
1. Divisors

Let X be a complete non-singular curve.

Definition 1.1. A divisor on X is an element of the free abelian group Z(X) on X, i.e.,
a Z-valued function D : X → Z such that D(P ) 6= 0 for at most finitely many P ∈ X.

We often write divisors as a finite formal sum D =
∑

P∈X D(P ) · P with D(P ) ∈ Z.
The degree degD of a divisor D is the element

∑
P∈X D(P ) of Z. Clearly the degree

induces a homomorphism of abelian groups Z(X) → Z. For example, if P,Q,R are
points on X, then D = −P + 3Q− 4R is a divisor on X, of degree −2.

Let f ∈ k(X)∗ be a non-zero rational function on X. For a point P ∈ X, let
vP : FracOX,P → Z ∪ {∞} be the discrete valuation of OX,P .

Lemma 1.2. We have vP (f) 6= 0 for only finitely many P ∈ X.

Proof. Choose an open affine cover X = U1 ∪ . . . ∪ Un of X. We can write f |Ui
= gi/hi

for suitable gi, hi ∈ O(Ui). As each Ui has dimension one, the zero loci Z(gi) and Z(hi)
are finite sets. For P ∈ Ui \ (Z(gi) ∪ Z(hi)) we have vP (f) = 0. �

Definition 1.3. Let f ∈ k(X)∗ be a non-zero rational function on X. We define the
divisor of f to be the divisor div f =

∑
P∈X vP (f) · P on X. By the Lemma, this is

well-defined.

The map k(X)∗ → Z(X) given by f 7→ div f is a homomorphism of abelian groups.
The image is called the group of principal divisors on X, notation Princ(X). The
quotient group Z(X)/Princ(X) is called the class group of X, notation Cl(X). Elements
of Cl(X) are called divisor classes. We say that two divisors D,E on X are linearly
equivalent, notation D ∼ E, if D and E define the same class in Cl(X).

Let ϕ : X → Y be a morphism of complete non-singular curves. Note that ϕ is either
constant or surjective. Assume that ϕ is surjective. Then X is the normalization of Y
in the function field of X. In particular, the morphism ϕ is finite, hence quasi-finite and
proper. Let P ∈ X and put Q = ϕ(P ). The ramification index of ϕ at P can be obtained
as follows: let πQ a generator of the maximal ideal of OY,Q, then eP = vP (ϕ∗(πQ)). We
recall that

∑
P∈X,ϕ(P )=Q eP = degϕ.

Definition 1.4. View Q as a divisor of degree one on Y . We define ϕ∗(Q) to be the
divisor

∑
P∈X,ϕ(P )=Q eP ·P on X. By extending this linearly we obtain a homomorphism

of abelian groups ϕ∗ : Z(Y ) → Z(X).

This definition may seem a little ad hoc; it becomes more natural when we choose,
instead, to work with ‘Cartier’ divisors. Anyway, the pullback of divisors defined in this
way has some good properties: for D ∈ Z(Y ) we clearly have

(1) degϕ∗(D) = (degϕ) · degD .

Moreover, we have functoriality: if ψ : Y → Z is a surjective morphism, then (ψ ◦ϕ)∗ =
ϕ∗ ◦ ψ∗ as maps from Z(Z) to Z(X).

Recall that we can view each element f ∈ k(Y ) as a rational map f : Y 99K P1.
As Y is non-singular and P1 is complete, the rational map f extends as a morphism
f : Y → P1. If f is not constant, then f is surjective. For a non-constant f ∈ k(Y ) we
have div f = f ∗(0−∞). We obtain:
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Proposition 1.5. Let ϕ : X → Y be a surjective morphism, and f ∈ k(Y )∗ a non-zero
rational function. Then
(i) ϕ∗ div f = divϕ∗f ;
(ii) deg div f = 0.

Proof. We obtain (i) for non-constant f by functoriality. For constant f both sides of the
equality are zero. We obtain (ii) from equation (1) and the fact that deg(0−∞) = 0. �

By item (i), the group homomorphism ϕ∗ : Z(Y ) → Z(X) descends to a group homo-
morphism ϕ∗ : Cl(Y )→ Cl(X). By item (ii), the degree homomorphism deg : Z(Y ) → Z
factors through a homomorphism Cl(Y )→ Z. We have a commutative diagram

Cl(Y )
deg //

ϕ∗

��

Z
· degϕ

��
Cl(X)

deg // Z

of abelian groups.
A divisor D on X is called effective, notation D ≥ 0, if D(P ) ≥ 0 for all P ∈ X. We

write E ≥ D if E −D ≥ 0.

