2 Cohomology of groups

This section intends to give a very first introduction to group cohomology. In particular, we want to discuss another setting in which Ext-groups carry meaningful information.
2.1 Definition. Let G be a group, which in general will be non-abelian. By a G-module we mean an abelian group A, written additively, together with an action $\rho: G \times A \rightarrow A$ of G on A by group automorphisms. In more detail, if we write $g * a$ for $\rho(g, a)$ we should have:
(1) $e * a=a$ and $g_{1} *\left(g_{2} * a\right)=\left(g_{1} g_{2}\right) * a$ for all $g_{1}, g_{2} \in G$ and $a \in A$;
(2) $g *\left(a_{1}+a_{2}\right)=\left(g * a_{1}\right)+\left(g * a_{2}\right)$ and $g *(-a)=-(g * a)$ for all $g \in G$ and $a, a_{1}, a_{2} \in A$.

The first simply expresses that we have an action of G on the set A; the second expresses that this is an action of G by group automorphisms of A.
2.2 Remark. If A is an abelian group then to give A the structure of a G-module is the same as giving a homomorphism of groups $\theta: G \rightarrow \operatorname{Aut}(A)$. The correspondence is given by the rule $\theta(g)(a)=g * a$.
2.3 Definition. If A and B are G-modules then a morphism of G-modules $f: A \rightarrow B$ is a group homomorphism with the property that $g * f(a)=f(g * a)$ for all $g \in G$ and $a \in A$.
2.4 Remark. Let $\mathbb{Z}[G]$ be the group ring of G. A G-module is then nothing else but a $\mathbb{Z}[G]$-module. Indeed, if we have a $\mathbb{Z}[G]$-module A then we already know what we mean by $g * a$ (which of course is often written as $g \cdot a$). Conversely, if A is a G-module then it has the structure of a $\mathbb{Z}[G]$-module by the rule

$$
\left(\sum_{g \in G} m_{g} \cdot g\right) \cdot a=\sum_{g \in G} m_{g} \cdot(g * a) .
$$

(Since A is abelian, if we have elements $a_{i} \in A$ and integers $m_{i} \in \mathbb{Z}$, we know what we mean by $\sum m_{i} \cdot a_{i}$.) Under this correspondence, a morphism of G-modules is the same as a morphism of $\mathbb{Z}[G]$-modules. In what follows we will freely switch between the two notions and rather than introducing a new notation G-Mod for the category of G-modules, we will identify this category with the category $\mathbb{Z}[G]$-Mod of (left) $\mathbb{Z}[G]$-modules. As we will see, in examples the purely group-theoretic notion of a G-module will sometimes be more natural than its module-theoretic equivalent, which is the reason why we have introduced it.
2.5 If A is an abelian group, we can give it the trivial structure of a G-module for which $g * a=a$ for all $g \in G$ and $a \in A$. This gives a fully faithful "inclusion functor" $i: \mathrm{Ab} \rightarrow$ $\mathbb{Z}[G]$-Mod.

This functor can also be understood as follows. For any group G we have the augmentation homomorphism

$$
\epsilon: \mathbb{Z}[G] \rightarrow \mathbb{Z} \quad \text { given by } \quad \sum_{g \in G} m_{g} \cdot g \mapsto \sum_{g \in G} m_{g}
$$

which is a homomorphism of rings. Thinking of \mathbb{Z} as the group ring of the trivial group, ϵ is the homomorphism induced by the unique homomorphism $G \rightarrow\{1\}$. The inclusion functor i is the induced functor between module categories.

