CATEGORIES AND HOMOLOGICAL ALGEBRA

Exercises for June 7

Exercise 1. Let R be a ring., and consider an extension

6

$$\mathscr{E}: \qquad 0 \longrightarrow N \longrightarrow E \longrightarrow M \longrightarrow 0$$

of R-modules. If $h: N \to N'$ is a homomorphism, we can form the extension

 $h_*(\mathscr{E}): \qquad 0 \longrightarrow N' \longrightarrow E' \longrightarrow M \longrightarrow 0.$

On the other hand, h induces a homomorphism $h_* \colon \operatorname{Ext}^1_R(M, N) \to \operatorname{Ext}^1_R(M, N')$. Under this homomorphism, the class $[\mathscr{E}] \in \operatorname{Ext}^1_R(M, N)$ is mapped to the class $[h_*(\mathscr{E})] \in \operatorname{Ext}^1_R(M, N')$.

(a) In the above situation, if $h: N \to N'$ is an isomorphism, show that $E \cong E'$ as *R*-modules.

In the rest of this exercise we take R = k[t] where k is a field. For $\lambda \in k$, let $M_{\lambda} = k[t]/(t-\lambda)$ and $M'_{\lambda} = k[t]/(t-\lambda)^2$. If we describe R-modules as pairs (V, ϕ) then M_{λ} corresponds with V = k with $\phi = \lambda \cdot \mathrm{id}_k$, and M'_{λ} corresponds with $V = k^2$ with $\phi = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$.

- (b) Show that $\operatorname{Ext}_{k[t]}^{1}(M_{\lambda}, M_{\lambda}) \cong M_{\lambda}$. (This is only a reminder, we have already done this in much greater generality!)
- (c) Let E be a k[t]-module that can be obtained as an extension of M_{λ} by itself. Show that either $E \cong M_{\lambda} \oplus M_{\lambda}$ or $E \cong M'_{\lambda}$.
- (d) How many k[t]-modules are there, up to isomorphism, that can be obtained as an extension of M'_{λ} by M_{λ} ? Give an explicit representative for each isomorphism class.

Exercise 2. Let k be an algebraically closed field, and consider the polynomial ring R = k[x, y]. It is a theorem of Hilbert that every maximal ideal of R is of the form $\mathfrak{m} = (x-a, y-b)$ for some $a, b \in k$. (This result is a special instance of *Hilbert's Nullstellensatz*; is is essential here that $k = \overline{k}$.) In the exercise we denote by $M_{(a,b)}$ the R-module k[x,y]/(x-a, y-b). By Hilbert's theorem, these are all possible simple R-modules.

(a) Show that

$$0 \longrightarrow R \xrightarrow{\begin{pmatrix} y-b \\ -(x-a) \end{pmatrix}} R^2 \xrightarrow{(x-a \ y-b)} R \longrightarrow 0$$

is a free resolution of $M_{(a,b)}$, and use this to show that for an *R*-module N we have

$$\operatorname{Ext}_{R}^{1}(M_{(a,b)}, N) \cong \frac{\left\{ (n_{1}, n_{2}) \in N^{2} \mid (y-b) \cdot n_{1} = (x-a) \cdot n_{2} \right\}}{\left\{ \left((x-a) \cdot n, (y-b) \cdot n \right) \mid n \in N \right\}}.$$

In the remainder of this exercise we want to calculate the Ext-groups $\operatorname{Ext}^{1}_{R}(M_{(a,b)}, M_{(c,d)})$.

- (b) Suppose $c \neq a$. Show that $\operatorname{Ext}_{R}^{1}(M_{(a,b)}, M_{(c,d)}) = 0$. [*Hint:* Note that for $m \in M_{(c,d)}$ we have $(x-a) \cdot m = (c-a) \cdot m$, and $(c-a) \in k^{*}$.]
- (c) In a similar way, show that $\operatorname{Ext}^{1}_{R}(M_{(a,b)}, M_{(c,d)}) = 0$ if $b \neq d$.
- (d) Show that $\operatorname{Ext}^1_R(M_{(a,b)}, M_{(a,b)}) \cong k^2$.
- (e) For $(\lambda, \mu) \in k^2$ with $(\lambda, \mu) \neq (0, 0)$, show that the module

$$E_{(\lambda:\mu)} := k[x,y]/(x^2, xy, y^2, \lambda \cdot x + \mu \cdot y)$$

can be obtained as an extension of $M_{(0,0)}$ by itself.

- (f) For (λ_1, μ_1) and $(\lambda_2, \mu_2) \in k^2 \setminus \{(0, 0)\}$, show that $E_{(\lambda_1:\mu_1)} \cong E_{(\lambda_2:\mu_2)}$ as k[x, y]-modules if and only if there exists a constant $\gamma \in k^*$ such that $(\lambda_1, \mu_1) = (\gamma \cdot \lambda_2, \gamma \cdot \mu_2)$. [*Hint for* the "only if": Suppose $\phi: E_{(\lambda_1:\mu_1)} \xrightarrow{\sim} E_{(\lambda_2:\mu_2)}$ is an isomorphism of k[x, y]-modules. Then ϕ is completely determined by the class $\xi = \phi(\bar{1})$. Moreover, ξ can be represented by an element of the form p + qx with $p, q \in k$ if $\mu_2 \neq 0$ (respectively p + qy if $\lambda_2 \neq 0$). Now show that we must have q = 0.]
- (g) An *R*-module is said to have *length* equal to 2 if it can be obtained as an extension of a simple *R*-module by another simple *R*-module. Write down an explicit list of all *R*-modules of length 2, up to isomorphism. [You will need Exercise 1(a).]

Exercise 3. Let p < q be prime numbers such that p does not divide q - 1. Use group cohomology to prove that every group of order pq is isomorphic to $\mathbb{Z}/pq\mathbb{Z}$. [*Hint:* Start by choosing an element $g \in G$ of order q (Cauchy) and note that $\langle g \rangle \subset G$ is normal because its index is the smallest prime number dividing the order of G. Then determine all possible $\mathbb{Z}/p\mathbb{Z}$ -module structures on $\langle g \rangle \cong \mathbb{Z}/q\mathbb{Z}$ and for each of thoses calculate $\mathrm{H}^2(\mathbb{Z}/p\mathbb{Z}, \mathbb{Z}/q\mathbb{Z})$.]

Exercise 4. Let $C_2 = \{1, \iota\}$ be the group of order 2.

- (a) If A is a C_2 -module such that the group underlying A is isomorphic to $V_4 = C_2 \times C_2$ (the Klein group), show that A, as a C_2 -module, is isomorphic to either V_4 with trivial C_2 -action, or to V_4 with C_2 -action given by $\iota(a, b) = (b, a)$.
- (b) Calculate $H^2(C_2, V_4)$ for both C_2 -module structures in (a).
- (c) List all groups of order 8 that can be obtained as an extension of C_2 by V_4 for the *non-trivial* C_2 -module structure on V_4 .