ALGEBRAIC GEOMETRY—Exercises for 4 March

Exercise 1. Do HAG, Chapter II, Exercise 1.4. Here is the text of this exercise:

- (a) Let $\varphi: \mathscr{F} \to \mathscr{G}$ be a morphism of presheaves such that $\varphi(U): \mathscr{F}(U) \to \mathscr{G}(U)$ is injective for each U. Show that the induced map $\varphi^+: \mathscr{F}^+ \to \mathscr{G}^+$ of associated sheaves is injective.
- (b) Use part (a) to show that if $\varphi \colon \mathscr{F} \to \mathscr{G}$ is a morphism of sheaves, then $\operatorname{Im}(\varphi)$ can be naturally identified with a subsheaf of \mathscr{G} .

Exercise 2. Given a topological space X, we denote by $\mathbb{Z}_X^{\text{pre}}$ the constant presheaf given by

$$\begin{cases} \mathbb{Z}_X^{\text{pre}}(U) = \mathbb{Z} & \text{for all open } U; \\ \rho_{U,V} = \text{id}_{\mathbb{Z}} & \text{for all open } V \subset U. \end{cases}$$

By \mathbb{Z}_X we denote the associated sheaf, which is the constant sheaf on X associated with the group Z. Finally, $\theta_X \colon \mathbb{Z}_X^{\text{pre}} \to \mathbb{Z}_X$ is the universal map as in the definition of an associated sheaf.

(i) Let X be a topological space and $Y \subset X$ a non-empty subset. We give Y the induced topology (subspace topology) and write $i: Y \hookrightarrow X$ for the inclusion map. Note that the presheaf $i_*(\mathbb{Z}_Y^{\text{pre}})$ is the same as the presheaf $\mathbb{Z}_X^{\text{pre}}$. Show that there is a unique homomorphism of sheaves $\varphi: \mathbb{Z}_X \to i_*(\mathbb{Z}_Y)$ such that the diagram

$$\begin{array}{cccc} \mathbb{Z}_X^{\text{pre}} & \stackrel{\text{id}}{\longrightarrow} & i_*(\mathbb{Z}_Y^{\text{pre}}) \\ \\ \theta_X & & & \downarrow i_*(\theta_Y) \\ \\ \mathbb{Z}_X & \stackrel{\varphi}{\longrightarrow} & i_*(\mathbb{Z}_Y) \end{array}$$

is commutative.

In the rest of the exercise we consider the 4-point topological space $X = \{a, b, c, d\}$ in which the open sets are the following ones:

$$\emptyset\,,\quad \{a\}\,,\quad \{b\}\,,\quad Y=\{a,b\}\,,\quad V=\{a,b,c\}\,,\quad W=\{a,b,d\}\,,\quad X\,.$$

(You don't need to prove that this is indeed a topology.) We again write $i: Y = \{a, b\} \hookrightarrow X$ for the inclusion map. Note that the induced topology on Y is the discrete topology.

A presheaf ${\mathscr F}$ on X is given by a commutative diagram of groups

(Not all restriction maps are given in this diagram but the remaining maps are fully determined by the information in the diagram. For instance, $\rho_{X,Y} = \rho_{V,Y} \circ \rho_{X,V} = \rho_{W,Y} \circ \rho_{X,W}$.)

- (ii) Give the sheaves \mathbb{Z}_X and $i_*\mathbb{Z}_Y$ in the form of such a diagram.
- (iii) With $\varphi: \mathbb{Z}_X \to i_*(\mathbb{Z}_Y)$ as in (i), applied to the situation considered here, give the diagram for the quotient sheaf $\operatorname{Coker}(\varphi)$, which is defined as the sheaf associated with the presheaf $U \mapsto i_*(\mathbb{Z}_Y)(U)/\operatorname{Im}(\varphi(U))$. Is the natural homomorphism $i_*(\mathbb{Z}_Y) \to \operatorname{Coker}(\varphi)$ a surjective map of sheaves?