Problems for Representations of Linear Algebraic Groups

Milan Lopuhaä

September 6^{th} , 2016

- 1. Let V be a vector space.
 - (a) Show that every element $g \in GL(V)$ is algebraic, i.e. is the zero locus of some set of algebraic functions.
 - (b) Show that every finite subgroup of GL(V) is algebraic.
- 2. Let V be a vector space, let φ be a non-degenerate bilinear form on V, and let Φ be the associated map $V \to V^{\vee}$ given by $\Phi(v) = \varphi(-, v)$. Let W be a subspace of V. Recall that

$$W^{\perp} = \{ v \in V : \varphi(w, v) = 0 \ \forall w \in W \}.$$

- (a) Show that $W^{\perp} = \Phi^{-1}(\ker(V^{\vee} \to W^{\vee})).$
- (b) Deduce that $\dim W^{\perp} = \dim V \dim W$. If φ is symmetric or antisymmetric, show that $(W^{\perp})^{\perp} = W$.
- 3. Let V be a vector space, let φ be a bilinear form on V, and let Φ be the associated map $V \to V^{\vee}$. Show that the following are equivalent:
 - (a) Φ is injective.
 - (b) Φ is an isomorphism.
 - (c) $V^{\perp} = \{0\}.$
 - (d) For every $y \in V \setminus \{0\}$ there exists an $x \in V$ such that $\varphi(x, y) \neq 0$.
 - (e) For some choice of basis of V, the matrix B associated with φ has nonzero determinant.
 - (f) For every choice of basis of V, the matrix B associated with φ has nonzero determinant.
- 4. Let V be a vector space, and let φ be non-degenerate symmetric bilinear form on V.
 - (a) Show that there exists an $x \in V$ such that $\varphi(x, x) = 0$.

- (b) Show that there exists an $y \in V$ such that $\varphi(x, y) = 1$ and $\varphi(y, y) = 0$.
- (c) Show by induction that there exists a basis e_1, \ldots, e_n of V such that the matrix B associated with φ with respect to this basis is of the following form:

$$B = \left(\begin{array}{cc} 0 & & 1 \\ & \ddots & \\ 1 & & 0 \end{array}\right),$$

i.e., the antidiagonal matrix.

- 5. Let V be a vector space, and let φ be a nondegenerate bilinear form on V.
 - (a) Show that there are subspaces V_0 , V_1 of V such that:
 - i. $\varphi|_{V_0}$ is symmetric;
 - ii. $\varphi|_{V_1}$ is antisymmetric;
 - iii. $V_0 \perp V_1;$
 - iv. $V = V_0 \oplus V_1$.

Show furthermore that this decomposition is unique.

(b) Let $G \subset GL(V)$ be the group of linear transformations given by

$$G = \{g \in \operatorname{GL}(V) : \varphi(gv, gw) = \varphi(v, w) \text{ for all } v, w \in V\}.$$

Show that G is an algebraic subgroup, and that $G \cong O(V_0, \varphi|_{V_0}) \times Sp(V_1, \varphi|_{V_1})$ as groups.