
2 Cohomology of groups

This section intends to give a very first introduction to group cohomology. In particular, we

want to discuss another setting in which Ext-groups carry meaningful information.

2.1 Definition. Let G be a group, which in general will be non-abelian. By a G-module we

mean an abelian group A, written additively, together with an action ⇢ : G ⇥ A ! A of G

on A by group automorphisms. In more detail, if we write g ⇤ a for ⇢(g, a) we should have:

(1) e ⇤ a = a and g1 ⇤ (g2 ⇤ a) = (g1g2) ⇤ a for all g1, g2 2 G and a 2 A;

(2) g ⇤ (a1+a2) = (g ⇤a1)+ (g ⇤a2) and g ⇤ (�a) = �(g ⇤a) for all g 2 G and a, a1, a2 2 A.

The first simply expresses that we have an action of G on the set A; the second expresses

that this is an action of G by group automorphisms of A.

2.2 Remark. If A is an abelian group then to give A the structure of a G-module is the

same as giving a homomorphism of groups ✓ : G ! Aut(A). The correspondence is given by

the rule ✓(g)
�
a
�
= g ⇤ a.

2.3 Definition. If A and B are G-modules then a morphism of G-modules f : A ! B is a

group homomorphism with the property that g ⇤ f(a) = f(g ⇤ a) for all g 2 G and a 2 A.

2.4 Remark. Let Z[G] be the group ring of G. A G-module is then nothing else but a

Z[G]-module. Indeed, if we have a Z[G]-module A then we already know what we mean by

g ⇤ a (which of course is often written as g · a). Conversely, if A is a G-module then it has

the structure of a Z[G]-module by the rule
⇣X

g2G
mg · g

⌘
· a =

X

g2G
mg · (g ⇤ a) .

(Since A is abelian, if we have elements ai 2 A and integers mi 2 Z, we know what we

mean by
P

mi · ai.) Under this correspondence, a morphism of G-modules is the same as a

morphism of Z[G]-modules. In what follows we will freely switch between the two notions

and rather than introducing a new notation G-Mod for the category of G-modules, we will

identify this category with the category Z[G]-Mod of (left) Z[G]-modules. As we will see, in

examples the purely group-theoretic notion of a G-module will sometimes be more natural

than its module-theoretic equivalent, which is the reason why we have introduced it.

2.5 If A is an abelian group, we can give it the trivial structure of a G-module for which

g ⇤ a = a for all g 2 G and a 2 A. This gives a fully faithful “inclusion functor” i : Ab !
Z[G]-Mod.

This functor can also be understood as follows. For any groupG we have the augmentation

homomorphism

✏ : Z[G] ! Z given by
X

g2G
mg · g 7!

X

g2G
mg ,
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which is a homomorphism of rings. Thinking of Z as the group ring of the trivial group, ✏ is

the homomorphism induced by the unique homomorphism G ! {1}. The inclusion functor i

is the induced functor between module categories.

The kernel of ✏ is called the augmentation ideal of Z[G]; we denote it by IG. As one

readily checks, it is generated, as an ideal of Z[G], by the elements g � 1.

2.6 Definition. If A is a G-module, we define its subgroup of G-invariants AG ⇢ A by

AG =
�
a 2 A

�� g ⇤ a = a for all g 2 G
 
.

One readily verifies that AG is indeed a subgroup of A and that a homomorphism of

G-modules A ! B restricts to a homomorphism of groups AG ! BG. This gives us a functor

( )G : Z[G]-Mod ! Ab .

2.7 Proposition. The functor ( )G is left exact.

Proof. We can suggest three proofs: (1) Verify left exactness by hand, which is not hard. (2)

Note that the natural isomorphism HomAb(Z, A) ⇠= A restricts to an isomorphism

(2.7.1) HomZ[G]-Mod(Z, A) ⇠= AG

(where Z always denotes Z with its trivial G-module structure), which gives an isomorphism

of functors HomZ[G]-Mod(Z,�) ⇠= ( )G. Then use that if R is a ring and M is an R-module,

the functor HomR(M,�) is left exact. (3) Note that ( )G is right adjoint to the above

inclusion-functor i.

