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ABSTRACT: This article presents a survey of the algorithms for space groups and
crystallographic groups available in the computer algebra system Gap and in the
software packages Carat and Cryst. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem 106:
316–343, 2006

1. Introduction

T here are various problems in crystallographic
groups that lead to interesting computational

problems. Perhaps the most prominent problem
arises from Bieberbach’s famous theorem [1] stating
that up to isomorphism there is only a finite num-
ber of space groups in a given dimension. The
problem of constructing the space groups in a given
dimension has turned out to be a challenging com-
putational problem.

Computational group theory is a branch of
group theory that addresses such computational
problems. Its aim is to design effective algorithms
that can be used to compute with groups and to
provide implementations that allow us to solve in-
teresting problems.

The computer algebra system Gap [2] provides a
large variety of algorithmic methods to compute
with groups of various types; it also allows us to
compute with crystallographic groups. It contains

some special packages for this purpose: the Cryst-
Gap package [3] with some special algorithms for
crystallographic groups, as well as the CrystCat
package [4] with a database of space groups in
small dimensions. Further, the software package
Carat [5] provides various methods specially de-
signed for crystallographic groups. For the later
package there is an interface [6] to the Gap system,
so that all these packages can be used within Gap.

This article presents a survey of the methods
made available by these software packages. It in-
cludes outlines of the methods, giving sample ap-
plications of the methods.

Various information about space groups has been
listed in books and large tables, the most important
source for three-dimensional space groups being the
International Tables [7]. However, the approach of
tabulating results in books has its limitations. This is
illustrated, for example, by the classification [8] of the
space groups of dimension 4, as only a small fraction
of the information given in the International Tables
could be provided in this case.

The data tabulated in such books can also be
accessed very easily using Gap and Carat. Addi-Correspondence to: B. Eick; e-mail: beick@tu-bs.de
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tionally, the software packages allow us to compute
more specific information for the considered
groups beyond the information available in the ta-
bles. The power of the computational approach has
been demonstrated, for example, by the complete
enumeration of space groups up to dimension 6 in
Ref. [9].

2. Preliminaries

This section describes the basic terminology used
throughout this article.

2.1. AFFINE AND EUCLIDIAN GROUPS

Let �n be the n-dimensional real vector space
consisting of column vectors:

�n � ��x1···
xn

� �x1, . . . , xn � �� .

1. Definition. An affine mapping of �n is a
mapping of the form v � gv � t, where g � GL(n, �)
is an invertible matrix over �n and t � �n is a
vector. We denote this mapping by the Seitz nota-
tion {g�t} and call g the linear part and t the trans-
lation part of {g�t}.

Every affine mapping {g�t} can be represented by
a matrix

�g t
0 1� � GL�n � 1, ��.

Using this representation, the application of an
affine mapping {g�t} to a vector v � �n now
amounts to a multiplication of the matrix corre-
sponding to {g�t}, with the vector v augmented by
an additional component 1:

�g t
0 1� � �v

1� � �gv � t
1 � .

We often identify an affine mapping with its
matrix representation, as this simplifies notation.

2. Remark. Using the matrix representation of
affine mappings, one can readily observe that prod-
ucts and inverses of affine mappings are deter-
mined as follows:

� g�t� � �h�s� � � gh�t � gs�

� g�t��1 � � g�1��g�1t�.

Thus, the set of all affine mappings forms a
group. This initiates the following definition.

3. Definition. We call Aff(n) the affine group of
degree n and T(n) the translation subgroup of
Aff(n), where

Aff�n� :� ��g�t��g � GL�n, ��, t � �n� and

T�n� :� ��1�t��t � �n�.

Since conjugation of {1�t} by {h�s} is given by
{h�1��h�1s} � {1�t} � {h�s} � {1�h�1t}, it follows that
T(n) is invariant under conjugation with elements
from Aff(n) and thus forms an invariant or normal
subgroup of Aff(n).

4. Definition. Let gT be the transposed matrix
for g � GL(n, �). We call E(n) the Euclidian group
of degree n, where

E�n� :� ��g�t� � Aff�n��gTg � 1�.

Thus, the Euclidian group is the set of those
affine mappings whose linear part is contained in
the orthogonal group O(n) � {g � GL(n, �)�gTg �
1}. As O(n) is a subgroup of GL(n, �), it follows
readily that E(n) is a subgroup of Aff(n). Note that
T(n) � E(n) by definition.

2.2. SPACE GROUPS

For every G � E(n), it follows that T � T(n) � G
is a normal subgroup of G, which we call its trans-
lation subgroup, and the factor group G/T is called
the point group of G.

We say that a subgroup L of �n is a lattice if L �
�b1 � . . . � �bm for �-linearly independent vectors
(b1, . . . , bm). The vectors (b1, . . . , bm) are called a
lattice basis for L, and the number m of basis vectors
is called the rank of L. We say that L is a full lattice
if (b1, . . . , bm) is a basis for �n or, equivalently, if its
rank equals n.

The translation subgroup T of a subgroup G of
E(n) can be identified with a subgroup of �n via
T 3 �n : {1�t} � t. This is used in the following
definition.
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5. Definition. Let G � E(n) with translation
subgroup T � T(n) � G. Then, G is called a crys-
tallographic space group or space group for short if
T is a full lattice in �n. In this case, T is also called
the translation lattice of G.

Let G be a space group. As its translation sub-
group T is a normal subgroup of G, we can consider
the action of its point group K on T. Fixing a lattice
basis for T, this action is described by matrices in
GL(n, �); hence we obtain an integral representa-
tion of K. Since only the identity element of K acts as
the identity matrix in this representation, we obtain
an embedding of K into GL(n, �). We often identify
the point group K with this corresponding sub-
group of GL(n, �).

6. Lemma. The point group of a space group is
a finite subgroup of O(n).

Proof: Let T be the translation subgroup of the
space group G and let (b1, . . . , bn) be a lattice basis
of T. There are only finitely many vectors in T to
which a basis vector bi can be mapped under an
element of the point group K, since the image has to
be a vector of the same length as bi. But this leaves
only finitely many possibilities for the columns of
an element of the point group K.

A lattice basis for the translation subgroup T of a
space group G is also a basis of �n. Thus, we can
represent G by affine matrices with respect to this
lattice basis. Then the translations in T coincide
with {{1�t}�t � �n}. This is called the standard form
of the space group G. We investigate this standard
form in the following.

Let G be a space group in standard form. Then
the point group of G can be identified with the
image K of G 3 GL(n, �) : {g�t} � g and the action
of K on �n coincides with the action of G/T on T.

7. Definition. Let G be a space group with
point group K.

1. For every g � K, choose some tg � �n with
{g�tg} � G. Then the map � : K3 �n : g � tg is
called a vector system. The set of images
{tg�g � K} is called a system of nonprimitive
translations.

2. Space groups containing a subgroup isomor-
phic to their full point group are called sym-

morphic space groups. This is the case if and
only if the image of � lies in �n.

Multiplication of space group elements shows
that a vector system satisfies the cocycle condition:

�� gh� � �� g� � g � ��h�mod �n for all g, h � K.

In summary, a space group G in standard form is
characterized by its point group K � GL(n, �) and
a vector system �. We therefore obtain that it is of
the form

G � ��g tg � t
0 1 � �g � K, t � �n� .

2.3. BRAVAIS MANIFOLDS

For a lattice T with basis B � (b1, . . . , bn), the
matrix F with the inner products Fij :� bi � bj as
entries is called the metric tensor of T (with respect
to B). If G is a space group with translation lattice T
and point group K, then for every g � K it follows
that the basis B transforms into (gb1, . . . , gbn) and
the metric tensor F of T transforms into gTFg. As K
consists of orthogonal transformations only, the in-
ner product, and thus the metric tensor of the trans-
lation lattice T, is fixed under the action of K. Thus
it follows that gTFg � F holds for all g � K.

8. Definition. The Bravais manifold F(K) of an
integral matrix group K � GL(n, �) is the space of
all metric tensors invariant under K:

F�K� :� �F��sym
n�n�gTFg � F for all g�K�.

It is straightforward to observe that F(K) is an
�-vector space. Moreover, for a finite group K, the
Bravais manifold F(K) always contains a positive
definite metric tensor; that is, a tensor F with vTFv 	
0 for all v 
 0. For example, the average tensor F0 :�
¥g�K gTg has this property.

The dimension of the Bravais manifold of a finite
group K � GL(n, �) can be read off the irreducible
characters involved in the natural character � : K3
� : g � trace(g); see Ref. [10]. Suppose that the
decomposition of � into (complex) irreducible char-
acters of K is

� � �
i�1

r

ai�i � �
j�1

s

bj�j � �
k�1

u

ck��k 	 �k�,
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where �i are the characters of real representations,
�j are the characters with real values and represen-
tations not realizable over � and �k are the remain-
ing characters, coming in pairs with their complex
conjugates. The dimension of the Bravais manifold
is then given by

dim��F�K�� � �
i�1

r ai
2 � ai

2 � �
j�1

s bj
2 � bj

2 � �
k�1

u

ck
2.

In particular, a group admits (up to scalings) a
unique invariant metric tensor if and only if the
natural character � is either irreducible, is the sum
of two complex characters or is of the form 2� for a
real character � not realizable over �.

9. Definition. Let F � �sym
n�n be a set of metric

tensors and K � GL(n, �) an integral matrix group:

1. We define the Bravais group B(F) of F as
{g � GL(n, �)�gTFg � F for all F � F}.

2. The Bravais group B[F(K)] of the Bravais
manifold F(K) of K is called the Bravais group
of K.

If F contains a positive definite tensor, B(F) is
necessarily finite, since the images of a lattice basis
of �n lie in the finite set of vectors of the same
length as the basis vectors.

The Bravais group B(K) is the full group of sym-
metries of the lattice on which K acts. A point group
that coincides with its Bravais group is also called a
Bravais group or a holohedry.

10. Definition. We call a metric tensor F � F a
generic form of F if B(F) � B(F) holds.

We note that F is a generic form in the Bravais
manifold of F :� F[B(F)]. It is shown in Ref. [11]
that almost all positive definite metric tensors in a
Bravais manifold are generic forms. More precisely,
the positive definite metric tensors that are not ge-
neric lie on countably many hyperplanes in the
Bravais manifold and therefore form a subset of
measure 0.

Example. The full group 2mm of symmetries of
a rectangular translation lattice fixes the two-di-
mensional space of metric tensors given by

F � ��a 0
0 b��a, b���.

In F, all metric tensors with a 
 b are generic forms,
whereas the tensors with a � b are not generic, since
their Bravais group is the larger group 4mm.

11. Definition. For a lattice T with metric ten-
sor F, the group B(F) of all symmetries of T is called
the Bravais group of T.

We say that a lattice T lies in the same Bravais
class as T if the Bravais groups of T and T coincide
up to a transformation of lattice bases. But this is
equivalent to saying that for a suitably chosen basis
the metric tensor of T is also a generic form in F.
The generic forms in a Bravais manifold therefore
correspond to lattices belonging to the same Bravais
class and the Bravais manifold itself represents this
Bravais class.

3. General Group Theoretic
Algorithms

This section gives a brief overview of general
methods from computational group theory as far as
they are relevant for computations with space
groups. These methods are implemented in com-
puter algebra systems like Gap [2] and Magma [12].
We refer to Ref. [13] for background and more
details.

Space groups are often described by their point
groups and a vector system exhibiting how the
point group and the translations are glued together.
The point groups can be considered finite sub-
groups of GL(n, �), and there is a whole range of
methods from computational group theory that ap-
ply to such groups. For different kinds of questions,
different ways to represent a finite group are favor-
able, the most important being (i) permutation
groups acting on a set of points; (ii) matrix groups
acting on a vector space; and (iii) finitely presented
groups given by generators and relators.

