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The continuity of a substructure across the interface is con-
sidered a necessary condition for the formation of a twin.
The application of the analysis of the eigensymmetry of
crystallographic orbits to the derivation of this structural
continuity is briefly reviewed and applied to the analysis of
the {101} twin in marcasite. This analysis shows that one
fourth of the structure, but half of the substructure near the
composition surface, is common to the two orientations
realized in the twin, the operation mapping the common
atoms in the twinned domains being an n-glide occurring
every one fourth of the period along the direction quasi-
perpendicular to the twin plane. The existence of this
significant common substructure justifies and explains the
formation of the twin.

1 Introduction

From a genetic viewpoint, twins can be divided into three
types [1]:

� Transformation twins: generated by a solid state
phase transition during which some point symmetry
operations of the parent phase are lost in the daugh-
ter phase but remain in the twinned edifice as twin
operations, mapping the orientations of the twinned
domains.

� Mechanical (gliding) twins: the occurrence of domain
states with different orientation is produced by an ex-
ternal force applied to a crystal originally homoge-
neous.

� Growth twins: a perturbation (impurity, dislocation or
other defect) during the crystal growth, or the coales-
cence of nano, micro or macro-crystals with a precise
mutual orientation is at the origin of the formation
of the twin (about the twin formation by coalescence,
see a review in [2]).

While for the first two categories the driving force for
the formation of the twin is evident, growth twins would
not appear if the system were in perfect equilibrium
without perturbations, the growth of an untwinned crys-
tal being the thermodynamically favourable situation.
The formation of the twin is therefore the consequence
of a sort of mistake during the normal crystal growth
process. In order for this mistake to occur, a certain
degree of structural continuity between the twinned
individuals (domains) is required, otherwise the twin
would simply not form. The knowledge of this structural
continuity is a pre-requisite towards a route to predict
the occurrence probability of twinning: this is an am-
bitious yet fundamental aim in materials science and
drug design. In fact, when frequent twinning occurs as
a result of a crystallization process, not only physical
properties of technological interest may be severely
affected (for instance, the development of an electric
field in a piezoelectric material is reduced or suppressed
by twinning, because of the different orientation of the
fields in the twinned domains), but the quality of the
structure refinement is also reduced, because diffrac-
tions from the twinned domains overlap without a phase
relation, and this effect is particularly critical for com-
pounds crystallizing in large unit cells, like in the case of
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biological macromolecules. A clear understanding of the
parameters governing the formation of growth twins
is thus a pre-requisite for the development of crystal-
lization protocols capable of reducing the frequency of
twinning, for example by acting on the crystal morphol-
ogy to reduce the development of faces corresponding
to possible twin interfaces, called composition surfaces
in the twin literature.

The so-called French school [3–6] developed a retic-
ular theory of twinning which establishes a relation be-
tween the degree of lattice overlap produced by the twin
operation and the occurrence frequency of the twin. The
lattice overlap is measured by the twin index n, which is
the inverse of the ratio of the lattice nodes common to
the twinned individuals. Furthermore, the twin obliquity
ω (or, for twin operations of order higher than two, the
twin misfit δ [7]), measures the deviation from the per-
fect overlap. The lower the twin index and the obliquity,
the better the lattice overlap in the twin and the higher
the probability that the twin will form.

This reticular approach has been successfully applied
for more than a century to the interpretation of the ob-
served twins, the large majority of which correspond in-
deed to low values of the index and of the obliquity. Em-
pirical limits of n = 6 and ω = 6° were given by Friedel
[6] and twins falling within these limits have been called
Friedelian twins [8]. Exceptions do exist to this empiri-
cal limit, but they are very often hybrid twins, i.e. twins
in which two or more concurrent sublattices co-exist
and contribute to the overall degree of lattice restoration,
measured by an effective twin index nE which counts the
contribution of all these sublattices [9].

The reticular approach, even in its hybrid extension,
cannot differentiate the occurrence probability of twins
of compounds having unit cells with similar volumes
and corresponding to the same twin index and obliquity,
because it does not consider the atomic content of the
unit cell but just the lattice. Its predictive possibilities
are therefore limited. To go beyond this limitation we
have introduced a structural theory of twinning, based
on the idea that in order to form and be stable a twin
must have a common substructure: some of the atoms
building the structure must cross the composition
surface with limited perturbation. The details of the
approach have been presented in [10], together with
the analysis of the case of melilite. The application to
staurolite, aragonite and cassiterite have already been
presented [11–13]. Below we give a short summary of the
principle and present the application to the {101} twin
in marcasite. The terminology specific to twinning has
been recently reviewed in [14].