2.8 Remark. By construction, Z[G]/IG
⇠��! Z as Z[G]-modules. Hence we see from (2.7.1)

that if we think of A as a Z[G]-module, AG ⇢ A is the subgroup of elements that are

annihilated by the augmentation ideal IG.

2.9 Definition. Let G be a group, and let A be a G-module. Then we define the cohomology

in degree n of G with coe�cients in A, notation Hn(G,A), to be

Hn(G,A) = ExtnZ[G](Z, A) ,

where Z is given the trivial G-module structure.

2.10 Remark. By the general properties of Ext-groups, this defines functors

Hn(G,�) : Z[G]-Mod ! Ab ,

and if 0 �! A0 �! A �! A00 �! 0 is a short exact sequence of G-modules, we have an

associated long exact cohomology sequence

0 �! H0(G,A0) �!H0(G,A) �! H0(G,A00)
���! H1(G,A0)

�! H1(G,A) �! H1(G,A00)
���! H2(G,A0) �! · · ·
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2.11 Example. As a very first example, for n = 0 we find

H0(G,A) = AG

by (2.7.1).

2.12 Example. Let G = h�i ⇠= Z be an infinite cyclic group. In this case the group

ring Z[G] is isomorphic to Z[t, t�1]; the isomorphism is given by �i 7! ti. The augmentation

ideal IG ⇢ Z[G] is generated by � � 1. As Z[G] is a domain, it follows that the sequence

0 �! Z[G]
��1���! Z[G]

✏��! Z �! 0

is short exact. From the associated long exact sequence and the fact that ExtnZ[G](Z[G], A) = 0

for n > 0 because Z[G] is (obviously) a free Z[G]-module, we then find

8
>><

>>:

H0(G,A) = AG

H1(G,A) = A/(� � 1) ·A
Hn(G,A) = 0 for n � 2.

2.13 Example. Let G = h�i denote a cyclic group of order n. (So G ⇠= Z/nZ.) In this case

the group ring Z[G] is isomorphic to Z[t]/(tn � 1), via the map that sends �i to the class

of ti. The augmentation ideal IG is the ideal generated by � � 1. In Z[G], consider the norm

element

N = 1 + � + �2 + · · ·+ �n�1 .

Clearly (� � 1) · N = �n � 1 = 0. But in fact we have something better, namely that the

sequences

Z[G]
N��! Z[G]

��1���! Z[G] and Z[G]
��1���! Z[G]

N��! Z[G]

are both exact. It follows that the complex

R• : · · · �! Z[G]
N��! Z[G]

��1���! Z[G]
N��! Z[G]

��1���! Z[G] �! 0

together with the augmentation map ✏ : R• ! Z is a free resolution of Z as a Z[G]-module.

This gives

8
>><

>>:

H0(G,A) = Ker
�
� � 1: A ! A

�
= AG

Hn(G,A) = Ker
�
N : A ! A

�
/Im

�
� � 1: A ! A

�
if n is odd

Hn(G,A) = AG/Im
�
N : A ! A

�
for n � 2 even.

We will use this in later examples.
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2.14 For an arbitrary group G we have seen in Exercise ?? an explicit free resolution of Z
as a Z[G]-module, namely the complex

B•(G) : · · · �! Z[G3]
d��! Z[G2]

d��! Z[G] �! 0

with Bn(G) = Z[Gn+1], viewed as a Z[G]-module via the diagonal action g ⇤ (g0, g1, . . . , gn) =
(gg0, gg1, . . . , ggn), and with di↵erentials d : Z[Gn+1] ! Z[Gn] given by

d(g0, . . . , gn) =
nX

i=0

(�1)i · (g0, . . . , bgi, . . . , gn) .

We are going to use this to give an explicit description of the cohomology groups of G with

coe�cients in a G-module A. This will be particularly useful in low degrees.

The basic observation is that we can identify

(2.14.1) HomZ[G]

�
Z[Gn+1], A

� ⇠= Map(Gn, A) .

