found by
the top-down chart parser in the word graph. The scores for
these concept arcs consist of the acoustic scores for the word
sequence covered by an arc and the rule probabilities for the
grammar rules used to derive the respective concept. In addi-
tion to the concept arcs the concept graph contains one filler arc
for each pair of nodes. This filler arc consists of the best word
sequence between the start and end nodes, including rescoring
with the filler language model.

The inclusion of the filler arcs serves a threefold purpose:
First, the concept graph without the filler arcs may have gaps
resulting from unparsable parts of an utterance, which would
make it impossible to extract a best path. Second, we do not
have to cover complicated phrases in the grammar that do not
contribute to the information contents of an utterance and can
thus keep the grammar simple. Third, we obtain some out-of-
domain and out-of-vocabulary handling in phrases like “Con-
nect me to the Starship Enterprise” where “Connect me to”
is interpreted as the concept connection but the rest of the
sentence is recognized as some meaningless garbage words in-
dicating that no addressee was understood.

Note that by this implementation the lower level of the prob-
abilistic framework described above (i.e., the conditional prob-
abilities ) is already included in the concept graph.
This is an instance where we apply principle a), since we add
information like the grammar rule probabilities to the word
graph.

Starting from the concept graph, we use rescoring with the
concept language model to find the best path [according to (1)].
A variation of the standard Viterbi search algorithm described
in [35] allows to efficiently extract an N-best list of sentence
hypotheses.

At the same time that the word graph is parsed top-down to
find the concept phrases the meaning is computed bottom-up:
Every nonterminal in the grammar can be assigned a set of at-

tributes, the values of which are computed when the nontermi-
nal is expanded using a syntactic grammar rule. For this, each
syntactic rule may be accompanied by semantic rules which
determine how the values of the attributes for the left-hand side
nonterminal are computed from those of the right-hand side
items.

The values of the attributes are integrated into the concept
graph and are thus available for all paths through the graph.
Again, we make information (the semantic contents of phrases)
available at an early stage, according to principle a).

Summarizing our natural language understanding architec-
ture, we want to stress that the concept of partial parsing that
segments a sentence into meaningful and filler phrases provides
our system with a high level of robustness. Since spoken dialog
systems deal with spontaneous speech, this approach appears to
be superior to linguistic methods which have to assume gram-
matically correct sentences.

A second important point is that the concept language model
and especially the stochastic grammar contain application-
specific knowledge that can be exploited to increase the per-
formance of the language understanding module.

A third issue is that our language understanding architec-
ture has much less critical stochastic parameters than a usual
N-gram language model and can therefore be trained on fairly
little material. (We regard the parameters of the filler language
model as not critical, because its contribution to the overall
speech understanding score is quite limited.) The following fig-
ures may serve as an illustration for the efficiency of a stochas-
tic grammar: In the grammar of the train timetable information
system TABA we have 176 rules describing the time of day
concept. These rules contain only 82 different words as termi-
nal symbols, but cover 232 166 218 different formulations. Of
course, many of these formulations are very similar, but we still
get 850 different bigrams out of them. By training rule prob-
abilities instead of bigram probabilities we have thus reduced
the number of stochastic parameters by a factor of five.

Still, the lack of available training material is one of the cru-
cial problems in the development of new spoken dialog applica-
tions. In the following two sections we therefore propose meth-
ods to create and improve the language understanding module
using no or only very little training material.

B. Initial Language Models

As mentioned above the stochastic grammar reflects much
of the structure of an application. This knowledge can be used
in various ways as shown in [16] or [34].

Typically, there is only little training material available when
a new application of a spoken dialog system is developed. It is
well known that in this situation class models perform better
than usual word N-gram models (see, e.g., [10]). For example,
in a class bigram model the probability is computed
as

(2)

where is the mapping assigning a class to each
word. The problem to find such a mapping is usually solved
by clustering techniques (cf. [22], [26]) which in turn require
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TABLE I

COMPARISON OF INITIAL LANGUAGE MODELS FOR TABA

Training Word Error Rate
Sentences Word-LM Class-LM Grammar-LM Fill-up-LM

0 21.51% 21.27% 16.95% 16.49%
100 20.37% 17.43% 15.95% 15.76%

1000 17.90% 15.38% 15.13% 14.53%

a training corpus. However, the information encoded in the
grammar provides an alternative method: Some nonterminal
symbols of the grammar can be expanded to many different
terminal symbols (i.e., words), for example city names or in-
formation types (phone, fax, e-mail, address, etc.). All these
words are collected into one class. Furthermore, some classes
based on the semantics of a word (e.g., numbers or names) can
easily be derived manually. Finally, each remaining word is
declared to form a class on its own.

