
Tensor products

Let R be a commutative ring. Given R-modules M1, M2 and N we say that a map

b: M1 ×M2 → N

is R-bilinear if for all r, r′ ∈ R and module elements mi, m
′
i ∈Mi we have

b(r ·m1 + r′ ·m′1,m2) = r · b(m1,m2) + r′ · b(m′1,m2)

b(m1, r ·m2 + r′ ·m′2) = r · b(m1,m2) + r′ · b(m1,m
′
2) .

The set of all such R-bilinear maps is denoted by BilinR(M1 ×M2, N).

Bilinear maps b as above should not be confused with homomorphisms f : M1 ⊕M2 → N .

Indeed, such a homomorphism f satisfies f(rm1, rm2) = r ·f(m1,m2), whereas for an R-bilinear

map b we have b(rm1, rm2) = r · b(m1, rm2) = r2 · b(m1,m2).

If b, b′ ∈ BilinR(M1 × M2, N) and r ∈ R then also the maps b + b′ and r · b are in

BilinR(M1 ×M2, N); this means that BilinR(M1 ×M2, N) itself has a natural structure of an

R-module.

If f1: M1 →M ′1 and f2: M2 →M ′2 are homomorphisms of R-modules, we have an induced

map

(f1 × f2)∗: BilinR(M ′1 ×M ′2, N)→ BilinR(M1 ×M2, N)

given by b 7→ b ◦ (f1 × f2). Hence we obtain a functor

BilinR(−×−, N): RModop × RModop → RMod .

Similarly, if g: N → N ′ is a homomorphism, we have an induced map g∗: BilinR(M1×M2, N)→
BilinR(M1 ×M2, N

′) by b 7→ g ◦ b, giving a functor

BilinR(M1 ×M2,−): RMod→ RMod .

Theorem 1. Let R be a commutative ring, and let M1 and M2 be R-modules. Then the functor

BilinR(M1 ×M2,−) is co-representable.

In concrete terms this means that there exists an R-module T and an R-bilinear map

β: M1 ×M2 → T with the following universal property : for any R-module N the map

HomR(T,N)→ BilinR(M1 ×M2, N)

given by h 7→ h ◦ β is a bijection. The pair (T, β) is unique up to unique isomorphism.

The module T is called the tensor product of M1 and M2 over the ring R and is denoted by

M1⊗RM2. The image of an element (m1,m2) ∈M1×M2 under the universal map β: M1×M2 →
M1 ⊗RM2 is denoted by m1 ⊗Rm2, or if there is no risk of confusion simply by m1 ⊗m2. The

fact that the map β is R-blinear means that we have the relations

(r ·m1 + r′ ·m′1)⊗m2 = r · (m1 ⊗m2) + r′ · (m′1,⊗m2)

m1 ⊗ (r ·m2 + r′ ·m′2) = r · (m1 ⊗m2) + r′ · (m1 ⊗m′2) .
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As a particular case of this we have

rm1 ⊗m2 = r · (m1 ⊗m2) = m1 ⊗ rm2

for all r ∈ R and mi ∈Mi.

At this stage it is not easy to grasp what the tensor product is in given examples. This

will become clearer once we have obtained some further results on the structure of the tensor

product. Two techniques are relevant here: on one hand we may gain insight in the tensor

product by using its universal property; on the other hand, as the next proof shows there is an

explicit (but rather abstract!) construction of the tensor product that we may use to deduce

information.

Proof of the theorem. We start by considering the free R-module F on the set M1 ×M2. This

means that for every element (m1,m2) ∈ M1 ×M2 we have a base vector e(m1,m2) and that

these elements form a basis for F as an R-module. This module F is huge, in general, and it

does not have a very interesting structure. We are going to make it more interesting by dividing

out relations; this means we will pass from F to a quotient module T = F/N in such a way that

the map (m1,m2) 7→ [e(m1,m2)] (writing [x] ∈ F/N for the class of an element x ∈ F ) becomes

the desired map β from M1 ×M2 to the tensor product T .

