Finitely generated modules over a PID

Lemma. Let R be a commutative ring with $1 \neq 0$. If $R^{m} \cong R^{n}$ as R-modules then $m=n$.

Proof. Let $\mathfrak{m} \subset R$ be a maximal ideal, and let $k=R / \mathfrak{m}$. Then $R^{m} \cong R^{n}$ implies that $k^{m} \cong R^{m} / \mathfrak{m} \cdot R^{m} \cong R^{n} / \mathfrak{m} \cdot R^{n} \cong k^{n}$ as k-modules; hence $m=n$.

Proposition 1. Let R be a PID. If $M \subset R^{n}$ is a submodule, then M is free of rank $\leqslant n$.
Proof. Induction on n, the case $n=0$ being trivial. Assume $n \geqslant 1$ and the proposition is true in lower rank. Let $\pi: R^{n} \rightarrow R$ be the projection onto the last factor, write R^{n-1} for the kernel, and let $M^{\prime}=M \cap R^{n-1}$. If $\pi(M)=0$ then $M \subset R^{n-1}$ and we are done. As R is a PID, if $\pi(M) \neq 0$ then $\pi(M) \subset R$ is a principal ideal. Choose an element $\mu \in M$ such that $\pi(\mu)$ generates $\pi(M)$. By induction, there exists a basis e_{1}, \ldots, e_{r} for M^{\prime} as an R-module, with $r \leqslant n-1$. If $m \in M$, we have $\pi(m)=r \cdot \pi(\mu)$ for some $r \in R$, and then $m-r \mu \in M^{\prime}$. Hence $e_{1}, \ldots, e_{r}, \mu$ generate M. They are also linearly independent, for $\sum c_{i} e_{i}+d \mu=0$ implies $d=0$ by applying π, and we already know that e_{1}, \ldots, e_{r} are linearly independent. Hence in this case M is free of rank $r+1 \leqslant n$.

If A is an $m \times n$ matrix with coefficients in R, we simply write $\operatorname{Coker}(A)$ for the cokernel of the map $R^{n} \rightarrow R^{m}$ given by A.

Corollary. Let M be a f.g. module over a PID R. Then there exists an $m \times n$ matrix A with coefficients in R, for some m and n, such that $M \cong \operatorname{Coker}(A)$.

Proof. As M is finitely generated, there exists a surjective map $p: R^{m} \rightarrow M$. By the proposition, there exists $n \leqslant m$ and an isomorphism $R^{n} \xrightarrow{\sim} \operatorname{Ker}(p)$. Then $M \cong \operatorname{Coker}(A)$, where A is the matrix of the composite map $R^{n} \rightarrow \operatorname{Ker}(p) \hookrightarrow R^{m}$.

In what follows, let R be a PID. Any two non-zero elements of R have a gcd that is welldetermined up to multiplication by a unit: c is said to be a gcd of a and b if $(c)=(a, b)$. Note that, by definition, this implies that c can be written as $c=x \cdot a+y \cdot b$ for some $x, y \in R$.

Proposition 2. Let m and n be positive integers and $A=\left(a_{i j}\right)$ an $m \times n$ matrix with coefficients in R. Then there exist $P \in \mathrm{GL}_{m}(R)$ and $Q \in \mathrm{GL}_{n}(R)$ such that $P \cdot A \cdot Q$ is a diagonal matrix $\operatorname{diag}\left(r_{1}, \ldots, r_{t}, 0, \ldots, 0\right)$ with non-zero $r_{i} \in R$ such that r_{i} divides r_{i+1} for $i=1, \ldots, t-1$.

Note that "diag" here means an $m \times n$ diagonal matrix, so not necessarily square.
Proof. Let $E(A)$ be the set of all matrices of the form $P \cdot A \cdot Q$ with invertible P and Q. Note: if $B \in E(A)$ then $E(B)=E(A)$. Further, if $B \in E(A)$ then any matrix obtained from B by permuting rows and columns is again in $E(A)$. Also, any matrix obtained from B by elementary row or column operations is again in $E(A)$.

Let $V \subset R$ be the subset of all elements that occur as matrix coefficient in some matrix in $E(A)$. We may assume V contains non-zero elements, for otherwise $A=0$ and there is nothing to prove. Let $\beta \in V$ be any non-zero element for which (β) is as large as possible. In other words:
there is no C in $E(A)$ that has a matrix coefficient $c_{i j}$ that strictly divides β, i.e., for which $(\beta) \subsetneq\left(c_{i j}\right)$. (Such an element β exists because R is a noetherian ring. Alternatively, use that R is a UFD.) Using row and column permutations we find that there exists a $B=\left(b_{i j}\right) \in E(A)$ such that $b_{1,1}=\beta$.

We claim that β divides all $b_{1, j}$ and all $b_{i, 1}$. Indeed, suppose β does not divide some $b_{1, j}$. For simplicity of exposition, suppose it is $b_{1,2}$. Let c be a gcd of $\beta=b_{1,1}$ and $b_{1,2}$, and choose $x, y \in R$ such that $c=x \cdot \beta+y \cdot b_{1,2}$. Write $\beta=r \cdot c$ and $b_{1,2}=s \cdot c$, so that $1=x \cdot r+y \cdot s$. Let $Q \in \mathrm{GL}_{n}(R)$ the matrix

$$
Q=\left(\begin{array}{ccccc}
x & -s & & & \\
y & r & & & \\
& & 1 & & \\
& & & \ddots & \\
& & & & 1
\end{array}\right)
$$