2 Non-characteristic crystallographic orbits as
the key to identify the common substructure
of twins

Each atom in the asymmetric unit of a crystal structure
represents an infinite set of atoms equivalent by symme-
try, called a crystallographic orbit. Let E be the eigensym-
metry of this orbit, i.e. the group of all motions mapping
the orbit to itself. The intersection of the eigensymme-
tries of all crystallographic orbits in a crystal structure
is the space group G of that structure: G = �iE i. The
eigensymmetry of each orbit can be equal to or a proper
supergroup of the space group of the structure: one
speaks of characteristic and non-characteristic orbits,
respectively.

The twin operation does not belong to the point
group of the crystal but it may belong, exactly or approxi-
mately, to the point group of the eigensymmetry E of one
or more non-characteristic crystallographic orbits build-
ing the structure of that crystal. When this is the case, the
corresponding crystallographic orbits cross the compo-
sition surface of the twin (almost) unperturbed and de-
fine a substructure common to the twinned individuals.
When this substructure represents a significant portion
of the structure of the crystal, the occurrence probability
of the twin is high.

If the twin operation does not belong to the point
group of the eigensymmetry of a crystallographic orbit in
G, it may still belong to that of a sub-orbit. This sub-orbit
is obtained by taking the maximal subgroup H of G which
is compatible with the twin lattice. A crystallographic or-
bit in G splits, in general, into two or more orbits under
the action of H [15] and the twin operation may belong
to the point group of the eigensymmetry of one or more
of these split orbits.

It is to be emphasized that the twin operation maps
the orientation of twinned crystals and is therefore a
point group operation. Interpreted as a space group
operation it is only determined up to its translational
part. The actual operation that maps the substructures
has, however, a specific translational part: it is called
restoration operation, a term suggested by the concept of
restoration index introduced long ago [16] as a structural
counterpart of the twin index.

If dmin denotes the minimal distance between the po-
sition to which a chosen atom in a crystallographic orbit
or sub-orbit O is mapped under the restoration operation
t and the atoms in O, then dmin = 0 for all atoms in O in
the case that t � E(O). If t is only a pseudo-symmetry of
O, then dmin > 0 and its value is a measure for the quality
of the quasi-restoration.
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3 The {101} twin in marcasite and its twin
lattice

Marcasite, FeS2, is a polymorph of pyrite, metastable at
ambient conditions. It is a sedimentary, hydrothermal,
and secondary mineral, formed also in euxinic oceans,
where the oxidation of the reactive organic carbon from
sinking marine biomass consumes all of the oxygen, then
the available nitrate, to finally produce sulphate reduc-
tion leading to accumulation of dissolved sulphide [17].
The structure can be represented by the symmetrical
packing symbol A(--½)B(--½) [18], which gives the frac-
tional occupation of the independent polyhedra (two
tetrahedra and one octahedron) formed by a pair of
hexagonal sheets of spheres representing sulphur atoms
in this case. The idealized structure of marcasite consists
thus of an hcp stacking of sulphur atoms where the tetra-
hedra between two sheets are empty and the octahedra
are alternatively empty or occupied by iron. This alter-
nate occupancy minimizes the Fe-Fe repulsion, which
would be significant because octahedra share faces in
an hcp topology (figure 1). The same topology is found
in various sulphides and related minerals crystallising
in the same type of space group (i.e. ferroselite FeSe2,
frohbergite FeTe2, mattagamite CoTe2, kullerudite NiSe2,

rammelsbergite NiAs2, lollingite FeAs2) as well as
sulphosalts like arsenopyrite, FeAsS, and gudmundite,
FeSbS, for which the symmetrical packing symbol is dou-
bled, A(--½)B(--½)A(--½)B(--½), to show the ordering of
the non-metal, which reduces the symmetry from or-
thorhombic to monoclinic. Several of these minerals oc-
cur much less frequently than marcasite, yet they too give
frequent twinning, a fact that suggests that the common
structural topology must favour the occurrence of twins
in this group of minerals.

