Finitely generated modules over a PID

Lemma. Let R be a commutative ring with 1 # 0. If R™ =2 R™ as R-modules then m = n.

Proof. Let m C R be a maximal ideal, and let ¥ = R/m. Then R™ = R" implies that
E™ >~ R™/m-R™ 2= R"/m- R" = k™ as k-modules; hence m = n. O

Proposition 1. Let R be a PID. If M C R™ is a submodule, then M is free of rank < n.

Proof. Induction on n, the case n = 0 being trivial. Assume n > 1 and the proposition is
true in lower rank. Let m: R — R be the projection onto the last factor, write R"~! for the
kernel, and let M’ = M N R"~!. If 7(M) = 0 then M C R"! and we are done. As R is a
PID, if 7(M) # 0 then (M) C R is a principal ideal. Choose an element p € M such that
7(u) generates (M ). By induction, there exists a basis ey, ..., e, for M’ as an R-module, with
r<n-—1. If m € M, we have 7(m) = r - w(u) for some r € R, and then m —ru € M’. Hence
€1,...,er, i generate M. They are also linearly independent, for > ¢;e; + du = 0 implies d = 0
by applying 7, and we already know that eq,...,e, are linearly independent. Hence in this case
M is free of rank r +1 < n. O

If A is an m x n matrix with coefficients in R, we simply write Coker(A) for the cokernel
of the map R™ — R™ given by A.

Corollary. Let M be a f.g. module over a PID R. Then there exists an m x n matrix A with
coefficients in R, for some m and n, such that M = Coker(A).

Proof. As M is finitely generated, there exists a surjective map p: R™ — M. By the proposition,
there exists n < m and an isomorphism R™ — Ker(p). Then M = Coker(A), where A is the
matrix of the composite map R"™ — Ker(p) — R™. O

In what follows, let R be a PID. Any two non-zero elements of R have a gcd that is well-
determined up to multiplication by a unit: ¢ is said to be a ged of a and b if (¢) = (a,b). Note
that, by definition, this implies that ¢ can be written as c =z -a + y - b for some z, y € R.

Proposition 2. Let m and n be positive integers and A = (a;;) an m x n matrix with coefficients
in R. Then there exist P € GL,,(R) and @ € GL,,(R) such that P- A - @ is a diagonal matrix
diag(ry,...,7,0,...,0) with non-zero r; € R such that r; divides r;41 fori=1,...,t — 1.

Note that “diag” here means an m x n diagonal matrix, so not necessarily square.

Proof. Let E(A) be the set of all matrices of the form P - A - @ with invertible P and Q. Note:
if B € E(A) then E(B) = E(A). Further, if B € E(A) then any matrix obtained from B by
permuting rows and columns is again in E(A). Also, any matrix obtained from B by elementary
row or column operations is again in E(A).

Let V' C R be the subset of all elements that occur as matrix coefficient in some matrix
in F(A). We may assume V' contains non-zero elements, for otherwise A = 0 and there is nothing
to prove. Let § € V be any non-zero element for which () is as large as possible. In other words:

1



there is no C' in E(A) that has a matrix coefficient ¢;; that strictly divides fj, i.e., for which
(B) € (cij). (Such an element § exists because R is a noetherian ring. Alternatively, use that
R is a UFD.) Using row and column permutations we find that there exists a B = (b;;) € E(A)
such that by ; = f.

We claim that 3 divides all by ; and all b; ;. Indeed, suppose 3 does not divide some by ;.
For simplicity of exposition, suppose it is by 2. Let ¢ be a ged of 8 = by,; and by 2, and choose
z,y€ Rsuchthat c=a-8+y-b1 2. Write 3=r-candbjs=s-¢c,sothatl=2-r+y-s.
Let Q € GL,(R) the matrix

1

Then B -(Q € E(A) and as c is a matrix coefficient of B - () we arrive at a contradiction with
our choice of 8. In a similar way we see that 3 divides all b; ;. By row and column operations,
this gives a matrix in F(A) of the form

: As
0

where As is an (m — 1) x (n — 1) matrix.
By induction, we find that E(A) contains a matrix diag(8,72,...,7¢0,...,0) with r; di-

viding 7;41. It only remains to be shown that S divides ro. For this, choose z, y € R such that
c=x-0+y-ryisagedof §and ro. Then it follows from the identity

10 8 0 1 0y (B 0

z 1 0 7o y 1 e 1
that E(A) contains a matrix in which ¢ occurs as coefficient. By our choice of 8 we must have
(8) = (¢), which means that 5|rs. O

Theorem. Let R be a PID. Let M be a f.g. module over R. Then there exist integers r,t > 0
and a chain of ideals R # I; D I O --- D I; # (0), all uniquely determined, such that

MR ®R/I®---®R/I;
as R-modules.

Proof. The existence follows from the Corollary to Proposition 1 together with Proposition 2;
here we note that if B = P- A-(Q then P: R™ — R™ induces an isomorphism Coker(A) —
Coker(B).

For the uniqueness, suppose M = R"® R/ &---®R/l; and N =R’ ®R/J1®---®R/J,
are isomorphic, where we assume R# I1 DI D - 2L #(0)and R# J; D Jo D -+ D J, #
(0). Then R/I @ ---® R/I; = Tors(M) is isomorphic to R/J; @ --- @ R/J, = Tors(N) and
R" = M/Tors(M) = N/Tors(N) = Rf. The latter already implies that » = p. It remains to
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treat the case r = p = 0. If m € M, its annihilator ann(m) = {7“ €ER ‘ rm = 0} is an ideal of R,
and [ is the largest proper ideal of R that occurs among these ideals. This characterizes Iy,
and hence I = J;. If m is a maximal ideal containing Iy then ¢ is the dimension of M /mM over
the residue field R/m; this characterizes ¢, and hence t = u.

Let .# be the set of all maximal ideals of R. Every non-zero ideal I C R can be written
in a unique way as I = [[,c , pU» (D) with exponents v, (I) > 0 that are 0 for almost all p.
By how we have chosen the I; and J;, we have v, (1;) < vp(Liy1) and vy (J;) < vp(Ji41) for all
pe#andi=1,...,t—1. 1If I, # J, for some ¢, choose ¢ maximal with this property. There
exists p € 4 with vy(I;) # vp(Jy), and by symmetry we may assume vy (1) > vp(Jg). If P is
an R-module and a > 0 then p® - P/p*! . P is a vector space over the residue field k = R/p.
Moreover, in case P = R/I for some non-zero ideal I we find that p® - P/p®*! . P is zero if
vp(I) < a and is 1-dimensional over k if v, (I) > a. Therefore, if we take a = v, (I;) then we find
that dimy,(p® - M/p® - M) > dimy (p® - N/p®*! - N); contradiction. This shows that I, = J,
for all q. O