The class-based language models reduce the number of pa-
rameters that have to be trained, since words which are ex-
pected to occur in similar contexts are treated simultaneously.
It is hoped that enough training material is available to robustly
estimate this reduced number of parameters.

A different approach is to artificially increase the amount of
training material. The grammar covers typical formulations for
the application and thus implicitly contains information about
expected user utterances. By inverting the parsing process one
can create sentences from the grammar and obtains an artifi-
cial corpus which can be used as training material for N-gram
language models. We use Monte Carlo methods to randomly
choose rules at the branching points of the grammar and thus
create random sentences which are covered by the grammar. If
a small amount of training material is available this can be used
to obtain weights for the different rules which leads to a more
realistic corpus.

Still, the grammar only covers the meaningful parts of the
user input and does not model the filler phrases. We therefore
propose to combine the language model trained on the artificial
corpus with the class-based language model into a single fill-up
model (cf. [4]). In such a language model two (or more) models
are combined in a hierarchical way: If an N-gram was not seen
in the top-level model, its likelihood is derived from the model
on the next level which in turn may fall back to lower levels.

Our experiments showed that a fill-up model using the lan-
guage model estimated on the artificial corpus as top-level
model and the class-based model as fall-back model performed
best. Table I shows some rescoring results for experiments with
different language models obtained from little training mate-
rial. The application was the train timetable information system
TABA. As expected, the class-based language model performs
better than the usual word bigram model, but the model derived
from the grammar gives a much better initial performance. In-
tegrating the two approaches into a fill-up model combines the
strengths of the two models and leads to the best results.

C. Online Adaptation of Language Models

In the previous section we described how initial language
models can be obtained for a new application of a spoken di-
alog system. Once such initial models are available, one can
run the system and collect real data. In many cases, however,
this material will not be accessible to the system developer (for
example, if privacy regulations prohibit storing the data) which
means that it can not be used for supervised adaptation of the
language models. To exploit the recognized material for an
improvement of the system one therefore has to update the lan-
guage models immediately after the recognition, i.e., one has
to perform unsupervised online adaptation. Unfortunately, the
system performance can (and does!) deteriorate if simply all
first-best hypotheses for user utterances are used for adapta-
tion. In [33] we therefore investigated methods to avoid the
effects of error reinforcement caused by adaptation with mis-
recognized sentences.

An approach that turned out to be quite efficient is to use
multiple sentence hypotheses from an N-best list as adaptation
material. For that, each hypothesis gets a weight derived from
its a posteriori likelihood such that the weights add up to one.
The definition of the weights was inspired by the list-based
confidence measure discussed in Section VI-A and is given in
(3). Every sentence now contributes to the adaptation material
according to its weight. The idea behind this approach is that
well-understood parts of a sentence will occur in most of the
hypotheses of an N-best list, whereas for misrecognitions there
will usually be several alternatives. Thus, the effect of a recog-
nition error is distributed over several competing hypotheses
and does not result in a strong error reinforcement.

A different idea to improve the quality of unsupervised adap-
tation is to exclude badly recognized sentences from the adap-
tation material. Clearly, there are many possibilities to define
when a sentence should be rejected and we investigated the fol-
lowing two:

1) reject a sentence if the word sequence is incorrect;
2) reject a sentence if the sequence of concepts is incorrect.

To assess the potential of these approaches we first worked with
an ideal confidence measure having external information about
the correctness of a recognition result. It turned out that 1) is
too restrictive, since it biases the adaptation material towards
short sentences and that 2) gives better results.

In a second step we applied real confidence measures to tag
the concept sequences as correct/incorrect. Unfortunately, the
experiments showed that the tagging errors have a strong neg-
ative influence on the quality of the adaptation material. How-
ever, with better tagging techniques using combinations of dif-
ferent confidence measures, we expect that adaptation exclud-
ing badly recognized material results in language models that
perform comparable to those obtained from adaptation using
N-best lists.