Marcasite crystallises in a space group of type Pnnm
(standard setting of No. 58). A report claiming that the
correct space group would be the non-centrosymmetric
subgroup Pnn2 was published [19], but was invalidated
by the same authors after improvement of the absorption
correction [20]. The structural data used in this article
are taken from a recent structure report [21]: a = 4.4446,
b = 5.4246, c = 3.3864 Å, with Fe in position 2a (0,0,0) and
S in position 4g (x y 0) with x = 0.2004 and y = 0.3787.

Marcasite gives frequent twins on {101}, forming
“swallowtail” contact twins; this may be repeated to form
stellate fivelings [22, 23]. A survey of twins in non-silicate
minerals [24] showed that this is a hybrid twin with two
concurrent sublattices based on the (101) twin plane,
corresponding to two possible quasi-perpendicular

Fig. 1 Polyhedral view of the structure of marcasite drawn in the axial setting of the space groupG = Pnnm. Figure drawn with VESTA [29].
The alternation of occupied and empty octahedra reduces the Fe-Fe repulsion that would occur in the face-shared hcp topology.
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directions: [305] (n = 4, ω = 0.89º) and [102] (n = 3,
ω = 4.06º), leading to an effective twin index nE = 2.0.
This means that in the cell of the twin lattice defined by
the pair of lattice elements (101) and [305], half of the lat-
tice nodes are restored within �4º, of which an important
fraction within less than 1º.

The shortest directions contained in (101) are [010]
and [101̄]. The twin lattice is obtained by the relation L �
tL = LT (cf. [10]), where L is the lattice of the individual,
LT is the twin lattice and t is the twin operation. The
unit cell of LT is spanned by the three vectors [010],
[101̄], [305]. However, also the vector ½([101̄]+[305]),
which relates the origin and the 103 node of L, belongs
to the twin lattice, hence the cell of LT built in this way is
S-centred.

The maximal subgroup H of G compatible with the
twin lattice is H = G � tG t−1 = S1̄: indeed, among the
symmetry elements of Pnnm, neither the rotation/screw
axes nor the mirror/glide planes are parallel in the two
orientations of G and tG t−1 so that none of them is re-
tained in the intersection. Only the inversion centre, be-
ing a zero-dimensional point, remains in the intersec-
tion. The bases (abc)I for G and (abc)T for H are related
by the following transformation:

(abc)I P = (abc)T , P =
⎛
⎝

0 1̄ 3
1 0 0
0 1 5

⎞
⎠ (1)

(figure 2) which results in the cell parameters for the twin
lattice a = 5.4246 Å, b = 5.5877 Å, c = 21.5519 Å, α =
90.920º, β = 90º, γ = 90º. For this orientation, the cen-
tring vector is A and the space group symbol is A1̄, a
non-standard setting of P1̄ imposed by the orientation
of the twin plane with respect to the axes of G. The de-
terminant of the transformation matrix is 8, i.e. twice
the twin index because of the A centring. LT is strongly
pseudo-orthorhombic, the deviation being only 0.92º on
α. In the following analysis, we will treat it as oA, the
small angular deviation on α being of negligible meaning
on the orbit pseudo-symmetry and thus on the degree
of atomic quasi-restoration produced by the restoration
operations. Eq. (1) defines the twin plane as (001) plane
of the twin lattice. The extension of the point group of H
by the twin operation results in a monoclinic group (with
pseudo-oA lattice), either A112/m (c-unique setting, cell
choice 1 of C2/m, No. 12) or A112/a (c-unique setting,
cell choice 1 of C2/c, No. 15). These are the possible min-
imal supergroups of H containing a restoration opera-
tion. Normally, it is not necessary to search for higher
supergroups, although a crystallographic orbit in H, or
a union of crystallographic orbits, may possess a higher

Fig. 2 The (010) plane of the marcasite lattice, showing the projec-
tion of the unit cell of the twin lattice LT., defined by the [10–1 ] and
[305] directions (in red), which become the b and c axes of LT. The
lattice nodes in red are located at the corners and at the centre of
the A face of the unit cell of LT; they are restored by the reflection
about the (101) plane – (001) in the setting of LT - and represent one
fourth (two out of eight) of the nodes of L contained in the unit
cell of LT. The twin index defined by this sublattice is thus 4.

eigensymmetry than the extension of H by t. In some
cases where a higher symmetry is evident, like in the case
of invariant lattice complexes described below, it is nev-
ertheless worth pointing out the existence of higher su-
pergroups.