Various methods are available to compute with
groups of these types. The methods usually depend
heavily on the considered representation. It is also
important to be able to switch between these types
of representation; computational group theory pro-
vides various methods for this purpose.

3.1. ORBITS AND STABILIZERS

We say that a group G acts on a set � if for every
g � G and 
 � � there is a unique element g(
) �
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� to which 
 is mapped under g such that g[h(
)] �
(gh)(
) for all g, h � G and 
 � � and 1(
) � 
 for
all 
 � �. Typical examples are: (i) the natural
action of a space group on the points of �n; (ii) the
natural action of a point group on the points of �n;
(iii) the conjugation action of a group G on its
elements given by g(h) :� ghg�1; and (iv) the con-
jugation action of a group G on its subgroups given
by g(U) :� g � U � g�1.

For a given point 
 � �, the set

G�
� :� �g�
��g � G�

of points to which 
 is mapped is called the orbit of

 under G and the subgroup

G
 � StabG�
� :� �g � G�g�
� � 
�

of group elements fixing 
 is called the stabilizer of

 in G. In the case of a space group acting on the
points of �n, the stabilizer of a point is often called
the site-symmetry group.

The computation of orbits and stabilizers is one
of the crucial tasks in computational group theory.
Highly efficient methods are available if the consid-
ered orbits are finite. If the orbits in question are
infinite, the determination of orbits and stabilizers
is generally not possible by general methods.

We note that computing generators for the sta-
bilizer of a point requires more work than comput-
ing the orbit, but it is still quite effective. If the
stabilizer of a point is determined, the orbit can be
read off from the cosets of G
 in G: For g � G, the
coset G
g :� {hg�h � G
} consists of all elements of
G mapping 
 to the same orbit point g(
) as g.

3.2. PERMUTATION GROUPS

Permutation groups allow particularly efficient
algorithms to compute with this type of group.
Thus, it is often useful to convert a finite group into
a permutation group for computational purposes.
We refer to Chapter 4 of Ref. [13] for a detailed
discussion of permutation group methods.

For permutation groups of moderate size, as they
are relevant for the study of crystallographic
groups, usually every desired information can be
computed explicitly, including the full lattice of
subgroups of a group, the character table, or the
automorphism group.

Effective methods are available to transform a
finite matrix group into a permutation group. The

most obvious approach is to use the action of the
matrix group on the orbits of the basis vectors of the
underlying vector space. Using the transformation,
it is also straightforward to translate a permutation
back into its original matrix.

3.3. MATRIX REPRESENTATIONS

Point groups of space groups are usually explic-
itly given as finite matrix groups in GL(n, �). Again,
a large variety of methods are available to compute
with such groups. An often used approach is to
determine a permutation representation for them
and then use permutation group methods. Based on
this approach, one can compute all kinds of infor-
mation for point groups of moderate degree.

A second issue concerned with matrix represen-
tations comes up in the computation of invariant
sublattices of the translation lattice. Here, the irre-
ducible constituents of a matrix subgroup of
GL(n, �p) for a prime p are required. These constit-
uents can be determined by the so-called Meataxe
algorithm (see Section 7.4 of Ref. [13]).

3.4. FINITELY PRESENTED GROUPS

A finite presentation �g1, . . . , gm�r1, . . . , rs� con-
sists of a set of abstract generators g1, . . . , gm and a
set of relators r1, . . . , rs, where every relator is a
word in the generators ri � ri(g1, . . . , gm). The
group G defined by such a finite presentation can be
thought of as the largest group generated by gen-
erators g�1, . . . , g�m satisfying the relators in the form
ri(g�1, . . . , g�m) � 1 for all i.

Example. Let Dn be the dihedral group of order
2n. Then Dn is generated by an n-fold rotation x� and
a reflection y� . Let G � �x, y�xn, y2, y�1xyx�. Then x�
and y� satisfy the relators of G. It is also not difficult
to observe that Dn is a largest group with this
property. Hence Dn � G and Dn is defined by the
finite presentation of G.

We note that several group theoretic problems
are, in general, undecidable in finitely presented
groups. Hence, computations with this type are
limited. However, there are also some problems in
computational group theory that require a finite
presentation to solve them. For example, represent-
ing a group by abstract generators and relators is
required in the computation of the space groups
with a given point group by the Zassenhaus algo-
rithm (see Section 4.5).
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If a finitely presented group is known to be finite,
the coset enumeration method can be used to con-
struct an isomorphism into a permutation group
(see Chapter 5 of Ref. [13]). As point groups of
space groups are always finite, this method can be
applied to them.

There are special methods to compute with spe-
cial types of finitely presented groups. An example
of such a special type are the so-called polycyclicly
presented groups. A group G is polycyclic if it has
a chain G � N0 � N1 . . . � Nr � {1} of subnormal
subgroups such that the successive quotients
Ni/Ni�1 are cyclic groups. Every polycyclic group
has a so-called polycyclic presentation, and this
type of presentation allows effective computations
(see Chapter 8 of Ref. [13]).

We note that a space group is polycyclic if and
only if its point group is polycyclic. In particular, all
space groups of degree at most 3 are polycyclic and
in degree 4 only the space groups with point group
containing the alternating group A5 are not polycy-
clic.

3.5. CHARACTER TABLES

Representations and character tables of groups
are an often used tool from group theory, which is
relevant in crystallography and solid-state physics.
For example, splitting tensor products of characters
into irreducible characters is required for the deter-
mination of infrared (IR) or Raman spectra.

Therefore, it is desirable to have the character
table of a group available and to be able to compute
with the characters. The Dixon–Schneider algo-
rithm (see Section 7.7 of Ref. [13]) provides a
method for determining the character table of a
finite group. This method is powerful enough to be
able to deal with all point groups in moderate de-
grees.

Another example for an application in chemistry
of the character theory as provided by the Gap
system is given in Ref. [14].

3.6. SUMMARY

The point groups of space groups, or the quo-
tient groups of a space group by a subgroup of the
translation lattice of finite index, are often of central
interest in crystallography. For moderate dimen-
sions, these groups can be regarded as small from
the point of view of computational group theory.
For example, in dimension 3, the largest point
group is the symmetry group of the cube of order

48. Even in dimension 6, the symmetry group of the
root lattice E6 of order 103680 is still easily manage-
able by standard tools from computational group
theory.

One may therefore say that for the finite groups
arising in crystallography, a lot of information can
be computed both explicitly and quickly. This in-
cludes, but is not restricted to (i) deciding conju-
gacy of elements or subgroups; (ii) deciding inclu-
sion of elements of subgroups in other subgroups;
(iii) computing the lattice of subgroups of a group;
(iv) expressing an element as products of given
generators; (v) computing generators and relators;
(vi) computing character tables; and (vii) comput-
ing automorphism groups.

4. Fundamental Algorithms

In this section, we discuss some important and
well-known specific algorithms for space groups as
implemented in Carat [5] or CrystGap [4]. More
information about the methods and their theoretical
background can be found in Ref. [15].

4.1. BRAVAIS GROUPS AND ISOMETRIES

Bravais classes of lattices play an important role
in the classification of space groups. In turn, the
computation of the full group of automorphisms of
a lattice is fundamental in this area.

4.1.1. Automorphism Groups

Let L be a lattice with metric tensor F and denote
G � Aut(L). G can then be determined from L and
F with the following approach. Let B � (b1, . . . , bn)
be a lattice basis of L. Then an automorphism � of L
maps the basis B to a new basis

C � �c1, . . . , cn� with ci � ��bi�.

The inner products of the image vectors coincide
with those of the original basis; that is, it follows
that ci

T � cj � Fij. In particular, every vector ci is
contained in the set

M :� �v � L�vT � v � max�F11, . . . , Fnn��

of all vectors up to the maximal length of the basis
vectors. As F is a positive definite metric tensor, set
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M is finite, hence G can be computed as a subgroup
of the group of permutations of M.

This computation is accomplished in a backtrack
search, using techniques analogous to those for per-
mutation groups. The core idea is to construct the
matrix of an automorphism � column by column:
The first column is a vector c1 � M with c1

T � c1 � F11.
After choosing c1, the candidates for the second
column are restricted to those vectors in M that
have the same length as b2 and inner product F12
with c1. Some invariants are used to prune branches
in the backtrack search as early as possible. We
refer to Ref. [16] for a detailed account of the
method.

4.1.2. Bravais Groups

The computation of the automorphism group of
a lattice can readily be extended to the computation
of the Bravais group of a Bravais manifold. This is
immediate if we think of the metric tensor F as
being a generic tensor in the Bravais manifold.

However, it is often more convenient to repre-
sent a Bravais manifold by a basis (F1, . . . , Fm) of
linearly independent metric tensors, the first of
which is positive definite. In that case, the Bravais
group is computed by the automorphism group
algorithm with the only change that the inner prod-
ucts of the new basis (c1, . . . , cn) have to be correct
with respect not only to F1, but also to those with
respect to the other metric tensors. This yields fur-
ther restrictions for the vectors that are allowed as
columns of the matrix of an automorphism �.

4.1.3. Isometries

The algorithm for computing the automorphism
group of a lattice can easily be adapted in order to
compute an isometry between two lattices L and L
with metric tensors F and F, respectively. An isom-
etry maps a basis of L to a basis of L having inner
products given by F. Thus, the columns of the ma-
trix of an isometry are short vectors in the lattice L,
which fulfill the restrictions imposed by the metric
tensor F.

In turn, the method to compute an isometry be-
tween two lattices can be extended to the compu-
tation of an isometry between Bravais manifolds.
However, since in general there is no obvious
choice for a generic lattice, one has to find a corre-
spondence between the metric tensors in the two
Bravais manifolds. An efficient solution to this
problem is provided by the perfect forms and their

directions (these are described in more detail in
Section 4.2 regarding the computation of the inte-
gral normalizer).

4.1.4. Sample Applications

The algorithms described are highly efficient and
depend mainly on the number of short vectors in a
lattice. In low dimensions, these are very small. For
example, the highly symmetric root lattice E6 in
dimension 6 has only 72 vectors of length 2 and
generators for its automorphism group are found
instantaneously in practice. Even for the 24-dimen-
sional Leech lattice with 196,560 vectors of minimal
length 4, generators for the full automorphism
group of order 222 � 39 � 54 � 72 � 11 � 13 � 23 � 8.3 � 1018

are computed in few minutes.

4.2. INTEGRAL NORMALIZERS

In many computations with space groups, in
addition to the space group itself, the integral nor-
malizer of its point group is required as well. In
general, the normalizer NG(U) in G of a subgroup
U � G is defined as

NG�U� :� �g � G�gUg�1 � U�

and is the largest subgroup of G, in which U is a
normal subgroup. In terms of orbits and stabilizers,
the normalizer is the stabilizer of U under the con-
jugation action of G on its subgroups. Within the
context of space groups, the integral normalizer
NGL(n,�)(K) of a point group K can be interpreted as
the geometric automorphism group of the situation
considered, since it reflects the different possibili-
ties of labeling the elements of K such that their
geometric functions remain the same.

In this section, we discuss two different ap-
proaches for computing the integral normalizer of a
point group. The first approach is purely group
theoretic and relies only on the fact that elements
from the normalizer realize automorphisms of the
abstract group. It was used successfully in the clas-
sification of space groups of dimension 4 in Ref. [8].
The second approach uses the fact that the integral
normalizer acts on the Bravais manifold of a point
group.

4.2.1. Using Group Automorphisms

Let K � GL(n, �) be a finite group, and let Aut(K)
denote its (abstract) automorphism group. The fol-
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lowing remark yields a connection between Aut(K)
and NGL(n,�)(K).

