
Finitely generated modules over a PID

Lemma. Let R be a commutative ring with 1 6= 0. If Rm ∼= Rn as R-modules then m = n.

Proof. Let m ⊂ R be a maximal ideal, and let k = R/m. Then Rm ∼= Rn implies that

km ∼= Rm/m ·Rm ∼= Rn/m ·Rn ∼= kn as k-modules; hence m = n. �

Proposition 1. Let R be a PID. If M ⊂ Rn is a submodule, then M is free of rank 6 n.

Proof. Induction on n, the case n = 0 being trivial. Assume n > 1 and the proposition is

true in lower rank. Let π: Rn → R be the projection onto the last factor, write Rn−1 for the

kernel, and let M ′ = M ∩ Rn−1. If π(M) = 0 then M ⊂ Rn−1 and we are done. As R is a

PID, if π(M) 6= 0 then π(M) ⊂ R is a principal ideal. Choose an element µ ∈ M such that

π(µ) generates π(M). By induction, there exists a basis e1, . . . , er for M ′ as an R-module, with

r 6 n− 1. If m ∈ M , we have π(m) = r · π(µ) for some r ∈ R, and then m− rµ ∈ M ′. Hence

e1, . . . , er, µ generate M . They are also linearly independent, for
∑
ciei + dµ = 0 implies d = 0

by applying π, and we already know that e1, . . . , er are linearly independent. Hence in this case

M is free of rank r + 1 6 n. �

If A is an m × n matrix with coefficients in R, we simply write Coker(A) for the cokernel

of the map Rn → Rm given by A.

Corollary. Let M be a f.g. module over a PID R. Then there exists an m × n matrix A with

coefficients in R, for some m and n, such that M ∼= Coker(A).

Proof. As M is finitely generated, there exists a surjective map p: Rm →M . By the proposition,

there exists n 6 m and an isomorphism Rn
∼−→ Ker(p). Then M ∼= Coker(A), where A is the

matrix of the composite map Rn → Ker(p) ↪→ Rm. �

In what follows, let R be a PID. Any two non-zero elements of R have a gcd that is well-

determined up to multiplication by a unit: c is said to be a gcd of a and b if (c) = (a, b). Note

that, by definition, this implies that c can be written as c = x · a+ y · b for some x, y ∈ R.

Proposition 2. Let m and n be positive integers and A = (aij) an m×n matrix with coefficients

in R. Then there exist P ∈ GLm(R) and Q ∈ GLn(R) such that P · A ·Q is a diagonal matrix

diag(r1, . . . , rt, 0, . . . , 0) with non-zero ri ∈ R such that ri divides ri+1 for i = 1, . . . , t− 1.

Note that “diag” here means an m× n diagonal matrix, so not necessarily square.

Proof. Let E(A) be the set of all matrices of the form P ·A ·Q with invertible P and Q. Note:

if B ∈ E(A) then E(B) = E(A). Further, if B ∈ E(A) then any matrix obtained from B by

permuting rows and columns is again in E(A). Also, any matrix obtained from B by elementary

row or column operations is again in E(A).

Let V ⊂ R be the subset of all elements that occur as matrix coefficient in some matrix

in E(A). We may assume V contains non-zero elements, for otherwise A = 0 and there is nothing

to prove. Let β ∈ V be any non-zero element for which (β) is as large as possible. In other words:
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there is no C in E(A) that has a matrix coefficient cij that strictly divides β, i.e., for which

(β) ( (cij). (Such an element β exists because R is a noetherian ring. Alternatively, use that

R is a UFD.) Using row and column permutations we find that there exists a B = (bij) ∈ E(A)

such that b1,1 = β.

We claim that β divides all b1,j and all bi,1. Indeed, suppose β does not divide some b1,j .

