1. Divisors

Let X be a complete non-singular curve.
Definition 1.1. A divisor on X is an element of the free abelian group $\mathbb{Z}^{(X)}$ on X, i.e., a \mathbb{Z}-valued function $D: X \rightarrow \mathbb{Z}$ such that $D(P) \neq 0$ for at most finitely many $P \in X$.

We often write divisors as a finite formal sum $D=\sum_{P \in X} D(P) \cdot P$ with $D(P) \in \mathbb{Z}$. The degree $\operatorname{deg} D$ of a divisor D is the element $\sum_{P \in X} D(P)$ of \mathbb{Z}. Clearly the degree induces a homomorphism of abelian groups $\mathbb{Z}^{(X)} \rightarrow \mathbb{Z}$. For example, if P, Q, R are points on X, then $D=-P+3 Q-4 R$ is a divisor on X, of degree -2 .

Let $f \in k(X)^{*}$ be a non-zero rational function on X. For a point $P \in X$, let $v_{P}: \operatorname{Frac} \mathcal{O}_{X, P} \rightarrow \mathbb{Z} \cup\{\infty\}$ be the discrete valuation of $\mathcal{O}_{X, P}$.

Lemma 1.2. We have $v_{P}(f) \neq 0$ for only finitely many $P \in X$.
Proof. Choose an open affine cover $X=U_{1} \cup \ldots \cup U_{n}$ of X. We can write $\left.f\right|_{U_{i}}=g_{i} / h_{i}$ for suitable $g_{i}, h_{i} \in \mathcal{O}\left(U_{i}\right)$. As each U_{i} has dimension one, the zero loci $Z\left(g_{i}\right)$ and $Z\left(h_{i}\right)$ are finite sets. For $P \in U_{i} \backslash\left(Z\left(g_{i}\right) \cup Z\left(h_{i}\right)\right)$ we have $v_{P}(f)=0$.

Definition 1.3. Let $f \in k(X)^{*}$ be a non-zero rational function on X. We define the divisor of f to be the divisor $\operatorname{div} f=\sum_{P \in X} v_{P}(f) \cdot P$ on X. By the Lemma, this is well-defined.

The map $k(X)^{*} \rightarrow \mathbb{Z}^{(X)}$ given by $f \mapsto \operatorname{div} f$ is a homomorphism of abelian groups. The image is called the group of principal divisors on X, notation $\operatorname{Princ}(X)$. The quotient group $\mathbb{Z}^{(X)} / \operatorname{Princ}(X)$ is called the class group of X, notation $\mathrm{Cl}(X)$. Elements of $\mathrm{Cl}(X)$ are called divisor classes. We say that two divisors D, E on X are linearly equivalent, notation $D \sim E$, if D and E define the same class in $\mathrm{Cl}(X)$.
Let $\varphi: X \rightarrow Y$ be a morphism of complete non-singular curves. Note that φ is either constant or surjective. Assume that φ is surjective. Then X is the normalization of Y in the function field of X. In particular, the morphism φ is finite, hence quasi-finite and proper. Let $P \in X$ and put $Q=\varphi(P)$. The ramification index of φ at P can be obtained as follows: let π_{Q} a generator of the maximal ideal of $\mathcal{O}_{Y, Q}$, then $e_{P}=v_{P}\left(\varphi^{*}\left(\pi_{Q}\right)\right)$. We recall that $\sum_{P \in X, \varphi(P)=Q} e_{P}=\operatorname{deg} \varphi$.

Definition 1.4. View Q as a divisor of degree one on Y. We define $\varphi^{*}(Q)$ to be the divisor $\sum_{P \in X, \varphi(P)=Q} e_{P} \cdot P$ on X. By extending this linearly we obtain a homomorphism of abelian groups $\varphi^{*}: \mathbb{Z}^{(Y)} \rightarrow \mathbb{Z}^{(X)}$.

This definition may seem a little ad hoc; it becomes more natural when we choose, instead, to work with 'Cartier' divisors. Anyway, the pullback of divisors defined in this way has some good properties: for $D \in \mathbb{Z}^{(Y)}$ we clearly have

$$
\begin{equation*}
\operatorname{deg} \varphi^{*}(D)=(\operatorname{deg} \varphi) \cdot \operatorname{deg} D \tag{1}
\end{equation*}
$$

Moreover, we have functoriality: if $\psi: Y \rightarrow Z$ is a surjective morphism, then $(\psi \circ \varphi)^{*}=$ $\varphi^{*} \circ \psi^{*}$ as maps from $\mathbb{Z}^{(Z)}$ to $\mathbb{Z}^{(X)}$.