12. Remark. The conjugation action of g �
NGL(n,�)(K) defines an automorphism �g : K 3 K :
h � ghg�1 of K, and the mapping � : NGL(n,�)(K) 3
Aut(K) : g � �g is a homomorphism.

As K is a finite group, its automorphism group
Aut(K) can be computed readily, and it is again a
finite group. It now remains to obtain NGL(n,�)(K)
from Aut(K). For this purpose we investigate for a
given � � Aut(K) whether � has a preimage under
� and, if so, then we determine all such preimages.

Let K � �h1, . . . , hr�, and let hi � �(hi) for all i. We
want to test whether there exists an integral matrix
g � GL(n, �) with ghig

�1 � hi for all 1 � i � r. Every
such g arises as a solution of the homogeneous
system of linear equations in the n2 entries of X for
the matrix equations

Xhi 	 hiX � 0 for 1 � i � r.

When solving this system, the following out-
comes have to be considered:

1. The system has an integral solution g with
det(g) � �1. Then g � NGL(n,�)(K) follows.

2. The system has a rational solution g, but no
integral solution with det(g) � �1. Then � �
Im(�) follows.

3. The system has no solution; then � � Im(�)
follows.

The dimension of the solution space is either 0 or
is equal to the dimension of the centralizing algebra
C�(K) :� {X � �n�n�Xh � hX for all h � K}. If its
dimension is 0, we are in case 3 (see above), and
there is nothing to do. If its dimension is 1, cases 1
and 2 can be distinguished. However, if its dimen-
sion is larger than 1, it might be difficult to decide
whether we are in case 1 or 2, and this is the general
difficulty inherent in this approach.

4.2.2. Using Perfect Forms

The second approach to computing integral nor-
malizers uses the Bravais manifold. The first impor-
tant observation is that the integral normalizer of an
arbitrary point group K is a subgroup of the nor-
malizer of its Bravais group B(K).

13. Lemma. Let K � GL(n, �) be finite and let B
:� B(K) be its Bravais group. Then NGL(n,�)(K) �
NGL(n,�)(B).

Proof: Let F :� F(K) be the Bravais manifold of
K; then F(B) � F, since B is the Bravais group of K.
For g � NGL(n,�)(K) and F � F, we have gTFg � F,
since for any h � K one has gh � hg for some h �
K and thus hT(gTFg)h � gT(hTFh)g � gTFg. But
this implies that for b � B and g � NGL(n,�)(K)
one has (gbg�1)TF(gbg�1) � g�TbT(gTFg)bg�1 �
g�T(gTFg)g�1 � F, since b fixes gTFg � F.

This lemma suggests the following reduction to
Bravais groups: Let K be a point group and let N :�
NGL(n,�)[B(K)] be the integral normalizer of its
Bravais group. Then NGL(n,�)(K) � N and thus
NGL(n,�)(K) � StabN(K) follows, where N acts on
subgroups of GL(n, �) by conjugation. The orbit of
K under N is finite. Thus, the corresponding stabi-
lizer can be computed with methods from compu-
tational group theory (see Section 3.1). In fact, the
orbit of K is usually quite small; thus, the reduction
step is usually very efficient.

It remains to find the integral normalizer of a
Bravais group. For that, the notion of perfect forms
is important. Let F be a positive definite metric
tensor and let (F) :� min(vTFv�v � �n} be the
minimum of F. Then the set M(F) :� {v � �n�vTFv �
(F)} is called the set of minimal vectors of F.

14. Definition. A metric tensor F is called a
perfect form if the set D :� {x � xT�x � M(F)} con-
tains a basis for the vector space Rsym

n�n of symmetric
metric tensors.

We note that perfect forms yield good candidates
for lattices with high packing density (see Ref. [17]
for a thorough discussion of the concept of perfect
forms).

It was shown by Voronoı̈ in Ref. [18] that there
are only finitely many perfect forms of degree n
up to the action of GL(n, �); that is, up to a base
change in �n. Voronoı̈ also introduced an algo-
rithm to compute the perfect forms. His result
was generalized to the situation of metric tensors
invariant under a finite group G in Refs. [19] and
[20]. The crucial idea is to consider the Bravais
manifold F(G) together with the Bravais manifold
F(GT) for the group of transposed matrices. Note
that the map
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� : �sym
n�n 3 F�GT� : F �

1
�G� �

g�G

gFgT

is a projection onto F(GT). Keeping the above no-
tation for perfect forms, one says that a metric
tensor F � F(G) is G-perfect if �(D) contains a basis
of F(GT).

15. Theorem. (Jacquet-Chiffelle, Opgenorth).
There exist only finitely many G-perfect forms up to
the action of the normalizer NGL(n,�)(G).

The original result of Voronoı̈ is the special case
where G is the trivial group, which has GL(n, �) as
its normalizer.

As in the case of perfect forms without a group
acting, G-perfect forms can be constructed effi-
ciently. One obtains a partition of the cone of pos-
itive definite G-invariant forms into cells and the
hyperplanes separating the cells of two perfect
forms are of the form

H�Y� � �X � �sym
n�n�trace�X � Y� � 0�.

The forms Y yielding the boundaries of the cell of
a given perfect form F are called the directions of F
and characterize the neighborship relations of the
cells. It is shown in Ref. [20] that the set of direc-
tions contains a basis of F(GT). Since the action of
the integral normalizer on F(G) preserves the
neighborship relations between the cells of G-per-
fect forms, a perfect form is always transformed
together with its directions. As there are only fi-
nitely many G-perfect forms up to the action of the
normalizer, this gives a way to find an almost ca-
nonical basis for the Bravais manifold.

The algorithm to find generators for the normal-
izer then uses the following approach. After com-
puting an initial G-perfect form, find all its neigh-
bors and check whether an isometry between the
perfect forms can be found that also transforms the
directions into the directions of the other form. This
can be facilitated by the methods described in Sec-
tion 4.1. Iterating this process ultimately yields gen-
erators for the integral normalizer of G.

4.3. �-EQUIVALENCE OF POINT GROUPS

The approach for computing the integral normal-
izer via G-prefect forms and their directions as in
Section 4.2 yields a method to decide whether two

point groups are �-equivalent, that is, whether they
are conjugate by a matrix in GL(n, �).

We first consider the case of �-equivalence for
Bravais groups. If two Bravais groups B1, B2 are
conjugate by a transformation g � GL(n, �), this
transformation induces isometries between the
metric tensors in the Bravais manifolds of B1 and B2.
In particular, a B1-perfect form has to be mapped to
a B2-perfect form by an isometry that also maps the
directions of the first form to the directions of the
second form. Finding such an isometry is accom-
plished by an adapted version of the algorithm to
compute isometries between lattices described in
Section 4.1.

Now let K1, K2 � GL(n, �) and suppose we want
to decide whether these groups are �-equivalent.
First, one checks whether their Bravais groups are
�-equivalent. If not, the groups cannot be �-equiv-
alent; otherwise, one may assume that K1 and K2 are
subgroups of the same Bravais group and K2 are
subgroups of the same Bravais group B(K1) �
B(K2). In that case, they are �-equivalent if and only
if they are conjugate under an element of the nor-
malizer N :� NGL(n,�)[B(K1)]. This is decided by
computing the orbit of K1 under N and checking
whether K2 is contained in this orbit.

4.4. INVARIANT SUBLATTICES

If G is a space group, its translation lattice T is
setwise invariant under the action of its point group
K. In this section, we discuss the computation of
other full lattices L � �n, which are setwise invari-
ant under the action of a given finite subgroup K of
GL(n, �). These lattices are called K-invariant lat-
tices.

Obvious examples of K-invariant lattices are the
scalings a�n for a � �. Of special interest are the
K-invariant sublattices of �n, which are not con-
tained in a proper scaling m�n for an integer m 	 1
and which are usually termed centerings.

Example: Let T be the usual square lattice �2

and let K be the point group 4mm. Then a K-invari-
ant sublattice of T is spanned by the vectors

�1
1� and � 1

�1�.

This is also known as the checkerboard lattice.

An arbitrary K-invariant lattice L can always be
scaled such that the scaling is contained in �n. Thus,
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we will only consider K-invariant sublattices of �n

in the sequel.
To find K-invariant sublattices, it is sufficient to

find maximal K-invariant sublattices and to iterate
the procedure. If a maximal K-invariant sublattice L
of �n is given, the index of L in �n is a power of a
prime p. Thus, L contains the K-invariant lattice p�n.

16. Lemma. Let L be a maximal K-invariant
lattice in T :� �n such that pT � L. Then L/pT is a
maximal �pK-submodule of the natural �pK-module
T/pT and T/L is an irreducible �pK-module.

Proof: The condition that L is a K-invariant lat-
tice translates readily to the fact that L/pT is a
K-submodule of T/pT. As L is a maximal K-invari-
ant lattice, it follows that L/pT is a maximal sub-
module of T/pT.

If a finite subgroup K of GL(n, �) is given, the
action of K on the natural �pK-module T/pT for T �
�n can be read off by reducing the matrix-elements
of K modulo p.

The so-called Meataxe (see Section 3.3) can be
used to determine all kinds of submodules in a
given �pK-module. In particular, all maximal sub-
modules can be determined readily.

Thus, we can effectively determine all K-invari-
ant maximal sublattices in a given lattice L that
contain pL for a given prime p.

Example. Let K be the point group

31m � 	g � �0 �1
1 �1�, h � �0 1

1 0�
,

and let T � �2.

1. Consider the prime 2. Then T/2T is irreduc-
ible as an �2K-module, and hence 2T is the
only maximal K-invariant sublattice of T con-
taining 2T.

2. Consider the prime 3. Then T/3T has exactly
one proper �3K-invariant submodule, which
is generated by

s :� � 1
�1�.

Thus, there exists exactly one K-invariant
maximal sublattice L in T with 3T � L and this
is given by L � �s, 3T� � �(�1

1 ), (3
0)�.

The rational normalizer

N :� NGL�n,���K� � �g � GL�n, ���gKg�1 � K�

of the point group K acts on the K-invariant lattices,
since for a K-invariant sublattice L and g � N one
has h(gv) � g(g�1hg)v � g � L for all h � K and v �
L. The following fundamental theorem from Ref.
[14] states that the action of N reduces the analysis
of the K-invariant sublattices to a finite task.

17. Theorem. There is only a finite number of
orbits of K-invariant lattices in �n under the action
of the rational normalizer NGL(n,�)(K).

It remains to consider the determination of rep-
resentatives for the N-orbits of K-invariant lattices.
First, note that N is an infinite group acting on an
infinite set of lattices. Hence the standard methods
from computational group theory as outlined in
Section 3.1 do not apply immediately. We therefore
address the problem in two steps. In a first step, we
consider the centralizer

C :� CGL�n,���K� � �X � GL�n, ���Xh

� hX for all h � K�

of the point group K. The centralizer C is a sub-
group of N of finite index and can be determined by
standard methods from representation theory. Note
that under the action of C, all K-invariant maximal
sublattices of L containing qL for a prime q�K� lie in
one orbit with L itself. To find representatives for
the N-orbits of K-invariant lattices, it thus suffices to
consider iterated maximal sublattices of index pa for
primes p dividing �K�.

Since C is of finite index in N, there is only a
finite number of C-orbits of K-invariant lattices and
N acts on these C-orbits. Hence, in a second step, we
consider the action of N on the C-orbits and reduce
them to representatives of the N-orbits.

4.5. ZASSENHAUS ALGORITHM

The Zassenhaus algorithm can be used to deter-
mine up to isomorphism all space groups with a
given point group K � GL(n, �). It is perhaps one of
the most prominent and best-known methods in
this area. We refer to Ref. [21] for background and
further details.

Let G be a space group with point group K in
standard form. Then G depends only on the vector
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system � used to build it standard form. The central
aim of the Zassenhaus algorithm is to find a set of
vector systems that corresponds to the space
groups with point group K up to isomorphism.

