1. DIVISORS

Let X be a complete non-singular curve.

Definition 1.1. A *divisor* on X is an element of the free abelian group $\mathbb{Z}^{(X)}$ on X, i.e., a \mathbb{Z} -valued function $D: X \to \mathbb{Z}$ such that $D(P) \neq 0$ for at most finitely many $P \in X$.

We often write divisors as a finite formal sum $D = \sum_{P \in X} D(P) \cdot P$ with $D(P) \in \mathbb{Z}$. The *degree* deg D of a divisor D is the element $\sum_{P \in X} D(P)$ of \mathbb{Z} . Clearly the degree induces a homomorphism of abelian groups $\mathbb{Z}^{(X)} \to \mathbb{Z}$. For example, if P, Q, R are points on X, then D = -P + 3Q - 4R is a divisor on X, of degree -2.

Let $f \in k(X)^*$ be a non-zero rational function on X. For a point $P \in X$, let v_P : Frac $\mathcal{O}_{X,P} \to \mathbb{Z} \cup \{\infty\}$ be the discrete valuation of $\mathcal{O}_{X,P}$.

Lemma 1.2. We have $v_P(f) \neq 0$ for only finitely many $P \in X$.

Proof. Choose an open affine cover $X = U_1 \cup \ldots \cup U_n$ of X. We can write $f|_{U_i} = g_i/h_i$ for suitable $g_i, h_i \in \mathcal{O}(U_i)$. As each U_i has dimension one, the zero loci $Z(g_i)$ and $Z(h_i)$ are finite sets. For $P \in U_i \setminus (Z(g_i) \cup Z(h_i))$ we have $v_P(f) = 0$.

Definition 1.3. Let $f \in k(X)^*$ be a non-zero rational function on X. We define the *divisor of* f to be the divisor div $f = \sum_{P \in X} v_P(f) \cdot P$ on X. By the Lemma, this is well-defined.

The map $k(X)^* \to \mathbb{Z}^{(X)}$ given by $f \mapsto \operatorname{div} f$ is a homomorphism of abelian groups. The image is called the group of *principal divisors* on X, notation $\operatorname{Princ}(X)$. The quotient group $\mathbb{Z}^{(X)}/\operatorname{Princ}(X)$ is called the *class group* of X, notation $\operatorname{Cl}(X)$. Elements of $\operatorname{Cl}(X)$ are called *divisor classes*. We say that two divisors D, E on X are *linearly equivalent*, notation $D \sim E$, if D and E define the same class in $\operatorname{Cl}(X)$.

Let $\varphi: X \to Y$ be a morphism of complete non-singular curves. Note that φ is either constant or surjective. Assume that φ is surjective. Then X is the normalization of Y in the function field of X. In particular, the morphism φ is finite, hence quasi-finite and proper. Let $P \in X$ and put $Q = \varphi(P)$. The ramification index of φ at P can be obtained as follows: let π_Q a generator of the maximal ideal of $\mathcal{O}_{Y,Q}$, then $e_P = v_P(\varphi^*(\pi_Q))$. We recall that $\sum_{P \in X, \varphi(P) = Q} e_P = \deg \varphi$.

Definition 1.4. View Q as a divisor of degree one on Y. We define $\varphi^*(Q)$ to be the divisor $\sum_{P \in X, \varphi(P) = Q} e_P \cdot P$ on X. By extending this linearly we obtain a homomorphism of abelian groups $\varphi^* \colon \mathbb{Z}^{(Y)} \to \mathbb{Z}^{(X)}$.

This definition may seem a little ad hoc; it becomes more natural when we choose, instead, to work with 'Cartier' divisors. Anyway, the pullback of divisors defined in this way has some good properties: for $D \in \mathbb{Z}^{(Y)}$ we clearly have

(1)
$$\deg \varphi^*(D) = (\deg \varphi) \cdot \deg D.$$

Moreover, we have functoriality: if $\psi: Y \to Z$ is a surjective morphism, then $(\psi \circ \varphi)^* = \varphi^* \circ \psi^*$ as maps from $\mathbb{Z}^{(Z)}$ to $\mathbb{Z}^{(X)}$.