The kernel of ϵ is called the augmentation ideal of $\mathbb{Z}[G]$; we denote it by I_{G}. As one readily checks, it is generated, as an ideal of $\mathbb{Z}[G]$, by the elements $g-1$.
2.6 Definition. If A is a G-module, we define its subgroup of G-invariants $A^{G} \subset A$ by

$$
A^{G}=\{a \in A \mid g * a=a \quad \text { for all } g \in G\}
$$

One readily verifies that A^{G} is indeed a subgroup of A and that a homomorphism of G-modules $A \rightarrow B$ restricts to a homomorphism of groups $A^{G} \rightarrow B^{G}$. This gives us a functor

$$
()^{G}: \mathbb{Z}[G] \text {-Mod } \rightarrow \mathrm{Ab}
$$

2.7 Proposition. The functor ()G is left exact.

Proof. We can suggest three proofs: (1) Verify left exactness by hand, which is not hard. (2) Note that the natural isomorphism $\operatorname{Hom}_{\mathrm{Ab}}(\mathbb{Z}, A) \cong A$ restricts to an isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{\mathbb{Z}[G]-\operatorname{Mod}}(\mathbb{Z}, A) \cong A^{G} \tag{2.7.1}
\end{equation*}
$$

(where \mathbb{Z} always denotes \mathbb{Z} with its trivial G-module structure), which gives an isomorphism of functors $\operatorname{Hom}_{\mathbb{Z}[G]-\operatorname{Mod}}(\mathbb{Z},-) \cong()^{G}$. Then use that if R is a ring and M is an R-module, the functor $\operatorname{Hom}_{R}(M,-)$ is left exact. (3) Note that ()G is right adjoint to the above inclusion-functor i.
2.8 Remark. By construction, $\mathbb{Z}[G] / I_{G} \xrightarrow{\sim} \mathbb{Z}$ as $\mathbb{Z}[G]$-modules. Hence we see from (2.7.1) that if we think of A as a $\mathbb{Z}[G]$-module, $A^{G} \subset A$ is the subgroup of elements that are annihilated by the augmentation ideal I_{G}.
2.9 Definition. Let G be a group, and let A be a G-module. Then we define the cohomology in degree n of G with coefficients in A, notation $\mathrm{H}^{n}(G, A)$, to be

$$
\mathrm{H}^{n}(G, A)=\operatorname{Ext}_{\mathbb{Z}[G]}^{n}(\mathbb{Z}, A)
$$

where \mathbb{Z} is given the trivial G-module structure.
2.10 Remark. By the general properties of Ext-groups, this defines functors

$$
\mathrm{H}^{n}(G,-): \mathbb{Z}[G]-\mathrm{Mod} \rightarrow \mathrm{Ab}
$$

and if $0 \longrightarrow A^{\prime} \longrightarrow A \longrightarrow A^{\prime \prime} \longrightarrow 0$ is a short exact sequence of G-modules, we have an associated long exact cohomology sequence

$$
\begin{aligned}
0 \longrightarrow \mathrm{H}^{0}\left(G, A^{\prime}\right) \longrightarrow \mathrm{H}^{0}(G, A) & \longrightarrow \mathrm{H}^{0}\left(G, A^{\prime \prime}\right) \stackrel{\delta}{\longrightarrow} \mathrm{H}^{1}\left(G, A^{\prime}\right) \\
& \longrightarrow \mathrm{H}^{1}(G, A) \longrightarrow \mathrm{H}^{1}\left(G, A^{\prime \prime}\right) \xrightarrow{\delta} \mathrm{H}^{2}\left(G, A^{\prime}\right) \longrightarrow \cdots
\end{aligned}
$$

2.11 Example. As a very first example, for $n=0$ we find

$$
\mathrm{H}^{0}(G, A)=A^{G}
$$

by (2.7.1).
2.12 Example. Let $G=\langle\gamma\rangle \cong \mathbb{Z}$ be an infinite cyclic group. In this case the group ring $\mathbb{Z}[G]$ is isomorphic to $\mathbb{Z}\left[t, t^{-1}\right]$; the isomorphism is given by $\gamma^{i} \mapsto t^{i}$. The augmentation ideal $I_{G} \subset \mathbb{Z}[G]$ is generated by $\gamma-1$. As $\mathbb{Z}[G]$ is a domain, it follows that the sequence