Recall that we can view each element $f \in k(Y)$ as a rational map $f: Y \rightarrow \mathbb{P}^{1}$. As Y is non-singular and \mathbb{P}^{1} is complete, the rational map f extends as a morphism $f: Y \rightarrow \mathbb{P}^{1}$. If f is not constant, then f is surjective. For a non-constant $f \in k(Y)$ we have $\operatorname{div} f=f^{*}(0-\infty)$. We obtain:

Proposition 1.5. Let $\varphi: X \rightarrow Y$ be a surjective morphism, and $f \in k(Y)^{*}$ a non-zero rational function. Then
(i) $\varphi^{*} \operatorname{div} f=\operatorname{div} \varphi^{*} f$;
(ii) $\operatorname{deg} \operatorname{div} f=0$.

Proof. We obtain (i) for non-constant f by functoriality. For constant f both sides of the equality are zero. We obtain (ii) from equation (1) and the fact that $\operatorname{deg}(0-\infty)=0$.

By item (i), the group homomorphism $\varphi^{*}: \mathbb{Z}^{(Y)} \rightarrow \mathbb{Z}^{(X)}$ descends to a group homomorphism $\varphi^{*}: \mathrm{Cl}(Y) \rightarrow \mathrm{Cl}(X)$. By item (ii), the degree homomorphism deg: $\mathbb{Z}^{(Y)} \rightarrow \mathbb{Z}$ factors through a homomorphism $\mathrm{Cl}(Y) \rightarrow \mathbb{Z}$. We have a commutative diagram

of abelian groups.
A divisor D on X is called effective, notation $D \geq 0$, if $D(P) \geq 0$ for all $P \in X$. We write $E \geq D$ if $E-D \geq 0$.

Definition 1.6. Let D be a divisor on X. The Riemann-Roch space of D is the subset

$$
\begin{aligned}
\mathcal{L}(D) & =\{0\} \cup\left\{f \in k(X)^{*} \mid \operatorname{div} f+D \geq 0\right\} \\
& =\{0\} \cup\left\{f \in k(X)^{*} \mid v_{P}(f) \geq-D(P) \text { for all } P \in X\right\}
\end{aligned}
$$

of $k(X)$.
Proposition 1.7. (i) The Riemann-Roch space $\mathcal{L}(D)$ is a sub-k-vector space of $k(X)$. (ii) If $D \sim E$, say $D=E+\operatorname{div} g$, where $g \in k(X)^{*}$, then the multiplication $f \mapsto f g$ yields a k-linear isomorphism $\mathcal{L}(D) \xrightarrow{\sim} \mathcal{L}(E)$.
(iii) If $\operatorname{deg} D<0$, then $\mathcal{L}(D)=(0)$.
(iv) If $\operatorname{deg} D \geq 0$, the dimension $\operatorname{dim}_{k} \mathcal{L}(D)$ is finite, and bounded above by $\operatorname{deg} D+1$.

Proof. (i) This follows from the fact that $\operatorname{div} \alpha f=\operatorname{div} f$ for all $\alpha \in k^{*}$ and the fact that $v_{P}(f+g) \geq \min \left\{v_{P}(f), v_{P}(g)\right\}$ for all $f, g \in k(X)$ and all $P \in X$.
(ii) Note that $\operatorname{div} f g=\operatorname{div} f+\operatorname{div} g$. Hence $D+\operatorname{div} f \geq 0 \Leftrightarrow E+\operatorname{div} f g \geq 0$.
(iii) Assume f is a non-zero element of $\mathcal{L}(D)$. Then div $f+D \geq 0$, in particular we have $\operatorname{deg} D=\operatorname{deg}(\operatorname{div} f+D) \geq 0$.
(iv) By (ii) we may assume that D is effective. Write $D=\sum_{P \in X} D(P) \cdot P$ with all $D(P) \in \mathbb{Z}_{\geq 0}$. Choose a uniformizer π_{P} for each point $P \in X$. Let $f \in \mathcal{L}(D)$. Then $f \in \pi_{P}^{-D(P)} \mathcal{O}_{X, P}$ and this projects to an element $\bar{f} \in \pi_{P}^{-D(P)} \mathcal{O}_{X, P} / \mathcal{O}_{X, P}$. By the theory of discrete valuation rings, the latter is an $\mathcal{O}_{X, P} / \mathfrak{m}_{P}$-module, i.e. a k-vector space, of dimension $D(P)$. Collecting all points $P \in X$ together we obtain a k-linear 'evaluation' map ev : $\mathcal{L}(D) \rightarrow \bigoplus_{P \in X} \pi_{P}^{-D(P)} \mathcal{O}_{X, P} / \mathcal{O}_{X, P}$. An element in the kernel of ev is regular at all $P \in X$, hence constant. The vector space on the right hand side has dimension $\sum_{P \in X} D(P)=\operatorname{deg} D$. We find that $\operatorname{dim}_{k} \mathcal{L}(D) \leq \operatorname{deg} D+1$.