18. Definition. Let K � GL(n, �) finite and de-
fine V :� �n/�n.

Z1�K, V� :� �� : K 3 V���1� � 0, ��gh� � ��g�

� g��h� for all g, h � K�

B1�K, V� :� �� � Z1�K, V����g� � gv 	 v

for some v � V�

H1�K, V� :� Z1�K, V�/B1�K, V�.

In the definition of H1(K, V), one considers Z1(K,
V) as an additive group with pointwise addition.
The elements of Z1(K, V) are called cocycles and the
elements of B1(K, V) coboundaries with values in V.
The group H1(K, V) is the first cohomology group of
K with values in V.

As noted after the definition of vector systems in
Section 2.2, every vector system satisfies a cocycle
condition as used in the definition of Z1(K, V). This
yields that every vector system � induces an ele-
ment �� of H1(K, V) via ��(g) � (�(g) � �n) � B1(K, V).

Let N � NGL(n,�)(K) be the integral normalizer of
K. Then N acts on Z1(K, V) via �g(h) :� g�(ghg�1) for
� � Z1(K, V) and g � N. This action leaves B1(K, V)
setwise invariant and thus induces an action on
H1(K, V). This yields the following fundamental
theorem.

19. Theorem. Let �1, . . . , �k be a set of vector
systems of K such that ��1, . . . , �k is a set of repre-
sentatives for the N-orbits of elements of H1(K, V).
Then the space groups in standard form corre-
sponding to the vector systems �1, . . . , �k form a set
of isomorphism type representatives of space
groups with point group K.

The standard method to compute H1(K, V) is
called the Zassenhaus algorithm and is described in
Ref. [21]. This is also the current standard method
to determine H1(K, V) for arbitrary finite groups K
and arbitrary modules V in computational group
theory. We recall its main ideas in the following.

Let �g1, . . . , gm�r1, . . . , rs� be a finite presentation
defining the point group K. Suppose that a space
group G with point group K is given. If the relations

are evaluated on elements of G with linear parts
corresponding to g1, . . . , gm, the linear parts will
automatically evaluate to the identity matrix. Thus,
it remains to consider the translation parts that are
required to evaluate to elements of the translation
subgroup, that is, to vectors with integral entries.

To determine the elements of Z1(K, V), one re-
gards the components of the translation parts of the
generators as indeterminates, and obtains a system
of linear congruences modulo � for these indeter-
minates by evaluating the relations on the genera-
tors. An efficient method to obtain this system of
linear congruences is to apply Fox derivatives to the
relations; see for example Section 4.2.1 of Ref. [22].
The solutions of the obtained linear congruences
form the group Z1(K, V).

It now remains to determine B1(K, V). However,
this is straightforward by its definition. Once
Z1(K, V) and B1(K, V) are available, we obtain H1(K, V).

To apply Theorem 19 in this setting, we deter-
mine the integral normalizer N of K (see Section
4.2). Then we compute the orbits of N on the finite
group H1(K, V) (see Section 3.1). Thus, we obtain all
space groups with point group K up to isomor-
phism.

20. Lemma. Every coset of Z1(K, V)/B1(K, V)
contains a representative whose image is in �n/�n.

Proof: As the elements of B1(K, V) are just the
cocycles obtained from conjugation with transla-
tions, adjusting the representative by an element of
B1(K, V) is the same as translating the origin of the
underlying affine space. By choosing an appropri-
ate origin, we can always adjust � � Z1(K, V) by an
element � � B1(K, V) such that the resulting � � �
has values in �n/�n only.

Lemma 20, in particular, implies that every space
group G has a standard form in which the vector
system � has rational values only.

5. Classification Hierarchy for
Crystallographic Groups

Space groups can be described in terms of their
translation lattices, their point groups and their vec-
tor systems. This leads to various possibilities of
grouping space groups together and results in a
hierarchy of classification levels. In this section we
explain the different classification levels suggested
by the IUCr Commission on Crystallographic No-
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menclature in Ref. [23]. First, we recall the defini-
tion of the various classes in this hierarchy.

21. Definition:

1. Two space groups have the same space-group
type if they are conjugate by an affine map-
ping.

2. Two space groups are in the same arithmetic
crystal class or arithmetic class, for short, if
their point groups are conjugate by an ele-
ment in GL(n, �).

3. Two space groups are in the same geometric
crystal class or geometric class, for short, if
their point groups are conjugate by an ele-
ment in GL(n, �).

4. Two space groups are in the same Bravais
class if the Bravais groups of their translation
lattices lie in the same arithmetic class.

5. Two space groups are in the same Bravais
system if the Bravais groups of their transla-
tion lattices lie in the same geometric class.

6. Two geometric classes are in the same crystal
system or point-group system if they intersect
the same set of Bravais classes.

7. Bravais classes with representatives in the
same geometric class and geometric classes
with representatives in the same Bravais class
are joined into a single crystal family.

Figure 1 yields an overview on the various levels
of the classification. We discuss these definitions
and their background briefly in the following sec-
tions.

5.1. SPACE-GROUP TYPE

By the Bieberbach theorems, two space groups
G1 and G2 have the same space-group type if and
only if they are isomorphic as abstract groups. Since
an isomorphism � has to take the translation sub-
group T1 of G1 to the translation subgroup T2 of G2,
writing the point groups with respect to lattice
bases corresponding to each other via � shows that
the point groups of G1 and G2 can differ by a base
change of the translation lattice and thus they are
conjugate by an element of GL(n, �).

However, there are different possibilities for
space groups with given action of the point group
on the translation lattice. This is due to the different
vector systems. The different possibilities are orga-
nized by the first cohomology group H1(K, �n/�n)
as described in Section 4.5 and the different space-
group types with point group K are in one-to-one
correspondence with the orbits of the integral nor-
malizer NGL(n,�)(k) on the vector systems represent-
ing H1(K, �n/�n).

5.2. ARITHMETIC CRYSTAL CLASS

Two space groups of the same space-group type
lie in the same arithmetic class, as their point
groups have been conjugated by an element in
GL(n, �). The converse is not necessarily true, as the
vector systems are not relevant for the arithmetic
classes. In effect, the arithmetic classes reflect the
interplay of the point groups with the translation
lattices.

5.3. GEOMETRIC CRYSTAL CLASS

Two space groups in the same arithmetic class lie
in the same geometric class, as GL(n, �) � GL(n, �)
holds. The idea behind this classification level is
that the translation lattice of a crystal structure is
observed on a microscopic lattice, whereas the mac-
roscopic structure of the crystal also allows trans-
formations of the vector space underlying the trans-
lation lattice. Note that the geometric crystal classes
were traditionally often just called crystal classes.

5.4. BRAVAIS CLASS

The arithmetic and geometric classes collect
space groups according to their point groups. Al-
ternatively, space groups may be classified by their
translation lattices. It is convenient to characterize a
translation lattice by its full group of symmetries,

FIGURE 1. Hierarchy of classification.
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that is, its Bravais group or arithmetic holohedry.
Two lattices are said to lie in the same Bravais class
if their Bravais groups lie in the same arithmetic
class.

Space groups with translation lattices in the
same Bravais class are said to be Bravais equivalent,
and one extends the notion of Bravais classes to
space groups by saying that space groups lie in the
same Bravais class if they are Bravais equivalent.

Bravais classes consist of full arithmetic classes
by construction and every Bravais class contains a
unique arithmetic class of a Bravais group B. The
other arithmetic classes in the Bravais class are the
classes of the subgroups K of B for which the metric
tensor of the translation lattice of B is still a generic
form in the Bravais manifold F(K). This is equiva-
lent to saying that the Bravais manifolds F(B) and
F(K) have the same dimension.

5.5. BRAVAIS SYSTEM

Two Bravais classes of lattices are said to lie in
the same Bravais system or lattice system if their
Bravais groups lie in the same geometric class. For
the lattices, this means that one lattice is a sublattice
of the other, but not isometric to it. Since holo-
hedries are the geometric classes containing a Bra-
vais group, there is a one-to-one correspondence
between Bravais systems and holohedries. This no-
tation is extended to space groups by saying that
two space groups lie in the same Bravais system if
their translation lattices do so.

An equivalent characterization of Bravais sys-
tems if often useful and shows more clearly the
analogy with the definition of a crystal system as
given below. A Bravais system is the union of all
Bravais classes intersecting the same set of geomet-
ric classes. We say that a Bravais class intersects a
geometric class if there is a rational matrix group
lying in both the Bravais class and the geometric
class.

5.6. CRYSTAL SYSTEM

Two geometric classes are said to lie in the same
crystal system if for any representative of the first
class there is a representative in the second class
such that the representatives have GL(n, �)-conju-
gate Bravais groups.

One can see that a crystal system contains at
most one holohedry and in low dimensions (up to
four) all crystal systems in fact do contain a holo-
hedry. However, this is not true in general; there

are two examples of crystal systems in dimension 5
that do not contain a holohedry, and in higher
dimensions there is a growing number of such
cases.

5.7. CRYSTAL FAMILY

Note that a crystal family consists of full Bravais
systems and of full crystal systems by construction.
Consequently, the point groups of two space
groups in the same crystal family can be trans-
formed into each other by a finite sequence of the
following two operations: (i) take a sub- or super-
group in the same Bravais class; and (ii) take a
conjugate under GL(n, �).

Since choosing a different group in the same
Bravais class does not change the Bravais manifold,
two space groups G1 and G2 with point groups K1
and K2 lie in the same crystal family if and only if
their Bravais manifolds are transformed into each
other by a rational matrix; that is, if there exists g �
GL(n, �) such that F(K2) � gTF(K1)g.

5.8. ENANTIOMORPHISM

So far, we have considered the equivalence of
point groups and space groups under abstract
transformations. However, crystallography deals
with objects in physical space, therefore the opera-
tions transforming a structure into an equivalent
one have to be orientation-preserving. The distinc-
tion between abstract and orientation-preserving
transformations gives rise to the notion of enanti-
omorphism or chirality.

22. Definition. Two groups form an enanti-
omorphic pair if they are equivalent by an abstract
transformation, but not by an orientation-preserv-
ing transformation. The members of an enanti-
omorphic pair are said to be enantiomorphic
groups.

For example, there are 219 classes of space
groups in dimension 3 under abstract affine trans-
formations, but 11 of these classes give rise to en-
antiomorphic pairs, thus giving the 230 space-
group types usually considered in crystallography.

For an elaborate discussion of enantiomorphism
on the different levels of the classification hierarchy
we refer the reader to Ref. [24]. Here, we will only
briefly sketch how enantiomorphism on the levels
of arithmetic classes, geometric classes, and space-
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group types can be identified by orbit and stabilizer
computations as described in Section 3.1.

We first note that in each of the mentioned cases
the equivalence classes are obtained as orbits of a
representative G under the action of a group G. For
geometric classes, we have G � GL(n, �), for arith-
metic classes we have G � GL(n, �), and for space-
group types we have G � Aff(n). We denote the
subgroup of orientation-preserving transforma-
tions in G by G�, which is a subgroup of index 2.
For G � GL(n, �) and G � GL(n, �), G� consists of
the matrices with positive determinant, for G �
Aff(n) it consists of the affine mappings with linear
part having positive determinant. With this nota-
tion, we get the following result.

23. Lemma. The equivalence class of the group
G splits under restriction to orientation-preserving
transformations into a pair of classes of enanti-
omorphic groups if and only if the stabilizer
StabG(G) of G under G is contained in G�.

This criterion is readily checked for geometric
and arithmetic classes, as the stabilizer StabG(G) in
these cases is the rational and integral normalizer
NGL(n,�)(G) and NGL(n,�)(G), respectively. If the nor-
malizer contains no generator of negative determi-
nant, the group is enantiomorphic; otherwise it is
not.