To this end, we define N ⊂ F to be the R-submodule generated by all the following elements:

— all elements of the form

e(r·m1+r′·m′1,m2) − r · e(m1,m2) − r
′ · e(m′1,m2) ;

— all elements of the form

e(m1,r·m2+r′·m′2) − r · e(m1,m2) − r
′ · e(m1,m′2)

.

If we now write β(m1,m2) for the class [e(m1,m2)] ∈ T = F/N then we see that the map

β: M1 ×M2 → T is R-bilinear by construction. For instance,

β(r ·m1 + r′ ·m′1,m2) = r · β(m1,m2) + r′ · β(m′1,m2)

simply because

β(r ·m1 + r′ ·m′1,m2)− r · β(m1,m2)− r′ · β(m′1,m2)

= [e(r·m1+r′·m′1,m2)]− r · [e(m1,m2)]− r
′ · [e(m′1,m2)]

= [e(r·m1+r′·m′1,m2) − r · e(m1,m2) − r
′ · e(m′1,m2)] = 0 ,

and in a similar way we find that

β(m1, r ·m2 + r′ ·m′2) = r · β(m1,m2) + r′ · β(m1,m
′
2)

for all r, r′ ∈ R, m1 ∈M1 and m2, m′2 ∈M2.

Next we show that (T, β) has the desired universal property. So we give ourselves an

R-bilinear map b: M1 × M2 → N and our task is to show that there exists a unique R-

homomorphism g: T → N such that b = g ◦ β. Note that if such a homomorphism g exists
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we must have g[e(m1,m2)] = b(m1,m2) for all m1 ∈ M1 and m2 ∈ M2, and since the elements

[e(m1,m2)] generate T = F/N as an R-module this implies that there can be at most one homo-

morphism g with b = g ◦ β.

To prove the existence of the desired g, we first note that there is a unique homomorphism

g̃: F → N with g̃(e(m1,m2)) = b(m1,m2) for all m1, m2. (This is really what it means to have

a free module: you can map the base vectors to any elements you want and then extend R-

linearly.) The assumption that b is R-bilinear implies that g̃ is zero on all generators of the

submodule N ⊂ F , and hence g̃|N = 0. Therefore g̃ induces a homomorphism g: T → N , and

by construction we have b = g ◦ β. �

An element of M1 ⊗R M2 that is of the form m1 ⊗m2 is called a pure tensor . Note that

a scalar multiple of a pure tensor is again pure, since r · (m1 ⊗m2) = rm1 ⊗m2 = m1 ⊗ rm2.

The above proof shows:

Proposition. Every element in M1 ⊗RM2 is a finite sum of pure tensors.

In general, not every element of M1 ⊗RM2 is a pure tensor. We will see this later in some

examples. We will often write the general element in a tensor product M ⊗R N as
∑

mi ⊗ ni,
by which we indicate a finite sum of pure tensors. Note that such an expression is by no means

unique, since after all we have relations such as (m+m′)⊗ n = m⊗ n+m′ ⊗ n.

Functoriality. If f : M → M ′ and g: N → N ′ are homomorphisms of R-modules, we have an

induced map on tensor products

(f ⊗ g): (M ⊗R N)→ (M ′ ⊗R N ′) .

On elements it is given simply by
∑
i mi ⊗ ni 7→

∑
i f(mi) ⊗ g(ni). There are a number of

rather obvious identities, such as

(f2 ⊗ g2) ◦ (f1 ⊗ g1) = (f2 ◦ f1)⊗ (g2 ◦ g1) .

We may therefore view the tensor product as a functor

⊗: RMod× RMod→ RMod .

Theorem 2. As before, let R be a commutative ring.

(i) For M , N ∈ RMod we have an isomorphism

M ⊗R N
∼−→ N ⊗RM ,

given by
∑

mi ⊗ ni 7→
∑

ni ⊗mi.

