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§1. Case of abelian varieties.

k =k, of char. p >0
A: abelian variety over k, g := dim(A)
Ay i= mP(R/Z)%0) = 7%

Then
m1(A) ~ //\\g =729 (p=0)

—_

A, m(A) = m(A)®) x 1 (4)® ~ K, "

X (Zp) ~ (Z®)29 x (Z,)]
(p>0)
where

I profinite completion of a group I'

G(): maximal pro-p quotient of a profinite group G

G®"): maximal pro-prime-to-p quotient of a profinite group G
f: prank of A (0 < f <g)

Thus (setting f = — for p = 0)

{m1(A) | k, A: as above}/ ~ <& {(p, g, f)}
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A,y 2 coarse moduli space of g-dim. (polarized) abelian varieties over k
(dim(Ag k) = g(g +1)/2)
m1: | Ay k| — {(abelian) profinite groups}/ ~, x +— m(Az)

p = 0: 7 is constant on |A, /.

p>0: Ayp = ]_[nggg Sy.5k & m is constant on |Sy fk|, where S, fk is
the moduli space of g-dim. abelian varieties of p-rank f over k.

Sgy. 1.k is locally closed of codim. g— f ([Norman-Oort1980], cf. Pries’s talk).
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§2. Geometric fundamental groups of curves.

k =k, of char. p >0

X°Pt: proper smooth connected curve over k, g := genus(XP*)
S c (XePHel = 4(S) < 0

X = X' S (or, more precisely, (X°P* S)), called (g, r)-curve
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X = X' S (or, more precisely, (X°P* S)), called (g, r)-curve

g = Wiop(zgﬂ
~ (g, 00, 815 Bgy Y1 | o, B g, Bl e = 1)
(X4,7: compact orientable topological surface of genus g minus r points)

Forr > 0,11, , ~F, b=2g+71r—1
Then
m(X) = T, (p=0)
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§2. Geometric fundamental groups of curves.

k =k, of char. p >0

X°Pt: proper smooth connected curve over k, g := genus(XP*)
S c (XePHel = 4(S) < 0

X = X' S (or, more precisely, (X°P* S)), called (g, r)-curve

g = Wiop(zgﬂ
~ (g, 00, 815 Bgy Y1 | o, B g, Bl e = 1)
(X4,7: compact orientable topological surface of genus g minus r points)

Forr > 0,11, , ~F, b=2g+71r—1

Then

m(X) =1, (p=0)

— ¢ ( /) cpt ( ) /\(p/) /\(P)
Hg,f,a—»wl(X)—»m(X)p X (X PP ~ II, X Iy (p > 0)
where

f: p-rank of J = Jac(X°?) (0 < f <g)
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Thus, for p = 0,
{m(X) | k, X: as above}/ ~

RN (L0.0,0.01 {8 0)o > O l(0.1) | >0.20 47 =1 =1} > 0)
“— g,’]”
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{m1(X) | k, X: as above}/ ~
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For p > 0, the description of the whole 71(X) or the whole 7w%(X) is not
known, except for the following very special cases:
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Thus, for p = 0,
{m1(X) | k, X: as above}/ ~

RN (L0.0,0.01 {8 0)o > O l(0.1) | >0.20 47 =1 =1} > 0)
“— g,’]”

For p > 0, the description of the whole 71(X) or the whole 7w%(X) is not
known, except for the following very special cases:

(g,7) = (0,0) = m(X) =7(X) = {1}

(9:7) = (0,1) = ={(X) = {1}

(9:7)=(0,2) = =(X)~2Z0)

(9,7) = (1,0) = m(X) =74(X) ~ (Z¥))? x (Z,)’
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Expectation

Assume p > 0. Then:

(i) m1(X) determines the ~-class of X, if r > 0.

(ii) 71 (X) determines the ~-class of X, unless (g,7) =
(iii) 7t (X) determines the ~-class of X unless (g,
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Expectation

Assume p > 0. Then:

(i) m1(X) determines the ~-class of X, if r > 0.

