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Statement of the André-Oort conjecture

The André-Oort Conjecture
Let S be a Shimura variety.

(i) A component of the Zariski closure of a set of special points of S is a
special subvariety.

(ii) Let V be a subvariety of S. There exists a finite set Zi,...,Z, of
special subvarieties of V' maximal among special subvarieties of V



A picture of the André-Oort conjecture
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History of the formulation of AO

Yves André, interested by questions on periods of Shimura varieties,
asked the problem for curves in Shimura varieties (1989).

Frans Oort , interested by questions on Jacobians with complex
multiplication, asked the question for subvarieties of the moduli space A,
of principally polarized Abelian varieties of dimension g (1997).

AO is an analogue of the Manin-Mumford conjecture for torsion points
on Abelian varieties. Both AO and MM are contained in the Zilber-Pink
conjecture.



The Manin-Mumford conjecture

Several proofs of MM appeared including :

Raynaud (1983) : p-adic methods.

Hindry(1988) : Galois theory+ Intersection theory.

Ullmo-Zhang (Bogomolov conjecture-1998) : Equidistribution of points
with small heights.

Hrushowski (2001) : Model Theory.

Pink-Roessler (2002) : reinterpretation in classical Algebraic Geometry.
Pila-Zannier (2008) : o-minimal theory+ functional transcendence.



Main Results on AO

Theorem 1: Edixhoven-Hindry's strategy

(i) The André-Oort conjecture holds under the GRH for a general
Shimura variety.

(ii) Let * be a set of CM points of a Shimura variety S, contained in a
single Hecke orbit. A component of the Zariski closure of ¥ is special.

Proved by Klingler-Ullmo-Yafaev (2006/ published in 2014)+
contributions of Edixhoven and Clozel (1998-2005).

Theorem 2: Pila-Zannier's strategy

(i) The André-Oort conjecture holds for Ag.

(ii) The André-Oort conjecture holds under the GRH for a general
Shimura variety.

(iii) "Good lower bounds" for the size of Galois orbits of CM points
implies AO.

Proved by Pila-Tsimerman(2008/2015)+ Klingler-Ullmo-Yafaev
(2011-2014)+Andreatta-Goren-Howard-Madapusi Pera(2015)/
Yuan-Zhang(2015)+Daw-Orr(2015). Extension of these results for
mixed Shimura varieties Gao (2014). (Pila’s lecture)



Definitions and main properties of Shimura varieties

Shimura datum : (Gg, X) with Gg reductive, with X a G(R)-conjugacy
class of morphisms from the Deligne torus S to Gg; X* = G*¥(R)/Kx
Hermitian symmetric and K C G(Af) open compact.

Shi(G, X) = G(Q)4\[XT x G(Ar)/K| = Unear@y.\atan/xTa\ X"

Here [, = G(Q)+ NaKa™! is a congruence lattice.

Each component [, \X™ is an hermitian locally symmetric space. It's a
quasi-projective (Baily-Borel), projective if Gg is Q-anisotropic, smooth if
I, is torsion free and endowed with a canonical probability measure pg.



Definitions and main properties of Shimura varieties

Shk(G, X) has a E(G, X) (the
reflex field) and S = M\ X™ (with I = G(Q)4+ N K) is defined over a finite
abelian extension of E(G, X). Moreover S is a for
interesting objects (eg. Abelian varieties+extra structures, Hodge
classes).

Main example : A; = Sp,,(Z)\H, with

Hy = Spag(R)/U(g) = {M = M* € My(C), Tm(M) > 0}.

Main working example : S = (SLy(Z)\H)5.

* Edixhoven proved that GHR implies AO for g = 2 (1998),for arbitrary
g (2005).

*Pila proved AO for S = (SLp(Z)\H)# (2011).



Special Points

Special points : Let Tg C Gg such that there exist x € X factorizing
through Tg. Let Kt := KN T(Af). Then (T,{x}) C (G, X) and

ShKT(T, {X}) = UaeT(Q)\T(Af)/KT[X>aK] C ShK(G7X).

is a finite set of special points. When S = A,, special points corresponds
to Abelian varieties with complex multiplication.

Bi-algebraic nature of special points : Let 7 : X* — S =T\X*. There is
a realization of X* in some algebraic variety V' defined over Q such that

if m(x) € S(Q) is special then x € XT(Q). If S is of abelian type this
condition characterizes special points.