This can in fact be done in many ways, and the one that we are going to use does not seem

the simplest possible; however, it leads to an explicit description of group cohomology that

is very useful in practice. We will work with the identification (2.14.1) given by sending

f : Z[Gn+1] ! A to the map � : Gn ! A given by

�(g1, . . . , gn) = f(1, g1, g1g2, g1g2g3, . . . , g1g2 · · · gn) .

In the reverse direction, � : Gn ! A is sent to the Z[G]-homomorphism f : Z[Gn+1] ! A

given by

f(g0, g1, . . . , gn) = �(g�1
0 g1, g

�1
1 g2, . . . , g

�1
n�1gn) .

With these identifications (2.14.1) the cochain complex HomZ[G]

�
B•(G), A

�
can be iden-

tified with a cochain complex

0 �! Map(G0, A) �! Map(G,A) �! Map(G2, A) �! · · ·

Note that each Map(Gn, A) is naturally an abelian group, via the addition in A. Direct

calculation shows that the di↵erentials dn : Map(Gn, A) ! Map(Gn+1, A) are given by

dn(�)
�
g1, . . . , gn+1)

= g1 ⇤ �(g2, . . . , gn+1) +
nX

i=1

(�1)i · �(g1, . . . , gigi+1, . . . , gn+1) + (�1)n+1 · �(g1, . . . , gn).

The conclusion of this is that

Hn(G,A) =
Ker

�
dn : Map(Gn, A) ! Map(Gn+1, A)

�

Im
�
dn�1 : Map(Gn�1, A) ! Map(Gn, A)

� ,

where the di↵erentials dn are given by the above formula.
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2.15 Examples. Let us consider some examples in low degree.

Of course, G0 = {1} so that a map G0 ! A is given by an element a 2 A. The di↵erential

d0 : Map(G0, A) = A ! Map(G,A) sends a to the map g 7! g ⇤ a � a. In degree n = 0 we

therefore find

H0(G,A) = Ker(d0) = AG ,

in agreement with what we have found before.

The next di↵erential is d1 : Map(G,A) ! Map(G2, A). It sends a map � : G ! A to

d1(�) : G2 ! A given by

d1(�)
�
g1, g2

�
= g1 ⇤ �(g2)� �(g1g2) + �(g1) .

This gives

H1(G,A) =

�
� : G ! A

�� �(g1g2) = g1 ⇤ �(g2) + �(g1)
 

�
� : G ! A

�� there exists an a 2 A such that �(g) = g ⇤ a� a for all g 2 G
 

The maps that appear in the numerator are called crossed homomorphisms from G to A. As

we have already studied Ext1-groups in the previous section, we will not elaborate on this.

We do note, however, that if G acts trivially on A we simply get H1(G,A) = HomAb(G,A).

The di↵erential d2 : Map(G2, A) ! Map(G3, A) sends a map � : G2 ! A to d2(�) : G3 !
A given by

d2(�)
�
g1, g2, g3

�
= g1 ⇤ �(g2, g3)� �(g1g2, g3) + �(g1, g2g3)� �(g1, g2) .

This gives

H2(G,A) =

�
� : G2 ! A

�� �(g1g2, g3)� �(g1, g2g3) = g1 ⇤ �(g2, g3)� �(g1, g2)
 

�
� : G ! A

�� 9 : G ! A such that �(g1, g2) = g1 ⇤  (g2)�  (g1g2) +  (g1)
 

which already looks rather mysterious.

2.16 Group extensions and H2. Just as in the previous section we have related Ext1

modules to extensions of modules, we are here going to relate H2(G,A) to a problem about

extensions of groups.

The starting point for this is that if G and A are groups then by an extension of G by A

we mean a short exact sequence of groups

(2.16.1) 1 �! A
i�! �

⇡��! G �! 1 .

Note: “short exact” simply means that i is injective, ⇡ is surjective and Im(i) = Ker(⇡).

Similar to the definition for extensions of modules, we will view two such extensions as

equivalent if they fit in a diagram

0 A � G 0

0 A �0 G 0

i

idA

⇡

f idG

i0 ⇡0
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and the existence of such a diagram implies that f is an isomorphism of groups.