For simplicity of exposition, suppose it is b1,2. Let c be a gcd of β = b1,1 and b1,2, and choose

x, y ∈ R such that c = x · β + y · b1,2. Write β = r · c and b1,2 = s · c, so that 1 = x · r + y · s.
Let Q ∈ GLn(R) the matrix

Q =


x −s
y r

1
. . .

1


Then B · Q ∈ E(A) and as c is a matrix coefficient of B · Q we arrive at a contradiction with

our choice of β. In a similar way we see that β divides all bi,1. By row and column operations,

this gives a matrix in E(A) of the form
β 0 · · · 0

0
... A2

0


where A2 is an (m− 1)× (n− 1) matrix.

By induction, we find that E(A) contains a matrix diag(β, r2, . . . , rt, 0, . . . , 0) with ri di-

viding ri+1. It only remains to be shown that β divides r2. For this, choose x, y ∈ R such that

c = x · β + y · r2 is a gcd of β and r2. Then it follows from the identity(
1 0

x 1

)
·
(
β 0

0 r2

)
·
(

1 0

y 1

)
=

(
β 0

c r2

)
that E(A) contains a matrix in which c occurs as coefficient. By our choice of β we must have

(β) = (c), which means that β|r2. �

Theorem. Let R be a PID. Let M be a f.g. module over R. Then there exist integers r, t > 0

and a chain of ideals R 6= I1 ⊇ I2 ⊇ · · · ⊇ It 6= (0), all uniquely determined, such that

M ∼= Rr ⊕R/I1 ⊕ · · · ⊕R/It

as R-modules.

Proof. The existence follows from the Corollary to Proposition 1 together with Proposition 2;

here we note that if B = P · A · Q then P : Rm
∼−→ Rm induces an isomorphism Coker(A)

∼−→
Coker(B).

For the uniqueness, suppose M = Rr ⊕R/I1⊕ · · ·⊕R/It and N = Rρ⊕R/J1⊕ · · ·⊕R/Ju
are isomorphic, where we assume R 6= I1 ⊇ I2 ⊇ · · · ⊇ It 6= (0) and R 6= J1 ⊇ J2 ⊇ · · · ⊇ Ju 6=
(0). Then R/I1 ⊕ · · · ⊕ R/It = Tors(M) is isomorphic to R/J1 ⊕ · · · ⊕ R/Ju = Tors(N) and

Rr ∼= M/Tors(M) ∼= N/Tors(N) ∼= Rρ. The latter already implies that r = ρ. It remains to
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treat the case r = ρ = 0. If m ∈M , its annihilator ann(m) =
{
r ∈ R

∣∣ rm = 0
}

is an ideal of R,

and I1 is the largest proper ideal of R that occurs among these ideals. This characterizes I1,

and hence I1 = J1. If m is a maximal ideal containing I1 then t is the dimension of M/mM over

the residue field R/m; this characterizes t, and hence t = u.

Let M be the set of all maximal ideals of R. Every non-zero ideal I ⊂ R can be written

in a unique way as I =
∏

p∈M pvp(I) with exponents vp(I) > 0 that are 0 for almost all p.

By how we have chosen the Ii and Ji, we have vp(Ii) 6 vp(Ii+1) and vp(Ji) 6 vp(Ji+1) for all

p ∈M and i = 1, . . . , t− 1. If Iq 6= Jq for some q, choose q maximal with this property. There

exists p ∈M with vp(Iq) 6= vp(Jq), and by symmetry we may assume vp(Iq) > vp(Jq). If P is

an R-module and a > 0 then pa · P/pa+1 · P is a vector space over the residue field k = R/p.

Moreover, in case P = R/I for some non-zero ideal I we find that pa · P/pa+1 · P is zero if

vp(I) < a and is 1-dimensional over k if vp(I) > a. Therefore, if we take a = vp(Iq) then we find

that dimk

(
pa ·M/pa+1 ·M) > dimk

(
pa · N/pa+1 · N); contradiction. This shows that Iq = Jq

for all q. �
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