Special Points

Galois action on special points : Let E = E(T, {x}) be the reflex field.
Then Gal(Q/E) acts on Shxnr1(a,)(T,{x}) through an algebraic
morphism of tori r : Re = Resg/qGme — T inducing

r: Gal(Q/E) — Gal(Q/E)® ~ mo(E*\AE) — T(Q)\T(Af).

Then o.[x,aK] = [x, r(c)aK] for o € Gal(Q/E).

Main Problem : Lower bounds for [r(oQ/E)| in terms of |K¥ /K| and
the discriminant of Lt the splitting field of T. This problem is now
solved in general under the GRH , and for A; combining some results
concerning the Colmez conjecture for the Faltings height of CM Abelian
varieties (Andreatta’s lecture) and the isogeny theorem of
Masser-Wiistholz (1993-...) (Tsimerman’s lecture).



Special and Weakly Special Subvarieties

Algebraic groups : A special subvariety of S = '\X™ is a connected
component of the image of Shxqpya,)(H, Xi) induced by a Shimura
sub-datum (H, Xy) of (G, X) where H is a reductive subgroup of G and
Xy the H(R)-conjugacy class of some x € X factorizing through Hg.
Moduli interpretation : A special subvariety of S is the locus of "extra
symmetries" (endomorphism, level, prescribe Hodge class).

Differential Geometry Assume G = G?@. A weakly special subvariety of S
is a totally geodesic subvariety of S. Moonen (1998), proved that a
weakly special variety Z is a special variety or the image of

X;" x {x2} € X{" x X5 in S for a sub-Shimura datum (G; x Gy, X1 x X3)
of (G, X).

Bi-algebraic description .

X% has realizations as a subvariety of an algebraic variety X+ (ex
bounded realizations, Borel, Siegel, ...). XT is real semi-algebraic and
complex analytic. A irreducible algebraic subvariety of X is defined/a\s
an analytic component of X™ N V for an algebraic subvariety V of X*.
Let m: Xt — S =T\XT. A subvariety Z of S is weakly special, if and
only if the components of 7~1(Z) are algebraic (U-Yafaev-2011).



Strategy of Proof of AO

Step 1:

Let V be a subvariety of S. Let (x,) be a sequence of distinct special
points of V. For all n big enough, there exists a positive dimensional
special subvariety Z, of V' containing x,.

(i) Edixhoven-Hindry's strategy : Galois orbits of CM points-Intersection
theory-Hecke operators-characterisation of special subvarieties.

(i) Galois orbits of CM points, o-minimal theory,
Hyperbolic Ax-Lindemann conjecture.

Step 2 :

Prove that the positive dimensional special subvarieties of V' are not
Zariski dense if V is not special.

(i)Edixhoven-Hindry's strategy : Equidistribution of special subvarieties
(ergodic theory, Margulis-Ratner). Galois/Ergodic Alternative.

(i) o-minimal theory+ Hyperbolic
Ax-Lindemann conjecture.



The hyperbolic Ax-Lindemann conjecture

Theorem 3 (Hyperbolic Ax-Lindemann)
Let m: Xt — S =T\X" be the uniformizing map.
(i) Let Y be an algebraic subvariety of X*. Then an irreducible
component of the Zariski closure of w(X) is weakly special.
(ii) Let V' be an algebraic subvariety of S. Let Y be a maximal
irreducible algebraic subvariety of m=1(V). Then n(Y) is weakly special.
Pila for S = (SL»(Z)\H)#, U-Yafaev for S projective, Pila-Tsimerman
for S = Ag, Klingler-U-Yafaev in general.

o-minimal theory : o-minimality of R, exp (Wilkie(1996), Van
den Dries-Miller (1994)) + Pila-Wilkie counting theorem (2006).
Peterzil-Starchenko (2013) Hyperbolic geometry. See Klingler’s lecture.



Stepl-Pila-Zannier's strategy

There exist &« > 0 and 8 > 0 with the following properties. Let x be a CM
point of V C Ag. Let X € FNwt(x) C XT. Let dy = |disc(Z(EndAy))|.

(i) |Gal(Q/Q).x| > d2 for some o > 0.

(i) H(X) < d? for some 3 > 0 (Pila-Tsimerman for A;, Orr-Daw in
general).