$$
0 \longrightarrow \mathbb{Z}[G] \xrightarrow{\gamma-1} \mathbb{Z}[G] \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0
$$

is short exact. From the associated long exact sequence and the fact that $\operatorname{Ext}_{\mathbb{Z}[G]}^{n}(\mathbb{Z}[G], A)=0$ for $n>0$ because $\mathbb{Z}[G]$ is (obviously) a free $\mathbb{Z}[G]$-module, we then find

$$
\left\{\begin{array}{l}
\mathrm{H}^{0}(G, A)=A^{G} \\
\mathrm{H}^{1}(G, A)=A /(\gamma-1) \cdot A \\
\mathrm{H}^{n}(G, A)=0 \quad \text { for } n \geq 2
\end{array}\right.
$$

2.13 Example. Let $G=\langle\gamma\rangle$ denote a cyclic group of order n. (So $G \cong \mathbb{Z} / n \mathbb{Z}$.) In this case the group ring $\mathbb{Z}[G]$ is isomorphic to $\mathbb{Z}[t] /\left(t^{n}-1\right)$, via the map that sends γ^{i} to the class of t^{i}. The augmentation ideal I_{G} is the ideal generated by $\gamma-1$. In $\mathbb{Z}[G]$, consider the norm element

$$
N=1+\gamma+\gamma^{2}+\cdots+\gamma^{n-1}
$$

Clearly $(\gamma-1) \cdot N=\gamma^{n}-1=0$. But in fact we have something better, namely that the sequences

$$
\mathbb{Z}[G] \xrightarrow{N} \mathbb{Z}[G] \xrightarrow{\gamma-1} \mathbb{Z}[G] \quad \text { and } \quad \mathbb{Z}[G] \xrightarrow{\gamma-1} \mathbb{Z}[G] \xrightarrow{N} \mathbb{Z}[G]
$$

are both exact. It follows that the complex

$$
R_{\bullet}: \quad \cdots \longrightarrow \mathbb{Z}[G] \xrightarrow{N} \mathbb{Z}[G] \xrightarrow{\gamma-1} \mathbb{Z}[G] \xrightarrow{N} \mathbb{Z}[G] \xrightarrow{\gamma-1} \mathbb{Z}[G] \longrightarrow 0
$$

together with the augmentation map $\epsilon: R \bullet \rightarrow \mathbb{Z}$ is a free resolution of \mathbb{Z} as a $\mathbb{Z}[G]$-module. This gives

$$
\begin{cases}\mathrm{H}^{0}(G, A)=\operatorname{Ker}(\gamma-1: A \rightarrow A)=A^{G} & \\ \mathrm{H}^{n}(G, A)=\operatorname{Ker}(N: A \rightarrow A) / \operatorname{Im}(\gamma-1: A \rightarrow A) & \text { if } n \text { is odd } \\ \mathrm{H}^{n}(G, A)=A^{G} / \operatorname{Im}(N: A \rightarrow A) & \text { for } n \geq 2 \text { even. }\end{cases}
$$

We will use this in later examples.
2.14 For an arbitrary group G we have seen in Exercise ?? an explicit free resolution of \mathbb{Z} as a $\mathbb{Z}[G]$-module, namely the complex

$$
B_{\bullet}(G): \quad \cdots \longrightarrow \mathbb{Z}\left[G^{3}\right] \xrightarrow{d} \mathbb{Z}\left[G^{2}\right] \xrightarrow{d} \mathbb{Z}[G] \longrightarrow 0
$$

with $B_{n}(G)=\mathbb{Z}\left[G^{n+1}\right]$, viewed as a $\mathbb{Z}[G]$-module via the diagonal action $g *\left(g_{0}, g_{1}, \ldots, g_{n}\right)=$ $\left(g g_{0}, g g_{1}, \ldots, g g_{n}\right)$, and with differentials $d: \mathbb{Z}\left[G^{n+1}\right] \rightarrow \mathbb{Z}\left[G^{n}\right]$ given by

$$
d\left(g_{0}, \ldots, g_{n}\right)=\sum_{i=0}^{n}(-1)^{i} \cdot\left(g_{0}, \ldots, \widehat{g_{i}}, \ldots, g_{n}\right)
$$

We are going to use this to give an explicit description of the cohomology groups of G with coefficients in a G-module A. This will be particularly useful in low degrees.