Definition 1.6. Let D be a divisor on X. The Riemann-Roch space of D is the subset

L(D) = {0} ∪ {f ∈ k(X)∗| div f +D ≥ 0}
= {0} ∪ {f ∈ k(X)∗|vP (f) ≥ −D(P ) for allP ∈ X}

of k(X).

Proposition 1.7. (i) The Riemann-Roch space L(D) is a sub-k-vector space of k(X).
(ii) If D ∼ E, say D = E + div g, where g ∈ k(X)∗, then the multiplication f 7→ fg

yields a k-linear isomorphism L(D)
∼−→ L(E).

(iii) If degD < 0, then L(D) = (0).
(iv) If degD ≥ 0, the dimension dimk L(D) is finite, and bounded above by degD + 1.

Proof. (i) This follows from the fact that divαf = div f for all α ∈ k∗ and the fact that
vP (f + g) ≥ min{vP (f), vP (g)} for all f, g ∈ k(X) and all P ∈ X.
(ii) Note that div fg = div f + div g. Hence D + div f ≥ 0⇔ E + div fg ≥ 0.
(iii) Assume f is a non-zero element of L(D). Then div f + D ≥ 0, in particular we
have degD = deg(div f +D) ≥ 0.
(iv) By (ii) we may assume that D is effective. Write D =

∑
P∈X D(P ) · P with all

D(P ) ∈ Z≥0. Choose a uniformizer πP for each point P ∈ X. Let f ∈ L(D). Then

f ∈ π−D(P )
P OX,P and this projects to an element f ∈ π−D(P )

P OX,P/OX,P . By the theory
of discrete valuation rings, the latter is an OX,P/mP -module, i.e. a k-vector space, of
dimension D(P ). Collecting all points P ∈ X together we obtain a k-linear ‘evaluation’

map ev : L(D) →
⊕

P∈X π
−D(P )
P OX,P/OX,P . An element in the kernel of ev is regular

at all P ∈ X, hence constant. The vector space on the right hand side has dimension∑
P∈X D(P ) = degD. We find that dimk L(D) ≤ degD + 1. �

We write l(D) as a shorthand for dimk L(D). The map Z(X) → Z≥0 given by D 7→
l(D) factors over Cl(X) by (ii).

Example 1.1. If D is effective, then L(D) contains k, and hence l(D) ≥ 1. If D = 0,
then L(D) = k and l(D) = 1.
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Example 1.2. Let P ∈ X. If l(P ) ≥ 2, then X ∼= P1. Indeed, let f ∈ L(P ) be non-
constant. Then f is a surjective morphism f : X → P1. From the condition div f+P ≥ 0
we infer that f ∗∞ ≤ P . As f ∗∞ > 0 we find that f ∗∞ = P hence deg f = 1. So the
inclusion of function fields k(P1)→ k(X) induced by f is an equality. It follows that f
is an isomorphism by Theorem 8.25.

Example 1.3. Consider X = P1 together with the divisor D = m∞ ·∞+
∑n

i=1mi · ai on
X. Here ai ∈ A1 = k for i = 1, . . . , n. We would like to compute l(D). Put d = degD =
m∞+

∑n
i=1mi. By Proposition 1.7(iii) we can assume that d ≥ 0. For h =

∏n
i=1(x−ai)mi

we have div h =
∑n

i=1mi ·ai−(
∑n

i=1mi)·∞. Let D′ = D−div h = d·∞. By Proposition

1.7(ii) multiplication by h−1 yields a k-linear isomorphism L(D)
∼−→ L(D′). Note that

L(D′) = L(d · ∞) = {f ∈ k[x]| deg f ≤ d} = k ⊕ k · x⊕ . . .⊕ k · xd .

We find l(D) = l(D′) = d+ 1 = degD + 1.

2. Differentials

Let A be a ring and B an A-algebra. Let M be a B-module. An A-derivation from
B to M is an A-linear map d: B → M such that d(fg) = fdg + gdf for all f, g ∈ B.
There exists a universal A-derivation d: B → ΩB/A; the B-module ΩB/A is called the
module of Kähler differentials of B over A. An explicit description of ΩB/A is as the
module generated over B by formal symbols df , where f runs through B, together with
the relations d(fg) = fdg+gdf for all f, g ∈ B, d(f+g) = df+dg for all f, g ∈ B, and
da = 0 for all a ∈ A. If B → C is a ring morphism, note that there is a natural exact
sequence of C-linear maps ΩB/A ⊗B C → ΩC/A → ΩC/B → 0 (cf. [HAG], Proposition
II.8.3A, the ‘first exact sequence’).

