1. DIVISORS

Let X be a complete non-singular curve.

Definition 1.1. A divisor on X is an element of the free abelian group Z*) on X, i.e.,
a Z-valued function D: X — Z such that D(P) # 0 for at most finitely many P € X.

We often write divisors as a finite formal sum D = ", D(P) - P with D(P) € Z.
The degree deg D of a divisor D is the element ), D(P) of Z. Clearly the degree
induces a homomorphism of abelian groups ZX) — Z. For example, if P,Q, R are
points on X, then D = —P + 3Q) — 4R is a divisor on X, of degree —2.

Let f € k(X)* be a non-zero rational function on X. For a point P € X, let
vp: FracOx p — Z U {oo} be the discrete valuation of Ox p.

Lemma 1.2. We have vp(f) # 0 for only finitely many P € X .

Proof. Choose an open affine cover X = U; U...UU, of X. We can write f|y, = ¢;/h;
for suitable g;, h; € O(U;). As each U; has dimension one, the zero loci Z(g;) and Z(h;)
are finite sets. For P € U; \ (Z(g;) U Z(h;)) we have vp(f) = 0. O

Definition 1.3. Let f € k(X)* be a non-zero rational function on X. We define the
divisor of f to be the divisor div f = Y .y vp(f) - P on X. By the Lemma, this is
well-defined.

The map k(X)* — ZX) given by f + div f is a homomorphism of abelian groups.
The image is called the group of principal divisors on X, notation Princ(X). The
quotient group Z™X) /Princ(X) is called the class group of X, notation C1(X). Elements
of CI(X) are called divisor classes. We say that two divisors D, E on X are linearly
equivalent, notation D ~ E. if D and FE define the same class in Cl(X).

Let ¢: X — Y be a morphism of complete non-singular curves. Note that ¢ is either
constant or surjective. Assume that ¢ is surjective. Then X is the normalization of Y
in the function field of X. In particular, the morphism ¢ is finite, hence quasi-finite and
proper. Let P € X and put () = ¢(P). The ramification index of ¢ at P can be obtained
as follows: let mg a generator of the maximal ideal of Oy g, then ep = vp(p*(1g)). We

recall that 3 pc v ,(p)—g €p = deg .

Definition 1.4. View @) as a divisor of degree one on Y. We define ¢*(Q) to be the
divisor ) p, X p(P)=Q EP" P on X. By extending this linearly we obtain a homomorphism

of abelian groups ¢*: Z(Y) — 7).

This definition may seem a little ad hoc; it becomes more natural when we choose,
instead, to work with ‘Cartier’ divisors. Anyway, the pullback of divisors defined in this
way has some good properties: for D € Z) we clearly have

(1) deg p"(D) = (deg¢) - deg D .

Moreover, we have functoriality: if ¢: Y — Z is a surjective morphism, then (¢ o p)* =
©* o1)* as maps from Z%) to ZX).

Recall that we can view each element f € k(Y) as a rational map f: Y --» PL
As Y is non-singular and P! is complete, the rational map f extends as a morphism
f:Y — PL If f is not constant, then f is surjective. For a non-constant f € k(Y") we
have div f = f*(0 — c0). We obtain:
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Proposition 1.5. Let ¢: X — Y be a surjective morphism, and f € k(Y)* a non-zero
rational function. Then

(i) " div f = div o™ f;

(i) deg div f = 0.

Proof. We obtain (i) for non-constant f by functoriality. For constant f both sides of the
equality are zero. We obtain (ii) from equation (1) and the fact that deg(0—oc) = 0. O

By item (i), the group homomorphism ¢*: Z() — ZX) descends to a group homo-
morphism ¢*: CI(Y) — CI(X). By item (ii), the degree homomorphism deg: Z®) — Z
factors through a homomorphism Cl(Y) — Z. We have a commutative diagram
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of abelian groups.
A divisor D on X is called effective, notation D > 0, if D(P) > 0 for all P € X. We
write E > Dif E— D > 0.