(ii) If I ⊂ R is an ideal then

(R/I)⊗RM
∼−→M/IM ,

where the isomorphism is given by
∑

(ri mod I)⊗mi 7→
(∑

rimi

)
mod IM . In particular

(taking I = 0),

R⊗RM
∼−→M .
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(ii) If {Mα} is a collection of R-modules then(
⊕αMα

)
⊗R N

∼−→ ⊕α
(
Mα ⊗R N) .

Before we prove this, let us draw some consequences and discuss some examples.

Corollary. If I, J ⊂ R are ideals, (R/I)⊗R (R/J) ∼= R/(I + J).

Proof. The kernel of the natural surjective map R/J → R/(I + J) is the ideal I · (R/J) ⊂ R/J
generated by the images of the elements in I; hence (R/J)/I · (R/J)

∼−→ R/(I + J). Now apply

(ii) of the theorem. �

Example. We have (Z/2Z)⊗Z (Z/3Z) = 0. At first sight this may seem surprising. However, if

N is a Z-module (i.e., an abelian group) then there are no non-zero bilinear maps b: (Z/2Z)×
(Z/3Z)→ N . Indeed, this follows from the relations

b(m,n) = b(3m,n) = 3 · b(m,n) = b(m, 3n) = b(m, 0) = 0

for arbitrary (m,n) ∈ (Z/2Z)×Z (Z/3Z). So BilinZ((Z/2Z)× (Z/3Z),−) sends every Z-module

to zero, and is therefore co-represented by the zero module.

More generally, the Corollary tells us that (Z/aZ)⊗Z (Z/bZ) ∼= (Z/cZ) with c = gcd(a, b);

in particular, (Z/aZ) ⊗Z (Z/bZ) = 0 whenever gcd(a, b) = 1. If we combine this with the

other properties in Theorem 2, we can already calculate all tensor products M ⊗ZN for finitely

generated abelian groups M and N , or more generally, all M⊗RN for finitely generated abelian

groups M and N over a principal ideal domain R.

Example. Next let us try to understand tensor products Q⊗Z (Z/nZ). Here something similar

happens as in the previous example: any bilinear map b: Q× (Z/nZ)→ N , for N a Z-module,

is zero, because we have

b(q, y) = b
(
n · (q/n), y

)
= n · b

(
(q/n), y

)
= b
(
(q/n), ny

)
= b
(
(q/n), 0

)
= 0 .

Hence Q⊗Z (Z/nZ) = 0.

Example. Let M = Rm with basis e1, . . . , em and N = Rn with basis f1, . . . , fn. Application

of Theorem 2 gives Rm ⊗R Rn ∼= Rmn, and the elements ei ⊗ fj form a basis of Rm ⊗R Rn

as an R-module. Here we can see that not every tensor is pure in general. For instance, take

m = n = 2. Pure tensors are those that can be written as

(a1e1 +a2e2)⊗ (b1f1 + b2f2) = a1b1 · (e1⊗f1) +a1b2 · (e1⊗f2) +a2b1 · (e2⊗f1) +a2b2 · (e2⊗f2) .

It is then a nice exercise to show that an arbitrary tensor

c1,1 · (e1 ⊗ f1) + c1,2 · (e1 ⊗ f2) + c2,1 · (e2 ⊗ f1) + c2,2 · (e2 ⊗ f2)

is pure if and only if c1,1 · c2,2 = c1,2 · c2,1.
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Proof of the first two parts of Theorem 2. We first prove (ii), which is the more interesting part.