Recall that we can view each element $f \in k(Y)$ as a rational map $f: Y \dashrightarrow \mathbb{P}^1$. As Y is non-singular and \mathbb{P}^1 is complete, the rational map f extends as a morphism $f: Y \to \mathbb{P}^1$. If f is not constant, then f is surjective. For a non-constant $f \in k(Y)$ we have div $f = f^*(0 - \infty)$. We obtain: (*ii*) $\deg \operatorname{div} f = 0.$

Proof. We obtain (i) for non-constant f by functoriality. For constant f both sides of the equality are zero. We obtain (ii) from equation (1) and the fact that $\deg(0-\infty) = 0$. \Box

By item (i), the group homomorphism $\varphi^* \colon \mathbb{Z}^{(Y)} \to \mathbb{Z}^{(X)}$ descends to a group homomorphism $\varphi^* \colon \mathrm{Cl}(Y) \to \mathrm{Cl}(X)$. By item (ii), the degree homomorphism deg: $\mathbb{Z}^{(Y)} \to \mathbb{Z}$ factors through a homomorphism $\mathrm{Cl}(Y) \to \mathbb{Z}$. We have a commutative diagram

of abelian groups.

A divisor D on X is called effective, notation $D \ge 0$, if $D(P) \ge 0$ for all $P \in X$. We write $E \ge D$ if $E - D \ge 0$.

Definition 1.6. Let D be a divisor on X. The *Riemann-Roch space* of D is the subset

$$\mathcal{L}(D) = \{0\} \cup \{f \in k(X)^* | \operatorname{div} f + D \ge 0\} \\ = \{0\} \cup \{f \in k(X)^* | v_P(f) \ge -D(P) \text{ for all } P \in X\}$$

of k(X).

Proposition 1.7. (i) The Riemann-Roch space $\mathcal{L}(D)$ is a sub-k-vector space of k(X). (ii) If $D \sim E$, say $D = E + \operatorname{div} g$, where $g \in k(X)^*$, then the multiplication $f \mapsto fg$ yields a k-linear isomorphism $\mathcal{L}(D) \xrightarrow{\sim} \mathcal{L}(E)$. (iii) If $\operatorname{deg} D < 0$, then $\mathcal{L}(D) = (0)$.

(iv) If deg D > 0, the dimension dim_k $\mathcal{L}(D)$ is finite, and bounded above by deg D + 1.

Proof. (i) This follows from the fact that div $\alpha f = \text{div } f$ for all $\alpha \in k^*$ and the fact that $v_P(f+g) \ge \min\{v_P(f), v_P(g)\}$ for all $f, g \in k(X)$ and all $P \in X$.

(ii) Note that div $fg = \operatorname{div} f + \operatorname{div} g$. Hence $D + \operatorname{div} f \ge 0 \Leftrightarrow E + \operatorname{div} fg \ge 0$.

(iii) Assume f is a non-zero element of $\mathcal{L}(D)$. Then div $f + D \ge 0$, in particular we have deg $D = \deg(\operatorname{div} f + D) \ge 0$.

(iv) By (ii) we may assume that D is effective. Write $D = \sum_{P \in X} D(P) \cdot P$ with all $D(P) \in \mathbb{Z}_{\geq 0}$. Choose a uniformizer π_P for each point $P \in X$. Let $f \in \mathcal{L}(D)$. Then $f \in \pi_P^{-D(P)}\mathcal{O}_{X,P}$ and this projects to an element $\overline{f} \in \pi_P^{-D(P)}\mathcal{O}_{X,P}/\mathcal{O}_{X,P}$. By the theory of discrete valuation rings, the latter is an $\mathcal{O}_{X,P}/\mathfrak{m}_P$ -module, i.e. a k-vector space, of dimension D(P). Collecting all points $P \in X$ together we obtain a k-linear 'evaluation' map ev: $\mathcal{L}(D) \to \bigoplus_{P \in X} \pi_P^{-D(P)} \mathcal{O}_{X,P}/\mathcal{O}_{X,P}$. An element in the kernel of ev is regular at all $P \in X$, hence constant. The vector space on the right hand side has dimension $\sum_{P \in X} D(P) = \deg D$. We find that $\dim_k \mathcal{L}(D) \leq \deg D + 1$.