In the rest of the discussion we assume that the group A is abelian. This has an important

consequence. Namely, given an extension (2.16.1) we obtain a natural structure of aG-module

on A. For this, choose a set-theoretic section s : G ! � of the map ⇡, i.e., a map s such that

⇡ � s = idG. Such a section exists, simply because ⇡ is surjective. Note, however, that in

general we cannot find a homomorphic section s. Given this section s we obtain an action

of G on A by

(2.16.2) g ⇤ a = s(g) · a · s(g)�1 .

Explanation: we identify A with ker(⇡) via i, and we calculate s(g) · a · s(g)�1 inside the

group �. Then we observe that this element lies in A because ⇡
�
s(g)·a·s(g)�1

�
= g·1·g�1 = 1.

One readily checks that (2.16.2) indeed defines a G-module structure on A. Moreover, this

G-module structure is independent of the chosen section s. Indeed, any other section is of

the form �(g) = ↵(g) · s(g), where ↵ is a map from G to A. But then we find that

�(g) · a · �(g)�1 = ↵(g) ·
�
s(g) · a · s(g)�1

�
· ↵(g)�1 = s(g) · a · s(g)�1

because A is abelian.

The problem that we are interested in is to describe, given a group G and a G-module A,

all extensions of G by A up to equivalence. Since we have now fixed the structure of a

G-module on A this means that we want to consider all extensions (2.16.1) for which the

resulting G-module structure (2.16.2) is the given one.

There is always at least one such extension. Namely, if we describe the G-module structure

on A as a homomorphism ✓ : G ! Aut(A) (see Remark 2.2) we can form the semi-direct

product Ao✓ G. Recall that Ao✓ G is the set of pairs (a, g) 2 A⇥G, with group structure

given by

(a1, g1) · (a2, g2) =
⇣
a1 + ✓(g1)

�
a2
�
, g1g2

⌘
.

(We write the group structure on A additively.) The maps i : A ! Ao✓G given by a 7! (a, 1)

and ⇡ : Ao✓G ! G given by (a, g) 7! g are homomorphisms that realize Ao✓G as an extension

of G by A. To see that the corresponding G-module structure on A is the one given by ✓ note

that in this case ⇡ has a homomorphic section, namely s : G ! Ao✓ G given by g 7! (0, g).

Since in Ao✓ G we have

(0, g) · (a, 1) · (0, g�1) =
�
✓(g)

�
a
�
, 1
�

we see that, indeed, the G-module structure on A is the one we started with.

Already at this point it is an easy exercise to show that an extension � is equivalent to

Ao✓G if and only if there exists a homomorphic section of ⇡ : � ! G. So we may think of the

semi-direct product as being the “trivial” extension of G by A (similar to split extensions of

modules) and ask whether there are other, non-equivalent extensions. This is an important

question in group theory that can be answered using group cohomology.
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2.17 Theorem. Let G be a group and A be a G-module. Then the set of equivalence classes

of extensions of G by A (with its given G-module structure) is in natural bijection with

H2(G,A). Under this bijection the semi-direct product Ao✓G corresponds with the zero class

in H2(G,A).

We will not give the full details of the proof but only explain the key idea, which is a

simple one. Namely, given an extension (2.16.1) we choose a (set-theoretic) section s : G ! �

of ⇡, and we measure how far s is from being a homomorphism. This leads us to consider

the map �s : G2 ! A given by

�s(g1, g2) = s(g1g2) · s(g2)�1 · s(g1)�1 .

Note that the RHS is calculated in � and defines an element of A because it lies in the

kernel of ⇡. (In what follows we identify A with the subgroup Ker(⇡) ⇢ �.) We claim that

d2(�s) = 0, or what is the same, that

��s(g1, g2g3) + �s(g1g2, g3) = g1 ⇤ �s(g2, g3)� �s(g1, g2)

for all g1, g2, g2 2 G. The LHS (calculated in the group �, which is written multiplicatively)

is given by

s(g1) s(g2g3) s(g1g2g3)
�1 s(g1g2g3) s(g3)