The basic observation is that we can identify

$$
\begin{equation*}
\operatorname{Hom}_{\mathbb{Z}[G]}\left(\mathbb{Z}\left[G^{n+1}\right], A\right) \cong \operatorname{Map}\left(G^{n}, A\right) \tag{2.14.1}
\end{equation*}
$$

This can in fact be done in many ways, and the one that we are going to use does not seem the simplest possible; however, it leads to an explicit description of group cohomology that is very useful in practice. We will work with the identification (2.14.1) given by sending $f: \mathbb{Z}\left[G^{n+1}\right] \rightarrow A$ to the map $\phi: G^{n} \rightarrow A$ given by

$$
\phi\left(g_{1}, \ldots, g_{n}\right)=f\left(1, g_{1}, g_{1} g_{2}, g_{1} g_{2} g_{3}, \ldots, g_{1} g_{2} \cdots g_{n}\right)
$$

In the reverse direction, $\phi: G^{n} \rightarrow A$ is sent to the $\mathbb{Z}[G]$-homomorphism $f: \mathbb{Z}\left[G^{n+1}\right] \rightarrow A$ given by

$$
f\left(g_{0}, g_{1}, \ldots, g_{n}\right)=\phi\left(g_{0}^{-1} g_{1}, g_{1}^{-1} g_{2}, \ldots, g_{n-1}^{-1} g_{n}\right)
$$

With these identifications (2.14.1) the cochain complex $\operatorname{Hom}_{\mathbb{Z}[G]}\left(B_{\bullet}(G), A\right)$ can be identified with a cochain complex

$$
0 \longrightarrow \operatorname{Map}\left(G^{0}, A\right) \longrightarrow \operatorname{Map}(G, A) \longrightarrow \operatorname{Map}\left(G^{2}, A\right) \longrightarrow \cdots
$$

Note that each $\operatorname{Map}\left(G^{n}, A\right)$ is naturally an abelian group, via the addition in A. Direct calculation shows that the differentials $d^{n}: \operatorname{Map}\left(G^{n}, A\right) \rightarrow \operatorname{Map}\left(G^{n+1}, A\right)$ are given by

$$
\begin{aligned}
& d^{n}(\phi)\left(g_{1}, \ldots, g_{n+1}\right) \\
& \quad=g_{1} * \phi\left(g_{2}, \ldots, g_{n+1}\right)+\sum_{i=1}^{n}(-1)^{i} \cdot \phi\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right)+(-1)^{n+1} \cdot \phi\left(g_{1}, \ldots, g_{n}\right)
\end{aligned}
$$

The conclusion of this is that

$$
\mathrm{H}^{n}(G, A)=\frac{\operatorname{Ker}\left(d^{n}: \operatorname{Map}\left(G^{n}, A\right) \rightarrow \operatorname{Map}\left(G^{n+1}, A\right)\right)}{\operatorname{Im}\left(d^{n-1}: \operatorname{Map}\left(G^{n-1}, A\right) \rightarrow \operatorname{Map}\left(G^{n}, A\right)\right)}
$$

where the differentials d^{n} are given by the above formula.
2.15 Examples. Let us consider some examples in low degree.