Then $B \cdot Q \in E(A)$ and as c is a matrix coefficient of $B \cdot Q$ we arrive at a contradiction with our choice of β. In a similar way we see that β divides all $b_{i, 1}$. By row and column operations, this gives a matrix in $E(A)$ of the form

$$
\left(\begin{array}{cccc}
\beta & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & A_{2} & \\
0 & & &
\end{array}\right)
$$

where A_{2} is an $(m-1) \times(n-1)$ matrix.
By induction, we find that $E(A)$ contains a matrix $\operatorname{diag}\left(\beta, r_{2}, \ldots, r_{t}, 0, \ldots, 0\right)$ with r_{i} dividing r_{i+1}. It only remains to be shown that β divides r_{2}. For this, choose $x, y \in R$ such that $c=x \cdot \beta+y \cdot r_{2}$ is a gcd of β and r_{2}. Then it follows from the identity

$$
\left(\begin{array}{cc}
1 & 0 \\
x & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
\beta & 0 \\
0 & r_{2}
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
y & 1
\end{array}\right)=\left(\begin{array}{cc}
\beta & 0 \\
c & r_{2}
\end{array}\right)
$$

that $E(A)$ contains a matrix in which c occurs as coefficient. By our choice of β we must have $(\beta)=(c)$, which means that $\beta \mid r_{2}$.

Theorem. Let R be a PID. Let M be a f.g. module over R. Then there exist integers $r, t \geqslant 0$ and a chain of ideals $R \neq I_{1} \supseteq I_{2} \supseteq \cdots \supseteq I_{t} \neq(0)$, all uniquely determined, such that

$$
M \cong R^{r} \oplus R / I_{1} \oplus \cdots \oplus R / I_{t}
$$

as R-modules.

Proof. The existence follows from the Corollary to Proposition 1 together with Proposition 2; here we note that if $B=P \cdot A \cdot Q$ then $P: R^{m} \xrightarrow{\sim} R^{m}$ induces an isomorphism $\operatorname{Coker}(A) \xrightarrow{\sim}$ Coker (B).

For the uniqueness, suppose $M=R^{r} \oplus R / I_{1} \oplus \cdots \oplus R / I_{t}$ and $N=R^{\rho} \oplus R / J_{1} \oplus \cdots \oplus R / J_{u}$ are isomorphic, where we assume $R \neq I_{1} \supseteq I_{2} \supseteq \cdots \supseteq I_{t} \neq(0)$ and $R \neq J_{1} \supseteq J_{2} \supseteq \cdots \supseteq J_{u} \neq$ (0). Then $R / I_{1} \oplus \cdots \oplus R / I_{t}=\operatorname{Tors}(M)$ is isomorphic to $R / J_{1} \oplus \cdots \oplus R / J_{u}=\operatorname{Tors}(N)$ and $R^{r} \cong M / \operatorname{Tors}(M) \cong N / \operatorname{Tors}(N) \cong R^{\rho}$. The latter already implies that $r=\rho$. It remains to
treat the case $r=\rho=0$. If $m \in M$, its annihilator $\operatorname{ann}(m)=\{r \in R \mid r m=0\}$ is an ideal of R, and I_{1} is the largest proper ideal of R that occurs among these ideals. This characterizes I_{1}, and hence $I_{1}=J_{1}$. If \mathfrak{m} is a maximal ideal containing I_{1} then t is the dimension of $M / \mathfrak{m} M$ over the residue field R / \mathfrak{m}; this characterizes t, and hence $t=u$.

Let \mathscr{M} be the set of all maximal ideals of R. Every non-zero ideal $I \subset R$ can be written in a unique way as $I=\prod_{\mathfrak{p} \in \mathscr{M}} \mathfrak{p}^{v_{\mathfrak{p}}(I)}$ with exponents $v_{\mathfrak{p}}(I) \geqslant 0$ that are 0 for almost all \mathfrak{p}. By how we have chosen the I_{i} and J_{i}, we have $v_{\mathfrak{p}}\left(I_{i}\right) \leqslant v_{\mathfrak{p}}\left(I_{i+1}\right)$ and $v_{\mathfrak{p}}\left(J_{i}\right) \leqslant v_{\mathfrak{p}}\left(J_{i+1}\right)$ for all $\mathfrak{p} \in \mathscr{M}$ and $i=1, \ldots, t-1$. If $I_{q} \neq J_{q}$ for some q, choose q maximal with this property. There exists $\mathfrak{p} \in \mathscr{M}$ with $v_{\mathfrak{p}}\left(I_{q}\right) \neq v_{\mathfrak{p}}\left(J_{q}\right)$, and by symmetry we may assume $v_{\mathfrak{p}}\left(I_{q}\right)>v_{\mathfrak{p}}\left(J_{q}\right)$. If P is an R-module and $a \geqslant 0$ then $\mathfrak{p}^{a} \cdot P / \mathfrak{p}^{a+1} \cdot P$ is a vector space over the residue field $k=R / \mathfrak{p}$. Moreover, in case $P=R / I$ for some non-zero ideal I we find that $\mathfrak{p}^{a} \cdot P / \mathfrak{p}^{a+1} \cdot P$ is zero if $v_{\mathfrak{p}}(I)<a$ and is 1-dimensional over k if $v_{\mathfrak{p}}(I) \geqslant a$. Therefore, if we take $a=v_{\mathfrak{p}}\left(I_{q}\right)$ then we find that $\operatorname{dim}_{k}\left(\mathfrak{p}^{a} \cdot M / \mathfrak{p}^{a+1} \cdot M\right)>\operatorname{dim}_{k}\left(\mathfrak{p}^{a} \cdot N / \mathfrak{p}^{a+1} \cdot N\right)$; contradiction. This shows that $I_{q}=J_{q}$ for all q.