(ii) m1(X) determines the ~-class of X, unless (g,7) = (0,0)
(iii) 7t (X) determines the ~-class of X unless (g,7) = (

Here,
(X/k) ~ (X'/K") L4 X ~ X' as schemes.
(X/k) ~ (X'/K)
&L Xk, ks ke K st Xy ~ X Xk & Xo = XX by
= 3Xo/ko, k= ko = K, 5.5 Xo X k22 X & Xo xxg b 22 X'

<= the images (which are scheme-theoretic points) in M =[], . /\/l

of the classifying morphisms for X/k and X'/k’ coincide, where M, 1,1 i
the coarse moduli space of (g,r)-curves over Z. (/\/lo, o = Mo,[1] =

Mo,[z] = Mo,[3] = Spec(Z), Ml,[O] = M1,[1] = SpeC(ZU]))
Remark: (X/k) ~ (X'/k) «— (X/k) ~ (X'/K') & k ~ K .
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My r),F,: coarse moduli space of (g, r)-curves over F), (Fo := Q)
(dim(Mg r),r,) = 39 — 3 + 7, unless (g,7) = (0,0), (0,1),(0,2),(1,0))
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My r),F,: coarse moduli space of (g, r)-curves over F), (Fo := Q)
(dim(Mg r),r,) = 39 — 3 + 7, unless (g,7) = (0,0), (0,1),(0,2),(1,0))

mi: [Mg p,r,| = {profinite groups}/ ~, i+ 7 (Xz)
(When p=0orr =0, m =nt.)

0 oy ot
p=0: m = 77 is constant on My, |-

p > 0: Expectation (iii) = = is injective!
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§3. Previous results.

From now on, we always assume p > 0.
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From now on, we always assume p > 0.

Theorem 1

(i) ([T1999]) 71(X) determines p, g, 7, f, inertia groups, % (X), 71 (XPY),
unless (g,7) = (0,0).

(ii) ([Bouw1998] (thesis under Prof. Oort), [T2003]) 7t(X) determines p, g,
r, f, inertia groups, m (X°P*), unless (g,7) = (0,0), (0, 1).
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Theorem 1

(i) ([T1999]) 71(X) determines p, g, 7, f, inertia groups, % (X), 71 (XPY),
unless (g,7) = (0,0).

(ii) ([Bouw1998] (thesis under Prof. Oort), [T2003]) 7t(X) determines p, g,
r, f, inertia groups, m (X°P*), unless (g,7) = (0,0), (0, 1).

Proof. The main difficulty is to separate g and r from b = 2¢g +r — 1.

For (i), this is elementary by comparing the Riemann-Hurwitz formula for
genus and the Deuring-Shafarevich formula for p-rank.
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§3. Previous results.
From now on, we always assume p > 0.

Theorem 1

(i) ([T1999]) 71(X) determines p, g, 7, f, inertia groups, % (X), 71 (XPY),
unless (g,7) = (0,0).

(ii) ([Bouw1998] (thesis under Prof. Oort), [T2003]) 7t(X) determines p, g,
r, f, inertia groups, m (X°P*), unless (g,7) = (0,0), (0, 1).

Proof. The main difficulty is to separate g and r from b = 2¢g +r — 1.

For (i), this is elementary by comparing the Riemann-Hurwitz formula for
genus and the Deuring-Shafarevich formula for p-rank.

For (ii), we prove a certain limit formula to the effect that (for r > 1)
average of p-rank of cyclic covers — g (covering degree — 00)

by establishing a ramified version of Raynaud’s theory of vector bundles B
and theta divisors © (cf. Pries’s talk). [
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Theorem 2

Assume g = 0 and that either X is defined over F,, or 7 < 4. Then:
(i) ([T1999]) 71 (X) determines the ~-class of X, unless r = 0.
(ii) ([T2003]) 7% (X) determines the ~-class of X, unless r = 0, 1.
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Theorem 2

Assume g = 0 and that either X is defined over F,, or 7 < 4. Then:
(i) ([T1999]) 71 (X) determines the ~-class of X, unless r = 0.

(ii) ([T2003]) 7% (X) determines the ~-class of X, unless r = 0, 1.

Proof. By an elementary computation, we show that the F )-linear relations
among the coordinates of the points of X°P* \ X C X°P' ~ P! are encoded
in (certain character parts of) p-rank of cyclic covers.
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Theorem 2

Assume g = 0 and that either X is defined over F,, or 7 < 4. Then:
(i) ([T1999]) 71 (X) determines the ~-class of X, unless r = 0.

(ii) ([T2003]) 7% (X) determines the ~-class of X, unless r = 0, 1.

Proof. By an elementary computation, we show that the F )-linear relations
among the coordinates of the points of X°P* \ X C X°P' ~ P! are encoded
in (certain character parts of) p-rank of cyclic covers.

Applying this to a certain cyclic cover of genus 0, we recover the coordinates
themselves. [
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Theorem 3 ([Raynaud2002], [Pop-Saidi2003], [T2004])

Assume that X is defined over F,. Then:

(i) m1(X) determines the ~-class (= ~-class) of X up to finite possibilities,
unless (g,7) = (0,0), (1,0).