The idea is that we should prove that M/IM co-represents the functor BilinR
(
(R/I)×M,−

)
;

so we should find isomorphisms

ϕN : HomR(M/IM,N)
∼−→ BilinR

(
(R/I)×M,N

)
that are functorial in N . First, given a homomorphism f : M/IM → N , define bf : (R/I)×M →
N by bf

(
(r mod I),m

)
= f(rm mod IM). One checks without trouble that this indeed is R-

bilinear. Conversely, suppose b: (R/I) ×M → N is R-bilinear. Consider the homomorphism

f̃b: M → N given by f̃b(m) = b
(
(1 mod I),m

)
. If r ∈ I and m ∈M then

f̃b(rm) = b
(
(1 mod I), rm

)
= b
(
(r mod I),m

)
= b
(
(0 mod I),m

)
= 0 ;

hence f̃b is zero on IM and drops to a homomorphism fb: M/IM → N . The two constructions

f 7→ bf and b 7→ fb are inverse to each other, and hence we have the desired isomorphism ϕN .

Finally, if g: N → N ′ is a homomorphism, the diagram

HomR(M/IM,N)
g∗−−→ HomR(M/IM,N ′)

ϕN

y yϕN′

BilinR
(
(R/I)×M,N

) g∗−−→ BilinR
(
(R/I)×M,N ′

)
is commutative. This means precisely that the maps ϕN define an isomorphism of functors

ϕ: HomR(M/IM,−)
∼−→ BilinR

(
(R/I) ×M,−

)
. By the Yoneda lemma and the definition of

the tensor product it follows that (R/I) ⊗R M
∼−→ M/IM . To verify that the isomorphism is

as claimed, take N = M/IM in the above discussion and let f = id ∈ HomR(M/IM,M/IM).

The corresponding bf : (R/I) ×M → M/IM sends (r mod I,m) to (rm mod IM); hence the

isomorphism (R/I)⊗RM →M/IM sends r ⊗m to rm mod IM .

For (i) we may argue in a similar way; here it is obvious that the functors BilinR(M×N,−)

and BilinR(N ×M,−) are isomorphic. �

Hom-tensor adjunction. Before we turn to the proof of part (iii) of the theorem, let us first

discuss a simple but important observation that will help us further. (In computer science this

idea is known under the name currying .) Namely, suppose b: M1 ×M2 → N is R-bilinear. For

each m1 ∈ M1 the map b(m1,−): M2 → N is then a homomorphism of R-modules, i.e., an

element of the R-module HomR(M2, N). This only uses the linearity of b in the second variable.

The linearity of b in the first variable can then be expressed as saying that m1 7→ b(m1,−)

defines a homomorphism of R-modules

a: M1 → HomR(M2, N) .

Conversely, if we are given such a homomorphism a then we obtain a bilinear form b by

b(m1,m2) = a(m1)
(
m2

)
, and these two constructions are clearly each others inverses. Hence we

obtain isomorphisms

ψN : BilinR(M1 ×M2, N)
∼−→ HomR

(
M1,HomR(M2, N)

)
.
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Using the tensor product we may rewrite this as

ψN : HomR(M1 ⊗RM2, N)
∼−→ HomR

(
M1,HomR(M2, N)

)
.

Moreover, these isomorphisms are functorial in N , meaning that for every homomorphism

g: N → N ′ the diagram

HomR(M1 ⊗RM2, N)
g∗−−→ HomR(M1 ⊗RM2, N

′)

ψN

y yψN′

HomR

(
M1,HomR(M2, N)

) g∗−−→ HomR

(
M1,HomR(M2, N

′)
)

is commutative. Hence the maps ψN define an isomorphism of functors

ψ: HomR(M1 ⊗RM2,−)
∼−→ HomR

(
M1,HomR(M2,−)

)
.

(There is also an obvious functoriality with respect to M1 and M2, but this we will not further

discuss here.)

The isomorphism ψ is known under the name Hom-⊗-adjunction. For now this is only a

name; we shall discuss adjunctions of functors later.

Proof of the third part of Theorem 2. Let {Mα} be a collection of R-modules. Recall that we

have homomorphisms iα: Mα →
(
⊕αMα

)
, and that ⊕αMα co-represents the functor∏

α

HomR(Mα,−) .

