CATEGORIES AND HOMOLOGICAL ALGEBRA

Exercises for April 26

Exercise 1. Let R be a principal ideal domain. If M is a finitely generated R-module, show that
M is a projective R-module $\Longleftrightarrow M$ is a free R-module $\Longleftrightarrow M$ is a flat R-module.

Exercise 2. Let R be a commutative ring. Let I and J be ideals of R that are coprime, which means that $I+J=R$.
(a) Show that we have an exact sequence of R-modules

$$
0 \longrightarrow I \cdot J \xrightarrow{f} I \oplus J \xrightarrow{g} R \longrightarrow 0,
$$

where $f(x)=(x,-x)$ and $g(x, y)=x+y$.
(b) Prove that $I \oplus J \cong R \oplus(I \cdot J)$ as R-modules. [Hint: Use Exercise 6 from last week.]
(c) Suppose R is a domain and $I \cdot J$ is a principal ideal. Prove that I and J are projective R-modules. [Hint: Again use Exercise 6 from last week.]

Exercise 3. Let $R=\mathbb{Z}[\sqrt{-5}]$. Let $N: R \rightarrow \mathbb{Z}$ be the map given by $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$. It has the property that $N(\alpha \cdot \beta)=N(\alpha) \cdot N(\beta)$ for all $\alpha, \beta \in R$. Further, $N(\alpha)=1$ if and only if $\alpha \in R^{*}$. Consider the ideals $I=(3,1+\sqrt{-5})$ and $J=(3,1-\sqrt{-5})$.
(a) Prove that I and J are coprime and that $I \cdot J=(3)$.
(b) Prove that I and J are not principal ideals. [Hint: Suppose $I=(\alpha)$. Show that we must have $N(\alpha)=3$, and remark that this is impossible.]
(c) Prove that I and J are projective R-modules. [Hint: Use the previous exercise.]
(d) Prove that I and J are not free R-modules. [Hint: First show that if one of the two is free, so is the other. Then show that if I and J are free, they must have rank 1 , contradicting (b).]

Exercise 4. Let R be a ring, and let

$$
\begin{equation*}
M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0 \tag{*}
\end{equation*}
$$

be a sequence of R-modules. Prove that (*) is exact if and only if for all R-modules N the induced sequence

$$
0 \longrightarrow \operatorname{Hom}_{R}\left(M^{\prime \prime}, N\right) \longrightarrow \operatorname{Hom}_{R}(M, N) \longrightarrow \operatorname{Hom}_{R}\left(M^{\prime}, N\right)
$$

is exact.

Exercise 5. Let R be a ring, and let

$$
0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0
$$

be a split exact sequence of R-modules.
(a) Prove that for every R-module N the induced sequence

$$
0 \longrightarrow \operatorname{Hom}_{R}\left(M^{\prime \prime}, N\right) \longrightarrow \operatorname{Hom}_{R}(M, N) \longrightarrow \operatorname{Hom}_{R}\left(M^{\prime}, N\right) \longrightarrow 0
$$

is exact.
(b) Prove that for every R-module N the induced sequence

$$
0 \longrightarrow \operatorname{Hom}_{R}\left(N, M^{\prime}\right) \longrightarrow \operatorname{Hom}_{R}(N, M) \longrightarrow \operatorname{Hom}_{R}\left(N, M^{\prime \prime}\right) \longrightarrow 0
$$

is exact.
(c) Assume R is commutative. Prove that for every R-module N the induced sequence

$$
0 \longrightarrow M^{\prime} \otimes_{R} N \longrightarrow M \otimes_{R} N \longrightarrow M^{\prime \prime} \otimes_{R} N \longrightarrow 0
$$

is exact.