Of course, $G^{0}=\{1\}$ so that a map $G^{0} \rightarrow A$ is given by an element $a \in A$. The differential $d^{0}: \operatorname{Map}\left(G^{0}, A\right)=A \rightarrow \operatorname{Map}(G, A)$ sends a to the map $g \mapsto g * a-a$. In degree $n=0$ we therefore find

$$
\mathrm{H}^{0}(G, A)=\operatorname{Ker}\left(d^{0}\right)=A^{G}
$$

in agreement with what we have found before.
The next differential is $d^{1}: \operatorname{Map}(G, A) \rightarrow \operatorname{Map}\left(G^{2}, A\right)$. It sends a map $\phi: G \rightarrow A$ to $d^{1}(\phi): G^{2} \rightarrow A$ given by

$$
d^{1}(\phi)\left(g_{1}, g_{2}\right)=g_{1} * \phi\left(g_{2}\right)-\phi\left(g_{1} g_{2}\right)+\phi\left(g_{1}\right)
$$

This gives

$$
\mathrm{H}^{1}(G, A)=\frac{\left\{\phi: G \rightarrow A \mid \phi\left(g_{1} g_{2}\right)=g_{1} * \phi\left(g_{2}\right)+\phi\left(g_{1}\right)\right\}}{\{\phi: G \rightarrow A \mid \text { there exists an } a \in A \text { such that } \phi(g)=g * a-a \text { for all } g \in G\}}
$$

The maps that appear in the numerator are called crossed homomorphisms from G to A. As we have already studied Ext ${ }^{1}$-groups in the previous section, we will not elaborate on this. We do note, however, that if G acts trivially on A we simply get $\mathrm{H}^{1}(G, A)=\operatorname{Hom}_{\mathrm{Ab}}(G, A)$.

The differential $d^{2}: \operatorname{Map}\left(G^{2}, A\right) \rightarrow \operatorname{Map}\left(G^{3}, A\right)$ sends a map $\phi: G^{2} \rightarrow A$ to $d^{2}(\phi): G^{3} \rightarrow$ A given by

$$
d^{2}(\phi)\left(g_{1}, g_{2}, g_{3}\right)=g_{1} * \phi\left(g_{2}, g_{3}\right)-\phi\left(g_{1} g_{2}, g_{3}\right)+\phi\left(g_{1}, g_{2} g_{3}\right)-\phi\left(g_{1}, g_{2}\right)
$$

This gives

$$
\mathrm{H}^{2}(G, A)=\frac{\left\{\phi: G^{2} \rightarrow A \mid \phi\left(g_{1} g_{2}, g_{3}\right)-\phi\left(g_{1}, g_{2} g_{3}\right)=g_{1} * \phi\left(g_{2}, g_{3}\right)-\phi\left(g_{1}, g_{2}\right)\right\}}{\left\{\phi: G \rightarrow A \mid \exists \psi: G \rightarrow A \text { such that } \phi\left(g_{1}, g_{2}\right)=g_{1} * \psi\left(g_{2}\right)-\psi\left(g_{1} g_{2}\right)+\psi\left(g_{1}\right)\right\}}
$$

which already looks rather mysterious.
2.16 Group extensions and H^{2}. Just as in the previous section we have related Ext ${ }^{1}$ modules to extensions of modules, we are here going to relate $\mathrm{H}^{2}(G, A)$ to a problem about extensions of groups.

The starting point for this is that if G and A are groups then by an extension of G by A we mean a short exact sequence of groups

$$
\begin{equation*}
1 \longrightarrow A \xrightarrow{i} \Gamma \xrightarrow{\pi} G \longrightarrow 1 \tag{2.16.1}
\end{equation*}
$$

Note: "short exact" simply means that i is injective, π is surjective and $\operatorname{Im}(i)=\operatorname{Ker}(\pi)$. Similar to the definition for extensions of modules, we will view two such extensions as equivalent if they fit in a diagram

and the existence of such a diagram implies that f is an isomorphism of groups.
In the rest of the discussion we assume that the group A is abelian. This has an important consequence. Namely, given an extension (2.16.1) we obtain a natural structure of a G-module on A. For this, choose a set-theoretic section $s: G \rightarrow \Gamma$ of the map π, i.e., a map s such that $\pi \circ s=\operatorname{id}_{G}$. Such a section exists, simply because π is surjective. Note, however, that in general we cannot find a homomorphic section s. Given this section s we obtain an action of G on A by

$$
\begin{equation*}
g * a=s(g) \cdot a \cdot s(g)^{-1} \tag{2.16.2}
\end{equation*}
$$

