Problems for Representations of Linear Algebraic Groups

Milan Lopuhaä

December 6^{th} , 2016

- 1. If you have not done so already, do problem 2 of November 22^{nd} .
- 2. Determine the weight lattice of \mathfrak{sp}_4 and the fundamental group Λ_W/Λ_R .
- 3. Let \mathfrak{g}' and \mathfrak{g}'' be two semisimple Lie algebras, and let $\mathfrak{h}' \subset \mathfrak{g}'$ and $\mathfrak{h}'' \subset \mathfrak{g}''$ be two maximal toral subalgebras. Let R' and R'' be the respective corresponding root systems.
 - (a) Show that the roots of $\mathfrak{g} = \mathfrak{g}' \oplus \mathfrak{g}''$ with respect to the toral subalgebra $\mathfrak{h} = \mathfrak{h}' \oplus \mathfrak{h}''$ form the set $R' \sqcup R''$ (regarded as a subset of $\mathfrak{h}^{\vee} = (\mathfrak{h}')^{\vee} \oplus (\mathfrak{h}'')^{\vee}$).
 - (b) Show that \mathfrak{h} is a maximal toral subalgebra of \mathfrak{g} .
 - (c) Show that \mathfrak{h}' and \mathfrak{h}'' are perpendicular to each other with respect to the Killing form on \mathfrak{g} .
 - (d) Show that the root system R of \mathfrak{g} with respect to \mathfrak{h} is the 'perpendicular disjoint union' of the root systems R' and R'', i.e. as a set it is equal to $R' \sqcup R''$, and $E = E' \oplus E''$ as real vector spaces with inner products (where E, E', and E'' are the real spans of R, R', and R'', respectively).
 - (e) Let W, W' and W'' be the Weyl groups of $\mathfrak{g}, \mathfrak{g}'$, and \mathfrak{g}'' , respectively. Show that $W = W' \times W''$.
 - (f) Let \mathcal{C}' and \mathcal{C}'' be Weyl chambers of R' and R'' respectively. Show that

$$\mathcal{C}' \oplus \mathcal{C}'' = \{ (x', x'') : x' \in \mathcal{C}', x'' \in \mathcal{C}'' \}$$

is a Weil chamber of E.

4. Let \mathfrak{g} be a semisimple Lie algebra, and let \mathfrak{h} be a maximal toral subalgebra. Let R be the root system of \mathfrak{g} associated to \mathfrak{h} , and let E be its real span. Fix a Weyl chamber \mathcal{C} in E, or, equivalently, a basis $\Delta = \{\alpha_1, ..., \alpha_d\}$ of positive roots. Define

the elements $\varpi_1, ..., \varpi_d \in E$ by the relation $\varpi_i(H_{\alpha_j}) = \delta_{ij}$, for all $i, j \leq d$; here δ_{ij} denotes the Kronecker delta. Show that

$$\bar{\mathcal{C}} \cap \Lambda_{\mathrm{W}} = \bigoplus_{i=1}^{d} \mathbb{Z}_{\geq 0} \cdot \varpi_i.$$

5. Do exercises 1 and 2 for \mathfrak{sp}_6 . (Of course, you should first reformulate problem 2 of November 22^{nd} so that this makes sense. Since Sinterklaas has left the country, you do not have to construct a 3-dimensional paper model of the root system, but you are very much encouraged to do so anyway.)