Problems for Representations of Linear Algebraic Groups

Milan Lopuhaä

October 18th, 2016

- 1. Let \mathfrak{g} be a semisimple Lie algebra. Show that $\mathrm{ad} \colon \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is injective.
- 2. Let \mathfrak{g} be a Lie algebra. Show that \mathfrak{g} is solvable if and only if there is a chain of Lie algebras $\mathfrak{g} = \mathfrak{g}_0 \supset \mathfrak{g}_1 \supset ... \supset \mathfrak{g}_k = 0$ such that each \mathfrak{g}_i is an ideal of \mathfrak{g} and such that each $\mathfrak{g}_i/\mathfrak{g}_{i+1}$ is abelian.
- 3. Let \mathfrak{g} be a Lie algebra. Show that \mathfrak{g} is nilpotent if and only if there is a chain of Lie algebras $\mathfrak{g} = \mathfrak{g}_0 \supset \mathfrak{g}_1 \supset ... \supset \mathfrak{g}_k = 0$ such that each \mathfrak{g}_i is an ideal of \mathfrak{g} and such that each $\mathfrak{g}_i/\mathfrak{g}_{i+1}$ is contained in the centre of $\mathfrak{g}/\mathfrak{g}_{i+1}$.
- 4. Show that every irreducible representation of a solvable Lie algebra has dimension 1.
- A Lie algebra g is called *simple* if it is noncommutative and its only ideals are 0 and g.
 - (a) Show that a direct sum of simple Lie algebras is semisimple.
 - (b) Let \mathfrak{g} be a (not necessarily simple) Lie algebra. Show that its minimal nonzero ideals are either commutative of dimension 1 or simple.
 - (c) Now suppose the adjoint representation of \mathfrak{g} is semisimple. Show that there is a set \mathcal{A} of minimal nonzero ideals of \mathfrak{g} such that $\mathfrak{g} \cong \bigoplus_{\mathfrak{a} \in \mathcal{A}} \mathfrak{a}$ as Lie algebras. *Hint*: show that a subrepresentation of the adjoint representation corresponds to an ideal of \mathfrak{g} .
 - (d) Show that in this case $[\mathfrak{g},\mathfrak{g}]$ is semisimple and that $\mathfrak{g} \cong \mathfrak{z} \oplus [\mathfrak{g},\mathfrak{g}]$, where \mathfrak{z} is the centre of \mathfrak{g} .
- 6. Let \mathfrak{g} be a Lie algebra.
 - (a) Suppose that \mathfrak{g} has a faithful irreducible representation. Use Proposition 9.17 of Fulton-Harris to show that $\operatorname{Rad}(\mathfrak{g})$ has dimension at most 1.

(b) Now let *n* be an integer, and suppose \mathfrak{g} is a Lie-subalgebra of \mathfrak{sl}_n for which the standard representation *V* of \mathfrak{sl}_n is an irreducible representation of \mathfrak{g} ; this is the case, for example, for \mathfrak{o}_n , for \mathfrak{sp}_{2k} if n = 2k, and for \mathfrak{sl}_n itself. Show that \mathfrak{g} is semisimple.