Explanation: we identify A with $\operatorname{ker}(\pi)$ via i, and we calculate $s(g) \cdot a \cdot s(g)^{-1}$ inside the group Γ. Then we observe that this element lies in A because $\pi\left(s(g) \cdot a \cdot s(g)^{-1}\right)=g \cdot 1 \cdot g^{-1}=1$. One readily checks that (2.16.2) indeed defines a G-module structure on A. Moreover, this G-module structure is independent of the chosen section s. Indeed, any other section is of the form $\sigma(g)=\alpha(g) \cdot s(g)$, where α is a map from G to A. But then we find that

$$
\sigma(g) \cdot a \cdot \sigma(g)^{-1}=\alpha(g) \cdot\left(s(g) \cdot a \cdot s(g)^{-1}\right) \cdot \alpha(g)^{-1}=s(g) \cdot a \cdot s(g)^{-1}
$$

because A is abelian.
The problem that we are interested in is to describe, given a group G and a G-module A, all extensions of G by A up to equivalence. Since we have now fixed the structure of a G-module on A this means that we want to consider all extensions (2.16.1) for which the resulting G-module structure (2.16.2) is the given one.

There is always at least one such extension. Namely, if we describe the G-module structure on A as a homomorphism $\theta: G \rightarrow \operatorname{Aut}(A)$ (see Remark 2.2) we can form the semi-direct product $A \rtimes_{\theta} G$. Recall that $A \rtimes_{\theta} G$ is the set of pairs $(a, g) \in A \times G$, with group structure given by

$$
\left(a_{1}, g_{1}\right) \cdot\left(a_{2}, g_{2}\right)=\left(a_{1}+\theta\left(g_{1}\right)\left(a_{2}\right), g_{1} g_{2}\right)
$$

(We write the group structure on A additively.) The maps i : $A \rightarrow A \rtimes_{\theta} G$ given by $a \mapsto(a, 1)$ and $\pi: A \rtimes_{\theta} G \rightarrow G$ given by $(a, g) \mapsto g$ are homomorphisms that realize $A \rtimes_{\theta} G$ as an extension of G by A. To see that the corresponding G-module structure on A is the one given by θ note that in this case π has a homomorphic section, namely $s: G \rightarrow A \rtimes_{\theta} G$ given by $g \mapsto(0, g)$. Since in $A \rtimes_{\theta} G$ we have

$$
(0, g) \cdot(a, 1) \cdot\left(0, g^{-1}\right)=(\theta(g)(a), 1)
$$

we see that, indeed, the G-module structure on A is the one we started with.
Already at this point it is an easy exercise to show that an extension Γ is equivalent to $A \rtimes_{\theta} G$ if and only if there exists a homomorphic section of $\pi: \Gamma \rightarrow G$. So we may think of the semi-direct product as being the "trivial" extension of G by A (similar to split extensions of modules) and ask whether there are other, non-equivalent extensions. This is an important question in group theory that can be answered using group cohomology.
2.17 Theorem. Let G be a group and A be a G-module. Then the set of equivalence classes of extensions of G by A (with its given G-module structure) is in natural bijection with $\mathrm{H}^{2}(G, A)$. Under this bijection the semi-direct product $A \rtimes_{\theta} G$ corresponds with the zero class in $\mathrm{H}^{2}(G, A)$.

