Hand-in Assignment 2

Milan Lopuhaä

To be handed in November 29th, 2016

You are allowed to use all problems of the problem sessions so far as proven statements.

1. Let \mathfrak{g} be a Lie algebra.

- (a) Show that $\mathfrak{g}/\operatorname{Rad}(\mathfrak{g})$ is semisimple.
- (b) Let \mathfrak{z} be the center of \mathfrak{g} . From now on assume that $\mathfrak{z} = \operatorname{Rad}(\mathfrak{g})$; a Lie algebra with this property is called reductive. Show that the adjoint representation of \mathfrak{g} is semisimple; hence $[\mathfrak{g}, \mathfrak{g}]$ is semisimple and $\mathfrak{g} = \mathfrak{z} \oplus [\mathfrak{g}, \mathfrak{g}]$ (see problem 5 of October 18th).
- (c) Let ρ be a representation of \mathfrak{z} , and let ρ' be a representation of $[\mathfrak{g}, \mathfrak{g}]$. Suppose $\rho(Z)$ is semisimple for alle $Z \in \mathfrak{z}$. Show that the representation $\rho \boxtimes \rho'$ of \mathfrak{g} is semisimple (see problem 5 of November 1st).
- 2. Consider the Lie algebra $\mathfrak{g} = \mathfrak{sl}_3$. In this exercise, we take the same ordering on Λ_W as in the lectures. In particular the highest weight of a representation is of the form $aL_1 bL_3$ for $a, b \in \mathbb{Z}_{\geq 0}$. Now let V be an irreducible representation of \mathfrak{g} with heighest weight $\alpha = aL_1 bL_3$. What is the highest weight of the representation V^{\vee} ?
- 3. Let V be the standard representation of \mathfrak{sl}_3 .
 - (a) Determine the weights of the following representations of \mathfrak{sl}_3 :

 $\operatorname{Sym}^2(V), \quad \operatorname{Sym}^2(V^{\vee}), \quad \operatorname{Sym}^2(V^{\vee}) \otimes \operatorname{Sym}^2(V).$

- (b) Deduce from the weights that the representation $\text{Sym}^2(V^{\vee}) \otimes \text{Sym}^2(V)$ is not irreducible.
- (c) Show that the map

$$\operatorname{Sym}^{2}(V^{\vee}) \otimes \operatorname{Sym}^{2}(V) \to V^{\vee} \otimes V$$
$$(\lambda_{1} \cdot \lambda_{2}) \otimes (v_{1} \cdot v_{2}) \mapsto \sum_{i,j=1,2} \lambda_{i}(v_{j})(\lambda_{3-i} \otimes v_{3-j})$$

is well-defined and is a surjective homomorphism of \mathfrak{sl}_3 -representations.

(d) Deduce that $\operatorname{Sym}^2(V^{\vee}) \otimes \operatorname{Sym}^2(V)$ has a subrepresentation isomorphic to $V^{\vee} \otimes V$.