Table II shows results of experiments with the different
adaptation methods for the train timetable information system
TABA. An initial system was trained on 100 sentences and then
adapted using different amounts of adaptation material as spec-
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TABLE II

COMPARISON OF DIFFERENT MODES OF ADAPTATION FOR TABA

Adaptation Attribute Error Rate
Sentences Supervised First-best N-best Ideal Conf.

0 17.80% 17.80% 17.80% 17.80%
1000 14.64% 17.28% 15.46% 15.97%
3000 14.35% 19.13% 15.80% 15.32%

12000 14.12% 19.53% 15.89% 15.06%

ified in the first column. Since we adapted the whole speech un-
derstanding module, the performance of the resulting systems
is measured in terms of the attribute error rate (AER), which
evaluates errors in the relevant information items. For auto-
matic inquiry systems this error rate is more significant than
the word error rate, since the attributes determine whether the
correct database query is performed. The second column of
the table gives results for supervised adaptation, which serves
as a baseline for what can maximally be achieved. The next
columns display the results for the different real adaptation
methods: unsupervised using every first best sentence, with
N-best lists of length 10, with an ideal confidence measure
accepting sentences with correct concept sequence. One ob-
serves that naı̈ve unsupervised adaptation leads to a relative
degradation of 9.7% in the attribute error rate, whereas adapta-
tion using N-best lists gives 52% of the improvement obtained
from supervised adaptation. Using the ideal confidence mea-
sure to exclude badly recognized material even gives 74% of
the achievable improvement which shows the high potential of
confidence measures for adaptation methods.

D. Integrating a Database

An important method to improve the understanding accu-
racy is to incorporate database constraints in the determination
of the best sentence interpretation. Some of these constraints
may even be included in the concept graph, for example if
a concept name consists of a first and a last name. In this
case, only concept arcs with valid first/last name combinations
will be accepted. In general, however, consistency with the
database can only be checked on the sentence level, since the
information items can be distributed over different concepts.
We therefore extract an N-best list of paths from the concept
graph and rescore each hypothesis with an a priori distribu-
tion on the database: Let be a set of information items (e.g.,
key/value pairs) and denote by the number of database
entries matching all items in . Then an a priori distribution
for the information items can be defined as

if
if

which gives pure consistency of with the database or as

giving the relative frequency of matches in the database. If we
denote the set of information items for a sentence hypothesis

by , we thus replace the a priori probability by

TABLE III

EFFECTS OF DATABASE RESCORING ON PADIS

Search Method Word Attribute Avg. Position
Error Rate Error Rate Selected

First-best 28.9% 40.5% (1.0)
+ Database Rescoring 24.6% 31.0% 3.2

Relative Improvement 14.9% 21.0%

, since according to our speech production
model displayed in Fig. 2 we assume that the cooperative user
requests a consistent set of information items.

Table III gives a few figures for the improvements obtained
from integrating the database into our automatic switchboard
system PADIS. The first row gives results for the system ex-
tracting the best path from the concept graph using only the
concept language model. For the results in the second row,
database rescoring was performed on an N-best list to find the
best sentence hypothesis, and the relative improvements ob-
tained from this rescoring are displayed in the third row. The
columns display word and attribute error rates and the average
position of the selected hypothesis in the N-best list.

IV. DIALOG MANAGER

The long-term goal in developing spoken dialog systems is
to allow for a natural and flexible dialog flow which is adaptive
to the user utterances.

The dialog manager has to monitor the dialog flow, collect
the information given by the user, interact with the application
backend, and to decide whether (and which) further informa-
tion is required or whether an action is to be performed (e.g.,
resetting the system).

A. Strategy

The general strategy followed in our systems is termed as
slot-filling. A slot is a certain information item for which a
value is required. In a system driven dialog only values for
specific slots are accepted, whereas in a mixed initiative dialog
the user is allowed to give as much information as he/she wants
in one turn, possibly values for slots not present in the system
prompt. The task of the dialog manager is to fill enough slots
to meet the user’s dialog goal while keeping the dialog as short
as possible. For example, in an automatic directory assistance
system a typical dialog goal is to find out the phone number of
a specific person. From an utterance like “Give me the number
of Mister Bean” the system is able to assign the value phone
number to the slot request type and the value Mister Bean
to the slot name. If there is only a single database entry with
this name, no further information is required and the requested
number is played to the user. Otherwise, the given information
is not sufficient to meet the dialog goal, in which case the dia-
log manager tries to fill more slots with values in order to refine
the database query. The database entries obtained from the last
query may be consulted to determine the slot with the high-
est disambiguation potential which helps to avoid unnecessary
dialog turns.
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This is another instance where principle a) is applied, since
we consult the database after each user turn to determine
whether further information is required at all and, if so, which
item should be requested.