We will not give the full details of the proof but only explain the key idea, which is a simple one. Namely, given an extension (2.16.1) we choose a (set-theoretic) section $s: G \rightarrow \Gamma$ of π, and we measure how far s is from being a homomorphism. This leads us to consider the map $\phi_{s}: G^{2} \rightarrow A$ given by

$$
\phi_{s}\left(g_{1}, g_{2}\right)=s\left(g_{1} g_{2}\right) \cdot s\left(g_{2}\right)^{-1} \cdot s\left(g_{1}\right)^{-1}
$$

Note that the RHS is calculated in Γ and defines an element of A because it lies in the kernel of π. (In what follows we identify A with the subgroup $\operatorname{Ker}(\pi) \subset \Gamma$.) We claim that $d^{2}\left(\phi_{s}\right)=0$, or what is the same, that

$$
-\phi_{s}\left(g_{1}, g_{2} g_{3}\right)+\phi_{s}\left(g_{1} g_{2}, g_{3}\right)=g_{1} * \phi_{s}\left(g_{2}, g_{3}\right)-\phi_{s}\left(g_{1}, g_{2}\right)
$$

for all $g_{1}, g_{2}, g_{2} \in G$. The LHS (calculated in the group Γ, which is written multiplicatively) is given by

$$
s\left(g_{1}\right) s\left(g_{2} g_{3}\right) s\left(g_{1} g_{2} g_{3}\right)^{-1} s\left(g_{1} g_{2} g_{3}\right) s\left(g_{3}\right)^{-1} s\left(g_{1} g_{2}\right)^{-1}
$$

the RHS is

$$
s\left(g_{1}\right) s\left(g_{2} g_{3}\right) s\left(g_{3}\right)^{-1} s\left(g_{2}\right)^{-1} s\left(g_{1}\right)^{-1} s\left(g_{1}\right) s\left(g_{2}\right) s\left(g_{1} g_{2}\right)^{-1}
$$

and we readily see that these two expressions indeed give the same. Therefore, ϕ_{s} defines a class in $\mathrm{H}^{2}(G, A)$. This class is independent of the choice of a section s, for if σ is another section then $\sigma(g)=\alpha(g) \cdot s(g)$ for some map $\alpha: G \rightarrow A$, and then

$$
\begin{aligned}
\phi_{\sigma}\left(g_{1}, g_{2}\right) & =\alpha\left(g_{1} g_{2}\right) \cdot s\left(g_{1} g_{2}\right) \cdot s\left(g_{2}\right)^{-1} \cdot \alpha\left(g_{2}\right)^{-1} \cdot s\left(g_{1}\right)^{-1} \cdot \alpha\left(g_{1}\right)^{-1} \\
& =\alpha\left(g_{1} g_{2}\right) \cdot \phi_{s}\left(g_{1}, g_{2}\right) \cdot\left(s\left(g_{1}\right) * \alpha\left(g_{2}\right)^{-1}\right) \cdot \alpha\left(g_{1}\right)^{-1} \\
& =\phi_{s}\left(g_{1}, g_{2}\right)-\left[s\left(g_{1}\right) * \alpha\left(g_{2}\right)-\alpha\left(g_{1} g_{2}\right)+\alpha\left(g_{1}\right)\right] \\
& =\phi_{s}\left(g_{1}, g_{2}\right)-d^{1}(\alpha)\left(g_{1}, g_{2}\right)
\end{aligned}
$$

where in the third step we switch from multiplicative notation (in he group Γ) to additive notation (in A). Hence we see that ϕ_{s} and ϕ_{σ} define the same class in $\mathrm{H}^{2}(G, A)$.

This construction gives a map from the set of equivalence classes of extensions of G by the G-module A to $\mathrm{H}^{2}(G, A)$, and the more precise form of the theorem is that this map is a bijection. Note that indeed the semi-direct product $A \rtimes_{\theta} G$ is mapped to the zero class, as clearly $\phi_{s}=0$ if (and only if) s is a homomorphism.
2.18 Example. Let p be a prime number and let us classify all extensions of $C_{p}=\mathbb{Z} / p \mathbb{Z}$ by itself. Note that by basic group theory every group of order p^{2} has a normal subgroup of order p and can therefore be obtained as an extension of C_{p} by itself.

