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§1. Case of abelian varieties.

k = k, of char. p ≥ 0
A: abelian variety over k, g := dim(A)
Λg := πtop

1 ((R/Z)2g) = Z2g
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§1. Case of abelian varieties.

k = k, of char. p ≥ 0
A: abelian variety over k, g := dim(A)
Λg := πtop

1 ((R/Z)2g) = Z2g

Then

π1(A) ≃ Λ̂g = Ẑ2g (p = 0)

Λ̂g ։ π1(A) = π1(A)(p
′) × π1(A)(p) ≃ Λ̂g

(p′)
× (Zp)

f ≃ (Ẑ(p′))2g × (Zp)
f

(p > 0)
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§1. Case of abelian varieties.

k = k, of char. p ≥ 0
A: abelian variety over k, g := dim(A)
Λg := πtop

1 ((R/Z)2g) = Z2g

Then

π1(A) ≃ Λ̂g = Ẑ2g (p = 0)

Λ̂g ։ π1(A) = π1(A)(p
′) × π1(A)(p) ≃ Λ̂g

(p′)
× (Zp)

f ≃ (Ẑ(p′))2g × (Zp)
f

(p > 0)
where

Γ̂: profinite completion of a group Γ
G(p): maximal pro-p quotient of a profinite group G
G(p′): maximal pro-prime-to-p quotient of a profinite group G
f : p-rank of A (0 ≤ f ≤ g)
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§1. Case of abelian varieties.

k = k, of char. p ≥ 0
A: abelian variety over k, g := dim(A)
Λg := πtop

1 ((R/Z)2g) = Z2g

Then

π1(A) ≃ Λ̂g = Ẑ2g (p = 0)

Λ̂g ։ π1(A) = π1(A)(p
′) × π1(A)(p) ≃ Λ̂g

(p′)
× (Zp)

f ≃ (Ẑ(p′))2g × (Zp)
f

(p > 0)
where

Γ̂: profinite completion of a group Γ
G(p): maximal pro-p quotient of a profinite group G
G(p′): maximal pro-prime-to-p quotient of a profinite group G
f : p-rank of A (0 ≤ f ≤ g)

Thus (setting f = − for p = 0)

{π1(A) | k, A: as above}/ ≃
1:1
←→ {(p, g, f)}
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Ag,k: coarse moduli space of g-dim. (polarized) abelian varieties over k
(dim(Ag,k) = g(g + 1)/2)
π1: |Ag,k| → {(abelian) profinite groups}/ ≃, x 7→ π1(Ax)
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Ag,k: coarse moduli space of g-dim. (polarized) abelian varieties over k
(dim(Ag,k) = g(g + 1)/2)
π1: |Ag,k| → {(abelian) profinite groups}/ ≃, x 7→ π1(Ax)

p = 0: π1 is constant on |Ag,k|.
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Ag,k: coarse moduli space of g-dim. (polarized) abelian varieties over k
(dim(Ag,k) = g(g + 1)/2)
π1: |Ag,k| → {(abelian) profinite groups}/ ≃, x 7→ π1(Ax)

p = 0: π1 is constant on |Ag,k|.

p > 0: Ag,k =
∐

0≤f≤g Sg,f,k & π1 is constant on |Sg,f,k|, where Sg,f,k is
the moduli space of g-dim. abelian varieties of p-rank f over k.
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Ag,k: coarse moduli space of g-dim. (polarized) abelian varieties over k
(dim(Ag,k) = g(g + 1)/2)
π1: |Ag,k| → {(abelian) profinite groups}/ ≃, x 7→ π1(Ax)

p = 0: π1 is constant on |Ag,k|.

p > 0: Ag,k =
∐

0≤f≤g Sg,f,k & π1 is constant on |Sg,f,k|, where Sg,f,k is
the moduli space of g-dim. abelian varieties of p-rank f over k.