An important issue for the robustness of the dialog is the
usage of verification techniques. The safest method is to ex-
plicitly ask the user for verification of every single slot value.
But this leads to long and fairly unnatural dialogs. A more re-
fined approach is called implicit verification. For that the slot
values obtained from the last user turn are included in the next
system prompt asking for further information (e.g., “When do
you want to go from London to Dover?”). If no correction
is made by the user, the slot values are regarded as verified.
Note, however, that users are not always aware of the possibil-
ity of correcting a system and accept prompts even if they do
not match their goal. For critical actions (e.g., call transfer in a
switchboard system) one may want to use explicit verification
in any case.

It is obvious that already with a small number of slots to
fill, specification of all possible combinations of empty, un-
verified and verified slots and the corresponding dialog action
is not feasible. Therefore, a special dialog description lan-
guage called HDDL (see [2]) was developed in which the task-
specific aspects like slot definitions, questions, and verification
strategies can be specified in a declarative way. The dialog
module itself incorporates the general knowledge on how to
conduct a slot-filling type dialog. This division of the dialog
manager into a general part and a programmable task specific
part allows for easy development of new applications.

B. Language Resource Management

Grammar and database provide a strong backbone for a spo-
ken dialog system. They incorporate application specific in-
formation and make it available for the various modules in the
system. They can even be exploited for the general system set-
up. For example, one may use the grammar and the database to
automatically generate a vocabulary tailored for an application.
For that, one extracts the terminal symbols from the grammar
and the words occurring in the database entries and adds them
to a small background list of frequent words covering typical
phrases (filler words). The following example illustrates this
strategy: in our TABA train timetable system we extract 1167
station names from the database, and 443 more words occur-
ring as terminal symbols in the grammar. This gives a coverage
of 94.1% of a 23 h training text. If we add another 100 com-
mon words not found in the grammar (e.g., also, but, or etc.)
we even reach a coverage of 97.1%. The resulting lexicon size
of 1710 words is still very reasonable, which helps to get a high
performance of the recognizer.

In the process of a dialog, situations can occur in which the
general set-up of the system should be modified in order to
optimize the system performance. The dialog description lan-
guage therefore provides commands to switch the language re-
sources (lexica, language models) used in the speech recog-
nizer and in the natural language understanding module.

An obvious application are turns where only a small vocab-
ulary is required, for example explicit verification or spelling

TABLE IV

CONTEXT DEPENDENT CONCEPT LANGUAGE MODELS FOR SWISS

RAILWAY CORPUS

Language Model Type Attribute Concept
Error Rate Error Rate

Context Independent 34.83% 17.28%
Context Dependent 31.46% 15.56%

Relative Improvement 9.7% 10.0%

turns. Moreover, we already mentioned in Section II-B that
after a spelling turn only those entries of the lexicon may be
activated which match the spelled information.

A further situation in which the lexicon size can be decreased
drastically is the combination of several turns in connection
with a database. As will be described in Section V below, the
set of active database entries is restricted from turn to turn and
the vocabulary for the next turn only consists of the words oc-
curring in the set of active database entries as values for the
respective information item.

Apart from the lexicon the language models may also be
switched depending on the dialog state. This allows to han-
dle the different style of speaking observed in different dialog
situations. In particular, if a very flexible dialog style falls back
to a more restricted style, the language models should be mod-
ified accordingly.

In a more refined approach one may even choose context
dependent language models depending on the system states,
since the prompt resulting from the system state has a strongly
predictive effect on the user utterance. Of course there is usu-
ally not enough training material available to estimate language
models for each possible system state, but it was shown in [11]
that automatic clustering techniques can be effectively used to
group different system states together. Results obtained on a
“real life” corpus of the Swiss Railway (SBB) are summarized
in Table IV. In these experiments six automatically created
clusters of system states were used to train context dependent
concept language models. In the evaluation, for each dialog
turn the system state was determined and the concept language
model trained on the corresponding cluster was applied to de-
termine the best path through the concept graph. Even though
the rest of the system (recognizer, grammar, filler language
model) remained unchanged, the application of the context de-
pendent models resulted in a relative improvement of 10% in
both the attribute error rate and the concept error rate.

