Problems for Representations of Linear Algebraic Groups

Milan Lopuhaä

November 22^{nd} , 2016

- 1. Let \mathfrak{g} be a semisimple Lie algebra. Let \mathfrak{h} be a toral subalgebra, and let $\mathfrak{g} = \bigoplus_{\alpha \in \mathfrak{h}^*} \mathfrak{g}_{\alpha}$ be the decomposition into character spaces. If $\mathfrak{h} = \mathfrak{g}_0$, show that \mathfrak{h} is maximal. (As mentioned in the lecture, the converse is also true.)
- 2. Let \mathfrak{g} be the Lie algebra \mathfrak{sp}_4 , which we know to be semisimple; see Exercise 6 of October 18th. Let \mathfrak{h} be the diagonal subalgebra, i.e., the set of all elements of the form

$$\left(\begin{array}{cccc} x & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & 0 & -y & 0 \\ 0 & 0 & 0 & -x \end{array}\right)$$

(see Exercise 3b of October 4^{th}).

- (a) Decompose \mathfrak{g} into \mathfrak{h} -eigenspaces. Which are the $\alpha \in \mathfrak{h}^*$ that occur? For each such α , give a basis for \mathfrak{g}_{α} .
- (b) Show that \mathfrak{h} is a maximal toral subalgebra of \mathfrak{g} .
- (c) Determine the Killing form of \mathfrak{g} restricted to \mathfrak{h} and draw the root system of \mathfrak{g} with respect to \mathfrak{h} on paper such that the inner product of the root system corresponds to the standard inner product of Euclidean space.
- 3. Let \mathfrak{g} be a semisimple Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a maximal toral subalgebra, $R \subset \mathfrak{h}^*$ the set of roots. For $\alpha \in R$ we have defined an element $H_{\alpha} \in \mathfrak{h}$. Prove that these elements H_{α} span \mathfrak{h} as a complex vector space. [*Hint:* Suppose there exists an element $Z \in \mathfrak{h}$ with $B(H_{\alpha}, Z) = 0$ for all $\alpha \in R$. Show that then $Z \in Z(\mathfrak{g}) = 0$.]
- 4. Let $\mathfrak{g} = \mathfrak{sl}_n$ with $n \geq 2$. Let $\mathfrak{h} \subset \mathfrak{g}$ be the Lie subalgebra of diagonal matrices $\operatorname{diag}(a_1, \ldots, a_n)$ with $\sum a_i = 0$. Defining $L_i \in \mathfrak{h}^*$ by

$$L_i(\operatorname{diag}(a_1,\ldots,a_n)) = a_i,$$

this gives

$$\mathfrak{h}^* = \left(\mathbb{C} \cdot L_1 + \cdots + \mathbb{C} \cdot L_n\right) / \mathbb{C} \cdot \left(L_1 + \cdots + L_n\right).$$

The set of roots $R \subset \mathfrak{h}^*$ is given by $R = \{L_i - L_j \mid i \neq j\}$, so that the \mathbb{R} -linear span of R is the subspace $E \subset \mathfrak{h}^*$ of all \mathbb{R} -linear combinations of the vectors $L_i - L_j$. In other words,

$$E = \left\{ \sum c_i L_i \in \mathbb{R} \cdot L_1 + \dots + \mathbb{R} \cdot L_n \mid \sum c_i = 0 \right\}.$$

(Note that this maps *injectively* to \mathfrak{h}^* .)

(a) For n = 2 (trivial), 3 and 4, verify that the form (,) on E is proportional to the standard Euclidean inner product on $E \subset \mathbb{R}^n$. Can you even prove that this is true for arbitrary $n \geq 2$? [*Hint:* As basis for E take the roots $\alpha_i = L_i - L_{i+1}$ for $i = 1, \ldots, n-1$. If $\alpha = L_i - L_j$ is any root, we know that the corresponding element H_{α} is $H_{ij} = E_{ii} - E_{jj}$. We also know that the element called t_{α} in the lecture is a multiple of H_{α} , say $t_{\alpha} = c \cdot H_{\alpha}$. Show that the constant c is independent of α . What remains is to calculate the matrix of the Killing form with respect to the basis $H_{\alpha_1}, \ldots, H_{\alpha_{n-1}}$ of \mathfrak{h} .]

Let the symmetric group S_n act on E by permutation of the coordinates: $\sigma \in S_n$ sends the class of L_i to the class of $L_{\sigma(i)}$. (Note that this indeed gives a well-defined action on E.)

- (b) For $\alpha = L_i L_j$, show that the reflection $s_\alpha \colon E \to E$ is given by the action of the transposition $(i \ j) \in S_n$. (You may pretend that you have completed (a) for arbitrary n.)
- (c) Conclude that the Weyl group W of the root system R is the group S_n .