Sg,f,k is locally closed of codim. g−f ([Norman-Oort1980], cf. Pries’s talk).
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§2. Geometric fundamental groups of curves.

k = k, of char. p ≥ 0
Xcpt: proper smooth connected curve over k, g := genus(Xcpt)
S ⊂ (Xcpt)cl, r := ♯(S) < ∞
X := Xcpt

r S (or, more precisely, (Xcpt, S)), called (g, r)-curve
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§2. Geometric fundamental groups of curves.

k = k, of char. p ≥ 0
Xcpt: proper smooth connected curve over k, g := genus(Xcpt)
S ⊂ (Xcpt)cl, r := ♯(S) < ∞
X := Xcpt

r S (or, more precisely, (Xcpt, S)), called (g, r)-curve

Πg,r := πtop
1 (Σg,r)

≃ 〈α1, . . . , αg, β1, . . . , βg, γ1, . . . , γr | [α1, β1] . . . [αg, βg]γ1 . . . γr = 1〉
(Σg,r: compact orientable topological surface of genus g minus r points)
For r > 0, Πg,r ≃ Fb, b = 2g + r − 1
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§2. Geometric fundamental groups of curves.

k = k, of char. p ≥ 0
Xcpt: proper smooth connected curve over k, g := genus(Xcpt)
S ⊂ (Xcpt)cl, r := ♯(S) < ∞
X := Xcpt

r S (or, more precisely, (Xcpt, S)), called (g, r)-curve

Πg,r := πtop
1 (Σg,r)

≃ 〈α1, . . . , αg, β1, . . . , βg, γ1, . . . , γr | [α1, β1] . . . [αg, βg]γ1 . . . γr = 1〉
(Σg,r: compact orientable topological surface of genus g minus r points)
For r > 0, Πg,r ≃ Fb, b = 2g + r − 1

Then

π1(X) ≃ Π̂g,r (p = 0)
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§2. Geometric fundamental groups of curves.

k = k, of char. p ≥ 0
Xcpt: proper smooth connected curve over k, g := genus(Xcpt)
S ⊂ (Xcpt)cl, r := ♯(S) < ∞
X := Xcpt

r S (or, more precisely, (Xcpt, S)), called (g, r)-curve

Πg,r := πtop
1 (Σg,r)

≃ 〈α1, . . . , αg, β1, . . . , βg, γ1, . . . , γr | [α1, β1] . . . [αg, βg]γ1 . . . γr = 1〉
(Σg,r: compact orientable topological surface of genus g minus r points)
For r > 0, Πg,r ≃ Fb, b = 2g + r − 1

Then

π1(X) ≃ Π̂g,r (p = 0)

Π̂g,r ։ πt
1(X) ։ π1(X)(p

′) × π1(X
cpt)(p) ≃ Π̂g,r

(p′)
× F̂f

(p)
(p > 0)

where

f : p-rank of J = Jac(Xcpt) (0 ≤ f ≤ g)
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Thus, for p = 0,

{π1(X) | k, X: as above}/ ≃
1:1
←→ {{(0, 0), (0, 1)}, {(g, 0)}(g > 0), {(g, r) | r > 0, 2g + r − 1 = b}(b > 0)}
և {(g, r)}
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Thus, for p = 0,

{π1(X) | k, X: as above}/ ≃
1:1
←→ {{(0, 0), (0, 1)}, {(g, 0)}(g > 0), {(g, r) | r > 0, 2g + r − 1 = b}(b > 0)}
և {(g, r)}

For p > 0, the description of the whole π1(X) or the whole πt
1(X) is not

known, except for the following very special cases:
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Thus, for p = 0,

{π1(X) | k, X: as above}/ ≃
1:1
←→ {{(0, 0), (0, 1)}, {(g, 0)}(g > 0), {(g, r) | r > 0, 2g + r − 1 = b}(b > 0)}
և {(g, r)}

For p > 0, the description of the whole π1(X) or the whole πt
1(X) is not

known, except for the following very special cases:

(g, r) = (0, 0) =⇒ π1(X) = πt
1(X) = {1}

(g, r) = (0, 1) =⇒ πt
1(X) = {1}

(g, r) = (0, 2) =⇒ πt
1(X) ≃ Ẑ(p′)

(g, r) = (1, 0) =⇒ π1(X) = πt
1(X) ≃ (Ẑ(p′))2 × (Zp)

f
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Expectation

Assume p > 0. Then:
(i) π1(X) determines the ≃-class of X, if r > 0.
(ii) π1(X) determines the ∼-class of X, unless (g, r) = (0, 0), (1, 0).
(iii) πt

1(X) determines the ∼-class of X, unless (g, r) = (0, 0), (0, 1), (1, 0).
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Expectation

Assume p > 0. Then:
(i) π1(X) determines the ≃-class of X, if r > 0.
(ii) π1(X) determines the ∼-class of X, unless (g, r) = (0, 0), (1, 0).
(iii) πt

1(X) determines the ∼-class of X, unless (g, r) = (0, 0), (0, 1), (1, 0).