We write l(D) as a shorthand for $\dim_k \mathcal{L}(D)$. The map $\mathbb{Z}^{(X)} \to \mathbb{Z}_{\geq 0}$ given by $D \mapsto l(D)$ factors over $\operatorname{Cl}(X)$ by (ii).

Example 1.1. If D is effective, then $\mathcal{L}(D)$ contains k, and hence $l(D) \ge 1$. If D = 0, then $\mathcal{L}(D) = k$ and l(D) = 1.

Example 1.2. Let $P \in X$. If $l(P) \geq 2$, then $X \cong \mathbb{P}^1$. Indeed, let $f \in \mathcal{L}(P)$ be nonconstant. Then f is a surjective morphism $f: X \to \mathbb{P}^1$. From the condition div $f+P \geq 0$ we infer that $f^*\infty \leq P$. As $f^*\infty > 0$ we find that $f^*\infty = P$ hence deg f = 1. So the inclusion of function fields $k(\mathbb{P}^1) \to k(X)$ induced by f is an equality. It follows that fis an isomorphism by Theorem 8.25.

Example 1.3. Consider $X = \mathbb{P}^1$ together with the divisor $D = m_{\infty} \cdot \infty + \sum_{i=1}^n m_i \cdot a_i$ on X. Here $a_i \in \mathbb{A}^1 = k$ for $i = 1, \ldots, n$. We would like to compute l(D). Put $d = \deg D = m_{\infty} + \sum_{i=1}^n m_i$. By Proposition 1.7(iii) we can assume that $d \ge 0$. For $h = \prod_{i=1}^n (x-a_i)^{m_i}$ we have div $h = \sum_{i=1}^n m_i \cdot a_i - (\sum_{i=1}^n m_i) \cdot \infty$. Let $D' = D - \operatorname{div} h = d \cdot \infty$. By Proposition 1.7(ii) multiplication by h^{-1} yields a k-linear isomorphism $\mathcal{L}(D) \xrightarrow{\sim} \mathcal{L}(D')$. Note that

$$\mathcal{L}(D') = \mathcal{L}(d \cdot \infty) = \{ f \in k[x] | \deg f \le d \} = k \oplus k \cdot x \oplus \ldots \oplus k \cdot x^d$$

We find $l(D) = l(D') = d + 1 = \deg D + 1$.

2. Differentials

Let A be a ring and B an A-algebra. Let M be a B-module. An A-derivation from B to M is an A-linear map d: $B \to M$ such that d(fg) = fdg + gdf for all $f, g \in B$. There exists a universal A-derivation d: $B \to \Omega_{B/A}$; the B-module $\Omega_{B/A}$ is called the module of Kähler differentials of B over A. An explicit description of $\Omega_{B/A}$ is as the module generated over B by formal symbols df, where f runs through B, together with the relations d(fg) = fdg + gdf for all $f, g \in B$, d(f+g) = df + dg for all $f, g \in B$, and da = 0 for all $a \in A$. If $B \to C$ is a ring morphism, note that there is a natural exact sequence of C-linear maps $\Omega_{B/A} \otimes_B C \to \Omega_{C/A} \to \Omega_{C/B} \to 0$ (cf. [HAG], Proposition II.8.3A, the 'first exact sequence').

[HAG], Theorem II.8.6A says:

Theorem 2.1. Let K be a finitely generated extension of a field k. Then $\dim_K \Omega_{K/k} \ge \operatorname{tr.deg}(K/k)$, and equality holds if and only if K is separably generated over k.

Let X be a complete nonsingular curve, and k(X) be its function field. We obtain as corollaries:

Proposition 2.2. The module of Kähler differentials $\Omega_{k(X)/k}$ is a 1-dimensional k(X)-vector space.

Proof. Recall that k(X) is finitely separably generated over k.

The elements of $\Omega_{k(X)/k}$ are called *rational differential forms* on X.

Let $\varphi \colon X \to Y$ be a surjective morphism of complete nonsingular curves.

Proposition 2.3. The natural k(X)-linear map $\Omega_{k(Y)/k} \otimes_{k(Y)} k(X) \to \Omega_{k(X)/k}$ is either zero or an isomorphism. It is an isomorphism if and only if the finite field extension $k(X) \supset k(Y)$ is separable.