�1 s(g1g2)
�1 ;

the RHS is

s(g1) s(g2g3) s(g3)
�1 s(g2)

�1 s(g1)
�1 s(g1) s(g2) s(g1g2)

�1

and we readily see that these two expressions indeed give the same. Therefore, �s defines a

class in H2(G,A). This class is independent of the choice of a section s, for if � is another

section then �(g) = ↵(g) · s(g) for some map ↵ : G ! A, and then

��(g1, g2) = ↵(g1g2) · s(g1g2) · s(g2)�1 · ↵(g2)�1 · s(g1)�1 · ↵(g1)�1

= ↵(g1g2) · �s(g1, g2) ·
�
s(g1) ⇤ ↵(g2)�1

�
· ↵(g1)�1

= �s(g1, g2)�
⇥
s(g1) ⇤ ↵(g2)� ↵(g1g2) + ↵(g1)]

= �s(g1, g2)� d1(↵)
�
g1, g2

�

where in the third step we switch from multiplicative notation (in he group �) to additive

notation (in A). Hence we see that �s and �� define the same class in H2(G,A).

This construction gives a map from the set of equivalence classes of extensions of G by

the G-module A to H2(G,A), and the more precise form of the theorem is that this map is

a bijection. Note that indeed the semi-direct product Ao✓ G is mapped to the zero class, as

clearly �s = 0 if (and only if) s is a homomorphism.

2.18 Example. Let p be a prime number and let us classify all extensions of Cp = Z/pZ
by itself. Note that by basic group theory every group of order p2 has a normal subgroup of

order p and can therefore be obtained as an extension of Cp by itself.
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As Aut(Cp) ⇠= (Z/pZ)⇤ is cyclic of order p� 1, there is no other Cp-module structure on

Z/pZ other than the trivial one. (In case you find this confusing, note that a Cp-module

structure is the structure of a module over the group ring Z[Cp]. Of course Cp has a natural

structure of a module over the ring Z/pZ but that is something di↵erent.) By what we have

found in Example 2.13,

H2(Cp, Cp) ⇠= Cp .

(With notation as in Example 2.13 the norm element N acts as multiplication by p, which

in this case is 0.)

There are two extensions that immediately come to mind: the trivial extension Cp ⇥ Cp

and the extension

1 �! Cp
i�! (Z/p2Z) ⇡��! Cp �! 1 ,

with i given by a mod p 7! p ·a mod p2. However, if we take c 2 (Z/pZ)⇤ and in this sequence

change the map i to c·i given by a mod p 7! p·ca mod p2 then this gives a di↵erent equivalence

class of extensions. One can check that this gives all possible classes in H2(Cp, Cp) ⇠= Cp. The

conclusion, therefore, is that every group of order p2 is isomorphic to Cp ⇥ Cp or to Z/p2Z.

2.19 Example. Let C2 = {1, ◆} and C4 denote the cyclic groups of order 2 and 4, respectively.

As Aut(C4) ⇠= C2, there are two possible C2-module structures on C4: the trivial one, and

the one for which ◆ acts as �id on C4.

Let us first take the trivial C2-module structure on C4. By Example 2.13 we have

H2(C2, C4) ⇠= C4/2C4. (The norm element N acts as multiplication by 2.) We easily see

the two corresponding extensions: the product group C4 ⇥ C2 and the extension

0 �! C4 �! Z/8Z �! C2 �! 0 .

If we take the non-trivial C2-module structure ✓ : C2 ! Aut(C4) then we find that

H2(C2, C4) ⇠= 2C4
⇠= Z/2Z. (In this case the norm element acts trivially.) Again we can

see two extensions:

0 �! hri �! D4
det��! {±1} �! 1

where D4 = hr, si is the dihedral group of order 8 (with r 2 D4 the rotation, of order 4), and

0 �! hii �! Q �! C2 �! 1

with Q = {±1,±i,±j,±k} the quaternion group of order 8. The dihedral group is of course

the semidirect product C4o✓C2. The quaternion group Q is not semi-direct, as all its elements

of order 2 lie in the subgroup hii ⇢ Q, so that the map Q ! C2 has no homomorphic section.
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