Here,

(X/k) ≃ (X ′/k′)
def
⇐⇒ X ≃ X ′ as schemes.

(X/k) ∼ (X ′/k′)
def
⇐⇒ ∃X1/k1, k →֒ k1 ←֓ k′, s.t. X1 ≃

k1

X ×k k1 & X1 ≃
k1

X ′ ×k′ k1

⇐⇒ ∃X0/k0, k ←֓ k0 →֒ k′, s.t. X0 ×k0
k ≃

k
X & X0 ×k0

k′ ≃
k′

X ′

⇐⇒ the images (which are scheme-theoretic points) in M :=
∐

(g,r) Mg,[r]

of the classifying morphisms for X/k and X ′/k′ coincide, where Mg,[r] is
the coarse moduli space of (g, r)-curves over Z. (M0,[0] = M0,[1] =

M0,[2] = M0,[3] = Spec(Z), M1,[0] = M1,[1] = Spec(Z[j]))

Remark: (X/k) ≃ (X ′/k′) ⇐⇒ (X/k) ∼ (X ′/k′) & k ≃ k′.
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Mg,[r],Fp
: coarse moduli space of (g, r)-curves over Fp (F0 := Q)

(dim(Mg,[r],Fp
) = 3g − 3 + r, unless (g, r) = (0, 0), (0, 1), (0, 2), (1, 0))
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Mg,[r],Fp
: coarse moduli space of (g, r)-curves over Fp (F0 := Q)

(dim(Mg,[r],Fp
) = 3g − 3 + r, unless (g, r) = (0, 0), (0, 1), (0, 2), (1, 0))

πt
1: |Mg,[r],Fp

| → {profinite groups}/ ≃, x 7→ πt
1(Xx)

(When p = 0 or r = 0, π1 = πt
1.)
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Mg,[r],Fp
: coarse moduli space of (g, r)-curves over Fp (F0 := Q)

(dim(Mg,[r],Fp
) = 3g − 3 + r, unless (g, r) = (0, 0), (0, 1), (0, 2), (1, 0))

πt
1: |Mg,[r],Fp

| → {profinite groups}/ ≃, x 7→ πt
1(Xx)

(When p = 0 or r = 0, π1 = πt
1.)

p = 0: π1 = πt
1 is constant on |Mg,[r],Fp

|.
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Mg,[r],Fp
: coarse moduli space of (g, r)-curves over Fp (F0 := Q)

(dim(Mg,[r],Fp
) = 3g − 3 + r, unless (g, r) = (0, 0), (0, 1), (0, 2), (1, 0))

πt
1: |Mg,[r],Fp

| → {profinite groups}/ ≃, x 7→ πt
1(Xx)

(When p = 0 or r = 0, π1 = πt
1.)

p = 0: π1 = πt
1 is constant on |Mg,[r],Fp

|.

p > 0: Expectation (iii) =⇒ πt
1 is injective!
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§3. Previous results.

From now on, we always assume p > 0.
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§3. Previous results.

From now on, we always assume p > 0.

Theorem 1

(i) ([T1999]) π1(X) determines p, g, r, f , inertia groups, πt
1(X), π1(X

cpt),
unless (g, r) = (0, 0).
(ii) ([Bouw1998] (thesis under Prof. Oort), [T2003]) πt

1(X) determines p, g,
r, f , inertia groups, π1(X

cpt), unless (g, r) = (0, 0), (0, 1).
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§3. Previous results.

From now on, we always assume p > 0.

Theorem 1

(i) ([T1999]) π1(X) determines p, g, r, f , inertia groups, πt
1(X), π1(X

cpt),
unless (g, r) = (0, 0).
(ii) ([Bouw1998] (thesis under Prof. Oort), [T2003]) πt

1(X) determines p, g,
r, f , inertia groups, π1(X

cpt), unless (g, r) = (0, 0), (0, 1).

Proof. The main difficulty is to separate g and r from b = 2g + r − 1.
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§3. Previous results.

From now on, we always assume p > 0.

Theorem 1

(i) ([T1999]) π1(X) determines p, g, r, f , inertia groups, πt
1(X), π1(X

cpt),
unless (g, r) = (0, 0).
(ii) ([Bouw1998] (thesis under Prof. Oort), [T2003]) πt

1(X) determines p, g,
r, f , inertia groups, π1(X

cpt), unless (g, r) = (0, 0), (0, 1).