V. USING THE DIALOG HISTORY

It is one of the characteristics of a dialog that information is
built up over several turns and that a later utterance may con-
tain references to an earlier one. It is thus highly beneficial
to exploit the previous user turns and system prompts for the
interpretation of a user turn.

In our dialog systems, we use the dialog history in various
ways, from consistency checks within one turn to dynamically
switching lexica and language models.

The current system status consists of one or more hypotheses
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for the slot values together with information about which val-
ues have already been verified. This status is called the system
belief.

In many dialog situations, references to the system belief are
implicitly made by the user. For example, after requesting a
train connection a user might ask about the return trip. In this
case the system simply has to swap the values for the origin
and destination slots and does not have to prompt the user
for this information. An example from the switchboard domain
is that after requesting a person’s phone number a user asks
“Give me his e-mail”. In that case the system should treat the
word his as if its present values for the slots specifying the per-
son had been uttered. Thus, it is important to specify points in
the dialog at which slots are cleared and to otherwise keep the
slot values in the system belief. This is catered for by the dia-
log description language HDDL which provides commands for
the slot handling (i.e., keeping and resetting) in the application
specific part of the dialog manager.

A way to implement the influence of the system belief (and
thereby the dialog history) on the interpretation of a user utter-
ance, is to apply some consistency checks to reject implausible
hypotheses. Depending on the application, these consistency
checks can be any of the following.

Consistency within the turn: The utterance may not con-
tain two different values for the same slot, unless one of
them is negated. Also, utterances with values for differ-
ent slots that have no match in a consulted database are
rejected.
Consistency with system prompt: Corrections to items not
occurring in the system prompt are not accepted.
Consistency with system belief: Interpretations that do not
refer to a valid database entry after being combined with
the current system belief are rejected.

In our probabilistic framework as described in Sections III-
A and III-D these consistency checks are integrated as a fur-
ther rescoring step similar to the rescoring with the database
distribution. In practice, these rescoring steps are of course
performed simultaneously on the N-best list extracted from the
concept graph, which gives a very efficient computational be-
havior of the algorithm determining the best hypothesis. A de-
tailed description of the decision rule for the best sentence can
be found in [20] and [31].

Ideally [and following our principle b)] one would keep mul-
tiple system beliefs and would combine hypotheses for new in-
formation with the different system beliefs, keeping only the
consistent combinations. This has been theoretically investi-
gated in [36] and as an application the handling of negative
knowledge was introduced in the automatic switchboard sys-
tem PADIS. Apart from keeping (positive) values for each slot,
also values which are negated for this slot are stored. These
negative slot values require a special treatment, as they are not
made transparent to the user. In particular, they are only ac-
cepted if the recognition is very reliable, since they are not
verified (questions like “So, you really don’t want to talk to
Mr. Bean?” are not particularly useful for a natural dialog
flow). This technique of considering negative knowledge helps

to avoid annoying vicious circles in the dialog flow.
The problem of changing the system belief can be solved

much more easily in system driven dialog applications where
the set of slots to be filled is fixed. In this situation, multiple
system beliefs can be realized by keeping N-best lists holding
values from different dialog turns and by combining these lists
as described in [17], [18], and [30]. This technique is used
in our large-scale directory assistance prototype PADIS-XXL.
Here, N-best lists are kept for the values extracted from the
turns in which the user speaks the last name, first name, and
street name and, optionally, where he/she spells (part of) the
last name. After each turn, the obtained values are used to re-
strict the active database to those entries for which all values
are contained in the N-best lists. As already mentioned in Sec-
tion IV-B this gives at the same time the possibility to restrict
the recognizer’s vocabulary, as only values from the active sub-
set of the database have to be activated for the next dialog turn.
The database entries get scores that are (weighted) linear com-
binations of the scores for the values obtained in the different
turns, and the best database entry with respect to this score is
returned.

Our PADIS-XXL prototype deals with the city of Aachen,
Germany, which has 131 000 database entries. The lexicon
consists of 38 606 last names, 9950 first names, and 2294 street
names (cf. [21], [30]).