In more detail: if f : ⊕αMα → N is a homomorphism then the collection of homomorphisms

f ◦ iα defines an element (f ◦ iα)α of
∏
α HomR(Mα, N), and f 7→ (f ◦ iα)α gives an isomorphism

of functors

HomR(⊕αMα,−)
∼−→
∏
α

HomR(Mα,−) .

Using Hom-⊗-adjunction we find

HomR

((
⊕αMα

)
⊗N,−

)
∼−→ HomR

((
⊕αMα

)
,HomR(N,−)

)
∼−→
∏
α

HomR

(
Mα,HomR(N,−)

)
∼−→
∏
α

HomR

(
Mα ⊗R N,−

)
∼−→ HomR

(
⊕α (Mα ⊗R N),−

)
.

By the Yoneda Lemma this gives the assertion. �

Extension of scalars. One situation that frequently occurs is that a tensor product is used to

“extend” the ring of coefficients. The basic remark is that, with R a commutative ring as before,

if R → S is a homomorphism of rings and if M is an R-module then S ⊗R M has a natural

structure of a left S-module, by

σ ·
(∑
i

si ⊗mi

)
=
∑
i

σsi ⊗mi
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(for σ, si ∈ S and mi ∈M). If f : M → N is a homomorphism of R-modules, the induced map

(idS⊗f): S⊗RM → S⊗RN is a homomorphism of S-modules. In this way, we obtain a functor

S ⊗R −: RMod→ SMod .

Example. Let K ⊂ L be an extension of fields. If V is a K-vector space of dimension d, then

VL := L⊗K V is an L-vector space with dimL(VL) = d.

More generally, if M is a free module of rank r over a ring R then MS := S ⊗RM is a free

S-module of rank r. If e1, . . . , er is an R-basis for M then the elements 1⊗ ei form an S-basis

for MS . This explains the meaning of the term “extension of scalars”; note however that R→ S

need not be injective, so the word “extension” has to be taken with a grain of salt.

Example. Let N ⊂ M be an R-submodule. We will see later that S ⊗R (M/N) is isomorphic

to the quotient of S⊗RM by the image of the map S⊗RN → S⊗RM . (Caution: even though

N ↪→ M , the map S ⊗R N → S ⊗RM is not injective, in general.) This helps to calculate the

effect of the functor S ⊗R − on modules that are given by generators and relations. (Of course

we can describe any module in this form.) Indeed, suppose we have a module that is of the form

F/N , where F is a free R-module with basis some elements ei (the generators) and N ⊂ F is an

R-submodule generated by some elements nj (the relations). Then S ⊗R (F/N) is the quotient

of the free S-module FS generated by elements 1⊗ ei, modulo the submodule generated by the

elements 1⊗nj . In particular, this includes the assertion that if an R-module M is generated by

a collection of elements mi then S ⊗RM is generated as an S-module by the elements 1⊗mi.

Here are some concrete examples.

(a) If I ⊂ R is an ideal then S ⊗R (R/I) ∼= S/I · S.

(b) We recover the fact that Q⊗Z (Z/nZ) = 0: the above gives that Q⊗Z (Z/nZ) is the Q-vector

space generated by one element 1⊗1, modulo the Q-subspace generated by 1⊗n = n·(1⊗1);

but this subspace equals the whole space.

(c) If A is a finitely generated abelian group then we know that A = A0 ⊕ Tors(A), where

A0 is free of finite rank and Tors(A) ⊂ A is the submodule of torsion elements. Then

Q⊗Z A ∼= Q⊗Z A0 is a Q-vector space of dimension equal to the rank of A0.

Tensor products of rings. Recall that if R is a commutative ring, by an R-algebra we mean a

ring A (non-commutative in general) together with a homomorphism a: R→ A, called the struc-

tural homomorphism, such that a(R) is contained in the center of A. If a: R→ A and b: R→ B

are R-algebras then by a homomorphism of R-algebras f : A → B we mean a homomorphism

of rings such that f ◦ a = b. In practice it is often clear which structural morphism is meant,

and then we omit it from the notation. The R-algebras form a category R-Alg. (Caution: the

term “algebra” is also used in a much more general meaning; e.g., Lie algebras are not algebras

in the sense considered here. In ring theory the above definition is common, though.)