4 Analysis of the restoration operations for the
marcasite {101} twin in terms of the
pseudo-eigensymmetry of the
crystallographic orbits

In G = Pnnm, a restoration operation for the {101} twin
would be a mirror or glide reflection about one of the
four planes composing the {101} form in the orthorhom-
bic holohedry. This would be possible only in presence of
a (pseudo)-cubic eigensymmetry, which would require a
(pseudo)-cubic metric. The axial ratios in marcasite be-
ing 0.819:1:0.624, such a (pseudo)-eigensymmetry in G is
excluded a priori.

In P1̄ with the transformation matrix given by Eq.
(1) both Fe and S orbits undergo splitting, according
to the following scheme (calculations performed by the
Wycksplit routine at the Bilbao Crystallographic Server:
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Table 1 Atomic coordinates of marcasite in the Ā1 setting of H.

Atoms Wyckoff
position

in P̄1

x y z Atoms Wyckoff
position

in P̄1

x y z

Fe 1 1a+1g 0 0 0 S 1 2×2i 0.3787, 0.87475, 0.02505

Fe 2 1e+1f ½ 0½ S 2 2×2i 0.8787, 0.62525, 0.97495

Fe 3 2i ½¼¼ S 3 2×2i 0.6213, 0.37525, 0.72495

Fe 4 2i 0¼¾ S 4 2×2i 0.1213, 0.12475, 0.27505

Fe 5 2×2i ½⅞⅛ S 5 2×2i 0.1213, 0.74975, 0.15005

Fe 6 2×2i 0⅛⅜ S 6 2×2i 0.6213, 0.75025, 0.84995

S 7 2×2i 0.8787, 0.00025, 0.09995

S 8 2×2i 0.3787, 0.49975, 0.90005

[25, 26]):

Fe : 2a → 1a + 1e + 1f + 1g + 6 × 2i

S : 4g → 16 × 2i

However, half of the coordinates obtained in this way
are related by the A centring vector so that eventually the
splitting scheme in A1̄ is the one reproduced in Table 1.

The union of the orbits Fe1 and Fe2 corresponds to
the invariant lattice complex1 F, whose characteristic
Wyckoff position is Fmmm a [27]; this is thus the eigen-
symmetry E of Fe1 � Fe2, which has common origin with
H = A1̄. The restoration operations for Fe1 � Fe2 are thus
m (xy0), n (xy0), a (xy¼) and b (xy¼). The same holds also
for the union of the orbits Fe3 and Fe4, but with an origin
shift (0¼¾) from H to E . The restoration operations for
Fe3 � Fe4 are thus m (xy¼), n (xy¼), a (xy0) and b (xy0)
with respect to the origin of H, i.e. the same as for Fe1

� Fe2 but with the role exchanged. In other words, the
physical planes (xy0) and (xy¼) restore the whole set of
the orbits Fe1, Fe2, Fe3, Fe4, although with a different
operation for the two subsets.

The pseudo-eigensymmetry of the orbits in H = A1̄
with an accepted tolerance of 0.5 Å is given in Table 2, ob-
tained with the routine PSEUDO [28] at the Bilbao Crys-
tallographic Server. As predicted in the previous section,

1 Lattice complexes can be seen as a coarser classification of crystal-
lographic orbits into types, so that the same lattice complex may
occur in different types of space groups of the same crystal family.
Lattice complexes are called invariant if they can occupy a parame-
terless position in a space group. For details, see [25].

Table 2 Eigensymmetry of the crystallographic orbits of
marcasite under H = Ā1. The Wyckoff positions are given for
the idealized structure having the (pseudo-)eigensymmetry
group E as proper symmetry group. To obtain the idealized
structure, the atoms have to be moved by the given distance
dmin. Non-conventional settings of E are given in order to
keep the same axial setting as for H, in which the restoration
operation is a mirror or glide reflection about a (001) plane.