We start with recognizing the spoken first name and the
pruning restricts the lexicon to an N-best list containing the
best hypotheses. We then consult the database to obtain the
last names matching one of the first names in the N-best list.
The next recognition turn now restricts the list of last names to
an N-best list of hypotheses and we consult the database again
to obtain the street names matching first/last name combina-
tions from the two N-best lists. The final recognition turn then
returns an N-best list for the street names and we determine the
database entry with the best combined score. The combined
scores for the database entries are usually very distinctive, es-
pecially the score distance between the first and second best is
quite significant. Almost all cases where the first best database
entry is not correct, are due to pruning errors (graph errors)
where in one turn the correct word is not contained in the en-
tire N-best list.

In a slightly different scenario, we performed offline exper-
iments on the telephone directory of Berlin, Germany, which
contains 1.3 million entries. We optionally start with spelling
the last name and then have turns for speaking the last, first,
and the street names. As described in Section II-B the spelling
turn is used to build a letter graph which is afterwards matched
with the word list of last names to restrict the lexicon for the
spoken last names.

The hierarchical combination scenario corresponding to our
PADIS-XXL prototype is summarized in Tables V and VI. The
lexicon sizes given are average values over 676 dialogs. The
relatively high error rate of 25.00% at an average lexicon size
of 10.3 words for the spoken last names after the spelling turn
is quite irrelevant, since in effect the recognizer performs a
rescoring of the word hypotheses obtained from the spelling
filter without discarding any hypothesis. This can be seen from
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TABLE V

HIERARCHICAL RECOGNITION SCENARIO WITH SPELLING (BERLIN)

Turn Average Turn Combination
Lexicon Size Error Rate Error Rate

Spelling 21.15% 21.15%
+ Last Name 10.3 25.00% 16.42%
+ First Name 183.2 13.46% 12.57%
+ Street Name 202.6 11.69% 8.88%

TABLE VI

HIERARCHICAL RECOGNITION SCENARIO WITHOUT SPELLING (BERLIN)

Turn Average Turn Combination
Lexicon Size Error Rate Error Rate

Last Name 189,352 65.68% 65.68%
+ First Name 5,443 31.66% 30.18%
+ Street Name 3,609 25.00% 9.17%

the fact that the graph error rates of 6.5% are identical for these
two turns. This relatively high graph error rate for the spelling
turn also explains why the combination result with spelling is
only slightly better than that without spelling.

It is interesting to note that in the combinations using the
spelling turn 2.66% of the resulting combination lists are actu-
ally empty, which is of course a safe criterion to fall back to
a human operator. One thus has only 6.22% undetected mis-
recognitions.

In addition to the hierarchical strategy followed in our
PADIS-XXL prototype, we also combined the N-best lists of
separate recognition turns using the full lexicon for the respec-
tive turns. Again, also the effect of omitting the spelling turn
was investigated.

Table VII shows results for the separate recognitions and
their combinations. One observes that the spelling turn does
in fact increase the error rate of the full combination. However,
the benefit of the additional turn is that due to the redundant in-
formation 12.28% of the combination lists are empty and one
therefore has a remarkably low 2.22% of undetected misrecog-
nitions while in the set-up without spelling there are no empty
lists at all.

VI. CONFIDENCE MEASURES

As automatic speech recognition can not deliver error-free
results, it is important to judge the quality of a recognition re-

TABLE VII

SEPARATE RECOGNITION SCENARIO (FULL VOCABULARY IN EACH

TURN) WITH SUBSEQUENT COMBINATION OF N-BEST LISTS (BERLIN)

Turn Lexicon Turn ER Combination ER
Size Spelling No Spelling

Spelling 21.15% 21.15% –
+ Last Name 189,352 65.68% 18.49% 65.68%
+ First Name 52,408 61.98% 15.38% 30.47%
+ Street Name 9,130 26.78% 14.50% 10.36%

sult in order to detect possible misrecognitions. This is in par-
ticular true for spoken dialog systems, since incorrectly under-
stood information items lead to an erroneous system behaviour
(e.g., a wrong database query) and often results in severe user
frustration, as the dialog goal can not be reached. On the other
hand, the detection of recognition problems can be used by the
dialog manager either by starting a clarification subdialog or by
falling back to a more robust dialog style.