[HAG], Theorem II.8.6A says:

Theorem 2.1. Let K be a finitely generated extension of a field k. Then dimK ΩK/k ≥
tr.deg(K/k), and equality holds if and only if K is separably generated over k.

Let X be a complete nonsingular curve, and k(X) be its function field. We obtain as
corollaries:

Proposition 2.2. The module of Kähler differentials Ωk(X)/k is a 1-dimensional k(X)-
vector space.

Proof. Recall that k(X) is finitely separably generated over k. �

The elements of Ωk(X)/k are called rational differential forms on X.
Let ϕ : X → Y be a surjective morphism of complete nonsingular curves.

Proposition 2.3. The natural k(X)-linear map Ωk(Y )/k⊗k(Y ) k(X)→ Ωk(X)/k is either
zero or an isomorphism. It is an isomorphism if and only if the finite field extension
k(X) ⊃ k(Y ) is separable.

Proof. Both Ωk(Y )/k⊗k(Y ) k(X) and Ωk(X)/k are 1-dimensional k(X)-vector spaces, from
which the first statement follows. The second follows from the ‘first exact sequence’. �

Example 2.1. Assume that k has characteristic p > 0 and consider the morphism
F : P1 → P1 defined by x 7→ xp. The corresponding extension of function fields is
k(x) ⊃ k(xp). As d(xp) = 0 we have that the natural k(x)-linear map Ωk(xp)/k ⊗k(xp)

k(x)→ Ωk(x)/k is the zero map.
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A finite field extension K ⊃ L is a tower of finite separable extensions and purely
inseparable extensions. We say that ϕ : X → Y is purely inseparable if the correspond-
ing function field extension k(X) ⊃ k(Y ) is purely inseparable. Note that a purely
inseparable ϕ : X → Y of degree p is everywhere ramified with ramification index p. If
P ∈ X and πP ∈ k(X) is a generator of the maximal ideal of OX,P then the surjec-
tive morphism X → P1 defined by πP is unramified at P and hence the morphism is
separable. In particular, the element dπP is non-zero in k(X).

Let ω be a non-zero element of Ωk(X)/k, and P ∈ X. Let πP be a generator of the
maximal ideal of OX,P . We define the element ω(πP ) ∈ k(X) to be the unique element
f ∈ k(X) such that ω = fdπP . We define vP (ω) to be the valuation at P of ω(πP ). It
is straightforward to verify that this definition is independent of the choice of generator
πP .

Lemma 2.4. We have vP (ω) 6= 0 for only finitely many P ∈ X.

Proof. Let P ∈ X be a point, choose a uniformizer πP at P and write ω = fdπP . Let
U be the dense open subset of points Q ∈ X where f is non-zero regular, πP is regular,
and πP − πP (Q) is a uniformizer (for the latter we have to discard the poles of πP and
the finitely many points where πP ramifies). As dπP = d(πP − πP (Q)) for all Q ∈ U we
have vQ(ω) = 0 for all Q ∈ U . As X \ U is finite, the result follows. �

We put

divω =
∑
P∈X

vP (ω) · P .

By the Lemma divω is a divisor on X. We call such a divisor a canonical divisor of X.
For f ∈ k(X) a non-zero rational function one has

div(fω) = div f + divω .

Thus, the class of a non-zero differential form on X is a well-defined element of Cl(X),
the canonical divisor class.

Example 2.2. Take ω = dx on X = P1. Then divω = −2 · ∞.

Definition 2.5. Let K be a canonical divisor on X. The genus of X is the dimension
l(K) = dimk L(K) of the Riemann-Roch space associated to K.

Example 2.3. For X = P1 we have degK = −2 < 0 hence the genus of P1 is zero.

3. Riemann-Roch

A very powerful result is the Riemann-Roch theorem, which we state without proof.

Theorem 3.1. Let X be a complete nonsingular curve, and D a divisor on X. Let K
be a canonical divisor on X. Let g be the genus of X. Then the equality

l(D)− l(K −D) = degD − g + 1

holds.

By taking D = K and recalling that L(0) = k we find that degK = 2g − 2. If
degD > 2g− 2 then K −D has negative degree and we find that l(D) = degD− g+ 1.