Orbits E Wyckoff
position
for E

Origin
shift
from
H to E

dmin (Å) restoration operation
(with respect to the
origin of H)

Fe1�Fe2 Fmmm 4a 000 0 m (xy0), n (xy0),
a (xy¼), b (xy¼)

Fe3�Fe4 Fmmm 4a 0¼¾ 0 m (xy¼), n (xy¼),
a (xy0), b (xy0)

S5�S6 A112/a 8f 000 0.0028 a (xy0), n (xy¼)

S7�S8 A112/a 8f ¼0¼ 0.0028 a (xy¼), n (xy0)

the eigensymmetry is either A112/m or A112/a. For the
remaining iron orbits, the value of dmin is 1.3969 Å (eigen-
symmetry A112/m with origin shift ¼0¼), definitely too
large to be considered meaningful for the structural con-
tinuity across the composition surface. For the sulphur
orbits, half of the orbits are again restored within a very
good approximation (0.0028 Å, see Table 2), while for the
other half dmin is much larger (1.0798 Å, eigensymmetry
A112/m: origin shift 000 for S1�S2, ¼0¼ for S3�S4), so
that their contribution to the structural continuity in the
twin is negligible. The eigensymmetry of the pairwise re-
stored sulphur orbits is A112/a, but for half of these H
and E have the origin in common, while for the other
half an origin shift of ¼0¼ is necessary. Consequently,
the physical planes (xy0) and (xy¼) act as a glide and n
glide, respectively, for the union of two orbits, the oppo-
site for the other union, similarly to the exchange already
observed for the restored iron orbits.

Another important aspect to take into account, be-
sides the restoration accuracy (Table 2), is the distance of
the quasi-restored atoms from the composition surface.
In fact, for the twin to form, a significant continuation of
the structure has to occur at the composition surface: the
structural restoration farther from this surface has cer-
tainly a minor influence. Table 3 lists the quasi-restored
orbits in increasing value of dmin and the distance � from
the composition surface. Considering that the Fe atoms
are precisely on the (001) planes at z = 0, ¼, ½ and ¾, a
physically meaningful value for �(S) would correspond
to the Fe-S distance (about 2.25 Å).
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Table 3 Quasi-restored crystallographic orbits in marcasite under H = Ā1 rearranged according to the restoration operation, in
increasing order of dmin. � is the minimal distance for each orbit to the plane about which the restoration operation is performed.
%1 and %2 are the percentage of atoms in the orbits located at the � distance from the planes at z and at z+½ respectively. For Fe
atoms midway the two planes, the percentage is 100; for all the other atoms it is 50, meaning that half of the atoms building the
orbit are physically close to the plane and play a physically meaningful role in the substructure common to the individuals building
the twin.

Restoration
operation

Orbits dmin (Å) � (Å) %1 %2 Restoration
operation

Orbits dmin (Å) � (Å) %1 %2

m (xy0) Fe1�Fe2 0 0 50 50 m (xy¼) Fe3�Fe4 0 0 50 50

n (xy0) Fe1�Fe2 0 0 50 50 n (xy¼) Fe3�Fe4 0 0 50 50

S7�S8 0.0028 2.1541 50 50 S5�S6 0.0028 2.1541 50 50

a (xy0) Fe3�Fe4 0 5.3880 100 100 a (xy¼) Fe1�Fe2 0 5.3380 100 100

S5�S6 0.0028 3.2339 50 50 S7�S8 0.0028 3.2339 50 50

b (xy0) Fe3�Fe4 0 5.3880 100 100 b (xy¼) Fe1�Fe2 0 5.3380 100 100

Fig. 3 The structure of marcasite drawn in the axial setting of the {101} twin (see Eq. (1) for the relation between the individual and twin
setting). Large and small spheres represent iron and sulphur atoms, respectively. (001) planes of LT are shown shaded for the two positions
z =¼ (equivalent to z =¾) and z =½ (equivalent to z = 0).

Inspection of Tables 2 and 3 shows that there are
common restoration operations for both iron and sul-
phur: these are the a-glide at (xy0) as well as the n-glide
at (xy¼), or vice versa the n-glide at (xy0) as well as the
n-glide at (xy0): however, only the n glide planes cor-
respond to a �(S) value within the Fe-S bond distance.
Furthermore, half of the atoms in the restored orbits are
physically close to the corresponding planes: in other

words, half of the substructure around the composi-
tion surface is restored by the twin operations. This is
illustrated in figures 3 and 4. Figure 3 is the structure of
marcasite in the unit cell of LT, showing also the location
of two planes at z = ¼ and z = ½ (the latter is shown
instead than that of z = 0 for the sake of clearness: every
symmetry operation of order two is repeated every half
period). Figure 4 is obtained from figure 3 by retaining

www.crt-journal.org 447C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



M. Nespolo and B. Souvignier: Application of the crystallographic orbit analysis to the study of twinned crystals

O
rig

in
al

Pa
pe

r

Fig. 4 Part of the structure of marcasite drawn in the axial setting of the {101} twin, showing only the orbits whose eigensymmetry
contains a restoration operation, i.e. an operation whose linear part coincides with the twin operation. Black atoms are restored by a
(xy0) and n (xy¼), while white atoms are restored by a (xy¼) and n (xy0). See text for details.

