Problems for Representations of Linear Algebraic Groups

Milan Lopuhaä

October 11th, 2016

- 1. Let *n* be an integer. Show that the endomorphism of Lie \mathbb{G}_m induced by the algebraic homomorphism $f: \mathbb{G}_m \to \mathbb{G}_m$ given by $f(z) = z^n$ is multiplication by *n*.
- 2. Let G be an algebraic group, and let \mathfrak{g} be its Lie algebra. Let Ad: $G \to \operatorname{GL}(\mathfrak{g})$ be the representation of G induced by conjugation on G, and let ad: $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ be its derivative. Define a map $\kappa \colon \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ by sending (x, y) to the trace of $\operatorname{ad}(x) \circ \operatorname{ad}(y) \in \operatorname{End}(\mathfrak{g})$.
 - (a) Show that for a finite dimensional vector space V and two endomorphisms A, B of V one has Tr(AB) = Tr(BA). Conclude that κ is a symmetric bilinear form; it is called the *Killing form* on \mathfrak{g} .
 - (b) Show that the image of Ad lies in the orthogonal group $O(\mathfrak{g},\kappa)$.
 - (c) Now take $G = SL_2$. Show that κ is nondegenerate.
 - (d) Show that ad induces an isomorphism between \mathfrak{sl}_2 and $\mathfrak{o}(\mathfrak{g},\kappa) \cong \mathfrak{o}_3$ (see exercise 4 of last week).
- 3. Let n be an integer, and let V be the standard representation of \mathfrak{sl}_2 . Show that

$$V^{\otimes n} \cong \bigoplus_{k=0}^{\lfloor \frac{n}{2} \rfloor} (\operatorname{Sym}^{n-2k}(V))^{\oplus \binom{n}{k} - \binom{n}{k-1}}$$

as representations of \mathfrak{sl}_2 .

4. Let R be a commutative ring. An R-module is an abelian group M together with a ring homomorphism $R \to \text{End}(M)$. In other words, an R-module is an abelian group M together with a map

$$\begin{array}{rccc} R \times M & \to & M \\ (r,m) & \mapsto & r \cdot m \end{array}$$

satisfying the following properties for all $r, r' \in R$ and $m, m' \in M$:

$$r \cdot (m + m') = r \cdot m + r \cdot m'$$

$$(r + r') \cdot m = r \cdot m + r' \cdot m$$

$$(rr') \cdot m = r \cdot (r' \cdot m)$$

Note that if R is a field, then R-modules are precisely R-vector spaces. For two complex vector spaces V and W, let $\operatorname{Lin}_{\mathbb{C}}(V, W)$ denote the \mathbb{C} -linear maps from V to W. For a \mathbb{C} -algebra A and an A-module M, consider the set

 $\operatorname{Der}_{\mathbb{C}}(A, M) = \{ D \in \operatorname{Lin}_{\mathbb{C}}(A, M) : D(xy) = x \cdot D(y) + y \cdot D(x) \}.$

- (a) Show that $\text{Der}_{\mathbb{C}}(A, M)$ naturally has the structure of an A-module.
- (b) Now take M = A, which we can consider as an A-module by taking taking $a \cdot m = am$ for any $a, m \in A$. Show that $\text{Der}_{\mathbb{C}}(A, A)$ has a Lie algebra structure given by $[D, D'] = D \circ D' D' \circ D$.
- (c) Let G be an algebraic group, and let $A = \mathcal{O}(G)$. Let $g \in G$. Show that the map $\operatorname{ev}_g \circ : \operatorname{Lin}_{\mathbb{C}}(A, A) \to \operatorname{Lin}_{\mathbb{C}}(A, \mathbb{C})$ maps $\operatorname{Der}_{\mathbb{C}}(A, A)$ to $\operatorname{T}_g G$.
- (d) Show that the induced map $\operatorname{Der}_{\mathbb{C}}(A, A) \to \prod_{g \in G} \operatorname{T}_{g} G$ is injective. Hence we can see an element $D \in \operatorname{Der}_{\mathbb{C}}(A, A)$ as a collection $(D_g)_{g \in G}$ of tangent vectors $D_g = \operatorname{ev}_g \circ D \in \operatorname{T}_{g} G$; we call D a vector field on G.
- (e) If g = e in part (c), show that $ev_e \circ -: Der_{\mathbb{C}}(A, A) \to Lie G$ is a homomorphism of Lie algebras.