Proof. Both $\Omega_{k(Y)/k} \otimes_{k(Y)} k(X)$ and $\Omega_{k(X)/k}$ are 1-dimensional k(X)-vector spaces, from which the first statement follows. The second follows from the 'first exact sequence'. \Box

Example 2.1. Assume that k has characteristic p > 0 and consider the morphism $F: \mathbb{P}^1 \to \mathbb{P}^1$ defined by $x \mapsto x^p$. The corresponding extension of function fields is $k(x) \supset k(x^p)$. As $d(x^p) = 0$ we have that the natural k(x)-linear map $\Omega_{k(x^p)/k} \otimes_{k(x^p)} k(x) \to \Omega_{k(x)/k}$ is the zero map.

A finite field extension $K \supset L$ is a tower of finite separable extensions and purely inseparable extensions. We say that $\varphi \colon X \to Y$ is purely inseparable if the corresponding function field extension $k(X) \supset k(Y)$ is purely inseparable. Note that a purely inseparable $\varphi \colon X \to Y$ of degree p is everywhere ramified with ramification index p. If $P \in X$ and $\pi_P \in k(X)$ is a generator of the maximal ideal of $\mathcal{O}_{X,P}$ then the surjective morphism $X \to \mathbb{P}^1$ defined by π_P is unramified at P and hence the morphism is separable. In particular, the element $d\pi_P$ is non-zero in k(X).

Let ω be a non-zero element of $\Omega_{k(X)/k}$, and $P \in X$. Let π_P be a generator of the maximal ideal of $\mathcal{O}_{X,P}$. We define the element $\omega(\pi_P) \in k(X)$ to be the unique element $f \in k(X)$ such that $\omega = f d\pi_P$. We define $v_P(\omega)$ to be the valuation at P of $\omega(\pi_P)$. It is straightforward to verify that this definition is independent of the choice of generator π_P .

Lemma 2.4. We have $v_P(\omega) \neq 0$ for only finitely many $P \in X$.

Proof. Let $P \in X$ be a point, choose a uniformizer π_P at P and write $\omega = f d\pi_P$. Let U be the dense open subset of points $Q \in X$ where f is non-zero regular, π_P is regular, and $\pi_P - \pi_P(Q)$ is a uniformizer (for the latter we have to discard the poles of π_P and the finitely many points where π_P ramifies). As $d\pi_P = d(\pi_P - \pi_P(Q))$ for all $Q \in U$ we have $v_Q(\omega) = 0$ for all $Q \in U$. As $X \setminus U$ is finite, the result follows.

We put

$$\operatorname{div} \omega = \sum_{P \in X} v_P(\omega) \cdot P$$

By the Lemma div ω is a divisor on X. We call such a divisor a *canonical divisor* of X. For $f \in k(X)$ a non-zero rational function one has

$$\operatorname{div}(f\omega) = \operatorname{div} f + \operatorname{div} \omega.$$

Thus, the class of a non-zero differential form on X is a well-defined element of Cl(X), the *canonical divisor class*.

Example 2.2. Take $\omega = dx$ on $X = \mathbb{P}^1$. Then div $\omega = -2 \cdot \infty$.

Definition 2.5. Let K be a canonical divisor on X. The genus of X is the dimension $l(K) = \dim_k \mathcal{L}(K)$ of the Riemann-Roch space associated to K.

Example 2.3. For $X = \mathbb{P}^1$ we have deg K = -2 < 0 hence the genus of \mathbb{P}^1 is zero.

3. RIEMANN-ROCH

A very powerful result is the Riemann-Roch theorem, which we state without proof.

Theorem 3.1. Let X be a complete nonsingular curve, and D a divisor on X. Let K be a canonical divisor on X. Let g be the genus of X. Then the equality

$$l(D) - l(K - D) = \deg D - g + 1$$

holds.

By taking D = K and recalling that $\mathcal{L}(0) = k$ we find that $\deg K = 2g - 2$. If $\deg D > 2g - 2$ then K - D has negative degree and we find that $l(D) = \deg D - g + 1$.