Proof. The main difficulty is to separate g and r from b = 2g + r − 1.

For (i), this is elementary by comparing the Riemann-Hurwitz formula for
genus and the Deuring-Shafarevich formula for p-rank.
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§3. Previous results.

From now on, we always assume p > 0.

Theorem 1

(i) ([T1999]) π1(X) determines p, g, r, f , inertia groups, πt
1(X), π1(X

cpt),
unless (g, r) = (0, 0).
(ii) ([Bouw1998] (thesis under Prof. Oort), [T2003]) πt

1(X) determines p, g,
r, f , inertia groups, π1(X

cpt), unless (g, r) = (0, 0), (0, 1).

Proof. The main difficulty is to separate g and r from b = 2g + r − 1.

For (i), this is elementary by comparing the Riemann-Hurwitz formula for
genus and the Deuring-Shafarevich formula for p-rank.

For (ii), we prove a certain limit formula to the effect that (for r > 1)

average of p-rank of cyclic covers → g (covering degree → ∞)

by establishing a ramified version of Raynaud’s theory of vector bundles B
and theta divisors Θ (cf. Pries’s talk). ¤
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Theorem 2

Assume g = 0 and that either X is defined over Fp or r ≤ 4. Then:
(i) ([T1999]) π1(X) determines the ∼-class of X, unless r = 0.
(ii) ([T2003]) πt

1(X) determines the ∼-class of X, unless r = 0, 1.
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Theorem 2

Assume g = 0 and that either X is defined over Fp or r ≤ 4. Then:
(i) ([T1999]) π1(X) determines the ∼-class of X, unless r = 0.
(ii) ([T2003]) πt

1(X) determines the ∼-class of X, unless r = 0, 1.

Proof. By an elementary computation, we show that the Fp-linear relations
among the coordinates of the points of Xcpt

r X ⊂ Xcpt ≃ P1 are encoded
in (certain character parts of) p-rank of cyclic covers.
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Theorem 2

Assume g = 0 and that either X is defined over Fp or r ≤ 4. Then:
(i) ([T1999]) π1(X) determines the ∼-class of X, unless r = 0.
(ii) ([T2003]) πt

1(X) determines the ∼-class of X, unless r = 0, 1.

Proof. By an elementary computation, we show that the Fp-linear relations
among the coordinates of the points of Xcpt

r X ⊂ Xcpt ≃ P1 are encoded
in (certain character parts of) p-rank of cyclic covers.

Applying this to a certain cyclic cover of genus 0, we recover the coordinates
themselves. ¤
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Theorem 3 ([Raynaud2002], [Pop-Säıdi2003], [T2004])
Assume that X is defined over Fp. Then:
(i) π1(X) determines the ≃-class (= ∼-class) of X up to finite possibilities,
unless (g, r) = (0, 0), (1, 0).
(ii) πt

1(X) determines the ∼-class of X up to finite possibilities, unless
(g, r) = (0, 0), (0, 1), (1, 0).
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Theorem 3 ([Raynaud2002], [Pop-Säıdi2003], [T2004])
Assume that X is defined over Fp. Then:
(i) π1(X) determines the ≃-class (= ∼-class) of X up to finite possibilities,
unless (g, r) = (0, 0), (1, 0).
(ii) πt

1(X) determines the ∼-class of X up to finite possibilities, unless
(g, r) = (0, 0), (0, 1), (1, 0).

Proof. (i) is reduced to (ii). For (ii), suppose that there are infinitely
many closed points s of Mg,r,Fp

whose corresponding curves admit the
same πt

1. Then, considering the generic point η of an irreducible component
of the Zariski closure of these points and resorting to the fact that πt

1 is
(topologically) finitely generated, we show that the specialization map

πt
1(Xη) ։ πt

1(Xs)

is an isomorphism. So, we have only to show that, in fact, this map is never
an isomorphism.
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For this, by a standard technique of considering a sufficiently ramified finite
Galois cover, we can reduce the general case to the case r = 0 and g ≥ 2.
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For this, by a standard technique of considering a sufficiently ramified finite
Galois cover, we can reduce the general case to the case r = 0 and g ≥ 2.