Definition 1.6. Let D be a divisor on X. The Riemann-Roch space of D is the subset
L(D)={0}U{f e k(X)|divf+D >0}
={0}U{f € k(X)*|vp(f) > —D(P) for allP € X}
of k(X).

Proposition 1.7. (i) The Riemann-Roch space L(D) is a sub-k-vector space of k(X).
(ii) If D ~ E, say D = E + div g, where g € k(X)*, then the multiplication f — fg
yields a k-linear isomorphism L(D) = L(E).

(111) If deg D < 0, then L(D) = (0).

() If deg D > 0, the dimension dimy L(D) is finite, and bounded above by deg D + 1.

Proof. (i) This follows from the fact that divaf = div f for all & € k* and the fact that
vp(f + g) > min{vp(f),vp(g)} for all f,g € k(X) and all P € X.

(ii) Note that div fg = div f + divg. Hence D +div f > 0 < E +div fg > 0.

(iii) Assume f is a non-zero element of £(D). Then div f + D > 0, in particular we
have deg D = deg(div f + D) > 0.

(iv) By (ii) we may assume that D is effective. Write D = " ,_ D(P) - P with all

D(P) € Z>p. Choose a uniformizer 7p for each point P € X. Let f € £(D). Then

fe W;D(P) Ox p and this projects to an element fe W;D(P) Ox.p/Ox p. By the theory

of discrete valuation rings, the latter is an Ox p/mp-module, i.e. a k-vector space, of
dimension D(P). Collecting all points P € X together we obtain a k-linear ‘evaluation’
map ev: L(D) = Ppcx W;D(P)OXVP/OXVP. An element in the kernel of ev is regular
at all P € X, hence constant. The vector space on the right hand side has dimension

Y pex D(P) = deg D. We find that dim; £(D) < deg D + 1. O

We write [(D) as a shorthand for dimy, £(D). The map Z"X) — Zs, given by D ~
[(D) factors over CI(X) by (ii).

Ezxample 1.1. If D is effective, then £(D) contains k, and hence (D) > 1. If D = 0,
then £(D) =k and (D) = 1.
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Example 1.2. Let P € X. If I(P) > 2, then X = P!. Indeed, let f € L(P) be non-
constant. Then f is a surjective morphism f: X — P!. From the condition div f+P > 0
we infer that f*oo < P. As f*oo > 0 we find that f*oo = P hence deg f = 1. So the
inclusion of function fields k(P') — k(X) induced by f is an equality. It follows that f
is an isomorphism by Theorem 8.25.

Ezample 1.3. Consider X = P! together with the divisor D = me,-00+ > 1, m; - a; on
X. Hereq; € A' =k fori=1,...,n. We would like to compute [(D). Put d = deg D =
Mooty 5 m;. By Proposition 1.7(iii) we can assume that d > 0. For h = [\ (x—a;)™
we have divh = > m;-a;— (D1 m;)-00. Let D' = D—div h = d-00. By Proposition
1.7(ii) multiplication by h~! yields a k-linear isomorphism £(D) = £(D'). Note that

LD)=L(d-00)={f €klz]ldegf<d}=kDk-2&... Dk 2%
We find (D) =l(D') =d+1=degD + 1.

2. DIFFERENTIALS

Let A be a ring and B an A-algebra. Let M be a B-module. An A-derivation from
B to M is an A-linear map d: B — M such that d(fg) = fdg + gdf for all f,g € B.
There exists a universal A-derivation d: B — {1p/4; the B-module Qg4 is called the
module of Kdhler differentials of B over A. An explicit description of {2p/4 is as the
module generated over B by formal symbols d f, where f runs through B, together with
the relations d(fg) = fdg+gdf forall f,g € B,d(f+¢g) =df+dgforall f,g € B, and
da =0 for all @ € A. If B — (C'is a ring morphism, note that there is a natural exact
sequence of C-linear maps Q24 @5 C = Qc/a — Qcyp — 0 (cf. [HAG], Proposition
I1.8.3A, the ‘first exact sequence’).

