CATEGORIES AND HOMOLOGICAL ALGEBRA

Exercises for May 17

Exercise 1.

(a) If R is a PID and M is a finitely generated R-module, show that M has a free resolution of length at most 1. By this we mean that M has a free resolution

$$\cdots \longrightarrow F_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow 0$$

with $F_i = 0$ for all i > 1.

(b) Let $R = \mathbb{Z}/4\mathbb{Z}$, and consider the *R*-module $M = R/2R \cong \mathbb{Z}/2\mathbb{Z}$. Show that

$$\cdots \xrightarrow{\cdot^2} R \xrightarrow{\cdot^2} R \xrightarrow{\cdot^2} R \xrightarrow{\cdot^2} R \xrightarrow{\cdot^2} R \longrightarrow 0$$

is a free resolution of M. Also show that M does not admit a free resolution of finite length. [*Hint:* Suppose F_{\bullet} is a free resolution of M, with quasi-isogeny $\alpha \colon F_{\bullet} \to M$. Use induction on i to show that $\operatorname{Coker}(F_{i+1} \to F_i)$ contains elements x such that 2x = 0and $x \notin 2 \cdot \operatorname{Coker}(F_{i+1} \to F_i)$.]

Exercise 2. Let R be the ring $\mathbb{C}[x, y]/(x^2 - y^3)$, and let $\mathfrak{m} \subset R$ be the maximal ideal generated by (the classes of) x and y. Consider the R-module R/\mathfrak{m} . Write down an *explicit* free resolution of M.

Exercise 3. Let n be a integer with $n \ge 2$, and let K_{\bullet} be the complex of abelian groups given by

 $\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot n} \mathbb{Z} \longrightarrow 0 \longrightarrow \cdots$

with terms \mathbb{Z} in degrees 1 and 0. Let L_{\bullet} be the complex

$$\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow \mathbb{Z}/n\mathbb{Z} \longrightarrow 0 \longrightarrow \cdots$$

whose only non-zero term $\mathbb{Z}/n\mathbb{Z}$ is placed in degree 0. Finally, let $f: K_{\bullet} \to L_{\bullet}$ be the natural morphism of complexes, with $f: K_0 \to L_0$ the canonical map $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$. Prove that f is a quasi-isomorphism but that it is not a homotopy-equivalence of complexes.

Exercise 4. Let R be a ring. Let K_{\bullet} , L_{\bullet} and M_{\bullet} be complexes of R-modules, and suppose given morphisms of complexes $f: K_{\bullet} \to L_{\bullet}$ and $g: L_{\bullet} \to M_{\bullet}$. We say that the resulting sequence

$$(*) 0 \longrightarrow K_{\bullet} \xrightarrow{f} L_{\bullet} \xrightarrow{g} M_{\bullet} \longrightarrow 0$$

is a short exact sequence of complexes if in every degree i the sequence

$$0 \longrightarrow K_i \xrightarrow{f} L_i \xrightarrow{g} M_i \longrightarrow 0$$

is short exact.

(a) Suppose we have a short exact sequence of complexes as above. Prove that for every $i \in \mathbb{Z}$ we have an induced diagram of *R*-modules with exact rows

in which the vertical maps are induced by the differentials $d: K_i \to K_{i-1}$, resp. $d: L_i \to L_{i-1}$, resp. $d: M_i \to M_{i-1}$.

(b) Prove that the short exact sequence (*) induces a long exact homology sequence

$$\cdots \longrightarrow \mathscr{H}_{i}(K_{\bullet}) \xrightarrow{\mathscr{H}_{i}(f)} \mathscr{H}_{i}(L_{\bullet}) \xrightarrow{\mathscr{H}_{i}(g)} \mathscr{H}_{i}(M_{\bullet}) \xrightarrow{\delta_{i}} \mathscr{H}_{i-1}(K_{\bullet}) \xrightarrow{\mathscr{H}_{i-1}(f)} \mathscr{H}_{i-1}(L_{\bullet}) \longrightarrow \cdots$$

for suitable boundary maps δ_i .

Exercise 5. For R a ring, let C(R-Mod) be the category of chain complexes of R-modules and Ho(R-Mod) the homotopy category of chain complexes (as discussed in the lecture). Let $F: C(R-Mod) \rightarrow Ho(R-Mod)$ be the canonical functor.

- (a) Is the functor F faithful? Is it full? Is it essentially surjective?
- (b) In general, a functor $G: \mathsf{C} \to \mathsf{D}$ between categories is said to be *conservative* if for a morphism $f: X \to Y$ in C we have

G(f) is an isomorphism $\implies f$ is an isomorphism.

Is the functor F conservative?

(c) Give an example of a ring R and a chain complex M_{\bullet} that is not isomorphic to the zero object in C(R-Mod) but is isomorphic to the zero object in Ho(R-Mod).