We can carry the above one step further: if A and B are R-algebras then A⊗RB again has

the structure of an R-algebra. To define the ring structure, the basic rule is that

(a⊗ b) · (a′ ⊗ b′) = (aa′)⊗ (bb′) .
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For arbitrary tensors this leads to(∑
i

ai ⊗ bi
)
·
(∑

j

a′j ⊗ b′j
)

=
(∑
i,j

(aia
′
j)⊗R (bib

′
j)
)
.

Associatitivity follows from(
(a⊗ b) · (a′ ⊗ b′)

)
· (a′′ ⊗ b′′) = (aa′)⊗ (bb′) · (a′′ ⊗ b′′)

= (aa′a′′)⊗ (bb′b′′)

= (a⊗ b) · (a′a′′)⊗ (b′b′′) = (a⊗ b) ·
(

(a′ ⊗ b′) · (a′′ ⊗ b′′)
)
.

Example. Let R[x] be a polynomial ring in one variable over R. Then for A an R-algebra we

have A⊗RR[x] ∼= A[x]. On the level of modules this is clear: R[x] is a free R-module with basis

1, x, x2, . . ., so if we continue to write x (rather than 1 ⊗ x) for the image of x in A ⊗R R[x]

then the latter is free as an A-module with basis 1, x, x2, . . .. But from the given recipe for the

ring structure it is also clear that we get A⊗R R[x] ∼= A[x] as rings.

For instance we could take A = R[x], and then we find R[x] ⊗R R[x] ∼= R[x, y]. Note that

in the answer we are renaming one of the variables x as y; this is necessary because x⊗ 1 is not

the same as 1⊗x. (You could avoid the problem by taking A = R[y]; but then you must realize

that rings such as R[x]⊗RR[x] really pop up in mathematics, so you’d better learn how to deal

with this.)

Iterating this construction we find

R[x1, . . . , xm]⊗R R[y1, . . . , yn] ∼= R[x1, . . . , xm, y1, . . . , yn] .

Example. Continuing along similar lines we could also take B = R[x1, . . . , xm]/I, where

I = (f1, . . . , fs) ⊂ R[x1, . . . , xm] is the ideal generated by a number of polynomials f1, . . . , fs.

What comes out is that

A⊗R R[x1, . . . , xm]/(f1, . . . , fs) ∼= A[x1, . . . , xm]/(f1, . . . , fs) ,

where in the right hand side the polynomials fi are viewed as polynomials in A[x1, . . . , xm] via

the given ring homomorphism R → A. This notation may at first seem sloppy, but in practice

it doesn’t lead to confusion. For instance, we get:

C⊗R C ∼= C⊗R R[x]/(x2 + 1) ∼= C[x]/(x2 + 1) ∼= C× C .

As such examples show, it greatly matters over which ground ring we take the tensor product,

as for instance C⊗C C ∼= C, whereas C⊗Q C is an uncountable product of copies of the ring C.

Exercise. Let M1, M2, M3 and N be R-modules.

(i) Define what it means for a map t: M1 ×M2 ×M3 → N to be R-trilinear.

(ii) Show that the trilinear maps form an R-module TrilinR(M1 ×M2 ×M3, N) and that N 7→
TrilinR(M1 ×M2 ×M3, N) gives rise to a functor (RModop)3 → RMod.

(iii) Prove that M1 ⊗ (M2 ⊗RM3) and (M1 ⊗RM2)⊗RM3 both co-represent this functor, and

conclude that we have a natural isomorphism

M1 ⊗ (M2 ⊗RM3)
∼−→ (M1 ⊗RM2)⊗RM3 .
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