CATEGORIES AND HOMOLOGICAL ALGEBRA

Exercises for March 8

Exercise 1.

- (a) Look up the definition of a product of two categories.
- (b) Let R and S be rings. Prove that the category of $(R \times S)$ -modules is equivalent to the product category $_R Mod \times _S Mod$.

Exercise 2. As we have seen in the lecture, if R is a PID then every finitely generated R-module can be written uniquely in the form $M \cong R^r \oplus R/(a_1) \oplus \cdots \oplus R/(a_k)$ with $r, k \ge 0$, and where a_1, \ldots, a_k are non-zero elements in R that are not units and such that a_i divides a_{i+1} . In particular, if M is torsion-free then it is free of finite rank.

- (a) Give an example of a PID R and a torsion-free R-module that is not free as an R-module.
- (b) Consider the abelian group $A = \mathbb{Q}/\mathbb{Z}$. Prove that A = Tors(A) but that A is not isomorphic to any group of the form $\mathbb{Z}/n\mathbb{Z} \oplus A'$ with n > 1.
- (c) Give an example of a finitely generated torsion-free module M over some domain R such that M is not free.

Exercise 3.

- (a) Write the group $(\mathbb{Z}/250\mathbb{Z}) \oplus (\mathbb{Z}/7\mathbb{Z}) \oplus (\mathbb{Z}/16\mathbb{Z}) \oplus (\mathbb{Z}/5040\mathbb{Z})$ in standard form.
- (b) Let $B \subset \mathbb{Z}^5$ be the subgroup generated by the four elements

(2, 4, -5, -2, 1), (2, -1, 0, 3, 4), (8, 12, -8, -6, 16), and (6, 6, -12, -1, 3).

Determine the structure of the abelian group \mathbb{Z}^5/B . (I.e., bring this group in standard form.)

Exercise 4. Let k be a field, let V be a finite-dimensional k-vector space, and let $\phi: V \to V$ be an endomorphism. As discussed in the lecture, the minimal polynomial P_{ϕ}^{\min} of ϕ divides the characteristic polynomial P_{ϕ}^{char} . This is equivalent to saying that $P_{\phi}^{\text{char}}(\phi) = 0$, which is the Cayley-Hamilton theorem. In this exercise we establish another relation between the two polynomials.

- (a) Let $f \in k[t]$ be an irreducible monic polynomial. Let $V = k[t]/(f^n)$ for some $n \ge 1$, and let ϕ be the endomorphism given by multiplication by t. Prove that $P_{\phi}^{\min} = P_{\phi}^{\text{char}} = f^n$. [*Hint:* Use the Cayley-Hamilton theorem.]
- (b) Suppose $V = V_1 \oplus V_2$, and suppose we have endomorphisms ϕ_i of V_i such that $\phi(v_1, v_2) = (\phi_1(v_1), \phi_2(v_2))$. Prove that $P_{\phi}^{\text{char}} = P_{\phi_1}^{\text{char}} \cdot P_{\phi_2}^{\text{char}}$ and that $P_{\phi}^{\min} = \text{lcm}(P_{\phi_1}^{\min}, P_{\phi_2}^{\min})$. (lcm = least common multiple, taken to be monic.)
- (c) Prove that for (V, ϕ) as in the beginning, P_{ϕ}^{char} divides a power of P_{ϕ}^{\min} .

Exercise 5. Let R be a ring. Recall (see Exercise 5 of Feb. 22) that an R-module M is said to be *simple* if $M \neq 0$, and if M has no submodules other than 0 and M itself. An R-module M is said to be *indecomposable* if M is not isomorphic to a direct sum $M_1 \oplus M_2$ with M_1 and M_2 both nonzero.

- (a) Prove that if M is simple then M is indecomposable.
- (b) Give an example of a module M over some ring such that M is indecomposable but not simple.
- (c) If R is a PID, describe all finitely generated R-modules that are indecomposable. Which of these are simple?