(i) 7t (X) determines the ~-class of X up to finite possibilities, unless
(9771) - (07 0), (07 1), (17 0).
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Theorem 3 ([Raynaud2002], [Pop-Saidi2003], [T2004])

Assume that X is defined over F,. Then:

(i) m1(X) determines the ~-class (= ~-class) of X up to finite possibilities,
unless (g,7) = (0,0), (1,0).

(i) 7t (X) determines the ~-class of X up to finite possibilities, unless
(9771) - (07 0), (07 1), (17 0).

Proof. (i) is reduced to (ii). For (ii), suppose that there are infinitely
many closed points s of M, g, whose corresponding curves admit the
same ;. Then, considering the generic point 1 of an irreducible component
of the Zariski closure of these points and resorting to the fact that 7t is
(topologically) finitely generated, we show that the specialization map

1 (X7) = m1(X5)

is an isomorphism. So, we have only to show that, in fact, this map is never
an isomorphism.
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For this, by a standard technique of considering a sufficiently ramified finite
Galois cover, we can reduce the general case to the case r = 0 and g > 2.
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For this, by a standard technique of considering a sufficiently ramified finite
Galois cover, we can reduce the general case to the case r = 0 and g > 2.

Then the main ingredients of the proof are:
— Raynaud’s theory of ©

— (a variant of ) the Anderson-Indik theorem to show that © contains many
prime-to-p torsion points over s

— Hrushovski’s theorem to show that © contains few torsion points over n
— the local Torelli (cf. [Oort-Steenbrink1980])
In special cases (treated by Raynaud and Pop-Saidi), they work perfectly.
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For this, by a standard technique of considering a sufficiently ramified finite
Galois cover, we can reduce the general case to the case r = 0 and g > 2.

Then the main ingredients of the proof are:
— Raynaud’s theory of ©

— (a variant of ) the Anderson-Indik theorem to show that © contains many
prime-to-p torsion points over s

— Hrushovski’s theorem to show that © contains few torsion points over n
— the local Torelli (cf. [Oort-Steenbrink1980])
In special cases (treated by Raynaud and Pop-Saidi), they work perfectly.

In general, we face the annoying possibility that an irreducible component
of © is a translate of abelian subvariety (for s and for 7) or essentially
descends to F,, (for 7). To treat it, we also need

— to analyze the gonality of cyclic covers, and

— to establish the local Torelli for (generalized) Prym varieties. [J
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Theorem 4 ([Saidi2005])
S C Mg [r1,k: connected subvariety, dim > 0, proper over k

—> 7 is non-constant on |S| C M,k
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S C Mg [r1,k: connected subvariety, dim > 0, proper over k

—> 7 is non-constant on |S| C M,k

Proof. By a standard technique, we reduce the general case to the case
r =0, g > 2 and that § — M, ;) ; comes from a family of curves (over a
finite ramified cover of S).
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r =0, g > 2 and that § — M, ;) ; comes from a family of curves (over a
finite ramified cover of S).

By Raynaud’s theory of ©, we can choose a cyclic cover of this family such
that the corresponding family of (generalized) Prym varieties is ordinary at
every fiber.
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S C Mg [r1,k: connected subvariety, dim > 0, proper over k

—> 7 is non-constant on |S| C M,k

Proof. By a standard technique, we reduce the general case to the case
r =0, g > 2 and that § — M, ;) ; comes from a family of curves (over a
finite ramified cover of S).

By Raynaud’s theory of ©, we can choose a cyclic cover of this family such
that the corresponding family of (generalized) Prym varieties is ordinary at
every fiber.

Then the properness assumption and the quasi-affineness of the ordinary
locus (cf. [Oort1999]) implies that this family of Prym varieties is isotrivial.
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Theorem 4 ([Saidi2005])
S C Mg [r1,k: connected subvariety, dim > 0, proper over k

—> 7 is non-constant on |S| C M,k

Proof. By a standard technique, we reduce the general case to the case
r =0, g > 2 and that § — M, ;) ; comes from a family of curves (over a
finite ramified cover of S).

By Raynaud’s theory of ©, we can choose a cyclic cover of this family such
that the corresponding family of (generalized) Prym varieties is ordinary at
every fiber.

Then the properness assumption and the quasi-affineness of the ordinary
locus (cf. [Oort1999]) implies that this family of Prym varieties is isotrivial.