(iii) Pila-Wilkie counting theorem+-definability of the restriction of 7 to
F (Peterzil-Starchenko)+(i)+(ii) implies that X C Y C 7~ (V) with
Y algebraic.

(iv) The Hyperbolic Ax-Lindemann theorem implies that 7(Y) C Vis
special and contains x.



Step 2 : Equidistribution of special subvarieties

A special subvariety Z is said to be non factor if Z is not of the form
Z =51 x {x} C 51 x S, for a product of special subvarieties 5; x S.

Theorem 4 (equidistribution of special subvarieties)

Let Z, be a sequence of special subvarieties of S. Let 1, be the
associated sequence of canonical probability measures.

(i) Assume that the Z, are non factor. Up to a subsequence, there exists
a special subvariety Z containing Z, for all n >> 0 such that (,)nen
weakly converges to the canonical probability measure 7.

(ii) Let V' be a subvariety of S containing a Zariski dense set of non
factor special subvarieties. Then V is special.

Clozel-U (2005-2007).

Ergodic theory, Ratner (1991), Dani-Margulis(1991) and
Mozes-Shah (1995).



Step 2 : By the Pila-Zannier strategy

Theorem 5 (Non density of weakly special subvarieties)
Let V be a Hodge generic subvariety of S. If S = 51 X S, is a product of
special subvarieties, assume that V is not of the form V = S; x V' with
V' subvariety of S,. Then the positive dimensional weakly special
subvarieties of V' are not Zariski dense in V.
Ullmo (2014)

: o-minimal theory+Hyperbolic Ax-Lindemann.

Remark
When S is projective a direct simple proof can be given by ergodic theory.
Work in progress with Daw by the ergodic approach for general S.



Characterization of Special Varieties.

Monodromy Principle : If V is Hodge generic and irreducible, for general
Hecke operators T,.V is irreducible. ( Theorem of Deligne and
André. )

Ergodic/density Principle : For a general Hecke operator T, and a point
x € S the orbits of T;.x are dense in S (and even equidistributed in S for
the canonical probability measure ;5.)

Characterisation by Hecke operators : Let V be Hodge generic and
irreducible. Assume that V C T,.V for a sufficiently general Hecke
operator. Then V = §.

Remark
This is central in Edixhoven-Hindry's strategy and used in the proof of
the hyperbolic Ax-Lindemann conjecture.



Edixhoven-Hindry's strategy step 1

Theorem 6: (Lower bounds for Galois orbits of special
subvarieties)

Assume the GRH for CM fields. There exists B > 0, such that for any

N > 0 there exists cy > 0 such that the following holds. Let (G, X) be a
Shimura datum with G semisimple of adjoint type.

Let (H, Xy) be a Shimura subdatum of (G, X) Let T be the connected
centre of H . Let Z be a geometric component of Shy,, (H, Xy). Let

Kt = T(Af)N K, KF be the maximal compact open subgroup of T (Af)
and Lt be the splitting field of T.

deg(Gal(Q/F) - 2) >

ov I max(lBIKE,/Krl) - (log(ldisc(Lr) ). (1)
(KT #KT,}



The Galois-ergodic Alternative-sketch of the
Hindry-Edixhoven's strategy

Let V be a subvariety of S. Assume that V is Hodge generic. Let X be
an infinite set of maximal special subvarieties of V. We may assume that
the dimension of the Z € ¥ is fixed.

ergodic argument :If deg(Gal(Q/F) - Z) is bounded when Z varies in &
then check that you can apply the theorem about equidistribution of non
factor special subvarieties to construct a special subvariety Z’ of V
containing strictly some element of ¥.

If there is a sequence (Z,)nen With Z, € ¥ and deg(Gal(Q/F) - Z,)
tending to oo. Using GRH, find a Hecke operator T, with deg(Tg,) small
compared to deg(Gal(Q/F) - Z,) and such that ZZ C V' N T,.V for all
o € Gal(Q/F).

case 1-monodromy argument If V' is a component of V N T, .V apply
the monodromy principle to conclude that V' is special.

case 2-Galois/geometric argument If not replace V' by a component V, of
V' N Tg, .V containing Z, and S by the smallest special subvariety 5;
containing V’. After several steps dim(Vy) = dim(Z,) + 1. For some
degree reasons using theorem 6 you have to be in case 1



Thank you and congratulations to Frans!