Fig. 5 Common substructure in the marcasite (101) twin for the different positions of the composition surface, shown as shaded rectangle,
when the restoration operation is taken as n (xy0) glide in the setting of LT. Top: positions at z = 0,½ and 1. Bottom: positions at z =¼
and¾. Large grey spheres are Fe atoms, exactly restored in the twin. Small spheres are S atoms; white in one individual, black in the other
individual. Because of the very small deviation from the exact restoration – 0.0028 Å – in the figure they appear as exactly overlapped,
resulting in spheres that are half white and half black. When one of the planes shaded in the figure acts as twin plane, the S atoms
on the two sides are of different colour. For the substructure built on these orbits, the twin plane does not represent an obstruction
for the continuity so that this substructure crosses the composition surface unperturbed. The existence of this substructure, which
represents one fourth of the whole marcasite structure but half of the structure close to the composition surface, explains and justifies
the occurrence of the twin.
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Fig. 6 Common substructure in the marcasite (101) twin for the different positions of the composition surface, shown as shaded rectangle,
when the restoration operation is taken as a (xy0) glide in the setting of LT. Same conventions as in figure 5. Although the degree of
restoration is exactly the same as in figure 5, in this case the substructure common to the twinned individuals would be far away from
the composition surface, which is physically meaningless.

only the atoms (quasi)-restored by a and n glides, i.e.
half of the atoms in the structure of marcasite. The a
(xy0) and n (xy¼) operations restore black atoms but
not white ones; the opposite is true for n (xy0) and a
(xy¼). We call two glide planes neighbouring planes if
their z-coordinates differ by ±¼.When the plane at (xy0)
acts as a glide, it restores the black atoms on or close to
its neighbouring planes and does not restore the white
atoms on or close to itself. When the plane at (xy¼) acts
as n glide, it restores the atoms on or close to it without
restoring the white atoms on or close to its neighbouring
planes. The opposite is true when the roles of the planes
are interchanged: n (xy0) restores the white atoms on or
close to its plane without restoring the black atoms on
or close to its neighbouring planes; at the same time, a
(xy¼) restores the white atoms on or close to its neigh-
bouring planes without restoring the black atoms on or
close to its own plane. The conclusion is that each of the
restoration operations maps one fourth of the marcasite
structure onto the corresponding atoms in the twinned
orientation. However, the n glides restore atoms close

to the plane, while the a glides restore atoms far from it
(figures 5 and 6). When the (xy0) plane in the setting of H
acts as a twin plane during crystal growth, it is clearly the
n glide operation that is responsible for the structural
continuity.

5 Discussion

The structure of marcasite is composed of one iron orbit
and one sulphur orbit under G = Pnnm. When expressed
in the setting of the twin lattice, which corresponds
to H = A1̄, each of these splits into sub-orbits some
of which possess an eigensymmetry E containing a
restoration operation, i.e. an operation whose linear part
coincides with the twin operation. This restoration oper-
ation is an n glide which restores one fourth of the orbits
every c/4 in the setting of H – i.e. every fourth of the pe-
riod along the direction [305] quasi-perpendicular to the
twin plane. This means that every c/4 (in the setting of
H) a mistake during the growth of marcasite may occur
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which would result in a change of orientation preserving
an almost perfect structural continuity across the com-
position surface for one fourth of the atoms. Although
the substructure restored is only one-fourth of the whole
crystal structure of marcasite, it actually represents
half of the structure around the composition surface,
i.e. where the structural continuity plays a fundamen-
tal role for the formation of the twin. This important
continuity justifies and explains the formation of the
twin.

Actually, the errors in the mapping of atoms from
the two individuals across the composition surface pro-
duced by the restoration operation are slightly underes-
timated because in the above analysis the twin lattice
has been treated as exactly oA; however, the deviation
from this metric symmetry is only 0.92º on α, whose in-
fluence on the computed value of dmin is negligible. Fur-
thermore, the values of dmin are so small (0 and 0.0028 Å)
that the restoration can be regarded as practically
perfect.
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