Now we can resort to the (local) Torelli for Prym varieties. [

41



54. Recent results.

Theorem 5 ([Saidi-T, to appear])
S C Mg y,k: connected subvariety, dim > 0

—> ! is non-constant on |S| C M,
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54. Recent results.

Theorem 5 ([Saidi-T, to appear])
S C Mg y,k: connected subvariety, dim > 0

—> ! is non-constant on |S| C M,

Proof. Again, we reduce the general case to the case r = 0, g > 2 and
that S — M, [, comes from a family of curves X — S — Spec(k), by
replacing S with a finite ramified cover.
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54. Recent results.

Theorem 5 ([Saidi-T, to appear])
S C Mg y,k: connected subvariety, dim > 0

—> ! is non-constant on |S| C M,

Proof. Again, we reduce the general case to the case r = 0, g > 2 and
that S — M, [, comes from a family of curves X — S — Spec(k), by
replacing S with a finite ramified cover.

Next, we take a model X — & — T = Spec(R) of this family, where R is a
finitely generated F,-subalgebra of k. By (the proof of) Theorem 3, we can
choose a closed point t € T' and construct a cover of this model for which
the intersection of © with prime-to-p torsion is different over the generic
point of §; and over a closed point of S;.
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54. Recent results.

Theorem 5 ([Saidi-T, to appear])
S C Mg y,k: connected subvariety, dim > 0

—> ! is non-constant on |S| C M,

Proof. Again, we reduce the general case to the case r = 0, g > 2 and
that S — M, [, comes from a family of curves X — S — Spec(k), by
replacing S with a finite ramified cover.

Next, we take a model X — & — T = Spec(R) of this family, where R is a
finitely generated F,-subalgebra of k. By (the proof of) Theorem 3, we can
choose a closed point t € T' and construct a cover of this model for which
the intersection of © with prime-to-p torsion is different over the generic
point of §; and over a closed point of S;.

Now, by an elementary scheme-theoretic argument, we can conclude that
such a difference is also available for the generic fiber of S — T'. U
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Theorem 6 (T, in progress)

Assume p # 2, (g,7) = (1,1) and that X and its 2-torsion points are defined
over F,,. Then:

(i) m1(X) determines the ~-class of X.

(ii) w1 (X) determines the ~-class of X.
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Theorem 6 (T, in progress)

Assume p # 2, (g,7) = (1,1) and that X and its 2-torsion points are defined
over F,,. Then:

(i) m1(X) determines the ~-class of X.
(ii) w1 (X) determines the ~-class of X.

Proof. We may write X = EX\.O, where (E, O) is an elliptic curve. Consider

X=E~O0Z&E~E]2] - (E~E[2)/{£1} ~ P! {0,1,00, \}.
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Theorem 6 (T, in progress)

Assume p # 2, (g,7) = (1,1) and that X and its 2-torsion points are defined
over F,,. Then:

(i) m1(X) determines the ~-class of X.

(ii) w1 (X) determines the ~-class of X.

Proof. We may write X = EX\.O, where (E, O) is an elliptic curve. Consider
X=E~O& ENE[]2 — (E~E]2])/{£1} ~ P!~ {0,1,00,A}.

As XA € F,, the moduli of X are encoded in the F,-linear relations among
{0,1, A}. So, the proof of Theorem 2 works basically, if we can characterize
group-theoretically the cyclic covers of E \ E[2] that come from the cyclic
covers of Pt~ {0, 1,00, \}.
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Theorem 6 (T, in progress)

Assume p # 2, (g,7) = (1,1) and that X and its 2-torsion points are defined
over F,,. Then:

(i) m1(X) determines the ~-class of X.

(ii) w1 (X) determines the ~-class of X.

Proof. We may write X = EX\.O, where (E, O) is an elliptic curve. Consider
X=E~O& ENE[]2 — (E~E]2])/{£1} ~ P!~ {0,1,00,A}.

As XA € F,, the moduli of X are encoded in the F,-linear relations among
{0,1, A}. So, the proof of Theorem 2 works basically, if we can characterize
group-theoretically the cyclic covers of E \ E[2] that come from the cyclic
covers of Pt~ {0, 1,00, \}.

This is done by using a certain property typical of elliptic curves (which is
unfortunately unavailable for hyperelliptic curves). [
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So many thanks:

— to the organizers!
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So many thanks:
— to the organizers!

— to the audience!!
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So many thanks:
— to the organizers!
— to the audience!!

— and to Professor Oort!!!

52