Then the main ingredients of the proof are:

— Raynaud’s theory of Θ

— (a variant of) the Anderson-Indik theorem to show that Θ contains many
prime-to-p torsion points over s

— Hrushovski’s theorem to show that Θ contains few torsion points over η

— the local Torelli (cf. [Oort-Steenbrink1980])

In special cases (treated by Raynaud and Pop-Säıdi), they work perfectly.
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For this, by a standard technique of considering a sufficiently ramified finite
Galois cover, we can reduce the general case to the case r = 0 and g ≥ 2.

Then the main ingredients of the proof are:

— Raynaud’s theory of Θ

— (a variant of) the Anderson-Indik theorem to show that Θ contains many
prime-to-p torsion points over s

— Hrushovski’s theorem to show that Θ contains few torsion points over η

— the local Torelli (cf. [Oort-Steenbrink1980])

In special cases (treated by Raynaud and Pop-Säıdi), they work perfectly.

In general, we face the annoying possibility that an irreducible component
of Θ is a translate of abelian subvariety (for s and for η) or essentially
descends to Fp (for η). To treat it, we also need

— to analyze the gonality of cyclic covers, and

— to establish the local Torelli for (generalized) Prym varieties. ¤
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Theorem 4 ([Säıdi2005])
S ⊂ Mg,[r],k: connected subvariety, dim > 0, proper over k

=⇒ πt
1 is non-constant on |S| ⊂ |Mg,r,k|.
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Theorem 4 ([Säıdi2005])
S ⊂ Mg,[r],k: connected subvariety, dim > 0, proper over k

=⇒ πt
1 is non-constant on |S| ⊂ |Mg,r,k|.

Proof. By a standard technique, we reduce the general case to the case
r = 0, g ≥ 2 and that S →֒ Mg,[r],k comes from a family of curves (over a
finite ramified cover of S).
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Theorem 4 ([Säıdi2005])
S ⊂ Mg,[r],k: connected subvariety, dim > 0, proper over k

=⇒ πt
1 is non-constant on |S| ⊂ |Mg,r,k|.

Proof. By a standard technique, we reduce the general case to the case
r = 0, g ≥ 2 and that S →֒ Mg,[r],k comes from a family of curves (over a
finite ramified cover of S).

By Raynaud’s theory of Θ, we can choose a cyclic cover of this family such
that the corresponding family of (generalized) Prym varieties is ordinary at
every fiber.
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Theorem 4 ([Säıdi2005])
S ⊂ Mg,[r],k: connected subvariety, dim > 0, proper over k

=⇒ πt
1 is non-constant on |S| ⊂ |Mg,r,k|.

Proof. By a standard technique, we reduce the general case to the case
r = 0, g ≥ 2 and that S →֒ Mg,[r],k comes from a family of curves (over a
finite ramified cover of S).

By Raynaud’s theory of Θ, we can choose a cyclic cover of this family such
that the corresponding family of (generalized) Prym varieties is ordinary at
every fiber.

Then the properness assumption and the quasi-affineness of the ordinary
locus (cf. [Oort1999]) implies that this family of Prym varieties is isotrivial.
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Theorem 4 ([Säıdi2005])
S ⊂ Mg,[r],k: connected subvariety, dim > 0, proper over k

=⇒ πt
1 is non-constant on |S| ⊂ |Mg,r,k|.

Proof. By a standard technique, we reduce the general case to the case
r = 0, g ≥ 2 and that S →֒ Mg,[r],k comes from a family of curves (over a
finite ramified cover of S).

By Raynaud’s theory of Θ, we can choose a cyclic cover of this family such
that the corresponding family of (generalized) Prym varieties is ordinary at
every fiber.

Then the properness assumption and the quasi-affineness of the ordinary
locus (cf. [Oort1999]) implies that this family of Prym varieties is isotrivial.

Now we can resort to the (local) Torelli for Prym varieties. ¤
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§4. Recent results.

Theorem 5 ([Säıdi-T, to appear])
S ⊂ Mg,[r],k: connected subvariety, dim > 0

=⇒ πt
1 is non-constant on |S| ⊂ |Mg,r,k|.
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§4. Recent results.

Theorem 5 ([Säıdi-T, to appear])
S ⊂ Mg,[r],k: connected subvariety, dim > 0

=⇒ πt
1 is non-constant on |S| ⊂ |Mg,r,k|.