We write $l(D)$ as a shorthand for $\operatorname{dim}_{k} \mathcal{L}(D)$. The map $\mathbb{Z}^{(X)} \rightarrow \mathbb{Z}_{\geq 0}$ given by $D \mapsto$ $l(D)$ factors over $\mathrm{Cl}(X)$ by (ii).

Example 1.1. If D is effective, then $\mathcal{L}(D)$ contains k, and hence $l(D) \geq 1$. If $D=0$, then $\mathcal{L}(D)=k$ and $l(D)=1$.

Example 1.2. Let $P \in X$. If $l(P) \geq 2$, then $X \cong \mathbb{P}^{1}$. Indeed, let $f \in \mathcal{L}(P)$ be nonconstant. Then f is a surjective morphism $f: X \rightarrow \mathbb{P}^{1}$. From the condition div $f+P \geq 0$ we infer that $f^{*} \infty \leq P$. As $f^{*} \infty>0$ we find that $f^{*} \infty=P$ hence $\operatorname{deg} f=1$. So the inclusion of function fields $k\left(\mathbb{P}^{1}\right) \rightarrow k(X)$ induced by f is an equality. It follows that f is an isomorphism by Theorem 8.25.

Example 1.3. Consider $X=\mathbb{P}^{1}$ together with the divisor $D=m_{\infty} \cdot \infty+\sum_{i=1}^{n} m_{i} \cdot a_{i}$ on X. Here $a_{i} \in \mathbb{A}^{1}=k$ for $i=1, \ldots, n$. We would like to compute $l(D)$. Put $d=\operatorname{deg} D=$ $m_{\infty}+\sum_{i=1}^{n} m_{i}$. By Proposition 1.7(iii) we can assume that $d \geq 0$. For $h=\prod_{i=1}^{n}\left(x-a_{i}\right)^{m_{i}}$ we have div $h=\sum_{i=1}^{n} m_{i} \cdot a_{i}-\left(\sum_{i=1}^{n} m_{i}\right) \cdot \infty$. Let $D^{\prime}=D-\operatorname{div} h=d \cdot \infty$. By Proposition 1.7(ii) multiplication by h^{-1} yields a k-linear isomorphism $\mathcal{L}(D) \xrightarrow{\sim} \mathcal{L}\left(D^{\prime}\right)$. Note that

$$
\mathcal{L}\left(D^{\prime}\right)=\mathcal{L}(d \cdot \infty)=\{f \in k[x] \mid \operatorname{deg} f \leq d\}=k \oplus k \cdot x \oplus \ldots \oplus k \cdot x^{d}
$$

We find $l(D)=l\left(D^{\prime}\right)=d+1=\operatorname{deg} D+1$.

2. Differentials

Let A be a ring and B an A-algebra. Let M be a B-module. An A-derivation from B to M is an A-linear map $\mathrm{d}: B \rightarrow M$ such that $\mathrm{d}(f g)=f \mathrm{~d} g+g \mathrm{~d} f$ for all $f, g \in B$. There exists a universal A-derivation d: $B \rightarrow \Omega_{B / A}$; the B-module $\Omega_{B / A}$ is called the module of Kähler differentials of B over A. An explicit description of $\Omega_{B / A}$ is as the module generated over B by formal symbols $\mathrm{d} f$, where f runs through B, together with the relations $\mathrm{d}(f g)=f \mathrm{~d} g+g \mathrm{~d} f$ for all $f, g \in B, \mathrm{~d}(f+g)=\mathrm{d} f+\mathrm{d} g$ for all $f, g \in B$, and $\mathrm{d} a=0$ for all $a \in A$. If $B \rightarrow C$ is a ring morphism, note that there is a natural exact sequence of C-linear maps $\Omega_{B / A} \otimes_{B} C \rightarrow \Omega_{C / A} \rightarrow \Omega_{C / B} \rightarrow 0$ (cf. [HAG], Proposition II.8.3A, the 'first exact sequence').
[HAG], Theorem II.8.6A says:
Theorem 2.1. Let K be a finitely generated extension of a field k. Then $\operatorname{dim}_{K} \Omega_{K / k} \geq$ $\operatorname{tr} \cdot \operatorname{deg}(K / k)$, and equality holds if and only if K is separably generated over k.

Let X be a complete nonsingular curve, and $k(X)$ be its function field. We obtain as corollaries:

Proposition 2.2. The module of Kähler differentials $\Omega_{k(X) / k}$ is a 1-dimensional $k(X)$ vector space.

Proof. Recall that $k(X)$ is finitely separably generated over k.
The elements of $\Omega_{k(X) / k}$ are called rational differential forms on X.
Let $\varphi: X \rightarrow Y$ be a surjective morphism of complete nonsingular curves.
Proposition 2.3. The natural $k(X)$-linear map $\Omega_{k(Y) / k} \otimes_{k(Y)} k(X) \rightarrow \Omega_{k(X) / k}$ is either zero or an isomorphism. It is an isomorphism if and only if the finite field extension $k(X) \supset k(Y)$ is separable.