The situation is slightly more complicated for the
case of space groups. Clearly, the point group of
StabG(G) lies in the normalizer N :� NGL(n,�)(K) of
the point group of G. If N only contains elements of
positive determinant, G is enantiomorphic; in fact,
all space groups with point group K are enanti-
omorphic in this case. But not every element of N is
necessarily the linear part of an element of
StabG(G), since the action on the vector systems also
has to be considered. Therefore, one has to check
whether the orbit of the vector system of G under N
splits into two orbits, when the action is restricted
to the orientation-preserving elements in N. If so, G
is enantiomorphic; otherwise, it is not.

6. Moving in the Classification
Scheme

In this section we illustrate how the methods
described in Sections 3 and 4 are applied in relation
to the classification levels of crystallographic
groups. In particular we consider the following
tasks: (i) list all classes on a next lower level into

which a given class on a given level splits; (ii)
identify the class of a given space group on a given
level; and (iii) to assign a group to a class on a
higher level.

6.1. LISTING CRYSTALLOGRAPHIC GROUPS

In this section, we consider the task of listing all
classes of groups on a certain classification level
which belong to the same class on a higher classi-
fication level. We will discuss the following steps:
from arithmetic class to space-group type; from
geometric class to arithmetic class; from Bravais
class to arithmetic class; and from crystal family to
arithmetic class.

From Arithmetic Class to Space-Group Type

Here the Zassenhaus algorithm is applied. After
computing a presentation for the point group K, the
vector systems are computed and representatives
modulo the coboundaries B1(K, �n/�n) are chosen.
Then representatives for the action of the integral
normalizer NGL(n,�)(K) on the vector systems give
the different space-group types with point group in
arithmetic class of K.

Example: Let

K :� 	g � �1 0
0 �1�, h � ��1 0

0 �1�

be the point group 2mm. Then K has the presenta-
tion �g, h�g2 � h2 � (gh)2 � 1). The vector systems
for this point group are

tg � �a
b� , th � � c

d� with 2a � �, 2b 	 2d � �,

and the vector systems corresponding to B1(K, �n/�n)
are those with a � 0 and b � d. Thus, we find that
H1(K, �n/�n) has four elements, and we can choose
the vector systems representing these elements
such that th � (0

0) in every case. For tg we get the
following choices:

tg
0 � �0

0� , tg
1 � � 1

2

0� , tg
2 � �0

1
2
� , tg

3 � � 1
2
1
2
� .

The normalizer NGL(n,�)(K) contains as additional
generator the matrix (1

0
0
1) and under the action of

this matrix the vector systems with tg � tg
1 and tg �
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tg
2 are interchanged. We therefore obtain three

space-group types for the arithmetic class 2mm.

6.1.1. From Geometric Class to Arithmetic
Class

This step is performed via the K-invariant sub-
lattices and it is based on the following lemma.

24. Lemma. Let K � GL(n, �) be a point group.
Then the action of K on a K-invariant sublattice L �
�n gives a point group in the geometric class of K.
Conversely, every point group in the geometric
class of K is obtained in this way.

Proof: Let B � (b1, . . . , bn) be a lattice basis of L
and let X be the matrix with columns bi. Then the
action of K on L with respect to the basis B is given
by X�1KX and thus lies in the geometric class of K.

Conversely, if K � X�1KX lies in the geometric
class of K, then K fixes the lattice X�1 � �n, since for
v � �n and g � X�1gX � K one has g(X�1v) �
X�1gv � X�1 � �n. Multiplying X�1 with the least
common multiple of the denominators of its entries
does not alter K but makes X�1 � �n a sublattice
of �n.

Of course, there are infinitely many K-invariant
sublattices of �n, but by Theorem 17 only finitely
many of these are relevant in order to split a geo-
metric class into arithmetic classes.

Given a representative K of a geometric class,
first the K-invariant sublattices are computed up to
the action of the normalizer NGL(n,�)(K). This yields
finitely many sublattices L1, . . . , Ls and the actions
K1, . . . , Ks on these sublattices contain a set of rep-
resentatives for the arithmetic classes in the geo-
metric class of K. However, some of the Ki may still
fall into a single arithmetic class. This is the case if
two of the sublattices Li and Lj lie in one orbit under
the rational normalizer NGL(n,�)(K). We therefore
have to test the groups Ki on �-equivalence, thereby
getting generators of NGL(n,�)(K) as an add-on. Note
that computing generators of the rational normal-
izer directly can only be done by the group auto-
morphism method described in Section 4.2.

Example: (Example of Section 4.4 continued.)
We have already seen that for K � 31m the only
K-invariant sublattice of T � �2, which is not con-
tained in 2T or 3T is

L � 	� 1
�1�, �0

3�
 � 	�1
2�, ��2

�1�
.

The action of the generators g, h of K with respect to
the second basis given for L is

g � �0 �1
1 �1�, h � � 0 �1

�1 0�,

and these matrices generate the point group 3m1
representing a different arithmetic class in the geo-
metric class of 31m.

Since the action of K on L/2L is an irreducible
�2K-module, and primes not dividing �K� � 6 are
irrelevant, the only task remaining is to compute
the maximal �3K-invariant submodules of L/3L.
One checks that there is again only one proper
submodule and this yields the sublattice 3T � L, so
we are done. We conclude that the geometric class
containing 31m consists of the arithmetic classes of
31m and 3m1.

6.1.2. From Bravais Class to Arithmetic Class

Since a Bravais class consists of the subgroups of
a Bravais group that have a Bravais manifold of the
same dimension, this can be achieved by comput-
ing the lattice of subgroups of the Bravais group.
The subgroups are traversed from top to bottom
and a branch is cut off if a subgroup has a space of
invariant forms of higher dimension. Finally, the
obtained subgroups have to be tested for �-equiv-
alence, but this will only be necessary in very few
cases, since most subgroups are distinguished by
simple group theoretic invariants.

6.1.3. From Crystal Family Class to
Arithmetic Class

This is a more complex task, which involves both
the splitting of geometric classes and of Bravais
classes into arithmetic classes. We assume that we
start with an arbitrary point group K in a crystal
family. In a first round, we split the geometric class
of K into arithmetic classes and compute the Bravais
groups for each of these classes. Next, we compute
the arithmetic classes in the Bravais classes of these
Bravais groups, of course discarding �-equivalent
groups. In a second round, we regard the groups
obtained so far as representatives of geometric
classes and split again into arithmetic classes and
compute Bravais groups. Note that usually only
few new Bravais groups will be found, but for these
the Bravais classes again have to be split into arith-
metic classes. Iterating this process until no new
Bravais groups are found yields all arithmetic

EICK AND SOUVIGNIER

330 VOL. 106, NO. 1



classes in the crystal family. Note that the compu-
tations can be reduced drastically by recording in-
formation about �-equivalence and membership in
Bravais classes of the found groups.

6.2. IDENTIFICATION OF
CRYSTALLOGRAPHIC GROUPS

This is one of the most common tasks when
dealing with crystallographic groups. The general
situation is as follows: Given a group on some
classification level, find a representative of the class
to which the group belongs on this level. Since we
can assume that representatives of the classes are
known, the task is simplified to the decision,
whether two groups on a certain level belong to the
same class or not. If the answer is positive, it is
desirable that a transformation is explicitly given
that transforms the group into the representative.

We will describe the procedures for the different
classification levels, the most important being again
those for geometric classes, arithmetic classes, and
space-group types.

6.2.1. Geometric Classes

Assume that we are given two finite matrix
groups K1 and K2 and want to check whether they
lie in the same geometric class. One first checks
some simple group theoretic invariants like group
order, orders, and sizes of conjugacy classes and
traces of representatives of the conjugacy classes. If
the invariants coincide, we can embark on one of
the following two decision procedures.

As for the integral normalizer, one can try to find
a conjugating matrix by a direct approach. If the
first point group K1 is generated by g1, . . . , gs, a
conjugating matrix transforms the gi into generators
of the second group K2. Hence one has to check for
all possible generating system h1, . . . , hs of K2
whether the system of linear equations

Xgi � hiX for all 1 � i � s

has a rational solution matrix X. The set of gener-
ating systems that have to be tested can be heavily
reduced by checking that orders and traces of the
generators and their products have to coincide.

A second approach, which is usually faster un-
less the groups are very small, is to split the geo-
metric class of K1 into arithmetic classes and check
(by the method described below) whether one of

the representatives lies in the same arithmetic class
as K2.

We note that because we are dealing with finite
groups, every representative of a geometric class
may be transformed to an integral group. This is
done by applying all group elements to the vectors
of a lattice basis of �n and taking the lattice spanned
by the images. Transforming the group to the so
found lattice gives an integral matrix group.

6.2.2. Arithmetic Classes

The method based on the computation of the
integral normalizer via perfect forms and their di-
rections was already discussed in Section 4.3. Two
point groups K1 and K2 can only lie in the same
arithmetic class if their Bravais groups B(K1) and
B(K2) are �-equivalent. After transforming with the
found conjugating matrix for the Bravais groups we
may therefore assume that B(K1) � B(K2) and in
that case the groups K1 and K2 lie in the same
arithmetic class if and only if they are conjugate
under the integral normalizer of B(G1). This is to be
checked by computing the orbit of G1 under
NGL(n,�)[B(G1)].

6.2.3. Space-Group Types

As a first step, we have to provide a method to
bring a space group to standard form, such that the
translation subgroup is �n. Since elements in the
translation subgroup can be obtained as products of
generators with nontrivial linear part, we cannot
assume that a lattice basis of the translation sub-
group is given explicitly as generators.

To compute the translations obtained implicitly
from the generators, we require a presentation of
the point group. We obtain a subgroup of the trans-
lation subgroup by evaluating the relations on the
space group generators and after adding the trans-
lations which are given explicitly as generators the
full translation subgroup is obtained as the closure
of this subgroup under the action of the point
group.

If n linearly independent translations are given
that are presumed to generate the translation sub-
group, this procedure is simplified to checking that
the lattice generated is indeed invariant under the
point group and that the relations evaluate to vec-
tors in that lattice.

After having found the translation subgroup T,
one transforms the space group to a lattice basis of
T, which yields a space group with point group K �
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GL(n, �) and translation subgroup �n. Finally, a
space group in standard form is obtained by reduc-
ing the values of the vector system on the genera-
tors modulo �.

We now consider the problem of deciding
whether two space groups G1 and G2 (in standard
form) belong to the same space-group type. For
that, we first check whether their point groups K1
and K2 lie in the same arithmetic class. If not, the
space groups are not equivalent; otherwise, we can
transform G2 such that K2 � K1. However, we can
not identify the generators of K1 and K2 immedi-
ately, since conjugation by an element from the
normalizer permutes the point group elements. In-
stead, we have to compute the orbit of the vector
system of G1 under the normalizer NGL(n,�)(K1) and
check whether for any vector system in the orbit we
obtain the vector system of G2.

6.2.4. Other Levels

The identification on the higher levels is a com-
bination of the identification methods described
above and some enumeration tasks:

Bravais class: For a given group K, we first com-
pute its Bravais group B(K) and then identify
the arithmetic class of B(K).
Bravais system: This is the same as for the Bra-
vais class, except that we identify the geometric
class of B(K) instead of the arithmetic class.
Crystal system: We assume that we have stored
for each of the crystal systems which Bravais
classes they intersect. It then remains to split the
geometric class of a given group K into arith-
metic classes and identify the arithmetic classes
of their Bravais groups.
Crystal family: This is done along the lines of
listing the arithmetic classes in a crystal family
as described in Section 6.1. If we assume that it
is known which Bravais classes are contained in
a crystal family, this is reduced to identifying
the Bravais class of the given group.