Proof. Again, we reduce the general case to the case r = 0, g ≥ 2 and
that S →֒ Mg,[r],k comes from a family of curves X → S → Spec(k), by
replacing S with a finite ramified cover.
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§4. Recent results.

Theorem 5 ([Säıdi-T, to appear])
S ⊂ Mg,[r],k: connected subvariety, dim > 0

=⇒ πt
1 is non-constant on |S| ⊂ |Mg,r,k|.

Proof. Again, we reduce the general case to the case r = 0, g ≥ 2 and
that S →֒ Mg,[r],k comes from a family of curves X → S → Spec(k), by
replacing S with a finite ramified cover.

Next, we take a model X → S → T = Spec(R) of this family, where R is a
finitely generated Fp-subalgebra of k. By (the proof of) Theorem 3, we can
choose a closed point t ∈ T and construct a cover of this model for which
the intersection of Θ with prime-to-p torsion is different over the generic
point of St and over a closed point of St.
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§4. Recent results.

Theorem 5 ([Säıdi-T, to appear])
S ⊂ Mg,[r],k: connected subvariety, dim > 0

=⇒ πt
1 is non-constant on |S| ⊂ |Mg,r,k|.

Proof. Again, we reduce the general case to the case r = 0, g ≥ 2 and
that S →֒ Mg,[r],k comes from a family of curves X → S → Spec(k), by
replacing S with a finite ramified cover.

Next, we take a model X → S → T = Spec(R) of this family, where R is a
finitely generated Fp-subalgebra of k. By (the proof of) Theorem 3, we can
choose a closed point t ∈ T and construct a cover of this model for which
the intersection of Θ with prime-to-p torsion is different over the generic
point of St and over a closed point of St.

Now, by an elementary scheme-theoretic argument, we can conclude that
such a difference is also available for the generic fiber of S → T . ¤
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Theorem 6 (T, in progress)
Assume p 6= 2, (g, r) = (1, 1) and that X and its 2-torsion points are defined
over Fp. Then:
(i) π1(X) determines the ∼-class of X.
(ii) πt

1(X) determines the ∼-class of X.
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Theorem 6 (T, in progress)
Assume p 6= 2, (g, r) = (1, 1) and that X and its 2-torsion points are defined
over Fp. Then:
(i) π1(X) determines the ∼-class of X.
(ii) πt

1(X) determines the ∼-class of X.

Proof. We may write X = ErO, where (E, O) is an elliptic curve. Consider

X = E r O
2
← E r E[2] ։ (E r E[2])/{±1} ≃ P1

r {0, 1,∞, λ}.
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Theorem 6 (T, in progress)
Assume p 6= 2, (g, r) = (1, 1) and that X and its 2-torsion points are defined
over Fp. Then:
(i) π1(X) determines the ∼-class of X.
(ii) πt

1(X) determines the ∼-class of X.

Proof. We may write X = ErO, where (E, O) is an elliptic curve. Consider

X = E r O
2
← E r E[2] ։ (E r E[2])/{±1} ≃ P1

r {0, 1,∞, λ}.

As λ ∈ Fp, the moduli of X are encoded in the Fp-linear relations among
{0, 1, λ}. So, the proof of Theorem 2 works basically, if we can characterize
group-theoretically the cyclic covers of E r E[2] that come from the cyclic
covers of P1

r {0, 1,∞, λ}.
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Theorem 6 (T, in progress)
Assume p 6= 2, (g, r) = (1, 1) and that X and its 2-torsion points are defined
over Fp. Then:
(i) π1(X) determines the ∼-class of X.
(ii) πt

1(X) determines the ∼-class of X.

Proof. We may write X = ErO, where (E, O) is an elliptic curve. Consider

X = E r O
2
← E r E[2] ։ (E r E[2])/{±1} ≃ P1

r {0, 1,∞, λ}.

As λ ∈ Fp, the moduli of X are encoded in the Fp-linear relations among
{0, 1, λ}. So, the proof of Theorem 2 works basically, if we can characterize
group-theoretically the cyclic covers of E r E[2] that come from the cyclic
covers of P1

r {0, 1,∞, λ}.

This is done by using a certain property typical of elliptic curves (which is
unfortunately unavailable for hyperelliptic curves). ¤
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So many thanks:

— to the organizers!
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So many thanks:

— to the organizers!

— to the audience!!
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So many thanks:

— to the organizers!

— to the audience!!

— and to Professor Oort!!!
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