Problems for Representations of Linear Algebraic Groups

Milan Lopuhaä

November 29^{th} , 2016

- 1. If you have not done so already, do problems 2 and 4 of last week.
- 2. Let \mathfrak{g} be a semisimple Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a maximal toral subalgebra, V and W two irreducible representations of \mathfrak{g} . Let α and β be the heighest weights of V and W, respectively. Let $v \in V$ and $w \in W$ be nonzero elements; let $U \subset V \oplus W$ be the \mathfrak{g} -subrepresentation generated by the element (v, w). (In other words, U is the smallest subrepresentation of $V \oplus W$ that contains (v, w).).
 - (a) If $\alpha = \beta$ and $v \in V_{\alpha}$ and $w \in W_{\beta} = W_{\alpha}$, show that U is again irreducible with highest weight α . By considering the projections $V \leftarrow U \rightarrow W$, conclude that $V \cong W$ as representations of \mathfrak{g} .
 - (b) If $\alpha = \beta$ and $v \in V_{\gamma}$ and $w \in W_{\delta}$ with $\gamma \neq \delta$, show that $U = V \oplus W$.
 - (c) If $\alpha \neq \beta$, show that $U = V \oplus W$ for any choice of (nonzero) $v \in V$ and $w \in W$.
- 3. Let V be the standard representation of $\mathfrak{g} = \mathfrak{sp}_4$, and let \mathfrak{h} be as in problem 2 of last week.
 - (a) Give a decomposition of \mathfrak{g} into root spaces (with respect to \mathfrak{h}).
 - (b) Give the weights of the following representations of \mathfrak{g} (with respect to \mathfrak{h}):

$$V, V^{\vee}, \operatorname{Sym}^2(V), \operatorname{ad}$$

Deduce that $\operatorname{Sym}^2(V) \cong \operatorname{ad}$ as representations of \mathfrak{g} .

(c) Let $\Phi: V \xrightarrow{\sim} V^{\vee}$ be the isomorphism induced by the standard symplectic form φ on V. Show that the image of the composite map of \mathfrak{g} -representations

$$\mathfrak{g} \hookrightarrow \operatorname{End}(V) \xrightarrow{\sim} V^{\vee} \otimes V \xrightarrow{\Phi^{-1} \otimes \operatorname{id}} V \otimes V$$

(see problem 5 of September 13th) is equal to $\text{Inv}^2(V)$ (see problem 2 of September 5th). This gives a more constructive proof of the fact that $\text{Sym}^2(V) \cong \text{ad}$.