A. Confidence Measures for Semantic Items

The crucial items for the interpretation of a user utterance are
the information bearing phrases (which are covered by the con-
cept arcs in the concept graph). In order to assess the accuracy
of such an information bearing phrase one might combine con-
fidence measures for the words constituting the phrase. But as
shown in the previous sections and according to our principle
a), it pays to use all available knowledge sources to extract the
best path hypothesis, and some of these sources are not avail-
able on word level (e.g., grammar rule probabilities or concept
language model). Building on ideas from [9] and [37] we there-
fore developed a confidence measure based on sentence prob-
abilities that allows us to directly obtain reliability information
for the semantic items found in an N-best list of hypotheses for
the user utterance (see [29]). For that we normalize the prob-
ability mass in the N-best list to one and define the confidence
measure of a semantic item as the sum of the probabilities of
the sentences in which it occurs. Denote the score of the th
hypothesis in the N-best list by and let
be the set of indices of those hypotheses in which the attribute

occurs, then we define a confidence for as

(3)

The scaling factor was introduced since the scores delivered
by the recognizer are scaled negative logarithms of probabili-
ties. It turned out that is useful as a tunable parameter which
controls how the probability mass is distributed over the N-best
list. For the hypotheses in the N-best list get the same
weight and choosing shifts emphasis to the first best
hypothesis.

It is obvious that this method is not restricted to semantic
items but can easily be applied to sequences of words or full
utterances.

A common way to assess confidence measures are receiver
operating characteristics (ROC’s) which show recognition ac-
curacy versus false-alarm rates. Fig. 3 shows ROC-curves for
different numbers of hypotheses considered in the N-best list.
It displays in particular the special case that only two hypothe-
ses are considered, which reduces our approach to the standard
“second-best” method using likelihood ratios between the first-
and second-best path (cf. [32]). One observes that increasing
the number of hypotheses considered results in a performance
gain of the confidence measure and that, especially for obtain-
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Fig. 3. Receiver operating characteristics for semantic items in PADIS

ing low false-alarm rates our method clearly outperforms the
“second-best” method.

The proposed confidence measure has a variety of appli-
cations. A standard problem is to detect out-of-vocabulary
(OOV) words or utterances and to start a suitable clarification
subdialog.

Another example is the dialog manager’s verification strat-
egy, which may depend on the reliability of the recognized at-
tribute. Above some high threshold, the recognition is regarded
as safe and no verification is performed. Above a lower thresh-
old, the dialog manager might use implicit verification and be-
low that explicit verification or rejection. This leads to a more
efficient dialog flow as verification turns are omitted for well-
recognized items and it has successfully been incorporated into
our automatic switchboard system PADIS (see [6] for a more
detailed discussion). The reliability thresholds by which the
verification strategy is chosen may even be made dependent on
the cost of a wrong action caused by a misrecognition. For ex-
ample, in a system-driven dialog, the commands by which the
user can influence the dialog flow result in critical actions and
should only be accepted above a fairly high threshold. This
concept has been realized in our automatic directory assistance
prototype PADIS-XXL, where the user may restart the dialog,
enter a help facility or request being connected to a human op-
erator. It is highly desirable not to perform any of these actions
accidentally.

An issue related to the verification strategy is to decide on
fall-back methods (e.g., to a simpler recognition scenario or to
a human operator).

A different type of application for confidence measures was
already mentioned in Section III-C. Here the confidence mea-
sure is used to decide whether the quality of a recognition result
is high enough to be used for online adaptation.

B. Confidence Measures for N-best Lists

In view of applications where hypotheses from N-best lists
are combined, one has to judge whether an N-best list is useful
in a combination decision or not. Since the combination with
a different turn may lift a hypothesis from some position in the
N-best list to the top, usability in this sense is not determined by

the likelihood that the first-best hypothesis is correct but by the
likelihood with which the correct hypothesis can be lifted to the
top in a combined decision. In contrast to the previous section,
one therefore requires a confidence measure for a whole list
rather than for a single hypothesis from the list.

The method proposed in [18] is a variation of the list-based
approach described in the previous section. Instead of accumu-
lating probabilities for hypotheses containing a chosen attribute
we simply accumulate the a posteriori probabilities for the first
best sentences up to a certain break criterion. This criterion can
be a fixed number of hypotheses or a score difference to the first
best sentence. A simpler approach than accumulating the prob-
abilities is to just look at the size of the chosen set of first best
hypotheses in relation to the size of the full N-best list. This is
the special case of choosing the scaling factor in (3) as .
It turned out that the criterion using the score difference to the
first best sentence works well and that both the accumulated
probabilities and the relative frequencies give satisfactory re-
sults. At an operating point where only 4.9% of not useful lists
are accepted, 61.5% of the useful lists are accepted, which is a
relative gain of 57% over a random tagging.