6.3. CLASSIFICATION OF
CRYSTALLOGRAPHIC GROUPS

Here, we want to assign a group on a certain
classification level to a class on a higher level. In
most cases, this means to forget some information
and to identify the class so obtained on the classi-
fication level in question. For example, to assign a

space-group type to an arithmetic class, the linear
part is extracted from the group and it is deter-
mined to which arithmetic class the integral matrix
group thus obtained belongs.

To assign an arithmetic class to its Bravais class,
first its Bravais group is computed and then the
class is identified by checking on �-equivalence.

Even simpler, to assign an arithmetic class to a
geometric class, it simply has to be checked to
which geometric class the given group belongs.
Analogously, on all higher classification levels a
given group is just reinterpreted as a representative
on the new classification level and has to be iden-
tified with one of the representatives on this level.

7. Computing Subgroups

We discuss the computation of certain sub-
groups of a given space group G. In particular, we
consider the problem of computing the maximal
subgroups of G and of checking torsion-freeness of
G. Variations of these methods can be used to de-
termine all subgroups of a given finite index in G
and to compute all conjugacy classes of finite sub-
groups of G.

We assume throughout that G is given in stan-
dard form. Let T denote the translation subgroup of
G and let K be its point group. As a first step, we
discuss the theoretical setup, which is necessary for
such computations.

25. Lemma. Let U be an arbitrary subgroup of
G:

1. UT � {ut�u � U, t � T} � �U, T� is a subgroup
of G with T � UT � G.

2. U � T is a subgroup of T which is normal in
UT.

3. U/(U � T) � UT/T and UT/T embeds into K.

The situation is summarized in Figure 2.

Thus, every subgroup U of G defines two new
subgroups: the subgroup UT and the subgroup U �
T. These play a fundamental role in the computa-
tion of subgroups of G.

26. Definition. Let U be a subgroup of G:

1. U is called lattice-equal (translationengleich) if
T � U or, equivalently, if U � T � T.
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2. U is called class-equal (klassengleich) if UT �
G.

The following theorem yields that the lattice-
equal subgroups of a space group G can be deter-
mined by a standard application of methods from
computational group theory (see Section 3).

27. Theorem. The lattice-equal subgroups of G
correspond one-to-one to the subgroups of the fi-
nite point group K.

Proof: Follows directly from Lemma 25.

The class-equal subgroups cannot be determined
so readily, as there are infinitely many of them. The
following theorem shows that they are parameter-
ized by the K-invariant sublattices of T.

28. Theorem. Let U be a class-equal subgroup
of G. Then U � T is a K-invariant sublattice of T.

Proof: By the above Lemma 25, it follows that U
� T is normal in UT � G. Hence U � T is K-
invariant.

7.1. MAXIMAL SUBGROUPS

The algorithm described in this section has been
introduced in Ref. [25]. It relies on the following
fundamental theorem on subgroups of a space
group is known as Hermann’s theorem (see Ref.
[26]).

29. Theorem. Let U � G be a subgroup of the
space group G.

1. There exists a unique group H with U � H �
G such that H is a lattice-equal subgroup of G
and U is a class-equal subgroup of H.

2. If U is maximal in G, it is either class-equal or
lattice-equal.

Proof: (a) By Lemma 25, group H � UT has the
desired properties.

(b) This follows directly from (a): if U is neither
class-equal nor lattice-equal, UT is a proper sub-
group of G with U � UT � G and this is not
possible for a maximal subgroup.

We split the computation of the maximal sub-
groups of G in two steps: we first determine the
lattice-equal maximal subgroups of G, and then we
consider the class-equal maximal subgroups of G.

The lattice-equal maximal subgroups can be read
off from the maximal subgroups of the point group
K by Theorem 27 and thus they can be determined
readily with standard computational group theory
methods. In particular, there is always only a finite
number of lattice-equal maximal subgroups in a
given space group G.

It remains to consider the class-equal maximal
subgroups. Here the situation is slightly more com-
plicated, as there are always infinitely many class-
equal maximal subgroups in a given space group G.
The following follows directly from Theorem 28.

30. Lemma. Let U be a class-equal maximal
subgroup of G and let L � U � T.

1. L is a maximal K-invariant lattice in T.
2. U/L is a complement to T/L in G/L.
3. [G : U] � [T : L] is a prime power.

Let L be a given maximal K-invariant lattice in T.
Then the (finitely many) maximal subgroups U of G
with U � T � L can be determined readily by
computing all complements to T/L in G/L. As G/L
is a finite group, this can be done with standard
methods from computational group theory.

Example. Let G be the three-dimensional space
group with parameters (4, 2, 1, 1) (see Ref. [8]). Then
G is a symmorphic space group whose point group
is isomorphic to the cyclic group of order 4. This
yields directly that G has exactly one lattice-equal
maximal subgroup, as C4 has exactly one maximal
subgroup.

We consider the class-equal maximal subgroups
of 2-power index in G. Let L be a maximal K-
invariant sublattice of T of two-power index in T.
By Section 4.4, the sublattice L corresponds to a

FIGURE 2. Subgroup U of the space group G.
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maximal K-submodule of T/2T. Using the Meataxe,
we can readily observe that there are three different
maximal K-submodules in T/2T, and thus there are
three different K-invariant lattices in T of 2-power
index. For each of these three lattices L we observe
that G/L is a direct product G/L � T/L � K � C2 �
C4. Hence every of these lattices admits two com-
plements to T/L in G/L and we obtain 6 class-equal
maximal subgroups of 2-power index in G.

We consider the class-equal maximal subgroups
of 3-power index in G. The point group K of G
admits 2 different K-invariant lattices in T of
3-power index: one of index 3 and one of index 9 in
T. Each of these lattices admits 1 conjugacy class of
complement to T/L in G/L and both classes are
nontrivial. Hence we obtain 12 class-equal maximal
subgroups of 3-power index in G.

Finally, we note the following corollary of the
discussion above.

31. Corollary. Every maximal subgroup U of G
is a space group of finite index in G.

7.2. CHECKING TORSION-FREENESS

The torsion-free space groups are also called
Bieberbach groups. They play an interesting role in
topology in the study of certain Riemannian mani-
folds (see, e.g., Ref. [27]). Here we consider the
problem of checking whether a given space group
is torsion free. It turns out that there exists a very
efficient method for this purpose.

32. Lemma. If G contains a nontrivial finite sub-
group, it also contains a subgroup of prime order p
for some prime p�K�.

We denote the projection of a subgroup U � G
into K � G/T by U� and the corresponding projec-
tion of an element u � U by u� .

33. Lemma. Let C be a subgroup of prime order
p in G. Then C is a complement to T in CT and CT
is a subgroup of order p in K.

Hence the approach for checking torsion-free-
ness is as follows:

1. Determine the subgroups H1, . . . , Hr of prime
order in K.

2. For every i � {1, . . . , r}:

a. Let Ui � G with T � Ui and Ui � Hi.
b. Check whether Ui contains a complement Ci

to T.
c. If Ci exists, then return false.

3. Return true.

Step 1 is a standard application of methods for
finite matrix groups in Gap. We note that it would
be sufficient to determine the groups up to conju-
gacy, since conjugate subgroups behave in the same
way in the subsequent algorithm. Step 2a is
straightforward from the definition of G.

It remains to consider Step 3. Let U be a sub-
group of G with T � U and [U : T] � p prime. Then
there exists an element u � U with U � �u, T�. The
aim is to decide whether there exists as h � U with
hp � 1. A test for this purpose is provided by the
following lemma.

34. Lemma. Let U � �u, T� with [U : T] � p and
let u � {g�t}.

1. Then up � {1, s} � T for some s � �n.
2. Group U contains torsion if and only if �s �

Im(g(p�1) � . . . � g � 1).

Proof: (a) As [U : T] � p, it follows that vp � T
for every v � U.

(b) Group U contains torsion if and only if U
contains an element h of order p. We first investi-
gate the possible elements of order p in U.

Every element of U is of the form uex for some
e � {0, . . . , p � 1} and x � T. If h � uex has order p,
e 
 0, as otherwise h � x � T. Thus, there exists f �
{1, . . . , p � 1} such that ef � 1 mod p, since p is a
prime. It follows that hf � uefy � uz for some y, z �
T and hf has order p as well. In summary, it follows
that U contains torsion if and only if U contains an
element h � ux for some x � T and h has order p.

Now let h � U with h � ux for some x � T. Then

hp � uxux · · · ux

� upxup�1xup�2 · · · xux

� upx�up�1�up�2�u�1�.

Thus, hp � 1 holds if and only if (up)�1 �
xup�1�up�2�. . .�u�1 for some x � T. In turn, this trans-
lates to �s � Im(gp�1 � gp�2 � . . . � g � 1).
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7.3. VARIATIONS

A variety of other algorithms are available for
computing subgroups of various types in a space
group. For example:

1. A modification (or an iterated application) of
the maximal subgroup algorithm allows us to
determine the subgroups of a given index l in
a space group.

2. An extension of the algorithm for checking
torsion freeness can be used to compute all
conjugacy classes of finite subgroups of a
space group G.

The idea of the method is as follows. First, we
determine all conjugacy classes of subgroups of the
point group K of G. For every representative U of
such a conjugacy class, we compute a finite presen-
tation. We then use the finite presentation to calcu-
late all conjugacy classes of complements to T in H,
where H � G with T � H and H/T � U. The
complement computation is in effect an extension
of the method used for checking torsion freeness
and reduces to solving a system of linear equations.
(See Ref. [13] for further information.)

We note that this algorithm is particularly effi-
cient if the space group G is polycyclic. In this case,
finite presentations for K and all its subgroups can
be computed readily. Also listing all subgroups of K
up to conjugacy is particularly efficient in this case.
Again, we refer to Ref. [13] for further details.

8. Computing Supergroups

This section contains a short discussion of the
computation of supergroups of a given space group
G. We restrict this discussion to the determination
of minimal supergroups, as an arbitrary super-
group can be constructed by an iterated application
of the minimal supergroups method.

The construction of all minimal supergroups of a
given space group G is dual to the maximal sub-
group computation: if H is a minimal supergroup of
G, then G is a maximal subgroup of H. This sug-
gests the following definition.

35. Definition. Let H be a minimal supergroup
of the space group G:

1. H is called lattice-equal if G is a lattice-equal
maximal subgroup of H.

2. H is called class-equal if G is a class-equal
maximal subgroup of H.

8.1. LATTICE-EQUAL CASE

We consider the computation of the lattice-equal
minimal supergroups of a given space group G.

First, we analyze the situation. Let H be a lattice-
equal minimal supergroup of G and let T denote the
translation lattice of H. Then G � T � T, and thus T
is also the translation lattice of G.

Let K and KH be the point groups of G and H,
respectively. Then KH is a minimal supergroup of K
in GL(n, �). As a first step, we determine all possi-
ble choices for KH.

Let B be the Bravais group of K. Then K � B
holds and for the Bravais manifolds we only obtain
F(B) � F(K). If F(B) � F(K) holds, it follows that
KH embeds into B with K � KH � B and thus there
are only finitely many possibilities for KH. How-
ever, if F(B) 
 F(K), infinitely many choices for KH

are possible as the following example demon-
strates.

Example: Let G be the symmorphic space
group with point group

K � 	��1 0
0 �1�
.

Then for each a � �, the symmorphic space group
Ha with point group

Ka � 	��1 0
0 �1��1 0

a �1�

is a lattice-equal minimal supergroup of G.

The integral normalizer N � NGL(n,�)(K) acts on
the possible point groups KH of the minimal super-
groups of G. The possible point groups KH fall into
a finite number of orbits under this action. In most
cases, one is only interested in representatives of
these orbits so that we can assume that there is only
a finite number of possible choices for KH in all
cases.