[HAG], Theorem II1.8.6A says:

Theorem 2.1. Let K be a finitely generated extension of a field k. Then dimg Qg >
tr.deg(K/k), and equality holds if and only if K is separably generated over k.

Let X be a complete nonsingular curve, and k(X) be its function field. We obtain as
corollaries:

Proposition 2.2. The module of Kdhler differentials Qyxy/k is a 1-dimensional k(X)-
vector space.

Proof. Recall that k(X) is finitely separably generated over k. O

The elements of Q(x)/, are called rational differential forms on X.
Let ¢: X — Y be a surjective morphism of complete nonsingular curves.

Proposition 2.3. The natural k(X)-linear map Qyyy/i Qreyy K(X) = Qu(x)/k s either
zero or an isomorphism. It is an isomorphism if and only if the finite field extension
k(X) D k(Y) is separable.

Proof. Both Qyvy/k @pvy k(X) and Qy(x)/, are 1-dimensional k(X )-vector spaces, from
which the first statement follows. The second follows from the ‘first exact sequence’. [J

Example 2.1. Assume that k has characteristic p > 0 and consider the morphism
F:P' — P! defined by x ~ 2P. The corresponding extension of function fields is
k(x) O k(xP). As d(2P) = 0 we have that the natural k(x)-linear map Qyzr)/x Qk(ar)
k(x) = Qpy/k is the zero map.



A finite field extension K D L is a tower of finite separable extensions and purely
inseparable extensions. We say that ¢: X — Y is purely inseparable if the correspond-
ing function field extension k(X) D k(Y) is purely inseparable. Note that a purely
inseparable ¢: X — Y of degree p is everywhere ramified with ramification index p. If
P € X and mp € k(X) is a generator of the maximal ideal of Ox p then the surjec-
tive morphism X — P! defined by mp is unramified at P and hence the morphism is
separable. In particular, the element drp is non-zero in k(X).

Let w be a non-zero element of Q(x)/k, and P € X. Let mp be a generator of the
maximal ideal of Ox p. We define the element w(7mp) € k(X) to be the unique element
f € k(X) such that w = fdrp. We define vp(w) to be the valuation at P of w(mp). It
is straightforward to verify that this definition is independent of the choice of generator

mp.
Lemma 2.4. We have vp(w) # 0 for only finitely many P € X.

Proof. Let P € X be a point, choose a uniformizer mp at P and write w = fdnp. Let
U be the dense open subset of points () € X where f is non-zero regular, 7p is regular,
and mp — mp(Q)) is a uniformizer (for the latter we have to discard the poles of mp and
the finitely many points where 7p ramifies). As drp = d(mp —7p(Q)) for all Q € U we
have vg(w) =0 for all Q € U. As X \ U is finite, the result follows. O

We put

divw = Z vp(w) - P.
Pex
By the Lemma divw is a divisor on X. We call such a divisor a canonical divisor of X.
For f € k(X) a non-zero rational function one has

div(fw) = div f +divw.

Thus, the class of a non-zero differential form on X is a well-defined element of Cl(X),
the canonical divisor class.

Ezample 2.2. Take w = dz on X = P!, Then divw = —2 - o0.

Definition 2.5. Let K be a canonical divisor on X. The genus of X is the dimension
[(K) = dimy L(K) of the Riemann-Roch space associated to K.

Example 2.3. For X = P' we have deg K = —2 < 0 hence the genus of P! is zero.

3. RIEMANN-ROCH
A very powerful result is the Riemann-Roch theorem, which we state without proof.

Theorem 3.1. Let X be a complete nonsingular curve, and D a divisor on X. Let K
be a canonical divisor on X. Let g be the genus of X. Then the equality

I(D)—U(K —D)=degD —g+1
holds.

By taking D = K and recalling that £(0) = k we find that deg K = 2¢g — 2. If
deg D > 2g — 2 then K — D has negative degree and we find that (D) = deg D — g+ 1.