As $\operatorname{Aut}\left(C_{p}\right) \cong(\mathbb{Z} / p \mathbb{Z})^{*}$ is cyclic of order $p-1$, there is no other C_{p}-module structure on $\mathbb{Z} / p \mathbb{Z}$ other than the trivial one. (In case you find this confusing, note that a C_{p}-module structure is the structure of a module over the group ring $\mathbb{Z}\left[C_{p}\right]$. Of course C_{p} has a natural structure of a module over the ring $\mathbb{Z} / p \mathbb{Z}$ but that is something different.) By what we have found in Example 2.13,

$$
\mathrm{H}^{2}\left(C_{p}, C_{p}\right) \cong C_{p}
$$

(With notation as in Example 2.13 the norm element N acts as multiplication by p, which in this case is 0.)

There are two extensions that immediately come to mind: the trivial extension $C_{p} \times C_{p}$ and the extension

$$
1 \longrightarrow C_{p} \xrightarrow{i}\left(\mathbb{Z} / p^{2} \mathbb{Z}\right) \xrightarrow{\pi} C_{p} \longrightarrow 1
$$

with i given by $a \bmod p \mapsto p \cdot a \bmod p^{2}$. However, if we take $c \in(\mathbb{Z} / p \mathbb{Z})^{*}$ and in this sequence change the map i to $c \cdot i$ given by $a \bmod p \mapsto p \cdot c a \bmod p^{2}$ then this gives a different equivalence class of extensions. One can check that this gives all possible classes in $\mathrm{H}^{2}\left(C_{p}, C_{p}\right) \cong C_{p}$. The conclusion, therefore, is that every group of order p^{2} is isomorphic to $C_{p} \times C_{p}$ or to $\mathbb{Z} / p^{2} \mathbb{Z}$.
2.19 Example. Let $C_{2}=\{1, \iota\}$ and C_{4} denote the cyclic groups of order 2 and 4 , respectively. As $\operatorname{Aut}\left(C_{4}\right) \cong C_{2}$, there are two possible C_{2}-module structures on C_{4} : the trivial one, and the one for which ι acts as -id on C_{4}.

Let us first take the trivial C_{2}-module structure on C_{4}. By Example 2.13 we have $\mathrm{H}^{2}\left(C_{2}, C_{4}\right) \cong C_{4} / 2 C_{4}$. (The norm element N acts as multiplication by 2.) We easily see the two corresponding extensions: the product group $C_{4} \times C_{2}$ and the extension

$$
0 \longrightarrow C_{4} \longrightarrow \mathbb{Z} / 8 \mathbb{Z} \longrightarrow C_{2} \longrightarrow 0
$$

If we take the non-trivial C_{2}-module structure $\theta: C_{2} \rightarrow \operatorname{Aut}\left(C_{4}\right)$ then we find that $\mathrm{H}^{2}\left(C_{2}, C_{4}\right) \cong 2 C_{4} \cong \mathbb{Z} / 2 \mathbb{Z}$. (In this case the norm element acts trivially.) Again we can see two extensions:

$$
0 \longrightarrow\langle r\rangle \longrightarrow D_{4} \xrightarrow{\text { det }}\{ \pm 1\} \longrightarrow 1
$$

where $D_{4}=\langle r, s\rangle$ is the dihedral group of order 8 (with $r \in D_{4}$ the rotation, of order 4), and

$$
0 \longrightarrow\langle i\rangle \longrightarrow Q \longrightarrow C_{2} \longrightarrow 1
$$

with $Q=\{ \pm 1, \pm i, \pm j, \pm k\}$ the quaternion group of order 8 . The dihedral group is of course the semidirect product $C_{4} \rtimes_{\theta} C_{2}$. The quaternion group Q is not semi-direct, as all its elements of order 2 lie in the subgroup $\langle i\rangle \subset Q$, so that the map $Q \rightarrow C_{2}$ has no homomorphic section.