To determine a finite set of representatives for
the minimal supergroups U of K in GL(n, �), we use
the following ideas. The group U is contained in
some Bravais group B. We determine those Bravais
groups that contain subgroups that are �-equiva-
lent with K. This can be done using standard meth-
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ods from computational group theory in combina-
tion with the �-equivalence test described in
Section 4.3. We then determine all minimal super-
groups of K in every of these Bravais groups.

Now suppose that a minimal supergroup U of K
in GL(n, �) is given. It remains to determine all
minimal supergroups H of G with point group U.
Every such group H is an extension of T by U and
the Zassenhaus algorithm can be used to list all
such groups up to isomorphism. This algorithm
determines in effect a set of vector systems defining
the desired groups. Here, we are only interested in
extensions of T by U that extend the given exten-
sion G. This can be computed by a variation of the
Zassenhaus algorithm, where only those vector sys-
tems are determined that extend the vector system
defining G as an extension of T by K.

8.2. CLASS-EQUAL CASE

We consider the computation of the class-equal
minimal supergroups of a given space group G.
First, we analyze the situation. Let H be a class-
equal minimal supergroup of G and let TH and T
denote the translation lattices of H and G, respec-
tively. Then T � TH and K � G/T � H/TH � KH if
K and KH are the point groups of G and H, respec-
tively.

36. Lemma. It follows that TH is a K-invariant
minimal superlattice of T.

Proof: By construction, we obtain that H � THG
and thus TH is invariant under the action of G and
hence under the action of K.

The minimal superlattices of a given finite sub-
group K of GL(n, �) can be constructed by an ap-
proach dual to the computation of the maximal
sublattices as discussed in Section 4.4. We recall the
fundamental lemma for this purpose in the follow-
ing.

37. Lemma. Let L be a minimal superlattice of a
lattice T. Then T has p-power index in L for some
prime p and T � L � (1/p)T.

Thus, the minimal superlattices for a given lattice
T can be determined as the minimal submodules of
the �pK-module (1/p)T/T. In turn, this is a standard
application of the Meataxe.

If a minimal superlattice L for T is given, then the
minimal supergroup H determined by L can be
obtained as H � LG.

9. Wyckoff Positions

The Wyckoff positions of a three-dimensional
space group provide a systematic description of the
positions of the atoms in an underlying crystal.
These Wyckoff positions have first been determined
by Niggli in 1919 (see Ref. [28]) and later again by
Wyckoff (see Ref. [29]). They are described in the
International Tables for Crystallography [7].

Here we describe an effective algorithm for com-
puting the Wyckoff positions for an arbitrary n-
dimensional space group. The algorithm is practical
and it can be used to determine Wyckoff positions
of space groups of much higher dimensions than 3.
It has first been described in Ref. [25].

First, we recall the theoretical setup for Wyckhoff
positions. Let G be an n-dimensional space group in
standard form. Let T denote its translation lattice,
let K be its point group and let � : K 3 �n : g � tg

be its vector system. We assume that tg � �n holds
by choosing a suitable origin. Then the elements of
G have the form {k�tk � t} for k � K and t � �n and
G acts on V � �n via

�k�tk � t��v� � kv � tk � t.

The stabilizer of v � V under this action is defined
as StabG(v) � {g � G�g(v) � v}.

38. Lemma. StabG(v) is a finite subgroup of G
for every v � V.

Proof: Let U � StabG(v) and suppose that U is
infinite. Then U � T is nontrivial. Thus, there exists
an element u � U � T with u 
 1. Then u � {1�t} and
u(v) � v � t. As u(v) � v holds, it follows that t �
0 and thus a contradiction.

The stabilizer of points in V are used to introduce
an equivalence relation on V as in the following
definition. Recall that StabG(v) is conjugate to
StabG(w) if there exists a g � G with StabG[g(v)] �
StabG(w) and StabG[g(v)] � g StabG(v)g�1.

39. Definition. Let v, w � V. Then v is equiva-
lent to w is StabG(v) is conjugate to StabG(w) in G.
We write v � w in this case.
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It is straightforward to observe that � is an
equivalence relation on V.

40. Definition. The equivalence classes of � are
called the Wyckoff positions of G. They are of the
form W(v) � {w � V�v � w} for v � V and are full
orbits under the action of G.

41. Remark. Let U � StabG(v) and let UG �
{gUg�1�g � G} the conjugacy class of U in G. Then
W(v) can also be written as W(v) � {w �
V�StabG(y) � UG}, and thus W(v) depends on UG

only. Hence we also write W(UG) for W(v).

This also proves that there is only a finite num-
ber of different Wyckoff positions for a space group
G, as there is only a finite number of conjugacy
classes of finite subgroups in G. We exhibit the
structure of a Wyckoff position in the following.

42. Lemma. Let U be a finite subgroup of G.

1. The fixed points F(U) � {v � V�g(v) � v for all
g � U} form an affine space in V; that is, they
are of the form F(U) � W � w for some W �

V and w � V or F(U) � A.
2. Let W(U) � {v � V�StabG(v) � U} the points

with stabilizer U. Then W(U) � F(U). Addi-
tionally, if W(U) 
 A, W(U) is dense in F(U).

3. If v � V and U � StabG(v),

W�v� � W�UG� � �
g�G

W�gUg�1� � �
g�G

g�W�U��.

Proof: (a) If U � �g1, . . . , gr� and gi � {mi�ti} for
some ti � �n, F(U) corresponds to the solutions the
system of inhomogeneous linear equation (mi �
1)v � ti for 1 � i � r over �.

(b) W(U) � F(U) follows directly from the defi-
nitions. Further, for every v � F(U), it follows that
StabG(v) � U. Thus, F(U) � W(U) �H	U W(H), and
there are only a finite number of possibilities for H,
since H is a finite subgroup of G. If W(U) 
 A, it
follows that dim[F(H)] � dim[F(U)] for every H 	
U, since F(H) � F(U) and F(H) 
 F(U). Thus,
W(U) � F(U)��H	U W(H) is dense in F(U).

(c) The first two equations follow from the
definitions. The last equation follows as g
StabG(v)g�1 � StabG(g(v)) and thus g(W(U)) �
W(gUg�1).

Thus, we can write a Wyckoff position as an
(infinite) union of sets of the form g(W(U)), and the
basic underlying set W(U) is contained in an affine
subspace F(U) of V. It is customary to describe the
Wyckoff position W(v) by describing the affine
space F(U) instead.

9.1. FIRST ALGORITHM

The conjugacy classes of finite subgroups of G
can be determined algorithmically (see Section 7.3).
For each such conjugacy class UG, one can deter-
mine F(U) by solving a system of inhomogeneous
linear equations over �, as in the proof of Lemma
42. It remains to find those conjugacy classes of
finite subgroups UG for which W(U) 
 A. This is
facilitated by the following lemma. We write U �f

H if U � H and U has a finite nontrivial index in H.

43. Lemma. Let U be a finite subgroup of G.
Then W(U) � A if and only if F(U) � �U�fH

F(H).

Proof: First, note that �U�fH
F(H) � F(U) for ev-

ery U. Thus it follows

W�U� � A

N StabG�v� � u for all v � F�U�

N? H 	f U with v � F�H� for all v � F�U�

N F�U� � �U�fHF�H�.

This yields the desired result.

This yields a first algorithm for computing all
Wyckoff positions of G. An improved version of
this idea has been used in Ref. [30]. This method is
very effective if the considered group G contains
only very few finite subgroups. However, it may
happen that a space group contains comparatively
many finite subgroups and only a few of them turn
up as stabilizers of points. This first algorithm then
incorporates a lot of redundancy and we proceed to
suggest a second algorithm that is often more effec-
tive.

9.2. SECOND ALGORITHM

Let H be a subgroup of G with T � H � G. In [4]
there is an algorithm suggested which computes
the fixed point sets F(U) for all U � G with UT � H.
We recall this method here briefly and show how
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this can be applied to determine the Wyckoff posi-
tions of G.

44. Definition. (a) An element v � V is fixed by
H mod T if for all g � H there exists an hg � T with
g(v) � hg(v).

(b) An affine space A � V is fixed by H mod T if
for all v � A and for all g � H there exists an hg �
T with g(v) � hg(v).

The following lemma yields a computationally
useful criterion for the points fixed by a subgroup H
mod T.

45. Lemma. Let H � �g1, . . . , gr, T� and write
gi � {ki�ti} for 1 � i � r for certain ki � K and certain
ti � �n. Then v � V is fixed by H mod T if and
only if

�ki 	 1� � v � �ti mod � for 1 � i � r.

Proof: The point v � V is fixed by H mod T if
and only if there exist hg1

, . . . , hgr
� T with gi(v) �

hgi
(v) for 1 � i � r. Let hgi

� {1, si} for certain si � �n.
Then

gi�v� � hgi�v� N kiv � ti � v � si

N �ki 	 1� � v � si 	 ti

N �ki 	 1� � v � �ti mod �.

This completes the proof.

This yields that the points fixed by H mod T can
be computed as the solutions of a system of inho-
mogeneous linear equations over �/�. This system
has the form

Mx � b mod �,

where M � �n�rn and b � �rn. To solve such a
system, we use a Smith normal form algorithm to
compute a diagonal matrix D and invertible integer
matrices P and Q with M � PDQ. Then

Mx � b mod ZN PDQx � b mod �

N D�Qx� � P�1b mod �

N Dx � bmod �,

where D is a diagonal integer matrix and b is a
rational vector. We denote the diagonal entries of
D by d1, . . . , dn.

46. Lemma. (a) The solutions of Mx � b mod �

are given by {v � V�v � Q�1v and Dv � b}.
(b) The solutions of Dx � b mod � are given by

those v � (v1, . . . , vd) � V with

vi � ��bi � j
di

�j � �� if di � 0

� if di � 0.

Hence the solutions of Mv � b mod � form a
union of affine spaces in V, which are all of the form
Aw � W � w with W � V such that dim(W) �
�{i�di � 0}� and for some w � V. There are only a
finite number of choices for w necessary to describe
all solutions, since in the case di 
 0 of Lemma 46(b)
it is sufficient to consider those vi with 0 � j � di, as
we are only interested in solutions mod �.

Next, we show that the fixed point spaces F(U)
for the finite subgroups U of G with TU � H are
among these affine spaces fixed by H mod T.

47. Lemma. Let U � G be finite with TU � H.
Then F(U) is an affine space fixed by H mod T.

Proof: Every element h � H can be written
uniquely in the form h � kg for some g � U and k �
T. Thus, for every v � F(U), it follows that h(v) �
k[g(v)] � k(v) and thus F(U) is fixed by H mod T.

Now it remains to find a set of affine spaces fixed
by H mod T that yields exactly the fixed point
spaces of a set of conjugacy class representatives for
the finite subgroups U of G with TU � H.

48. Lemma. Let A 
 A be a maximal affine
space fixed by H mod T. Then there exists a finite
U � G with TU � H and A � F(U).

Proof: For every g � H, there exists an hg � T
with g(v) � hg(v) for all v � A. Let U � {hg

�1g�g � H}.
It follows that TU � H by construction. Let v � A.
Then hg

�1(g(v)) � hg
�1[hg(v)] � v and thus U �

StabG(v). Hence U is finite and A � F(U). As F(U) is
an affine space fixed by H mod T, and A is maximal
with this property, it follows that F(U) � A.

This yields the following algorithm to compute
the Wyckoff positions of G:
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1. Determine representatives H� 1, . . . , H� k for the
conjugacy classes of subgroups of K.

2. Initialize C � A.
3. For i � {1, . . . , k} do:

4. Compute the preimage H of H� i in G.
5. Compute representatives A1, . . . , Al for the

T-orbits of the affine subspaces fixed by H
mod T.