The application of this confidence measure is to reject N-best
lists below a certain reliability threshold, since they appear to
be not useful for a combination decision. Depending on the
application, one may prompt the user to give the same infor-
mation again in order to obtain a new N-best list of (hopefully)
better quality, fall back to a more robust recognition scenario
(e.g., spelling), or transfer the user to a human operator.

VII. USABILITY STUDIES

During the field tests with the different dialog systems, we
obtained some interesting feedback which helped to improve
the systems and to increase the user acceptance and satisfac-
tion.

A striking (and from a technology-oriented point of view
disappointing) experience was that people judged the system
mainly by the speech output and did not regard speech recog-
nition as a difficulty at all. Our approach to generate the speech
output by concatenating prerecorded words and phrases was
well accepted by the users. But as pointed out in Section II-C,
this method is limited to applications with a moderately sized
vocabulary and has to be replaced by a speech synthesis system
in case of a large or dynamically changing vocabulary.

A simple means of making the system more pleasant is to
randomly select system prompts from a list of alternatives. Af-
ter introducing a randomized greeting prompt in our PADIS
system the users described the system as “more vivid” and “less
boring”.

An important observation was the wide range of user pref-
erences, e.g., for the duration and conciseness of the sys-
tem prompts. While novice users liked explanatory system
prompts, more experienced users tended towards a shorter dia-
log and some even requested a simple beep instead of the greet-
ing prompt. This diversity suggests the introduction of user
models influencing the dialog management.

An interesting aspect coming up in the field tests was the
style of speaking chosen by the users. In general we observed
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a fairly “talkative” way of communication with the system and
not so much a “machine-like” style. The latter usually comes
up after recognition errors, since users may not be familiar with
the concept of implicit verification. For example, the system
prompt “When do you want to travel to Denver” resulting from
a misunderstood travel destination is not corrected by saying “I
want to go to Dallas” or “I don’t want to go to Denver” but by
a simple “No”.

Of course, the user’s style of talking is heavily influenced
by the system prompts. Specific prompts like “From where to
where do you want to travel” trigger well predictable answers,
whereas replies to “What can I do for you?” have a large di-
versity. We also observed that users tend to reuse phrases from
the system prompt rather than reformulating them.

This leads to a more general aspect of system design. A user
has what may be called a cognitive model (cf. [6]) of the system
which reflects what he/she regards as the current system belief.
Part of this cognitive model is the utterance given to the system,
since the user expects it to understand its input. If the system
does not react in accordance with the user’s cognitive model,
he/she often gets confused and problems in the dialog flow are
likely to occur. The main reason for a discrepancy of this kind
is of course that the system belief may contain misrecognized
items which can not be part of the cognitive model as they are
unknown to the user. It is therefore important that the user
is aware of the possibility of recognition errors. But also the
user’s formulations form part of the cognitive model, hence the
system should try to pick up phrases from the user utterances
where possible instead of using internally fixed formulations
(i.e., it should avoid prompting the user with “4.15pm” in re-
ply to “a quarter past 4 in the afternoon”). Another reason
why the system belief may differ from the cognitive model is
that information can be obtained from sources other than the
user utterance (e.g., a database). In this case, the user might be
surprised being confronted with items he/she did not specify at
all.

To avoid conflicts between the user’s cognitive model of the
system and the current system belief, it is important to make
the latter as transparent as possible, which of course has to be
balanced with the efficiency of the dialog flow. This means
to find a compromise between system verbosity, reliability and
dialog duration.

VIII. CONCLUSION

We have presented strategies for spoken dialog systems in
various application domains. The overall goal is to allow for a
natural and flexible dialog flow while on the other hand obtain-
ing a high level of robustness of the system. We have demon-
strated that in order to approach this goal it is very beneficial
to consider available sources of information as early as possi-
ble and to keep alternative hypotheses as long as possible. The
realization of these basic principles was illustrated for different
aspects of spoken dialog systems, from the word graph as in-
terface between speech recognizer and language understanding
module, over plausibility checks considering background infor-
mation from a database to combination decisions over several
user turns.

We also showed that the architecture of our natural language
understanding module allows us to develop new applications
with no or very little training material and we discussed how
confidence measures can be applied to improve the quality of a
dialog system.

The proposed methods have successfully been incorporated
into dialog systems for applications from different domains
(timetable information, telephone switchboard, directory assis-
tance) and have proven to increase the performance and usabil-
ity of the systems.
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