Proof. Both $\Omega_{k(Y) / k} \otimes_{k(Y)} k(X)$ and $\Omega_{k(X) / k}$ are 1-dimensional $k(X)$-vector spaces, from which the first statement follows. The second follows from the 'first exact sequence'.

Example 2.1. Assume that k has characteristic $p>0$ and consider the morphism $F: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ defined by $x \mapsto x^{p}$. The corresponding extension of function fields is $k(x) \supset k\left(x^{p}\right)$. As $\mathrm{d}\left(x^{p}\right)=0$ we have that the natural $k(x)$-linear map $\Omega_{k\left(x^{p}\right) / k} \otimes_{k\left(x^{p}\right)}$ $k(x) \rightarrow \Omega_{k(x) / k}$ is the zero map.

A finite field extension $K \supset L$ is a tower of finite separable extensions and purely inseparable extensions. We say that $\varphi: X \rightarrow Y$ is purely inseparable if the corresponding function field extension $k(X) \supset k(Y)$ is purely inseparable. Note that a purely inseparable $\varphi: X \rightarrow Y$ of degree p is everywhere ramified with ramification index p. If $P \in X$ and $\pi_{P} \in k(X)$ is a generator of the maximal ideal of $\mathcal{O}_{X, P}$ then the surjective morphism $X \rightarrow \mathbb{P}^{1}$ defined by π_{P} is unramified at P and hence the morphism is separable. In particular, the element $\mathrm{d} \pi_{P}$ is non-zero in $k(X)$.

Let ω be a non-zero element of $\Omega_{k(X) / k}$, and $P \in X$. Let π_{P} be a generator of the maximal ideal of $\mathcal{O}_{X, P}$. We define the element $\omega\left(\pi_{P}\right) \in k(X)$ to be the unique element $f \in k(X)$ such that $\omega=f \mathrm{~d} \pi_{P}$. We define $v_{P}(\omega)$ to be the valuation at P of $\omega\left(\pi_{P}\right)$. It is straightforward to verify that this definition is independent of the choice of generator π_{P}.

Lemma 2.4. We have $v_{P}(\omega) \neq 0$ for only finitely many $P \in X$.
Proof. Let $P \in X$ be a point, choose a uniformizer π_{P} at P and write $\omega=f \mathrm{~d} \pi_{P}$. Let U be the dense open subset of points $Q \in X$ where f is non-zero regular, π_{P} is regular, and $\pi_{P}-\pi_{P}(Q)$ is a uniformizer (for the latter we have to discard the poles of π_{P} and the finitely many points where π_{P} ramifies). As $\mathrm{d} \pi_{P}=\mathrm{d}\left(\pi_{P}-\pi_{P}(Q)\right)$ for all $Q \in U$ we have $v_{Q}(\omega)=0$ for all $Q \in U$. As $X \backslash U$ is finite, the result follows.

We put

$$
\operatorname{div} \omega=\sum_{P \in X} v_{P}(\omega) \cdot P
$$

By the Lemma $\operatorname{div} \omega$ is a divisor on X. We call such a divisor a canonical divisor of X. For $f \in k(X)$ a non-zero rational function one has

$$
\operatorname{div}(f \omega)=\operatorname{div} f+\operatorname{div} \omega .
$$

Thus, the class of a non-zero differential form on X is a well-defined element of $\mathrm{Cl}(X)$, the canonical divisor class.

Example 2.2. Take $\omega=\mathrm{d} x$ on $X=\mathbb{P}^{1}$. Then $\operatorname{div} \omega=-2 \cdot \infty$.
Definition 2.5. Let K be a canonical divisor on X. The genus of X is the dimension $l(K)=\operatorname{dim}_{k} \mathcal{L}(K)$ of the Riemann-Roch space associated to K.
Example 2.3. For $X=\mathbb{P}^{1}$ we have deg $K=-2<0$ hence the genus of \mathbb{P}^{1} is zero.

3. Riemann-Roch

A very powerful result is the Riemann-Roch theorem, which we state without proof.
Theorem 3.1. Let X be a complete nonsingular curve, and D a divisor on X. Let K be a canonical divisor on X. Let g be the genus of X. Then the equality

$$
l(D)-l(K-D)=\operatorname{deg} D-g+1
$$

holds.
By taking $D=K$ and recalling that $\mathcal{L}(0)=k$ we find that $\operatorname{deg} K=2 g-2$. If $\operatorname{deg} D>2 g-2$ then $K-D$ has negative degree and we find that $l(D)=\operatorname{deg} D-g+1$.