6. Determine representatives B1, . . . , Bh for
the G/T-orbits of size [G : H] in the set
{A1, . . . , Al}.

7. Add B1, . . . , Bh to C.
8. Return C.

9.3. EXAMPLE

Let G be the space group of dimension 2 with
G � �a, t1, t2�, where

a � � 0 1 0
�1 0 0

0 0 1
�

and

t1 � �1 0 1
0 1 0
0 0 1

� , t1 � �1 0 0
0 1 1
0 0 1

� .

Then G is a symmorphic space group in standard
form and its point group K is a cyclic group of order
4. We illustrate the two algorithms introduced
above on this example.

9.3.1. First Algorithm

The space group G has six conjugacy classes of
finite subgroups. Representatives for these are
listed in the following:

U1 � �a� � C4

U2 � �t2a� � C4

U3 � �a2� � C2

U4 � �t2a2� � C2

U5 � �t1t2a2� � C2

U6 � �1�.

For each of these six representatives, we can
determine its corresponding fixed point space by
solving a linear equation. We illustrate this in detail
on the example U2.

Recall that F(U2) � {v � �2�(t2a)(v) � v}. Let a �
{k�0} and ti � {1�si}. Then the elements v � �2 lying
in F(U2) can be determined by solving the equation
(k � 1)v � �s2; that is,

��1 1
�1 �1��v1

v2
� � � 0

�1�.

This yields

v � � 1
2
1
2
�

as the only possible solution.
The fixed point spaces for the other finite sub-

groups can be determined by the same approach.
The resulting fixed point spaces are listed in the
following:

F�U1� � �0�

F�U2� � ��
1
2
1
2
�

F�U3� � F�U1�

F�U4� � ��0
1
2
��

F�U5� � F�U2�

F�U6� � �2.

Hence, the Wyckoff positions of G are described by
F(U1), F(U2), F(U4), and F(U6).

9.3.2. Second Algorithm

The point group K of G has three conjugacy
classes of subgroups. Let a � {k�0} as above and note
that K � �k� � C4. Thus, representatives for the
conjugacy classes of subgroups of K are K, U � �k2�,
and {1}. We apply the second algorithm to these
subgroups for determining the Wyckoff positions
of G.

ALGORITHMS FOR CRYSTALLOGRAPHIC GROUPS

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 339



Choose H � G as a preimage for the subgroup K
of K. We want to compute representatives for the
T-orbits of the affine subspaces fixed by H mod T.
These are the solutions of (k � 1)v � 0 mod �;
that is,

��1 1
�1 �1��v1

v2
� � �0

0�mod �.

Let M � k � 1. Then M � PDQ for the matrices

P � ��1 0
�1 �1�, D � �1 0

0 2�, Q � �1 �1
0 1�.

This yields

Mv � 0 mod �

� �PDQ�v � 0 mod �

� Dv � 0 mod � and v � Qv

� v � ��0
0� � �0

1
2
�� and v � Q�1v

� v � ��0
0�� 1

2
1
2
�� .

In summary, we obtain two Wyckoff positions
from the subgroup K of K, and these correspond to
F(U1) and F(U2) in the first algorithm.

Choose H � �a2, t1, t2� as a preimage for the
subgroup U of K. We want to compute representa-
tives for the T-orbits of the affine subspaces fixed by
H mod T. These are the solutions of (k2 � 1)v � 0
mod �; that is,

��2 0
0 �2��v1

v2
� � �0

0�mod �.

Solutions for this equation can be read off readily as

v � ��0
0��0

1
2
�� 1

2

0�� 1
2
1
2
�� .

The first and last of these choices for v are al-
ready covered by the Wyckoff positions for the
subgroup K. Hence we only have to consider the
second and third choice for v. These two choices lie
in one orbit under the action of G and hence we

obtain one Wyckoff position from these two
choices.

In summary, we obtain one Wyckoff position
from the subgroup U of K and this corresponds to
F(U4) in the first algorithm.

Finally, the full space arises as Wyckoff position
for the trivial subgroup of K.

10. Generalizations

In this section we briefly discuss some variations
and generalizations of the methods discussed in
this paper: we consider their application to subpe-
riodic groups and color groups.

10.1. SUBPERIODIC GROUPS

49. Definition. A subgroup G of E(n) is a sub-
periodic group if its translation subgroup T � G �
T(n) is a lattice of rank s � n, and its point group
K � G/T is finite. This is equivalent to saying that
G is a subgroup of a space group with a translation
subgroup of smaller rank.

For n � 2 and s � 1, these groups are known as
frieze groups or strip pattern groups, for n � 3 and
s � 1 these groups are called rod groups and for n �
3 and s � 2 they are called layer groups.

For many tasks, subperiodic groups can be han-
dled just as space groups, but we obtain an espe-
cially useful standard form for subperiodic groups
if we choose the underlying basis appropriately.

50. Definition. A subperiodic group G with
translation subgroup T is given in standard form if
G is represented with respect to a basis B � (b1, . . . ,
bn) such that (b1, . . . , bs) is a lattice basis of T and
(bs�1, . . . , bn) span a lattice that is orthogonal to T
and invariant under the point group K � G/T.

For a subperiodic group G in standard form, the
point group K consists of integral matrices g that are
in block diagonal form with blocks of sizes s � s
and (n � s) � (n � s), respectively:

g � �gE 0
0 gI

� � GL�s, �� � GL�n 	 s, ��.

We denote the components of g by gE for the
action on the exterior space T and gI for the action
on the interior space �bs�1, . . . , bn�. For the sake of
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brevity, we will denote the block diagonal matrix g
by the tuple (gE, gI).

We note that the vector system � : K 3 �n : g �
tg has only nonzero entries in the first s components
corresponding to T and can therefore be thought of
as a vector system � : K3 �s. A subperiodic group
G with point group K is thus given in standard
form as

G � ��
gE 0 tg � t
0 gI 0
0 0 1

� � gE, gI� � K, t � �s� .

Most of the algorithms for space groups can
either be readily applied to subperiodic groups or
be adapted in a straightforward fashion. As exam-
ples, we mention the computation of the integral
normalizer, the Zassenhaus algorithm and the clas-
sification of subperiodic groups.

10.1.1. Integral Normalizer

Let K � GL(n, �) be the point group of a subpe-
riodic group in standard form and denote by KE

and KI the actions of K on T and on the orthogonal
complement of T, respectively. Then K is a subdi-
rect product of KE and KI; that is, a subgroup of the
direct product KE � KI (see Section 2.1 of Ref. [21]
for a discussion of subdirect products).

It is important to note that the integral normal-
izer in the situation of subperiodic groups is not the
full normalizer in GL(n, �), but only the normalizer
in GL(s, �) � GL(n � s, �), since the exterior and
interior space may not be interchanged. There are
now two ways to obtain this normalizer N :�
NGL(s,�)�GL(n�s,�)(K):

1. Compute the normalizers NE :� NGL(s,�)(KE)
and NI :� NGL(n�s,�)(KI) of the two compo-
nents of K, then N is a subgroup of the direct
product NE � NI and can be found via an orbit
computation.

2. Compute the full normalizer N :� NGL(n,�)(K)
and find N as the subgroup of N stabilizing T.

Which of these approaches is preferable depends
mainly on the index of K in KE � KI, but both are
usually very efficient.

10.1.2. Zassenhaus Algorithm

To find the subperiodic groups with given point
group K, the Zassenhaus algorithm can be applied

almost unaltered. The only change is that only vec-
tor systems � : K3 �n are considered that have zero
entries in the last n � s components corresponding
to the interior space.

10.1.3. Classifying Subperiodic Groups

We mentioned that the normalizer of the point
group of a subperiodic group may not interchange
the exterior and interior spaces. The same issue
arises when classifying the point groups into arith-
metic and geometric classes. Instead of conjugating
with matrices from GL(n, �) or GL(n, �), one only
conjugates with transformations from GL(s, �) �
GL(n � s, �) and GL(s, �) � GL(n � s, �), respec-
tively. However, since the basis chosen for the in-
terior space is a lattice basis of an arbitrary lattice
invariant under K, arithmetic classes for the action
on the interior space are of limited use. One there-
fore defines a mixed form of arithmetic and geo-
metric equivalence for the point groups of subperi-
odic groups as follows.

51. Definition. Two subperiodic groups G1, G2
with translation subgroups T1, T2 of rank s and
point groups K1, K2 are said to lie in the same
arithmetic–geometric class if the actions of K1 on T1
and of K2 on T2 lie in the same arithmetic class and
the actions of K1 and K2 on the orthogonal comple-
ments of T1 and T2, respectively, lie in the same
geometric class.

The arithmetic–geometric class of a point group
K is therefore obtained as the orbit of K under
GL(s, �) � GL(n � s, �). For a thorough discussion
of arithmetic and geometric classes within the con-
text of subperiodic groups, we refer the reader to
Ref. [31].

10.2. COLOR GROUPS

So far we have only been concerned with space
groups acting on an affine space. However, the
points of the affine space may also be endowed
with further properties, e.g., a magnetic spin or the
type of an atom. One therefore extends the notion
of space groups to groups that act on the points of
the affine space together with their additional prop-
erties. If this additional property can only take one
of finitely many values, these values are usually
identified with colors and one thus calls these
groups color groups. Of special interest is the case
of two colors (representing, for example, spins up
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and down) and these groups are known as black-
and-white groups. Also the action on several addi-
tional properties has been considered, these groups
are usually called antisymmetry groups. They can
be seen as color groups where the action on the
colors is not necessarily transitive, i.e., the colors
may fall into several orbits. An overview of the
concepts and results obtained for antisymmetry
groups is given in Ref. [32].

It was noted by Heesch [33] that black-and-white
groups can be viewed as special subperiodic groups
where the action on the interior space is restricted
to �1. This concept can be extended to arbitrary
color groups, where the action on the interior space
is the permutation action on the colors. We note
that the dimension of the interior space can be
chosen as m � 1 for a group acting on m colors,
since the symmetric group on m points has an in-
tegral representation of dimension m � 1.

Because we think of a space group as acting on
points in general position, pure color operations are
not allowed, hence the trivial element of the space
group only occurs with the trivial permutation on
the colors. If we denote the color group by G, the
space group giving the action of G on the affine
space by G and the permutation action of G on the
colors by P, we can describe the color group G as
follows:

52. Lemma. A color group G is a subdirect
product G � G � P of a space group G and a
permutation group P such that

1. The index of G in G � P is �P�.
2. The projections of G to the components of the

direct product are surjective.

We briefly describe two different ways to ap-
proach color groups computationally. The first one
starts with a space group and a number m of colors.
Since we want a transitive action on the colors, the
stabilizer of any color is a subgroup of index m and
the stabilizers for the different colors are conjugate
subgroups. To find the different ways to realize a
space group G as a color group acting on m colors,
one therefore has to find the different subgroups of
index m in G, up to conjugacy by the normalizer.
This task can be split into two parts, since the
subgroups of index m are found by first taking a
lattice-equal subgroup H of index m1 in G and then
a class-equal subgroup of index m2 in H such that
m � m1 � m2.

A second approach uses the above lemma more
explicitly. The conditions of the lemma imply that
the permutation group P is isomorphic to a factor
group of G. For a given space group G, this restricts
the possibilities of actions on the colors heavily,
since the permutation group P and the point group
K of G need to have a common factor group K/K1 �
P/P1 such that P1 is an abelian group. The last
statement is due to the fact that P1 in this situation
has to be isomorphic to a factor group of the trans-
lation subgroup T.

Just as for the subperiodic groups the computa-
tional methods for space groups can also be readily
adapted to color groups. As an example we refer to
Ref. [34], where the four-dimensional black-and-
white groups are enumerated. Again, the main
modifications are to adjust the normalizer to the
situation considered and to restrict the vector sys-
tems to the exterior space.
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